Lecture: Music Processing Analysis, Winter Term 2021/2022

01_MusicRepr_Teaser 02_FourierTr_Teaser 03_MusicSync_Teaser2 04_AudioStru_Teaser 06_Teaser_BeatTempo 07_Teaser_AudioRetr


  • Instructor: Prof. Dr. Meinard Müller
  • Tutor: Michael Krause
  • Credits:
    • 2.5 ECTS (Lecture only)
    • 5 ECTS (Lecture with Exercises; only for selected study programmes)
  • Time (Lecture): Winter Term 2021/2022, Mo 16:15–18:00 (1. Lecture: 18.10.2021, via ZOOM)
    Link and access information for our ZOOM meetings can be found at StudOn (see below).
  • Time (Exercises): Winter Term 2021/2022, Mo 14:15–15:45 (1. Excercise: 25.10.2021, via ZOOM)
Important Notes:
  • The lecture Music Processing Analysis will be offered as a fully virtual course (via ZOOM).
  • Participation in the ZOOM session is only possible for FAU students. The ZOOM access information for this course will be made available via StudOn. Therefore, you must register via StudOn prior to the first lecture. Please contact Michael Krause for questions on StudOn.
  • Besides a traditional lecturing format, this course will also be inspired by the flipped classroom concept. Important elements are: In particular, students are asked to be prepared prior to the lecture. The lecture time will be used for a short summary, the deepening of the most important aspects, and for having a question–answering dialogue with participants. Note that this concept will require a lot of work and dedication on the side of the lecturer and participants.
  • As a technical requirement, all participants must have access to a computer capable of running the ZOOM video conferencing software (as provided by FAU), including audio and video transmission as well as screensharing. Furthemore, a regular web browser (preferably Google Chrome) to access the FMP Notebooks and the Python development environment is needed.
  • To ensure privacy, participants are not permitted to record the ZOOM sessions. Furthermore, ZOOM links may not be distributed. The required material will be made available in the following way:
    • All FAU students can get an electronic copy of the required textbook via SpringerLink. To this end, you need to be logged in via an FAU account. It may be benefial to have a physical copy of the book to allow for offline reading. You may print out the required pages, or you may purchase a high-quality softcover edition at low cost (MyCopy softcover) following SpringerLink.
    • The slides used in the lecture are made publicly available as PDF.
    • The FMP Notebooks along with all required Python code and audio examples are publicly available.
    • All required videos are publicly available.
    • Questions and answers during the ZOOM sessions will be collected and made freely accessible.

Content

Music signals possess specific acoustic and structural characteristics that are not shared by spoken language or audio signals from other domains. In fact, many music analysis tasks only become feasible by exploiting suitable music-specific assumptions. In this course, we study feature design principles that have been applied to music signals to account for the music-specific aspects. In particular, we discuss various musically expressive feature representations that refer to musical dimensions such as harmony, rhythm, timbre, or melody. Furthermore, we highlight the practical and musical relevance of these feature representations in the context of current music analysis and retrieval tasks. Here, our general goal is to show how the development of music-specific signal processing techniques is of fundamental importance for tackling challenging music analysis problems.

The general research area of music processing covers a wide range of subfields and tasks such as music anaylsis, music synthesis, computer music composition, performance analysis, or audio coding not to speak from close connections to other disciplines such as musicology or library sciences. In this course, we present a selection of topics with an emphasis on music analysis and retrieval having a focus on audio recordings. Most of these topics are connected to the research area known as music information retrieval (MIR), which aims at developing computational tools for processing, searching, organizing, and accessing music-related data.

The lecture closely follows the textbook Fundamentals of Music Processing (FMP). Additionally, the FMP Notebooks offer a collection of educational material, providing detailed textbook-like explanations of central techniques and algorithms in combination with Python code examples that illustrate how to implement the theory.

The following video gives a brief impression about this course.

Course Requirements

In this course, we discuss a number of current research problems in music processing and music information retrieval (MIR) covering aspects from information science and audio signal processing. While we provide the necessary background information, a good understanding of general concepts in signal processing and data science (e.g., algorithms, data structures) as well as strong mathematical background is required. Furthermore, good programming skills are a prerequisite for participating in the exercises. In particular, participants are required to experiment with the presented algorithms using Python and Jupyter notebooks. Furthermore, basic knowledge in music theory and a strong interest in music are extremely helpful to get enthusiastic about the field of music processing.

Links

Accompanying Textbook and Notebooks

Cover_Mueller_FMP_Springer2021

Meinard Müller
Fundamentals of Music Processing
Using Python and Jupyter Notebooks
2nd edition, 495 p., hardcover
ISBN: 978-3-030-69807-2
Springer, 2021
Accompanying Website

FMP Notebooks
Comprehensive framework based on Jupyter notebooks
for teaching and learning fundamentals of music processing.

Lecture: Topics, Material, Instructions, Questions & Answers

The lecture material includes textbook passages, notebooks, handouts of slides, videos, and so on. In the following list, you find detailed descriptions and links to the material. If you have any questions regarding the lecture, please contact Prof. Dr. Meinard Müller.

Exercises: Material, Instructions

The exercises, which are mainly offered to computer science students, accompany and extend the lecture Music Processing Analysis. In the exercise meetings, we review the lecture, discuss homework problems, deal with programming issues, and realize mini-projects that implement basic algorithms and procedures. Note that good programming skills are a prerequisite for participating in the exercises. In particular, we assume basic knowledge in Python as covered by the PCP Notebooks. If you have any questions regarding the exercise, please contact Michael Krause.

Note: You must complete the exercises before coming to the exercise session. So you must have prepared the Exercise on Music Representations by 25.10!

  • Exercise: Music Representations
    Relevant for the excercise on 25.10.2021. You must prepare the tasks in this exercise notebook before coming to the session on 25.10. Please contact Michael Krause if you have trouble setting up the notebook environments etc.

  • Exercise: Fourier Analysis of Signals - tba
  • Lab Exams on STFT and HPSS
    Will take place on 22.11.2020
    On 22.11.2020, you will be asked to present your solutions to the two lab notebooks on STFT and HPSS. You should work on this in pairs! Please have your solutions ready to present via screensharing. The lab exams run with the FMP environment. Do not hesitate to ask questions via mail or in the exercise sessions before 22.11!

  • If feasible: Group projects - tba

  • Mandatory reading assignment
    Due via mail to Michael on Sunday, 16.01.2022 - Each student must summarize a chapter from the FMP textbook. You must use the provided Latex template (2 pages without references; do not copy text or figures from the book). These are individual submissions - do not work in groups.