FMP AudioLabs
C8

Harmonic–Residual–Percussive Separation (HRPS)


In this notebook, we extend the HP separation approach from [Müller, FMP, Springer 2015] by considering an additional residual component. Furthermore, we introduce a cascaded procedure of the resulting approach. These two extension were proposed in the following two articles:

  • Jonathan Driedger, Meinard Müller, Sascha Disch: Extending Harmonic–Percussive Separation of Audio Signals. Proceedings of the International Conference on Music Information Retrieval (ISMIR), Taipei, Taiwan, 2014, pp. 611–616.
    Bibtex
  • Patricio López-Serrano, Christian Dittmar, Meinard Müller: Mid-Level Audio Features Based on Cascaded Harmonic–Residual–Percussive Separation. Proceedings of the Audio Engineering Society Conference on Semantic Audio (AES), Erlangen, Germany, 2017, pp. 32–44.
    Bibtex

Motivation

Recall that the underlying assumption of HPS is that harmonic sounds correspond to horizontal structures in a spectrogram, while percussive sounds to vertical structures. However, there are many sounds that neither correspond to horizontal nor to vertical structures. For example, noise-like sounds such as applause or distorted guitar lead to many Fourier coefficients distributed over the entire spectrogram without any clear structure. When applying the HPS procedure, such noise-like components may be more or less randomly assigned partly to the harmonic and partly to the percussive component. Continuing our example with the violin (harmonic sound) and castanets (percussive sound), we further consider applause (noise-like sound), which is neither of percussive nor of harmonic nature.

Violin Applause Castanets

Following Driedger et al. (see also Exercise 8.5 of [Müller, FMP, Springer 2015]), we introduce an extension to HPS by considering a third residual component which captures the sounds that lie between a clearly harmonic and a clearly percussive component. The resulting procedure is also referred to as harmonic–residual–percussive separation (HRPS). The following figure illustrates the conceptual difference between HPS and HRPS.

FMP_C8_E05_HRP

HRPS Procedure

Using the same notation as in the FMP notebook on HPS, we now give the technical description of the HRPS procedure. Let $x:\mathbb{Z}\to\mathbb{R}$ be the input signal. The objective is to decompose $x$ into a harmonic component signal $x^\mathrm{h}$, a residual component signal $x^\mathrm{r}$, and a percussive component signal $x^\mathrm{p}$ such that

\begin{equation} x = x^\mathrm{h} + x^\mathrm{r} + x^\mathrm{p}. \end{equation}

The overall pipeline for the HRPS procedure, which closely follows the one for HPS, is illustrated by the following figure.

FMP_C8_E05_HRP-color

First the signal $x$ is transformed into a magnitude spectrogram $\mathcal{Y}$. As described in the FMP notebook on HPS, we apply median filtering once horizontally and once vertically to obtain $\tilde{\mathcal{Y}}^\mathrm{h}$ and $\tilde{\mathcal{Y}}^\mathrm{p}$, respectively. For the median filtering, let $L^\mathrm{h}$ and $L^\mathrm{p}$ be the odd length parameters. To define the residual component, we consider an additional parameter $\beta\in\mathbb{R}$ with $\beta \geq 1$ called the separation factor. Generalizing the definition of the binary masks used in HPS, we define the binary masks $\mathcal{M}^\mathrm{h}$, $\mathcal{M}^\mathrm{r}$, and $\mathcal{M}^\mathrm{p}$ for the clearly harmonic, the clearly percussive, and the residual components by setting

\begin{eqnarray*} \mathcal{M}^\mathrm{h}(n,k) &:=& \begin{cases} 1 & \text{if } \tilde{\mathcal{Y}}^\mathrm{h}(n,k) \geq \beta\cdot \tilde{\mathcal{Y}}^\mathrm{p}(n,k), \\ 0 & \text{otherwise,} \end{cases} \\ \mathcal{M}^\mathrm{p}(n,k) &:=& \begin{cases} 1 & \text{if } \tilde{\mathcal{Y}}^\mathrm{p}(n,k) > \beta\cdot \tilde{\mathcal{Y}}^\mathrm{h}(n,k), \\ 0 & \text{otherwise,} \end{cases}\\ \mathcal{M}^\mathrm{r}(n,k) &:=& 1 - \big( \mathcal{M}^\mathrm{h}(n,k) + \mathcal{M}^\mathrm{p}(n,k) \big). \end{eqnarray*}

Using these masks, one defines

\begin{eqnarray*} \mathcal{X}^\mathrm{h}(n,k) &:=& \mathcal{M}^\mathrm{h}(n,k) \cdot \mathcal{X}(n,k), \\ \mathcal{X}^\mathrm{p}(n,k) &:=& \mathcal{M}^\mathrm{p}(n,k) \cdot \mathcal{X}(n,k), \\ \mathcal{X}^\mathrm{r}(n,k) &:=& \mathcal{M}^\mathrm{r}(n,k) \cdot \mathcal{X}(n,k) \end{eqnarray*}

for $n,k\in\mathbf{Z}$. Finally, one can derive time-domain signal $x^\mathrm{h}$, $x^\mathrm{p}$, and $x^\mathrm{r}$ by applying an inverse STFT. The following function HRPS implements this procedure.

In [1]:
import os, sys
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
import IPython.display as ipd
import librosa.display
import soundfile as sf
import pandas as pd
from collections import OrderedDict

sys.path.append('..')
import LibFMP.B
import LibFMP.C8

convert_L_sec_to_frames = LibFMP.C8.convert_L_sec_to_frames
convert_L_Hertz_to_bins = LibFMP.C8.convert_L_Hertz_to_bins
make_integer_odd = LibFMP.C8.make_integer_odd


def HRPS(x, Fs, N, H, L_h, L_p, beta=2, L_unit='physical', detail=False):
    """Harmonic-residual-percussive separation (HRPS) algorithm
    
    Notebook: C8/C8S1_HPS.ipynb
    
    Args: 
        x: Input signal
        Fs: Sampling rate of x    
        N: Frame length
        H: Hopsize
        L_h: Horizontal median filter length given in seconds or frames
        L_p: Percussive median filter length given in Hertz or bins
        beta: Separation factor
        L_unit: Adjusts unit, either 'pyhsical' or 'indices'
        detail (bool): Returns detailed information

    Returns: 
        x_h: Harmonic signal
        x_p: Percussive signal
        x_r: Residual signal
        dict: dictionary containing detailed information; returned if "detail=True"
    """     
    assert L_unit in ['physical', 'indices']
    # stft
    X = librosa.stft(x, n_fft=N, hop_length=H, win_length=N, window='hann', center=True, pad_mode='constant')
    # power spectrogram
    Y = np.abs(X) ** 2
    # median filtering
    if L_unit == 'physical':
        L_h = convert_L_sec_to_frames(L_h_sec=L_h, Fs=Fs, N=N, H=H)
        L_p = convert_L_Hertz_to_bins(L_p_Hz=L_p, Fs=Fs, N=N, H=H)
    L_h = make_integer_odd(L_h)
    L_p = make_integer_odd(L_p)
    Y_h = signal.medfilt(Y, [1, L_h])
    Y_p = signal.medfilt(Y, [L_p, 1])

    # masking
    M_h = np.int8(Y_h >= beta * Y_p)
    M_p = np.int8(Y_p > beta * Y_h)
    M_r = 1 - (M_h + M_p)
    X_h = X * M_h
    X_p = X * M_p
    X_r = X * M_r
    
    # istft
    x_h = librosa.istft(X_h, hop_length=H, win_length=N, window='hann', center=True, length=x.size)
    x_p = librosa.istft(X_p, hop_length=H, win_length=N, window='hann', center=True, length=x.size)
    x_r = librosa.istft(X_r, hop_length=H, win_length=N, window='hann', center=True, length=x.size)   
    
    if detail:
        return x_h, x_p, x_r, dict(Y_h=Y_h, Y_p=Y_p, M_h=M_h, M_r=M_r, M_p=M_p, X_h=X_h, X_r=X_r, X_p=X_p)
    else:
        return x_h, x_p, x_r

Example: Violin, Applause, Castanets

We now try out the HRPS procedure by using a superposition of the violin, applause, and castanet recordings from above. The mixture signal sounds like this:

The next figure shows the binary masks $\mathcal{M}^\mathrm{h}$, $\mathcal{M}^\mathrm{r}$, and $\mathcal{M}^\mathrm{p}$. It is very instructive to listen to the reconstructed signals $x^\mathrm{h}$, $x^\mathrm{r}$, and $x^\mathrm{p}$. The harmonic signal $x^\mathrm{h}$ mostly corresponds to the violin, while the residual signal $x^\mathrm{r}$ captures most of the applause. While the percussive signal $x^\mathrm{p}$ contains the castanets, the signal is quite distorted and still contains many applause components. Another reason of the signal distortions is also due to phase artifacts that are introduced by the signal reconstruction step. These artifacts become audible particularly for the percussive component.

In [2]:
Fs = 22050
fn_wav = os.path.join('..', 'data', 'C8', 'FMP_C8_F02_Long_CastanetsViolinApplause.wav')
x, Fs = librosa.load(fn_wav, sr=Fs)
N = 1024
H = 512
L_h_sec = 0.2
L_p_Hz = 500
beta = 2
x_h, x_p, x_r, D = HRPS(x, Fs=Fs, N=N, H=H, 
                        L_h=L_h_sec, L_p=L_p_Hz, beta=beta, detail=True)

ylim = [0, 3000]
plt.figure(figsize=(10,3))
ax = plt.subplot(1,3,1)
LibFMP.B.plot_matrix(D['M_h'], Fs=Fs/H, Fs_F=N/Fs, ax=[ax], clim=[0,1],
                     title='Horizontal binary mask')
ax.set_ylim(ylim)

ax = plt.subplot(1,3,2)
LibFMP.B.plot_matrix(D['M_r'], Fs=Fs/H, Fs_F=N/Fs, ax=[ax], clim=[0,1],
                     title='Residual binary mask')
ax.set_ylim(ylim)

ax = plt.subplot(1,3,3)
LibFMP.B.plot_matrix(D['M_p'], Fs=Fs/H, Fs_F=N/Fs, ax=[ax], clim=[0,1],
                     title='Vertical binary mask')
ax.set_ylim(ylim)

plt.tight_layout()
plt.show()

html_x_h = LibFMP.C8.generate_audio_tag_html_list([x_h], Fs=Fs, width='220')
html_x_r = LibFMP.C8.generate_audio_tag_html_list([x_r], Fs=Fs, width='220')
html_x_p = LibFMP.C8.generate_audio_tag_html_list([x_p], Fs=Fs, width='220')

pd.options.display.float_format = '{:,.1f}'.format    
pd.set_option('display.max_colwidth', None)    
df = pd.DataFrame(OrderedDict([     
    ('$x_h$', html_x_h),                                   
    ('$x_r$', html_x_r),
    ('$x_p$', html_x_p)]))
ipd.display(ipd.HTML(df.to_html(escape=False, header=False, index=False)))