{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\"FMP\"\n", "\"AudioLabs\"\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\"C5\"\n", "

Chord Recognition Evaluation

\n", "
\n", "\n", "
\n", "\n", "

\n", "Following Section 5.2.2 of [Müller, FMP, Springer 2015], we introduce in this notebook strategies to evaluate the performance of chord recognition algorithms.\n", "\n", "

" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction\n", "\n", "In order to evaluate the quality of a chord recognition procedure, a general approach is to compare the computed result against a **reference annotation**. However, such an evaluation often gives rise to various questions.\n", "\n", "* How should the agreement between the computed result and the reference annotation\n", "be quantified? \n", "* Is the reference annotation well defined? Is it reliable?\n", "* Are the model assumptions in the formalization of the chord recognition task appropriate? \n", "* To what extent do violations of these assumptions influence the final result?\n", "\n", "For all these questions there are no definite answers, and evaluation results need to be taken with care. Still, quantitative evaluations are useful indicators. They generally reflect the overall performance of automated procedures and give valuable insights into the characteristics \n", "of the underlying music data.\n", "\n", "In this notebook, we introduce a simple evaluation approach. To this end, we assume that there exists a **reference annotation**, which is also often called **ground truth**. Typically, such a reference annotation is generated by music experts, often based on a score representation. In general, however, no well-defined ground truth exists, and even music experts may disagree on how to annotate a given piece of music. Furthermore, the annotations may depend on the employed temporal granularity (e.g., note, beat, measure, or phrase level). Furthermore, one needs to adapt the manual annotations to make them comparable with the computed results. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Accuracy, Precision, Recall, F-Measure\n", "\n", "Keeping these issues in mind, we now introduce a simple evaluation measure. Recall that, given a **chroma sequence** $X=(x_1,x_2,\\ldots,x_N)$ and a set \n", "\n", "$$\n", " \\Lambda := \\{\\mathbf{C},\\mathbf{C}^\\sharp,\\ldots,\\mathbf{B},\\mathbf{Cm},\\mathbf{Cm^\\sharp},\\ldots,\\mathbf{Bm}\\} \n", "$$\n", "\n", "of possible **chord labels**, the output of our [template-based chord recognition](../C5/C5S2_ChordRec_Templates.html) procedure consists of a chord label $\\lambda_{n}\\in\\Lambda$ for each frame $n\\in[1:N]$. Furthermore, we assume that we are given a reference annotation that is also specified in a frame-wise fashion $\\lambda^\\mathrm{Ref}_{n}\\in\\Lambda$ for $n\\in[1:N]$\n", "\n", "However, we do not want to assume that every frame needs to be annotated. For example, if the recording starts with silence or ends with applause, there is no meaningful chord annotation for these sections, and the corresponding frames should be left unconsidered in the evaluation. To model this, we extend our label set by an additional symbol $\\mathbf{N}$, which stands for **non-chord label**. Thus, our new label set has $25$ elements and is defined as:\n", "\n", "\\begin{equation}\n", " \\Lambda':= \\Lambda \\cup \\{\\mathbf{N}\\}\n", "\\end{equation}\n", "\n", "In the following, the reference annotation is given by labels $\\lambda^\\mathrm{Ref}_{n}\\in\\Lambda'$ for $n\\in[1:N]$. Furthermore, we assume $\\lambda_{n}\\in\\Lambda'$ for $n\\in[1:N]$, i.e., our chord recognizer may also output the non-chord label (e.g., in the case that all similarity values between a chroma frame and the templates are below a certain threshold). The evaluation can then be performed frame-wise by comparing the computed labels $\\lambda_{n}$ with the reference labels $\\lambda^\\mathrm{Ref}_{n}$. For a given frame $n\\in[1:N]$, we say that a label predicted by the chord recognition approach is **correct** if $\\lambda_{n}=\\lambda^\\mathrm{Ref}_{n}$, otherwise it is considered **incorrect**. The **accuracy** $\\mathrm{A}$ is then defined as the proportion of correctly predicted labels:\n", "\n", "$$\n", " \\mathrm{A} = \\frac{\\big|\\{n\\in[1:N]: \\lambda_{n}=\\lambda^\\mathrm{Ref}_{n} \\} \\big|}{N}.\n", "$$\n", "\n", "In the context of [music structure analysis](../C4/C4.html), we introduced in the [FMP notebook on evaluation](../C4/C4S5_Evaluation.html) evaluation measures that are used in general **information retrieval**. As an alternative to our accuracy measure, we now adapt these notions to our chord recognition scenario. First, we define the set of items to be $\\mathcal{I}=[1:N]\\times \\Lambda$. In particular, the non-chord label $\\mathbf{N}$ is left unconsidered. Then, \n", "\n", "$$\n", "\\mathcal{I}^\\mathrm{Ref}_+:=\\big\\{(n,\\lambda^\\mathrm{Ref}_{n})\\in\\mathcal{I} : n\\in[1:N]\\big\\}\n", "$$\n", "\n", "are the **positive** (or **relevant items**) and \n", "\n", "$$\n", "\\mathcal{I}^\\mathrm{Est}_+:=\\big\\{(n,\\lambda_{n})\\in\\mathcal{I} : n\\in[1:N]\\big\\}\n", "$$ \n", "\n", "are the items **estimated as positive** (or **retrieved items**). With these notions, an item $(n,\\lambda_{n})$ is called a **true positive** (TP) in the case that the label is correct (i.e., $\\lambda_{n}=\\lambda^\\mathrm{Ref}_{n}$). Otherwise, $(n,\\lambda_{n})$ is called a **false positive** (FP) and $(n,\\lambda^\\mathrm{Ref}_{n})$ a **false negative** (FN). All other items in $\\mathcal{I}$ are called **true negative**. With these notions, one can define the standard **precision** (P), **recall** (R), and **F-measure** (F):\n", "\n", "$$\n", " \\mathrm{P} = \\frac{\\#\\mathrm{TP}}{\\#\\mathrm{TP}+\\#\\mathrm{FP}}, \\quad\n", " \\mathrm{R} = \\frac{\\#\\mathrm{TP}}{\\#\\mathrm{TP}+\\#\\mathrm{FN}}, \\quad\n", " \\mathrm{F} = \\frac{2\\cdot \\mathrm{P}\\cdot \\mathrm{R}}{\\mathrm{P} + \\mathrm{R}}.\n", "$$\n", "\n", "For further explanations, we refer to the [FMP notebook on evaluation](../C4/C4S5_Evaluation.html). In the way we have formulated our chord recognition problem so far, we have exactly one label per frame in the reference as well as in the estimation. From this follows that $\\#\\mathrm{FP}=\\#\\mathrm{FN}$ and that the definition of accuracy coincides with precision, recall, and F-measure. However, when modeling the problem in a different way (e.g., allowing for frames that are not annotated), this does not hold any longer. We will discuss such a case later when considering 'non-chord' labels. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Beatles Example\n", "\n", "To illustrate the definitions, we again use the first measures of the Beatles song \"Let It Be\" and apply the [template-based chord recognition](../C5/C5S2_ChordRec_Templates.html). The following figure shows a score representation along with two different chord annotations provided by music experts. The first annotation is specified on the half-measure level (every two quarter notes) and only used the $24$ major and minor triads. The second annotation is not only specified on a finer temporal level, but also allows more chord types including [seventh chords](../C5/C5S1_Chords.html). In the following, we use the first simplistic annotation as reference, which is temporally adjusted to match the music recording.\n", "\n", "\"FMP_C5_F16_score.png\"\n", "\n", "
\n", "\n", "\n", "\n", "We start by converting the music recording into a sequence of [chroma vectors](../C3/C3S1_SpecLogFreq-Chromagram.html). Then, we apply the [template-based chord recognition approach](../C5/C5S2_ChordRec_Templates.html) to estimate a chord label for each time frame. The result is visualized in form of a binary time–chord representations." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2024-02-15T08:55:54.881428Z", "iopub.status.busy": "2024-02-15T08:55:54.881154Z", "iopub.status.idle": "2024-02-15T08:56:02.238259Z", "shell.execute_reply": "2024-02-15T08:56:02.237565Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnoAAAGoCAYAAADRtEi1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABoUElEQVR4nO3debgdVZn2/+9NAiSSMEgCAgGCzAIyJKC2igQcIChgtwOK4tDIS/9ExW7EqfuVtltFTTc404i8gFO0FWyUyQGC2IpAMBACohCmkECYIWEMPL8/qk6y9soeap9z9tln73N/rmtf2TWtWvVU1T4rq6qeUkRgZmZmZv1nnW5XwMzMzMw6ww09MzMzsz7lhp6ZmZlZn3JDz8zMzKxPuaFnZmZm1qfc0DMzMzPrU27omY1Bkk6W9L1u16NXSPqCpBO6XY/hJOk8SQd3ux5m1llu6Jn1KUnvlHStpBWSlkm6WNKrul2vXiNpKnA08F/l8AGSQtI3svl+J+m9w7zuWZIul/SopDvqTL9c0v2SHpN0vaTDk2mS9GlJd5XT50raMFn8FOBzw1lfMxt93NAz60OS/hE4Dfg8sDmwDfBN4PAmizUqa/ywVm4YjVDd3gtcFBFPJuNWAkdLmt7hda8EzgI+1mD6R4AtImJD4Fjge5K2KKcdDbwbeCWwJTAR+NrAghFxNbChpJkdqruZjQJu6Jn1GUkbAZ8FPhgR50XEyoh4NiJ+HhFpg2E9SedKelzSovQPvqQ7JH1c0g3ASknjJR1WzveIpHmSds3m/5ikGyStlPQdSZuXvYiPS/q1pE2S+f9b0r1lT9VvJe2WTNtU0s/LXqhrJP27pN8l00PSByX9FfhrOe4rku4ul5kv6dXJ/CeX6/teWZeFknaS9ElJy8vlXt8kpIcAV2TjHgHOBj5TZZ8MVkRcHRHfBRY3mH5DRKwaGATWBbYuh98EfCci7o6IFcAXgbdLekFSxDzg0I5U3sxGBTf0zPrPK4AJwPkt5jsMmAtsDFwAfD2b/g6KRsDGwIuBHwInAFOBi4CfS1ovmf/vgNcBO1E0Mi4GPgVMofit+XAy78XAjsBmwHXA95Np36DoyXoR8J7ykzsCeBnwknL4GmAv4IXAD4D/ljQhmf9NwHeBTYA/AZeWddqKolH8X3XWMWAP4JY64z8H/J2knZssC6y+jP5Ik882rcpoUvYvJD0F/JGi4XbtwKTyQzK8PkXcB9wM7DnYdZvZ6OeGnln/2RR4IOnpaeR3EXFRRDxH0QjK/+B/tewNehJ4O3BhRPwqIp4F5lBcCvybZP6vRcR9EXEPcCXwx4j4U0Q8TdHo3Htgxog4KyIeL6edDOwpaSNJ4ygajJ+JiCci4ibgnDp1/0JEPDRwOTUivhcRD0bEqoj4D4oGTdoAuzIiLi1j8t8UjdVTym2ZC0yXtHGDOG0MPJ6PjIh7gdMpGopNRcQPImLjJp+7WpXRpOw3ApOB2cClEfF8Oeli4BhJ08te3o+X49MevcfL7TOzPuWGnln/eRCYUuH+tXuT708AE7Jl7k6+bwncOTBQNibupugRG3Bf8v3JOsOTACSNk3SKpNskPQbcUc4zhaIBNj5bd/q97jhJ/yTp5vJS8CPARmV5jer2QNnAHRhmoH51PEzRkKrni8AbJHW1V6y8NH9xWZfDytFnUfTCzgMWAZeX45cki06muAxtZn3KDT2z/vMH4CmKy5tDEcn3pcC2AwOSRHEv2D2DKPedFA+FvJaiQTZ9oFjgfmAVMC2Zf2vWtrpu5f14HwfeBmwSERsDj1J72XIobqC4HL12JSIepHjo5d+aFSDpKBVPPzf6DPrSbWY8sH1Zt+cj4jMRMT0iplE09u6hdp/tClw/TOs2s1HIDT2zPhMRjwL/F/iGpCMkvUDSupIOkfSlQRb7Y+BQSQdJWhf4J+Bp4PeDKGtyueyDFJcRP5/U/TngPODkst67UDw92qq8VRSNxPGS/i+wYfNF2nIR8Jom0/+T4hL2ro1miIjvR8SkJp+6l24lrVPea7huMagJA/dFStql3KcTy/37LmB/ygdHJL1Q0vYqvKSs52eTS7uU23Vx9VCYWa9xQ8+sD0XEfwL/CPwzRQPobuB44GeDLO8W4F0U6TkeoHi44U0R8cwgijuX4jLwPcBNwFXZ9OMpevrupbh38IcUDcNGLqVorPylLPcp6l/uHaxzgdmSJtabGBGPAV+ieBBkuO1PcWn5IooUOU8CvyynieL+xuUU+/gjwNsj4rpy+pRyuZUU8TkrIs4YKFjSvsDKMs2KmfUpRUTruczMukTSF4EXRUS9p29Hqg6fB5ZHxGndqsNwk/RTivQrF3W7LmbWOW7omdmoUl6uXQ9YCOxL0St1TET8rJv1MjPrRb50a2ajzWSK+/RWUtwb+B/A/3S1RmZmHSbprDKJ+40NpkvSVyXdWian36dSue7RMzMzM+suSfsDK4BzI2L3OtNnAx+iyJn5MuArEfGyVuW6R8/MzMysyyLit8BDTWY5nKIRGBFxFbCx1rzbuqFR+7LyoZo8eXJMnTp19fA669S2acePX7PpRUowGg4///zzDYfzcnPPPvts07JT48aNa1pW3vuaDjcrF+C5556rGU63YdWq5i9QyNebrivf/nw9eb3WXXfdhvVo1buc74dm25xPy8tO65EeC63KrVKvVB6ffPjpp9c8TJrv/7weeT3TYyuPe76eVvFIh/N65PM2O07zWLQ6P5qdS62Gc+k2Ntu+fN58+lNPPdV03mbb3+568336xBNPNJy3VTyabX+r4yMdzufNfx/yfZzP386x1OzYypfNf0tzzY6PvI6tlk23ceONN266bDOtfrOa/Xbk01v9tjbbp61+W5qdD/k+ys+P/De9Ha3qMZSymh0PedxvuummByJiaoPZ8/UM5TLoIoqsAAPOSJ+Er2ArajMKLCnHLWu2UE809CQ9R3FjtoDngOMjomn+rqlTp/LZz655M9HkyZPXmj4gPyDyAzf9Ywy1P8YTJkyomZafFMuW1cY//WHP15vXMf8jkNfjmWfWZLbI65zXY+XKlTXD6Tbcd999NdPyEyZdD9Ru8wte8IKaaQ89VPufkfXXX79meLPNNqsZTrcp/4OS12PFihU1w+utt+Y1q/mJm++X/Mdp8803X/09PRbycuuVndcrLTuPex6fiRNrM3Tcfvvtq7/nf1DyfbrJJpvUDC9fvnz19wcffLBm2gYbbNC0rHyb0j+i+XGY75eNNtqoYVl5nPPtzWP3+ONr3iyWrzePXb5NufR8yo/ZfHvzeKT1vuWW2tfa5sdSs3rkjZF8vfk5vemmm9YML1iwYPX3/DjMz6U8Pun8+fY/9thjNcP5fknLeuSRR2qm5cdW+tsBtfsQahskkyZNajgN1j620tjmx1l6vMPasc3Xlcq3P18236fpNh1xxBENy4Xm/9nN90Oz/+jVk9Y7j3N+DOfbkA5vuGFtWsl82Xw43S/5Ntx00001w1tsUduhlDcqm/1nPj/G8+FG5UDrv9v5+ZLKf6de+tKX3tlg1roG2yCNiKciYuagFi5XXa/YVgv1REMPeDIi9gKQ9AbgCzRPYGpmZmY27FpdfWuk1dWzCpZQ+6agaRRvLWqqF+/R25Di3ZNmZmZmI0YS66yzzqA+w+AC4Ojy6duXA49GRNPLttA7PXoTJS0AJgBbAAd2tzpmZmY2Fg22R68VST8EDgCmSFoCfIbi9YdExOkUOUVnA7cCTwDvq1JurzT00ku3rwDOlbR7ZBf8JR0LHAtr3/tiZmZmNhQDPXqdEBHvaDE9gA+2W26vNPRWi4g/SJoCTKV4x2M67QzgDIAXv/jFThBoZmZmw6pTPXqd0nMNvfL1SOOAB1vNa2ZmZjZcOtmj1ym90tAbuEcPiseL3xMRzRMjmZmZmQ2zXuvR69tXoL30pS+NCy+8cPVws8SUrZJ65rmx0nw9eS6rvKw8r1xajzynVp5HLc/V8+STT9YM58un7rnnnqbLpjmn8nxD+TY026ZWyUTzWD7wwAM1w2ks8zxY7SSjzvdDnp8q34Y0j1Kev63VevNcYGls2z2f0jxZrY6lPE9Uenzk29sqHnluuDR3WqvcVvk2pnm28vQBzebN5XnA8nM2z/2Wn5fpNrXKZ5efW2l88jjnsWqWXLdVYt48ls2SYOfnbH6c5vFIY59vf17n+++/v2Y4PR/yYyXPM5kfW7l03Xnc89+avJ7pMZ9vf77eZknwofZYy/PotUognNZzyZIlNdNaHafpevPjPd/+fHpej3Rd+W9tvr3Nfnvy7c2Pw3x6ehy3SlTdal3psZWfH/m5ldcr3cf5eZnne8zzjDbLyZf/Tk2ePHl+1fx26667buTrqur++++vvJ7h1Cs9emZmZmZd12s9em7omZmZmVXge/TMzMzM+ph79MzMzMz6kHv0zMzMzPqYe/TMzMzM+pB79MzMzMz6mHv0Rol11lmnJkdPnjcnzbGT5y7KrVy5smY4zV+V50XK5bmf0txQrfJA5TmHmuW3y3MGbbHFFjXDeW6sNI9WmueoXp3zfF3pNuc5pPJcXw8//HDNcB7rxx9/fPX3PF9Tvt5meaLyHEt5vfLh5cuX1/0OsGLFiprhvF55fq80tnlupzyPYr4N+++//+rvy5Yta1gurB27dJunTZtWM+3BB2tfHJNvQ6scjan8uEv3GdTmAsv3f74NeT6zjTbaaPX3PE9Yvp78/MjPy/R8z8/LfP83y0m4ww471ExrlVcy3cb8mM216glIl8/P/3zZZvk/8+Msj92UKVNqhtPtz4/hJ554omY4j23+25P+nuRxznPQ5edHuv359rabRy8dblZHWPtYS4+l66+/vmZa/pvWLEdjnhs0Pd5h7Tx6+TbsuOOOq7+3yl+Yn8NpvfLzMN+neV64tF75sZQfO/k25fs8jX2r87BZbthWuQDzslL5sdLqb34zvdij11u1NTMzM+uicePGDepThaSDJd0i6VZJn6gzfSNJP5d0vaRFkt7Xqsy+7dEzMzMzG06d7NGTNA74BvA6YAlwjaQLIuKmZLYPAjdFxJskTQVukfT9iGj42iE39MzMzMwq6uA9evsBt0bEYgBJc4HDgbShF8BkFdefJwEPAavyglJu6JmZmZlVMMQevSmSrk2Gz4iIM5LhrYC7k+ElwMuyMr4OXAAsBSYDb4+I52nCDT0zMzOziobQo/dARMxsMr3eUyL5U4hvABYABwLbA7+SdGVEPJYvOMAPY5iZmZlVMNCjN5hPBUuArZPhaRQ9d6n3AedF4VbgdmCXZoW6R8/MzMysog7eo3cNsKOk7YB7gCOBd2bz3AUcBFwpaXNgZ2Bxs0Ld0DMzMzOroJNP3UbEKknHA5cC44CzImKRpOPK6acD/wacLWkhxaXej0fEA83K7duG3jPPPMM999yzejhPkJkmZ81b53nSxjypZSpPPJmX9de//rVmOE3ymCd8fPTRRxvOC2snrkwTl+bT8mSreULQtN4vfOELm643T5CabmOeADOPVZ5AdunS2l7o9IRJk5Tm66k3PY99qlXC2DSBdp6INE+YmyfXbCf5ZrNExFC7z/PEo/n25+tJtzE/vvPEtHk8mpWd1yPfh3ny8fQYyPdRfhzmy6bT82MnT/qdJ0Rtlmw1TxCbH8PNkg/fdtttNdPy8yHfxnT78/3dKtlysyTh+TmbJjmHtY/pdB/m25vPm5876bL5evI459uQxzKdPz/u8mTD+fQ0HnfddVfNtDxRb75sfmyl9WiVbLfZMb7XXnvVTMvPrWbHfDvnXb5eqD2v77333pppzRIEQ+0xMHXq1IbT6mm2D++8886a4TzBfLO/F62OnWZJwPO/Nfk5ntcznT+vU37etauTb8aIiIuAi7JxpyfflwKvb6fMvm3omZmZmQ2nXnwzhht6ZmZmZhX5XbdmZmZmfcg9emZmZmZ9zD16ZmZmZn3IPXpmZmZmfcw9emZmZmZ9yD16o8jTTz9dkw8rz9+04YYbrv6e5zJ67LHaV8blOXc222yz1d/z3Hd5vqr77ruv4Xrz/G15HqBcnvsqzdeU51/adttta4bzbXjooYdWf89zDOX5zPI8Uen8ef62PNdRnvvqjjvuqBlO43H77bfXTGuWJw9qtznPqZTnM8vzSG255Zarv+fbm29DnmMrzzOXxiOfd/LkyTXDebzS3Fj5/s+Py7xeaXweeKA2X2a+z/LjctKkSTXDaV6xPC9Wvt5mx2k+b6sclWlZ+X7Ic/Dl25TPn+7z/HxvlaMxHf7jH/9YMy3fZ5tssknD6Xls8jjn8cmHN91009Xf83M6zyuXT0+1ypO2+eab1wyn+z+PXX5s5edWvs1pnrk0X2m9efPjIc2deMMNN9RMy8+7PBfe3XffXTOcxmDXXXetmZbHLj/X0m3Yfffda6bl+zTPZ5f+1ubHcKsGQn5Mp3/DFi1a1HA9sHY+1Gb5PfPfpbys9HzJ99Gf//znmuE87vm5le6HPHb573aeozDNJfnII4/UTGuVdzONff77n5937ZDkHr1OKF/zcSrwcuBh4BngSxFxflcrZmZmZmOKe/SakPRy4GvArsB6FK/4WBkRGzZZRsDPgHMi4p3luG2BwzpeYTMzM7OSe/Ra+zrFS3r/G5gJHA3s0HQJOBB4JnsFyJ0UDUYzMzOzEdNrPXojXtuIuBUYFxHPRcT/A2a1WGQ34LrO18zMzMyssYEevcF8KpZ/sKRbJN0q6RMN5jlA0gJJiyRd0arMke7Re0LSesACSV8ClgEbtFimhqRvAK+i6OXbN5t2LHAsrP0QgJmZmdlQderSraRxwDeA1wFLgGskXRARNyXzbAx8Ezg4Iu6StFndwhIj3aP3bor78o4HVgJbA3/XYplFwD4DAxHxQeAgYGo+Y0ScEREzI2Jm+jSnmZmZ2VANpFcZzKeC/YBbI2JxRDwDzAUOz+Z5J3BeRNwFEBHLWxU6og29iLgzIp6MiMci4l8j4h/LS7nNXAZMkPQPybgXNJrZzMzMrFOGcOl2iqRrk8+xWdFbAWm+miXluNROwCaS5kmaL+noVvUd6adu3wj8G7BtuW4B0eyp24gISUcAp0o6Cbifojfw452vsZmZmVlhiAmTH4iImc2KrzMuT1w6HphBcWVzIvAHSVdFxF8aFTrS9+idBvwtsDBaZQdORMQyiqd1K5s4cSJ77LHH6uE0MS3UJj3NE0vmOzFPmJonG222bJ4wOU3UmCcTza/75wlB80TO6fx5Isrly2t7c/MkuKn8fsY8uWw+nG5jnngyT7yZ7+Y8SXSa9DdPltlKWnaeXHnlypU1w3ls0wSa+X5otV/yBKJp8tU8QWoen3zZNPl2nvA0X29+nKbryvd3vg35evOy0qS4edLnZvs/Lys/V/J65OtNY5cf33lS21YJtNN657HMj8NmP9S77bZbzXCeIDm/LSStV55MOE2ADGtvf54EePHixau/5/s/T9yb79P03MrP93wf5vspTVybnzt5otr89yJPzpxuY55MOJfHK61nPi09V2Dt2OZJkdP4tLqVJ69nuk1LliypmZYf0/my6XHb6vcxPx7yfZqua88996yZlu+HZuf4nXfeWTMtj21+zqfbkP9t2WabbWqG8+MyLyuNQavftPxvQLpNeSzzRN75OZ/ul3y9eaLmdnUwvcoSilvaBkwDltaZ54GIWAmslPRbYE+gYUNvpO/Ruxu4sZ1GnpmZmdlo0OF79K4BdpS0Xfng6pHABdk8/wO8WtJ4SS8AXgbc3KzQke7ROwm4qHwceHWTOiL+c4TrYWZmZta2TvXoRcQqSccDl1I8uHpWRCySdFw5/fSIuFnSJcANwPPAmRFxY7NyR7qh9zlgBTCB4s0YZmZmZj1hiPfotRQRFwEXZeNOz4a/DHy5apkj3dB7YUS8foTXaWZmZjYs/Aq05n4t6fUR8csRXq+ZmZnZkHS6R68TRrqh90HgJEnPAAOPHzVNr2JmZmY2WrhHr4mImDyS6zMzMzMbLu7Rq0DSYcD+5eC8iPhFJ9bz7LPPsmzZstXDed6cNPdVnu0lb63n+b3S/HZ5zqDcww8/vFa9BuQ5hPI8QXnZDz30UM1wmnOoVS7APMdQmp8oz22XrzePRxq7Z555pmba448/XjOc5/PKcxCm9cjzceW5r/J9mMYyz7GVz5uXleYGy+Oa74d8+/P8bnn+qlR+bOXzNjsO8zyKeQ6udB/nuc/yPGn5svk2pHm28mXz3IC5NF9Vvg/zXF953rj0+LnttttqpuXxyLdh8uTa/zemx3Eej/w4zc+XNFdYfq7kx1J+Tqe53/JjJa9zLi8rPV/yc7jVH5d0n+bnYatl032Yb3+eNy3PG5cf0+n5s3RpbQqwfL/kOdoeffTR1d932mmnpvPmx2We3y7djvw3PN8vzfIMzps3r2ZanrMyP7bSsvP15Od0qzx606ZNW/19u+22q5mW58bL80ymZadxhbV/83JpPfNjepdddmm6bL5f0t+EZr/hsPY2pMdaftzlcc+3Mf3Nz4//UZxHryNG+s0YpwD7At8vR31E0qsi4hMjWQ8zMzOzdrlHr7XZwF4R8TyApHOAPwFu6JmZmdmo5x691jYGBvqNN2oyn5mZmdmo4R691j4P/EnS5RQv790f+OQI18HMzMxsUNyj14CkdShe1/Fyivv0BHw8Iu4dqTqYmZmZDZZ79JqIiOclHR8RP2btl/SamZmZjXq91qM30s3SX0k6UdLWkl448BnhOpiZmZm1baBHbzCfiuUfLOkWSbdKavigqqR9JT0n6S2tyhzpe/TeX/77wWRcAC8e4XqYmZmZta1TPXqSxgHfAF4HLAGukXRBRNxUZ74vApdWKXek34yxXeu5hseTTz7JggULVg/niSrThLl5gsc88WK+U9PpeaLNPCFsnvQzXfYvf/lLzbQ8qWeebDhPNpomTM6T/KaJNgG23XbbmuGpU6c2XDZPRJknrk2TWuYJL/N588S8+X5Ih/PEzen21ZueJr3My82T6eb78H//939Xf1+8eHHNtHz78/+J5ducJpjOk3rmx8cmm2xSM5zu4/SYrFfnPJloGp88WWw+b7OkrgDTp09vOC1PoJwnG02n57FauHBhzXCeuDqNXZ6YN9+nTz75JM3k25jKY5nXM43l/fffXzPt7rvvrhnOkxyn53y+bKtjKU9cm/5e5OdSfmzl09Pfh1YJs9PzH2qPn/RYgLV/0/Ikv3k90uFW29DsXMrr2CrBfP57kR4/+XpzzY6tPFHxzJkza4bzstNjvNXvYf63Jz+3brzxxtXfb7/99qZ1zv9+pEmzX/3qV9dMyxOZN+ttyuOcryd9MQGs/XcqPfeWLFlSMy3fp/n5kx4f+W9nflw++OCDNcMvetGLVn9vlai5HR2+R28/4NaIWFyuay5wOHBTNt+HgJ9SPO/QUjfejPE3wPR03RFxboXlngPSvxpzI+KUYa+gmZmZWQMdvEdvKyD9n+US4GXpDJK2At4MHMhobOhJ+i6wPbAAGPivTAAtG3rAkxGxV2dqZmZmZtbcEHv0pki6Nhk+IyLOSIuvs0xkw6dRZCx5Lu8RbWSke/RmAi+JvD/bzMzMrAcMoUfvgYiY2WT6EmDrZHgasDSbZyYwt2zkTQFmS1oVET9rVOhIN/RuBF4ELGs1Yx0TJS1Ihr8QET9KZ5B0LHAsrH0938zMzGwoOnyP3jXAjpK2A+4BjgTemc6QPusg6WzgF80aeTBCDT1JP6fofpwM3CTpamD13ZERcViFYlpeui27QM8A2GabbdxraGZmZsOqU/foRcQqScdTPE07DjgrIhZJOq6cfvpgyh2pHr0LgM2BK7Pxr6FotZqZmZmNap1+M0ZEXARclI2r28CLiPdWKXOkGnqHA5+KiBvSkZJWAp8BvjNC9TAzMzMbtF57M8ZINfSm5408gIi4VtL0imXk9+hdEhENs0ZPnjyZAw44YPVw/nRKms8ozxOUy/N5pTl48udK8rxpeU6htKw0ZxSsncsoLzvPyZXXK5Vv7/Lly2uG0/xdeT6mfNk811O6Tc3y4tUbznOSrb/++qu/59ubxyc/udL528ntBbD99tuv/r7zzjs3rfP48bWnSb6uNH75vPlwLs131upYSmMFtfslP87yPFF5DsJ8G9Ky8/MhPy7zvGHp/PmxlOeCzLeh2fbnscvr1SzW+bz5cJ7PLD23tt5665pp+Xry2KaxzNfTKn9bPn9adr7spEmTaoab/T7k5eb7P8+zlx5r995b+/rxO++8s2Y4Pz+anXv5/s+XbZazM80DB61/H/NtrLoeaJ5nba+99qqZlu+H/Fhqdj7k+S3zYyuff4cddlj9Pc99l2v2dyzPfZfns8zj0ex3Of9davW7nf5O5XFulSs0nZ6fD/k+zfd/s3jkx9LXvva1hvPm/K7bxiY0mTaxybTVIqK3mtBmZmbWd3qtR2+kmqXXSPpAPlLS3wPzR6gOZmZmZoPW6XfddsJI9eidAJwv6SjWNOxmAutRZHg2MzMzG/V6rUdvRBp6EXEf8DeSZgG7l6MvjIjLRmL9ZmZmZkPle/RaiIjLgctHcp1mZmZmw8U9emZmZmZ9yD16ZmZmZn3MPXpmZmZmfcg9eqOIpJrEjWmCYKhNiNlukttNNtlk9fc8EWWepDFPLpmu95FHHqmZlifezA+mPCHkww8/vPr71KlTa6bdddddNcP33FP7prk0HkuWLGlYLqyd5DKtR769m2++ec1wnjwzr2eaIPSOO+5oOA3WTraalp0nz8wTgubbNHv27NXft9pqq5ppedzzhNH5Pk2PlzyZbrMkz1C7DXky4Xy4WQLh+++/v2ZaHru8Xvl+S+OVryePZb796Tbmdd54441pJk2oO39+baal/JzN93G+Del+ys+VfJ82KytPkJufl3kS4HR4p512alinevL99MIXvnD192XLltVMS393YO3fnrQe+X540YteVDOcn/PNfiuXLl3adNlm50ueTDk/tvJl03W94hWvqJl2yy231AznCZXzYy2tRx6rZgn0ofYY/9CHPkQz+TalZTU7V+rVI99v6XGab2+eXDj/fUwTO99wQ+37CvLfg/z3MZ2eJ4jef//9a4bzcy2PZbpN+d+DBx54oGY4T+TdLOH4Zptt1nA9APfdd9/q7/l5OG3atIblVuEePTMzM7M+JKnnGnq91f9oZmZm1kWdTJgs6WBJt0i6VdJar3mVdJSkG8rP7yXt2apM9+iZmZmZVdDJHj1J44BvAK8DllC8VeyCiLgpme124DUR8bCkQ4AzgJc1K9cNPTMzM7OKOvgwxn7ArRGxGEDSXOBwYHVDLyJ+n8x/FdDyhkM39MzMzMwqGGKP3hRJ1ybDZ0TEGcnwVsDdyfASmvfW/T1wcauVuqFnZmZmVtEQevQeiIiZTaarzrioM47ylbJ/D7yq1Urd0DMzMzOroMNP3S4Btk6GpwFL85kkvRQ4EzgkIh5sVWjfNvSeffZZ7r57TQ/o5MmTa6Y3y1+Wy/MCpTmHmuU9grVz5aW5jvL8S3mOofx/Dfn86brzHEuLFy+uGc5zHb361a9e/T3PVZQP5wd1mnMszymW54XK5fOneaby/Ex5WXk90lxPeZ3z/ZLnAkzzDOa5nPKcS/lwvl/S3E/5sZLnq8rrkeZNy/PCtcrnl8r3b36s5OvN8/k9+OCa34o8H1d+TDfLjZbnwcrziOXbkMYrz4u1xRZb1Aw3y6kFtbFulZMw309p7rgtt9yyZlq+H/L9lJbVap/l+yXfD+lvS/6ble+XKVOm1AznOSqbrTfP35fmHNt2221rpu2yyy41w+kxC2v/bqXxyHPy5bHLj6X8WEvlvw95PPJtTHNL5vslzw2XS4+llStX1kzL90suPdby7c1/w/I65/FIj58891u+/fmxlK4rP3fy3JjNcnQ++uijDcuF1n8/U/l5l+c+zOuRbmN+bOS5EfNzLd1PeWzyv8vt6uA9etcAO0raDrgHOBJ4ZzqDpG2A84B3R8RfqhTatw09MzMzs+HUyR69iFgl6XjgUmAccFZELJJ0XDn9dOD/ApsC3yz/Y7CqxeVgN/TMzMzMqurkK9Ai4iLgomzc6cn3Y4Bj2inTDT0zMzOzCnrxzRhu6JmZmZlV1MkevU5wQ8/MzMysAvfomZmZmfUx9+iZmZmZ9SH36JmZmZn1MffojRKPPPIIF1544erhTTbZpGb6smXLVn/PkzjmCUHz5JJpctlmiVcB9thjj5rhdP4lS5bUTMsTPub/a9hmm21qhtOEkU888UTNtDyBbr5Nm2666ervG220Uc20PIllnvQ3HW6VXDiPT17PNJFlq8SbedLL9GRrtWyeiDNNpp0mVoXapLXQOslrGus87vlwnjB6+fLlq7/nsWmVjDodzpP85nHPY5cPp4lJ8+TKeTLuPJYbbLDB6u/5sZInOc23Kd2HeWLeVomamyUyzxPi5tubS9eV/jbA2glj8/ikx15+zuaJWfNtypPvptuUT2uVIDZNTp0vm29DnuQ4LTs/3vNjOE+C3SzRd7MEyNA8CXyeyDw/x/N9mtcjrWeeXDgfzpdN45H+VgDccsstNcP5Pk9jm//tWLq09iUH6blTbzitZ/qbDWvHrlnjIz/v8uMh38dpQu38GE6TzdcrK/+9SH/X8m3I92n+dzqNR6vfoXw/pb/reSL3VsnXm3GPXgdJehFwGrAv8DRwB3BC1czQZmZmZkPlHr0OUPFf+fOBcyLiyHLcXsDmgBt6ZmZm1nHu0eucWcCzWXboBd2rjpmZmY01ktyj1yG7A/NbzSTpWOBYaP3iaTMzM7N29VqPXm81S1uIiDMiYmZEzMxvNjYzMzMbioEevcF8KpZ/sKRbJN0q6RN1pkvSV8vpN0jap1WZvdKjtwh4S7crYWZmZmNbp3r0JI0DvgG8DlgCXCPpgoi4KZntEGDH8vMy4Fvlvw31So/eZcD6kj4wMELSvpJe08U6mZmZ2RjS4R69/YBbI2JxRDwDzAUOz+Y5HDg3ClcBG0vaolmhPdGjFxEh6c3AaWVX5lOU6VUaLbN8+fIHTj311DuBKcADjeazGo5Vexyv6hyr6hyr9jhe1TlW9W1bdcb58+dfOn78+CmDXM8ESdcmw2dExBnJ8FZAmhBwCWv31tWbZytgGQ30REMPICKWAm9rY/6pAJKujYiZHatYH3Gs2uN4VedYVedYtcfxqs6xGrqIOLiDxavOuDzbe5V5avTKpVszMzOzfrYE2DoZngYsHcQ8NdzQMzMzM+u+a4AdJW0naT3gSOCCbJ4LgKPLp29fDjwaEQ0v20IPXbodgjNaz2Ilx6o9jld1jlV1jlV7HK/qHKtRLCJWSToeuBQYB5wVEYskHVdOPx24CJgN3Ao8AbyvVblq9bJvMzMzM+tNvnRrZmZm1qfc0DMzMzPrU33b0Gv1GpGxTtLWki6XdLOkRZI+Uo5/oaRfSfpr+e8m3a7raCFpnKQ/SfpFOexY1SFpY0k/kfTn8vh6hWPVmKSPlufgjZJ+KGmC41WQdJak5ZJuTMY1jI2kT5a/+bdIekN3at09DeL15fJcvEHS+ZI2TqaN6XiNFX3Z0EteI3II8BLgHZJe0t1ajTqrgH+KiF2BlwMfLGP0CeA3EbEj8Jty2AofAW5Ohh2r+r4CXBIRuwB7UsTMsapD0lbAh4GZEbE7xQ3YR+J4DTgbyPOW1Y1N+ft1JLBbucw3y78FY8nZrB2vXwG7R8RLgb8AnwTHayzpy4Ye1V4jMqZFxLKIuK78/jjFH+OtKOJ0TjnbOcARXangKCNpGnAocGYy2rHKSNoQ2B/4DkBEPBMRj+BYNTMemChpPPACipxYjhcQEb8FHspGN4rN4cDciHg6Im6neCpxv5Go52hRL14R8cuIWFUOXkWRdw0crzGjXxt6jV4RYnVImg7sDfwR2HwgJ0/572ZdrNpochpwEvB8Ms6xWtuLgfuB/1de5j5T0gY4VnVFxD3AHOAuilcYPRoRv8TxaqZRbPy739r7gYvL747XGNGvDb22XxEyVkmaBPwUOCEiHut2fUYjSW8ElkfE/G7XpQeMB/YBvhURewMrGbuXHVsq7y87HNgO2BLYQNK7ulurnuXf/SYkfZrilp3vD4yqM5vj1Yf6taHX9itCxiJJ61I08r4fEeeVo++TtEU5fQtgebfqN4q8EjhM0h0UtwEcKOl7OFb1LAGWRMQfy+GfUDT8HKv6XgvcHhH3R8SzwHnA3+B4NdMoNv7db0DSe4A3AkfFmuS5jtcY0a8NvSqvERnTJIniPqqbI+I/k0kXAO8pv78H+J+RrttoExGfjIhpETGd4li6LCLehWO1loi4F7hb0s7lqIOAm3CsGrkLeLmkF5Tn5EEU98s6Xo01is0FwJGS1pe0HbAjcHUX6jeqSDoY+DhwWEQ8kUxyvMaIvn0zhqTZFPdVDbxG5HPdrdHoIulVwJXAQtbcd/Ypivv0fgxsQ/FH6K0Rkd8MPWZJOgA4MSLeKGlTHKu1SNqL4qGV9YDFFK/oWQfHqi5J/wq8neKy2p+AY4BJOF5I+iFwADAFuA/4DPAzGsSmvDz5fopYnhARF69dav9qEK9PAusDD5azXRURx5Xzj+l4jRV929AzMzMzG+v69dKtmZmZ2Zjnhp6ZmZlZn3JDz8zMzKxPuaFnZmZm1qfc0DMzMzPrU27omZmZmfUpN/TMbNhJ2lTSgvJzr6R7yu8rJH2zQ+s8QdLRnSh7MCTdIWlKk+lzJe04knUys7HHefTMrKMknQysiIg5HVzHeOA6YJ+IWNWp9bSjfGXezIh4oMH01wDviogPjGjFzGxMcY+emY0YSQdI+kX5/WRJ50j6Zdn79beSviRpoaRLyncxI2mGpCskzZd06cB7TjMHAtcNNPIkfVjSTZJukDS3HLeBpLMkXSPpT5IOL8ePkzSnXO8Nkj5Ujj+onG9hudz65fg7JP2rpOvKabuU4zctt+VPkv6L8qXx5XovlHS9pBslvb2s85XAa8tGqplZR7ihZ2bdtD1wKHA48D3g8ojYA3gSOLRs7H0NeEtEzADOAuq9zvCVwPxk+BPA3hHxUuC4ctynKd5TvC8wC/iypA2AY4Htkvm/L2kCcDbw9rI+44F/SMp/ICL2Ab4FnFiO+wzwu4jYm+I9otuU4w8GlkbEnhGxO3AJQEQ8D9wK7NlOwMzM2uGGnpl108UR8SzFO5fHUTaCyuHpwM7A7sCvJC0A/hmYVqecLYD7k+EbKBps76J4jyfA64FPlOXMAyZQNMZeC5w+0BtYvjd1Z+D2iPhLuew5wP5J+eeV/84v60k5/XtlGRcCDyfb8lpJX5T06oh4NClnObBl3ciYmQ0DXzIws256GoreLUnPxpqbhp+n+H0SsCgiXtGinCcpGm4DDqVoeB0G/Iuk3cqy/i4ibkkXlCQgv1lZVeoNPEft7+haNz1HxF8kzQBmA1+Q9MuI+Gw5eUJZdzOzjnCPnpmNZrcAUyW9AkDSumWjLXczsEM5zzrA1hFxOXASsDEwCbgU+FDZsEPS3uWyvwSOG7hXTtILgT8D0yXtUM7zbuCKFnX9LXBUWcYhwCbl9y2BJyLie8AcYJ9kmZ2ARa3DYGY2OG7omdmoFRHPAG8BvijpemAB8Dd1Zr2YNZdWxwHfk7QQ+BNwakQ8AvwbsC5wg6Qby2GAM4G7yvHXA++MiKeA9wH/XZbzPHB6i+r+K7C/pOsoLhPfVY7fA7i6vGT8aeDfASRtDjwZEcuqRcPMrH1Or2JmfUHS+cBJEfHXbtelCkkfBR6LiO90uy5m1r/co2dm/eITFA9l9IpHKB7yMDPrGPfomZmZmfUp9+iZmZmZ9Sk39MzMzMz6lBt6ZmZmZn3KDT0zMzOzPuWGnpmZmVmfckPPzMzMrE+5oWdmZmbWp9zQMzMzM+tTbuiZmZmZ9Sk39AwASYskHdDtegBIukPSaztYfkjaoVPl9yNJn5J0ZhfW+2ZJd0taIWnvNpY7WdL3OlivsyX9e6fK7zRJr5Z0S5Pp25QxHzeS9RpOg/kdkfQFSSd0qEpdIek8SQd3ux7WPW7ojRHlj/bA53lJTybDR0XEbhExr9v1tOHXbqNH0gGSlqTjIuLzEXHM8NeupTnA8RExKSL+1IX196WIuDIidh4YzhtFEXFXGfPnulPD4VXlHJA0FTga+K9y+IDyP4XfyOb7naT3DnP9Zkm6XNKjku6oM/1ySfdLekzS9ZIOT6ZJ0qcl3VVOnytpw2TxU4DPDWd9rbe4oTdGlD/akyJiEnAX8KZk3Pe7Xb9OkDR+iMtL0rCdI0Otzxi1LbComxUYaq+W93tjoyw27wUuiognk3ErgaMlTe/wulcCZwEfazD9I8AWEbEhcCzwPUlblNOOBt4NvBLYEpgIfG1gwYi4GthQ0swO1d1GOTf0DKj9H335v9//lvQ9SY9LWihpJ0mflLS8vJT2+mTZjSR9R9IySfdI+vcqfxwlfUDSzeU6bpK0TzJ5L0k3lP/D/ZGkCdlyt0p6SNIFkrZMpoWkD0r6K/DXctzHyrotlfT+FnWaJ+lzkv4XeAJ4saRdJP2qXN8tkt6WzH+2pNPL6Y9LukLSti3q80ZJCyQ9Iun3kl6azP/xMoaPl+s6qBy/jqRPSLpN0oOSfizpheW06eV63lP+r/4BSZ8upx0MfAp4u4re2+vL8e9LYr9Y0v8px28AXAxsqTU9vlsq6xGRdJiKy/2PlDHbNZl2h6QTG+2/LN7rSPpnSXeWx9a55fG0vqQVwDjgekm3NVh+t2Tf3CfpU8nk9cryHi/rOjNZbtey3o+U0w7L9um3JF0kaSUwS9Lekq4ry/oRUHd7yuXfK+l/JZ0q6SHg5HJ75pT7577ymJmYLHN4eUw8Vu7jg8vxW5bH+EMqjvkPJMtMlHSOpIfLfXmSkp7YZvtBSa+tpO8C2wA/L/f3SckxNb5CPU4uj8e6sa4Tn+E6J2oun6tOT3Q5vu45UMchwBXZuEeAs4HPNNqe4RARV0fEd4HFDabfEBGrBgaBdYGty+E3Ad+JiLsjYgXwRYptfUFSxDzg0I5U3ka/iPBnjH2AO4DXNhoHnAw8BbwBGA+cC9wOfJriB+YDwO3Jsj+juNyxAbAZcDXwf1rU4a3APcC+gIAdgG2TulxN8b/TFwI3A8eV0w4EHgD2Adan+J/rb5NyA/hVudxE4GDgPmD3sn4/KOfZoUG95lH0eO5WbvtGwN3A+8rhfcr171bOfzbwOLB/WZ+vAL9rUp99gOXAyygaMe8pt3d9YOdyXVuWy04Hti+/nwBcBUwr5/0v4IfJfAF8u1zHnsDTwK7J/vxetp2HAtuXsX8NRaN2n3LaAcCSbP7VZQA7UfRAvK48Hk4CbgXWa7X/6sT7/eWyLwYmAecB383i12hfTQaWAf9E0fCaDLwsO4Znl3H+AnBVOW3dcp2fAtajOKYeB3ZO9umjFD0k6wAbAncCHy2XfQvwLPDvDer1XmAV8CGKY2YicBpwQRmPycDPgS+U8+9Xru915fq2AnYpp10BfLPcvr2A+4GDymmnlNM3KY+LG9L91mw/5PuY7DeBNcfU+Ar1aBjrBvEZrnPi7HQfNNsm6pwDdep1P7BvXh7wIuAx1hwfvwPe26CMd1I0Dht9tmlRh9cCdzSY9osyzgFcAqxTjv8pcFIy3yvLefZMxv0jcF7VvxH+9Nen6xXwpws7vVpD71fJtDcBK4Bx5fDk8odkY2BzikbFxGT+dwCXt6jDpcBHmtTvXcnwl4DTy+/fAb6UTJtE8Ud3ejkcwIHJ9LOAU5LhnWjd0PtsMvx24Mpsnv8CPlN+PxuYm9XnOWDrBvX5FvBvWXm3UDS2dqD4g/daYN1snpsp/7CWw1uU2z2eNX+UpyXTrwaOTPZnqz9yPxvYH7Ru6P0L8ONk2joUjfYDWu2/Ouv9DfD/JcM7D2xXEr9G++odwJ8aTDsZ+HUy/BLgyfL7q4F7Kf9QluN+CJyc7NNzk2n7A0sBJeN+T/OG3l3JsCgaxtsn415B+Z+l8ng6tU45W5fH0uRk3BeAs8vvi4E3JNOOYe2GTqPz6IA689Zt6FWoR8NYN4jPcJ0TZzO8Db1nKRvYeXll7H5Ufm/Y0BvqhyYNvXL6uhQ9jx/N9vtfyn22EcV/KAJ4RTLPB4DLOlFnf0b/x5durZH7ku9PAg/EmhuzB+5hmURxD9W6wLLysssjFH+4NgMoL0OlD4LcUS67NVD3clzp3uT7E+W6oOiduHNgQhSXKh6k6AUZcHfyfcts+E5aS+ffFnjZwLaV23cUxf/y15q/rM9D5XoblfdPWXlbU/RY3ErRc3cysFzFTdVbJsudnyxzM8Uf382TshvFbC2SDpF0VXkp7hGK3pgpjebP5Pvg+XIb031QtS41ZZXfx1O7XY20ewxNKC9FbgncXdY7XW+zY+ieiOIvZjJ/M+nyU4EXAPOT/XdJOb7ZdmwJPBQRjzeoZ35sp98HVD4mmmhVj3rrGYh1I8NxTgy3hyn+E1vPF4E3SNqzQ+uuJCKejYiLy7oM3G5wFsV/VOZR3M96eTk+vYw9maJH0cYgN/RsqO6m6NGbEhEbl58NI2I3gIjYPpIHQSJierLc9oNY31KKPwzA6nvKNqXoURqQ/kFexpp7WaC4F6mVdPm7gSuSbdu43I5/SOZZXb6kSRSXpJY2Ke9zWXkviIgfAkTEDyLiVeU2BsUfmIHlDsmWmxAR6XZX2R4krU9xuWcOsHlEbAxcRNHztNb8deT7QBQxqFKXpmVR7J9V1P5Ho5GhHENbq/ZBm21ofgxtVW5nOn8z6fIPUPznaLdk320UxYNR0Hg7lgIvlJQ2PtJ6LqO4ZDsgPc7b1Wyft6rHUNc32HNiJUUDekD6n69m62vkBooe/7UXjniQ4vL7vzUrQNJR2X9s80+V358qxlMeMxHxfER8JiKmR8Q0isbePdTun12BRvcmWp9zQ8+GJCKWAb8E/kPShipurt9e0mtaLHomcKKkGSrsoOQhhiZ+ALxP0l5lg+XzwB8j4o4G8/8YeK+kl5Q3J3+m2pat9gtgJ0nvlrRu+dlXycMHwGxJr5K0HsUfgj9GRL3eFSjuoztO0svK7d5A0qGSJkvaWdKB5XY9RdE4GOhFPR343ECMJE1VkmKhhfuA6UnDZj2K+5/uB1ZJOgR4fTb/ppI2alDej4FDJR0kaV2Ke+Sepric2a4fAh+VtF3ZSP48xSWyVS2Wg2LfvEjSCSoedpgs6WUVlvsjRSPhpHJ/HkBxe8LcBvP/gaLx+WFJ4yX9LcV9dZWUPYffBk6VNNDTvZWkN5SzfIfimD6oPH+2krRLeQz9HviCpAnlAwp/Dww8Jf9j4JOSNpG0FXB81TrVcR/FfZL16t+qHkM12HNiAcW590JJL6Lo+WskPwfquYjicnEj/wn8DUWjqa6I+H72H9v8c1e95cr9PoHi6ojKOK9XTtul7IGfWB6v76K4neCKcvoLy99cSXpJWc/PZj3Wr6F4yMrGIDf0bDgcTdF4uIni8sdPKO4haygi/psit9MPKG6E/xlFT1hTEfEbinvEfkrRo7E9cGST+S+m+J/4ZRQ34F/Wah3Z8o9TNIKOpOjZuJeiR2H9ZLYfUDQgHwJmUFzabVTetRT3y3ydIla3UtzTRVnmKRQ9QPdSXP4eeIr0KxT33vxS0uMUD2ZUadQA/Hf574OSriu36cMUDYWHKW4gvyCp458pGmCLy0tpNZfKIuIW4F0UD8I8QNFIelNEPFOxPqmzgO8Cv6V44OcpiocYWiq343Xl+u+leIJzVoXlngEOo7jX6QGKhwyOLre70fx/S7GfHqa4b/O8KnVMfJxiX18l6THg1xT3IxJF+ov3AadSPJRxBWt6Od9Bce/VUuB8intDf1VO+yzF5bnby/J+QtHgHowvAP9c7u8T60xvVo8hGcI58V2KXqo7KP6z+aMmq6k5BxrMcy5Fw3FivYkR8RjFvXotf6cGYX+KRuxFFL2lT1JsExQ97SdT3Kt4P0WqlbdHxMB2TCmXW0nRmDsrIs4YKFjSvsDK8jizMUi1t52YWTsknU1xw/Y/d7suNrZJ+geKB3Ba9aZbA5I+DyyPiNO6XZfhIumnFOlXLup2Xaw7RlOySjMzq0hFwtwXU1xa3pHiEvrXu1qpHhcRn2o9V2+JiL/rdh2su3zp1sysN61H8YT74xS3JPwPxWVoM+tBks5SkTj+xgbTJemrKpKW36Dalww0LteXbs3MzMy6S9L+FDlrz42I3etMn01xD/Nsinu0vxIRLe/Vdo+emZmZWZdFxG8pHupr5HCKRmBExFXAxlrzzuOG+vYevSlTpsT06dNZuXIlG2ywQber0xMcq/Y4XtU5VtU5Vu1xvKpzrOqbP3/+AxExtfWcxbuah7CqRRSZBQackT4hXcFW1CYbX1KOW9Zsoa429CQ9ByykeHz8OeD4iBhMLq61TJ8+nWuvvZZ58+ZxwAEHDEeRfc+xao/jVZ1jVZ1j1R7HqzrHqj5JVd6YlM4/qPVExFMRMXNQC5errldsq4W63aP3ZETsBVAmD/0CzRNWmpmZmXXNEBp6Q131EmrfgDON2rcw1TWa7tHbkCJZJpIOkHSFpB9L+oukU1S8WuZqSQslDea1R2ZmZmZDImlQn2FwAXB0+fTty4FHy7dTNa9vN5+6TS7dTqB4k8KBETG/fCXRzyheNfMQsBg4MyI+I+kjwHYRcUKd8o4FjgXYfPPNZ8ydO5cVK1YwadJg3uM99jhW7XG8qnOsqnOs2uN4VedY1Tdr1qz5VS+pSorx4wd3MXTVqlVN1yPph8ABFG87uY/ijUvrAkTE6Spai18HDgaeAN5XvlmmqdF06fYVwLmSBh4pvmagpSrpNta8DmYhDV5zVN7UeAbAzJkz44ADDvA9CW1wrNrjeFXnWFXnWLXH8arOsRo6SayzTmcuhkbEO1pMD+CD7Zbb7YbeahHxB0lTgIEnX9J3Nj6fDD/PKKq3mZmZjR3DdBl2xIyaBpOkXYBxwIPdrouZmZlZPW7otWeipAXldwHviYjnei2IZmZmNjb0Whulqw29iBjXYPw8YF4yfECjaWZmZmYjoZP36HVKx2sr6c2Sorw0m0/7oaTpkk6QdGSn62JmZmY2FF1MrzIoI9EsfQfwO6BeQ267iLiDIknylSNQFzMzM7NBc0MvIWkS8Erg70kaepK+L+kmYOfyHr3XAxdKOqacfoekz0v6g6RrJe0j6VJJt0k6rpN1NjMzM2uk1xp6HU2YLOldwKyI+HtJv6d4l+115bS3UbzK46fAlyPirclydwBfjIhvSToVOIiiwTgBWBQRmzVYnxMmD4Fj1R7HqzrHqjrHqj2OV3WOVX3tJEweP358TJ48eVDreeSRRyqvZzh1+mGMdwCnld/nlsPXlcN7A78G9gAW1Fn2gvLfhcCkiHgceFzSU5I2johH8gWcMHloHKv2OF7VOVbVOVbtcbyqc6yGh5+6LUnaFDgQ2F1SUOTIC0nzgM8B2wFvpEiQvFLSayMifeNFmiA5T57c7bQwZmZmNgb1WkOvk/fovQU4NyK2jYjpEbE1cDvwGDADuDEi9gAWAXtnjTwzMzOzUWUgvcpgPt3SyTW/Azg/G/dT4J0Ul22vl7QesG5EPNbBepi1peqNtfPnzx/0TbnD/enG9rfzqRKr4ay3mVmnjIbf6XZ07BJomuQ4GffVZPDa8t/9Jb0ZOA/YNSL+HBHTk2XOBs5OhqdjZmZm1gW99p/J0ZLeuVmuPTMzM7NRodd69Lre0FOdXHuSDpB0haQfS/qLpFMkHSXpakkLJW3f1UqbmZnZmNOL9+h1NI9epQrUybUHbAj8DNgVeAhYDJwZEZ+R9BGKN2qcUKcs59EbAseqMH/+/ErzTZs2jSVLlnS4NtXMmDFj2Mqquv3tqBKroW5DWu/hjMdI83nYHserOseqvnby6K233noxderUQa1n6dKlXcmjNxoaehcCp0XEryR9mCKJ8oXApyPideU8vwU+GRH/K+lA4MMRcUSzcmfOnBnXXnut8wa1wbEqVO1inzNnDieeeGKHa1PNcJ7HnbjEUCVWQ92GtN7d/l0bCp+H7XG8qnOs6pPUVkNvs83qvrOhpXvuuacvEyY3pQa59oCLWDt3XppXz3n0zMzMbMT12sMY3W4wDeTa+z8DIyRdAbyqe1UyMzMzW9vAPXq9pNu1bZZrz8zMzGxU6bWnbrvao9ck195XG80XEfOAeZ2tmY1lVe/vmjdvXk/fC9ZIJ7ZpJGLVj/vCzEafXrt029EePUmbS/qBpMWS5kv6Q5kcOZ1nnqQJkk6T9PJO1sfMzMxsKHqtR69jDT0VW/Uz4LcR8eKImEGRJ29aMs9E4LmIeArYFxj+vA5mZmZmw6AX8+h1cs0HAs9ExOkDIyLizoj4GoCky4GFFE/cLgT2AK6RNLucvkLSF8uewF9L2q/s/Vss6bAO1tvMzMysrl7r0etYHr0yJ952EfHRJvOcBNwGPAgcGhEfS6YFMDsiLpZ0PrABcCjwEuCciNirTnlOmDwEjlV7HK/qHKvqHKv2OF7VOVb1tZMwecKECbHNNtsMaj1//etf+zuPnqRvUKRNeSYi9i1H703xlO1sYEG2yDPAJeX3hcDTEfFs2fs3vd46IuIM4AwoEiYfcMABThDZBseqPY5XdY5VdY5Vexyv6hyr4dFrD2N0sqG3CPi7gYGI+KCkKcC1ko6heNXZDhSvOdsGuE/S7Ig4qlzk2VjT3bg6YXJEPC+p2/n/zMzMbIxxHr1alwETJP1DMu4FABFxJvB64LLyEuytEbFr0sgzMzMzG3V67R69jvWMRURIOgI4tbwX735gJfDxcpb9gd9J2hq4s1P1MDMzMxsuvnSbiIhlFClV6k37iaTNgVOBGZLmU9yX96WIOD8iJiXznpwt67tJzczMbMS5oVdRkmfvnIh4ZzluW8CpU8zMzGzU6cV79Lr5UEPdPHvA1yS9FzgCGAfsDvwHsB7wboqHMmZHxEMjXWEzMzMb29yjV91uwHVNpu9OkX5lAnAr8PGI2FvSqcDRwGn5AlkePebNm8eKFSuYN2/eMFe9PzlW7XG8qnOsqnOs2uN4VedYDY9ONvQkHQx8haKj68yIOCWbvhHwPYpsJeOBORHx/5qVOWrSlKR59oBvAJdHxOPA45IeBX5ezroQeGm9MpxHb2gcq/Y4XtU5VtU5Vu1xvKpzrIZHpxp6ksZRtH9eByyheFvYBRFxUzLbB4GbIuJNkqYCt0j6fkQ806jcbjb0GubZK0c9ncz7fDL8PKOogWpmZmZjQ4fv0duPIt3c4nJdc4HDgbShF8Dk8jmHScBDwKpmhXbzjsKGefbMzMzMRqMh5NGbIuna5HNsVvRWwN3J8JJyXOrrFC+aWEpxhfMjEfF8s/p2rWesRZ69id2ql5mZmVkjQ7h0+0CLd93WKziy4TdQvDL2QGB74FeSroyIxxoV2tVLoM3y7AFnJ/NNT76fnU4zMzMzGykdfBhjCbB1MjyNoucu9T7glPIVsbdKuh3YBbi6UaEdv3Qr6TlJC5LP9Gz6PEkTJJ0m6eWdro+ZmZnZYAzcozeYTwXXADtK2k7SehQdYRdk89wFHFTWZXNgZ2Bxs0JHokfvyfJ9tmuRNBF4LiKekrQv8LERqI+ZmZnZoHSqRy8iVkk6HriUIr3KWRGxSNJx5fTTgX8Dzpa0kOJS78cj4oFm5XbzzRiXU3RRTi4rvC3Fo8SfioiLJK2geMz4tcDDwKeAL1HkjjkhIvJWrpmZmVlHdTKPXkRcBFyUjUtfLLEUeH07Zaq4zNs5kp6jeDIE4PaIeHMy7STgNuBB4NCI+FgyLSjegHGxpPOBDYBDgZdQvDZtrzrrShMmz5g7dy4rVqxg0iS/GrcKx6o9jld1jlV1jlV7HK/qHKv6Zs2aNb/FQxKrTZo0Kfbcc89Bref3v/995fUMp65euqV488VPgdkUT5GkngEuKb8vBJ6OiGfL3r/p9QpzwuShcaza43hV51hV51i1x/GqzrEaOr/rtiJJxwDHAztQ5IPZBrhP0uyIOKqc7dlY0924OmFyRDwvyQmTzczMbMT5XbcVRMSZki6geI/bYZKujoj9ulEXMzMzs6rc0Ktuf+B3krYG7uxiPczMzMwq8aXbTETUvfMzIn4y8F3S30pakEw+Il0uIk6uUqaZmZlZpySvM+sZo+Vet2YPbJiZmZmNCm7oDRNJ7wWOoEgauDvwH8B6wLspHsyYHREPdat+ZmZmNva4oTc4E5NLt2muvd0pUrBMAG6lyAC9t6RTgaOB09JCsjx6zJs3jxUrVjBv3rzOb0EfcKza43hV51hV51i1x/GqzrEaHr5Hb3AaXbq9PCIeBx6X9Cjw83L8QuCl+czOozc0jlV7HK/qHKvqHKv2OF7VOVZD53v0ht/Tyffnk+HnGf11NzMzsz7jhp6ZmZlZn3JDz8zMzKxP+R69QaiXFy8izgbOToanN5pmZmbWz4bSi7TmbaI2VL5HbxAkPUfxcMWAuRFxSrfqY2ZmZtaIG3rtc7JkMzMz6wm91tAbtReaJd0h6fOS/iDpWkn7SLpU0m2Sjut2/czMzGzsWWeddQb16RZ1+9p9nUu3X4iIH0m6A/hiRHyrTJB8EPBKiuTJiyJiszplpQmTZ8ydO5cVK1YwaZJfjVuFY9Uex6s6x6o6x6o9YyVe8+fPH/SyM2bMAMZOrNo1a9as+RExs8q8m2yySQw2F+HPfvazyusZTqP90u0F5b8LgUlJ8uSnJG0cEY+kMzth8tA4Vu1xvKpzrKpzrNozVuI1a9asQS870KEzVmLVab126XY0NPSaSRMk58mTR3vdzczMrM+4oWdmZmbWhyQ5j94gTJS0IBm+JCI+0a3KmJmZjTbdvp/e1nCPXil5yGJdYBVwDnBaRDyfzXolcDBwCkUOvaugeYLkdJqZmZnZSHFDb43VD1lI2gz4AbAR8JmBGSRNBJ6LiKck7Qt8rIP1MTMzMxuSXmvojciF5ohYTpH25HiVEZJ0OUWP3+6SFgJ7ANdIml1OXyHpi5LmS/q1pP0kzZO0WNJhI1FvMzMzswED9+g5jx5FQy1/h62kh4FdIuK+cvgk4DbgQeDQiPhYMm8AsyPiYknnAxsAhwIvAc6pl5LFefSGxrFqj+NVnWNVnWPVHserOseqvnby6G266aZx8MEHD2o9P/jBD8ZEHr28v3Nv4KfAbGBBNu0Z4JLy+0Lg6Yh4tuz9m16vcOfRGxrHqj2OV3WOVXWOVXscr+ocq+HRa5duR6yhJ+nFwHPAcknHAMcDOwC7AtsA90maHRFHlYs8G2u6G1fn0YuI5yWNhqeFzczMbIxxQ68OSVOB04Gvl423MyVdAJwZEYdJujoi9huJupiZmZkNhvPo1RrIjzeQXuW7wH8m0/cHfidpa+DODtbDzMzMbFi4R68UEeNaTP9JMvjWOtMnJd9PbjTNzPrDUH880wfLhlKWE9Navxk4H+bMmTOkd+aCzw/ovYZeV/sfJT0naYGkRZKul/SPknqrT9TMzMzGDEmD+lQs+2BJt0i6VVLdt4RJOiBpO13RqsxuP9TQMqmymZmZ2WjQyXv0JI0DvgG8DlhCkVv4goi4KZlnY+CbwMERcVfZdmqq2w291SJieZkH7xpJJwPvAY4AxgG7A/8BrAe8m+IJ3NkR8VB3amtmZmZjUQcv3e4H3BoRi8v1zAUOB25K5nkncF5E3AWrX0jRVMcSJlfRLKkycAjwzxS59iYAtwIfj4jTJZ0K3BkRp2XLOmHyEDhW7XG8qqsSq/nz5w9pHTNmzBiWstJyusHHVXscr9YGzodp06axZMmSIZXV7fOjE9pJmDx16tR485vfPKj1fPvb3266HklvoeipO6Ycfjfwsog4PpnnNIqHXHcDJgNfiYhzm6131PToJdKm8uUR8TjwuKRHgZ+X4xcCL80XdMLkoXGs2uN4VVclVsN5k/hQyur2zeY+rtrjeLU2cD7MmTOHE088cUhldfv8GA2G0KM3RdK1yfAZZbtlddF1lskDPh6YARwETAT+IOmqiPhLo5WOqoZemlS5HPV0Mvn5ZPh5RlndzczMrL8N8R69B1r0HC4Btk6GpwFL68zzQESsBFZK+i2wJ9CwoTdqnnCtk1TZzMzMbFTp4FO31wA7StpO0nrAkcAF2Tz/A7xa0nhJLwBeBtzcrNBu94q1SqpsZmPEcP7/zv9XNFtj4HyYN2+ez41h0KmHMSJilaTjgUspHkQ9KyIWSTqunH56RNws6RLgBoqrm2dGxI3Nyu14Q0/Si4DTgH0pLr3eAZwQEX+JiHGSfgh8kuIJ23sj4nmAiDgbOHugnIiYnnyvmWZmZmY2EjqZMDkiLgIuysadng1/Gfhy1TI72tBTEY3zgXMi4shy3F7A5qy5nrxdRNwh6TXA8XULMjMzM+uyXnzXbadrOwt4Nm2NRsSCiLhS0vcl3QTsXF6+fT1woaSBx4rvkPR5SX+QdK2kfSRdKum2gW5MMzMzs5HUyTdjdEKnL93uDtRNaBURR0l6G8UTJj8FvhwR+Ttv746IV5R5884GXkmRU28RxYMbNbI8esybN48VK1Ywb968Ydqc/uZYtcfxqs6xqs6xao/jVZ1jNTx67V233X4YY2/g18AewII60weeNlkITEpy6j0laeOIeCSd2Xn0hsaxao/jVZ1jVZ1j1R7HqzrHanj02qXbpg09ST9n7WR9q0XEYS3KXwS8pU65s4HPA9sBbwSmUuSDeW1EpJlO07x5eU69bjdSzczMbAzp9mXYwWjVLJ1D8Y7Z24EngW+XnxVA08d5S5cB60v6wMAISfsCKykyO98YEXtQNAj3zhp5ZmZmZqNKX92jFxFXAEj6t4jYP5n08zIbc1MREZLeDJwm6RPAU5TpVSgu215fJgVcNyIeG9wmmJmZmY2MXuvRq3r5c6qkF0fEYgBJ21Fcbm0pIpYCb2sw+doyz95SSbdRm2dvelLG2TTIqWdmZmY2UvrqHr3ECcA8SYvL4emUT7cORcU8e2ZmZmZd1+3LsIPRsqEnaR1gI2BHYJdy9J8j4unGS1VWN8+epAMkXQHcB+wFnEfx5O1HgInAERFx2zCs38zMzKyyXmvotex/LF9JdnxEPB0R15ef4WjkQZM8e8CeFA27PYB3AztFxH7AmcCHhmn9ZmZmZpX11cMYiV9JOhH4EcUTswBExEMdqVXhmohYBlDev/fLcvxCip7AtThh8tA4Vu1xvKpzrKpzrNrjeFXnWA2Pfr1H7/3lvx9MxgXw4iGuv26evVKeNy/NqVe33k6YPDSOVXscr+ocq+ocq/Y4XtU5VkPX7d65wajU0IuI7Tq0/suAz0v6QER8G1bn2XtNh9ZnZmZmNmh92dCTtC7wD8BALr15wH9FxLNDWXmTPHs/G0q5ZmZmZp3Qlw094FvAusA3y+F3l+OOGWoFmuTZ+3YyzwHJ93kUDU0zMzOzEdWv9+jtGxF7JsOXSbq+ExWqR9JzFA9hCHiO4ing34/U+s3MzMz69h494DlJ2w/krpP0YooG10h5MiL2Ktf9BuAL+D4+MzMzG2H92tD7GHB5+WYMAdsC7+tYrZrbEHi4S+s2MzOzMawvG3oR8RtJOwI7UzT0huvNGFVNlLQAmABsARxYbybn0Rsax6o9jld1jlV1jlV7HK/qHKvh0a/36AHMoHjH7XhgT0lExLkdqdXa0ku3rwDOlbR7REQ6k/PoDY1j1R7HqzrHqjrHqj2OV3WO1dD17T16kr4LbA8sYM29eQGMVENvtYj4g6QpwFRg+Uiv38zMzMauvmzoATOBl+Q9aN0gaRdgHPBgt+tiZmZmY0u/NvRuBF4ELOtgXZoZuEcPinsE3xMRI/nUr5mZmVl/3aMn6ecUl2gnAzdJuprkHbQRcdhwVaR8Q8Z5wK4R8eds8o+BTwJHAPdGxIXDtV4zMzOzKvrxHr0LgM2BK7PxrwHuGea6vAP4HXAkcHI2bbuIuEPSa4Djh3m9ZmZmZpX0WkOvVf/j4cAFEXFF+gEuouhdGxaSJgGvBP6eoqE3MP77km4Cdi4v3b4euFDSkF+9ZmZmZtaugV69dj/d0qpHb3pE3JCPjIhrJU0fxnocAVwSEX+R9JCkfSLiuog4StLbgK2BnwJfjoi3DuN6zczMzCrrq3v0KBIUNzJxGOvxDuC08vvccvi6cnhv4NfAHhTpXRpywuShcaza43hV51hV51i1x/GqzrEaum73zg1Gq4beNZI+EBHfTkdK+ntg/nBUQNKmFG+62F1SUKROCUnzgM8B2wFvpMibt1LSayNiVr2ynDB5aByr9jhe1TlW1TlW7XG8qnOshke/NfROAM6XdBRrGnYzgfWANw9THd4CnBsR/2dghKQrgMco3sbx24h4paTfAG+OiMeGab1mZmZmbemrhl5E3Af8jaRZwO7l6Asj4rJhrMM7gFOycT8F3gk8CVwvaT1gXTfyzMzMrJv67R49ACLicuDyTlQgIg6oM+6ryeC15b/7d2L9ZmZmZlV0+h49SQcDX6G4je3MiMg7wgbm2xe4Cnh7RPykWZk90yyV9GZJUb4CzczMzGzEdSq9iqRxwDeAQ4CXAO+Q9JIG830RuLRKfXumoUdtQmUzMzOzEdfBPHr7AbdGxOKIeIYiC8nhdeb7EMUtbsurFNoTDb1GCZXNzMzMRtI666wzqA8wRdK1yefYrOitgLuT4SXluNUkbUXxMOzpVetb6R69UeAI6iRUzmdyHr2hcaza43hV51hV51i1x/GqzrEauiHeo/dARMxsVnydcZENnwZ8PCKeq1qPXmnoNUuovJrz6A2NY9Uex6s6x6o6x6o9jld1jtXw6ODDGEso3gQ2YBqwNJtnJjC3rMMUYLakVRHxs0aFjvqGXpOEyidFRN7SNTMzM+uYDjb0rgF2lLQdcA/FrWrvTGeIiO2SepwN/KJZIw96oKFH44TKrwKu7FqtzMzMbMzpVB69iFgl6XiKp2nHAWdFxCJJx5XTK9+Xl+qFhl6zhMpu6JmZmdmI6HQevYi4CLgoG1e3gRcR761SZtcbepI2B04FXg48DDwDfCkizociobKkeeW7b08B5mYJlc3MzMxGRK+9Aq2r6VVUROtnFO+zfXFEzKC4Jj0tmWci8FxEPAXsy5p37pqZmZmNqCGkV+lOfbu25sKBwDNpt2RE3BkRXwOQdDmwkOJBjIXAHsA1kmZ3pbZmZmY2Zg02WXI3ewG7fel2N+qkSRkQEbMknQTcBjwIHBoRHxupypmZmZmleu3SbbcbejUkfYPiadpnImLfcvTeFA9fzAYWtFjeCZOHwLFqj+NVnWNVnWPVHserOsdqeLih155FwN8NDETEByVNAa6VdAxwPLADsCuwDXCfpNkRcVS9wpwweWgcq/Y4XtU5VtU5Vu1xvKpzrIZHN++3G4xu1/YyYIKkf0jGvQAgIs4EXg9cFhF7Ubzod9dGjTwzMzOzTvI9em2KiJB0BHBqeS/e/cBK4OPlLPsDv5O0NXBnd2ppZmZmVvCl2zZFxDKKlCr1pv0kGXzryNRobKh3oM6ZM4dZs2Z1oTYjz2/PM6uv1/6Idfp3y78Vluu1c6TrDb0qWiVVNjMzMxsJvXaP3qhv6CVJlc+JiHeW47YFDutmvczMzGxs6fb9doMx6ht6NEiqDHyte1UyMzOzsajXGnoa7fcfSPowsF1EfLTCvGkevRlz585lxYoVTJo0qdPV7Dnz56/9Jrlp06axZMmSLtRm5M2YMWPIZfjYqs6xqq7bsar32zCadfp3azh+K0aLbh9bo9WsWbPmR8TMKvPusMMOMWfOnEGt581vfnPl9QynXujRq9EgqTLgPHrtqHfz8pw5czjxxBO7UJuRNxz/wfGxVZ1jVV23Y9VrD2R1+ndrtHeGtKPbx1a/8D16w69hUuXuVcnMzMzGml68R68XmqUNkyqbmZmZjSQnTB5mFZIqm5mZmY2IXuvRGzUNPUnPAQuTUUdExB1QJFWW9CKKd96eAsyNiKtGvpb9o959J/Pmzeur+1HMrH299hvg3y0bab5Hb/CeLN9puxZJE4HnIuIpSfsCHxvRmpmZmdmY1+3LsIMx6pulki6n6OnbXdJCYA/gGkmzu1szMzMzG2t8j97gTZS0oPx+e0S8GSAiZpX35t0GPAgcGhHu0TMzM7MR12s9eqOpodfw0i2wN/BTYDawoFEBWcJk5s2bx4oVK5g3b97w1rRPOVbtcbyqc6yqc6za43hV51gND9+jN4wkHQMcD+xA8SDGNsB9kmZHxFH5/E6YPDSOVXscr+ocq+ocq/Y4XtU5VkPX7cuwgzGqG3oRcaakC4AzI+IwSVdHxH7drpeZmZmNTW7oDb/9gd9J2hq4s9uVMTMzs7HLDb1Bioi6b1qOiJ8kg28doeqYjSnpD5dzkpmtMVr+qPu8HD18j16HNEuobGZmZtZpvkevs5o9lWtmZmbWcW7omZmZmfWpXmvoqVeu+2eXblcnVM7mSfPozZg7dy4rVqxg0qS6t/9ZxrFqTz/Fa/78+au/z5gxY9jL76dYdZpj1Z5Oxys9N7ppOM5LH1v1zZo1a35EzKwy7y677BJnnXXWoNbzyle+svJ6hlMv9ei1vHTrPHpD41i1p5/iNWvWrNXfO/Gfv36KVac5Vu3pdLzSc6ObhuO89LE1dL5Hz8zMzKyP9VpDr7eeETYzMzProoFevXY/Fcs+WNItkm6V9Ik604+SdEP5+b2kPVuV6R49MzMzs4o6lUdP0jjgG8DrgCXANZIuiIibktluB14TEQ9LOoTidrWXNSu3lxp6EyUtSIbnRsQp3aqMWT/plYeyzEaazw1Ldfgevf2AWyNicbmuucDhwOqGXkT8Ppn/KmBaq0J7qaHnPHpmZmbWVUNo6E2RdG0yfEb5EOmArYC7k+ElNO+t+3vg4lYr7aWGnpmZmVlXDaGh90CL9Cr1Cq7bpSxpFkVD71WtVtpLDb380u0XIuJH3aqMmZmZjT0dfNftEmDrZHgasDSfSdJLgTOBQyLiwVaF9lLC5BUR0TTToxMmD41j1R7HqzrHqjrHqj2OV3WOVX3tJEzebbfd4gc/+MGg1rPXXns1XY+k8cBfgIOAe4BrgHdGxKJknm2Ay4Cjs/v1GuqlHr2WnDB5aByr9jhe1TlW1TlW7XG8qnOshkenHsaIiFWSjgcuBcYBZ0XEIknHldNPB/4vsCnwzbIeq1o1UvuqoWdmZmbWSR28dEtEXARclI07Pfl+DHBMO2X2UkMvv0fvkohYK5mgmZmZWaf02psxeqahFxHjul0HMzMzG7t68V23XX8FmqTnJC2QtEjS9ZL+UdJa9ZI0T9IESadJenk36mpmZmZjWydfgdYJo6FHb3UiZEmbAT8ANgI+MzCDpInAcxHxlKR9gY91o6JmZmY2tnXyHr1OGFW1jYjlFOlRjlfZ/JV0ObAQ2F3SQmAPive/ze5eTc3MzGws6rUeva7n0auXH0/Sw8AuEXFfOXwScBvwIHBoRNTt0XMevaFxrNrjeFXnWFXnWLXH8arOsaqvnTx6e+yxR5x33nmDWs9OO+1UeT3DaTRcuq0nb/ruDfwUmA0saLSQ8+gNjWPVHserOseqOseqPY5XdY7V8Oi1hzFGXUNP0ouB54Dlko4Bjgd2AHYFtgHukzQ7Io7qYjXNzMxsDOq1e/RGVUNP0lTgdODrUVxTPlPSBcCZEXGYpKsjYr/u1tLMzMzGKvfotW8gEfK6wCrgu8B/JtP3B34naWvgzpGvnpmZmVlv5tHrekOvQiLkH1E8dfseYJWkfwROi4jnO145MzMzs4QbesOvZZ49MzMzs5HQa/fo9VRt6+XZMzMzMxspvZZHrxd69GpExOLyFWmbAfd1uz5mZmY2NnS70TYYXU+Y3EqDhMqPADsPJFROxjth8hA4Vu1xvKpzrKpzrNrjeFXnWNXXTsLkPffcMy6++OJBrWerrbZywuQq0jx7+TQnTB4ax6o9jld1jlV1jlV7HK/qHKvh0Wv36PVUQ69Onj0zMzOzEdNrl257oaHXKs+emZmZWcf14j16o76hVyHPnpmZmdmI6LWG3qi40CzpRZLmSrpN0k2SLpK0UzL9h5KmSzpB0pHdrKuZmZmNXeuss86gPl2rb9fWXCrz4Z0PzIuI7SPiJcCngM2T2baLiDuA1wBXjnwtzczMzJxHbzBmAc9GxOkDIyJiAYCk7wN7A1uU9+ntCFwo6esRcWYX6mpmZmZjVLcbbYPR9Tx6kj5M0WP30QbT3wZsDfwU+HJEvLVJWc6jNwSOVXscr+ocq+ocq/Y4XtU5VvW1k0dv7733jssvv3xQ69lkk02cR6+BvYFfA3sAC5rN6Dx6Q+NYtcfxqs6xqs6xao/jVZ1jNTycR699i4C35CMlzQY+D2wHvBGYCqyU9NqImDWyVTQzM7Oxrhcv3Y6GZullwPqSPjAwQtK+wEpgBnBjROxB0SDc2408MzMz65Zeexij6w298g0XbwZeV6ZXWQScDCyluGx7vaT1gHUj4rHu1dTMzMzGul5r6I2GS7dExFLgbQ0mXwvFQxmS5gL7Ak8DdwAnRMRf6i00f/58JDFnzhxmzXInYK7bD+F0W7OTrhdjM9QfkV7c5k7p9mWZbv9m+ViwZrp9fowGvkevA5Jce+dExJHluL0ocu3VbeiZmZmZDadu984NRk809GiSa8/MzMxspLih1xm7A/O7XQkzMzMb23qtodf1hMlVtEqqnMy3OmHyRhttNONf/uVfmDZtGkuWLBmJavaUGTNmrDVuLCXTnD+/8f8b6sWmntEUr2bbU0XVbR6s0RSrVoYay6Hq9m9Wp4+F4dZLx1a3DUesun1+dMKJJ55YOZHxjBkz4o9//OOg1rPuuut2JWEyETHqP8BBwG/bXCaAmDNnTgx892fNp57LL7+87vh+1G5s6hlN8erE8TCcRlOsWun2udnt36xe00vHVrcNR6y6fX506HNtVGxbzJgxI1atWjWoT5X1AAcDtwC3Ap+oM13AV8vpNwD7tCqzVx4dqZtrT9JrulgnMzMzG2M6lV5F0jjgG8AhwEuAd0h6STbbIcCO5edY4Futyu2Jhl75v4hGufbMzMzMRkQH8+jtB9waEYsj4hlgLnB4Ns/hwLllB+tVwMaStmha3+iBe/QGQ9L9wJ3AFOCBLlenVzhW7XG8qnOsqnOs2uN4VedY1bdtREytMqOkSyjiOBgTgKeS4TMi4oyk7LcAB0fEMeXwu4GXRcTxyTy/AE6JiN+Vw78BPh4R1zZaaa88ddu2gZ0m6droxs2PPcixao/jVZ1jVZ1j1R7HqzrHaugi4uAOFl+v2y/vjasyT42euHRrZmZm1ueWAFsnw9NY+xa1KvPUcEPPzMzMrPuuAXaUtJ2k9YAjgQuyeS4Ajlbh5cCjEbGsWaF9e+k2cUbrWazkWLXH8arOsarOsWqP41WdYzWKRcQqSccDlwLjgLMiYpGk48rppwMXAbMp0qs8AbyvVbl9+zCGmZmZ2VjnS7dmZmZmfcoNPTMzM7M+1bcNPUkHS7pF0q2SPtHt+ow2kraWdLmkmyUtkvSRcvwLJf1K0l/Lfzfpdl1HC0njJP2pzGPkWDUgaWNJP5H05/L4eoVj1Zikj5bn4I2SfihpguNVkHSWpOWSbkzGNYyNpE+Wv/m3SHpDd2rdPQ3i9eXyXLxB0vmSNk6mjel4jRV92dCr+BqRsW4V8E8RsSvwcuCDZYw+AfwmInYEflMOW+EjwM3JsGNV31eASyJiF2BPipg5VnVI2gr4MDAzInanuAH7SByvAWdTvPszVTc25e/XkcBu5TLfLP8WjCVns3a8fgXsHhEvBf4CfBIcr7GkLxt6VHuNyJgWEcsi4rry++MUf4y3oojTOeVs5wBHdKWCo4ykacChwJnJaMcqI2lDYH/gOwAR8UxEPIJj1cx4YKKk8cALKHJiOV5ARPwWeCgb3Sg2hwNzI+LpiLid4qnE/UainqNFvXhFxC8jYlU5eBVF3jVwvMaMfm3obQXcnQwvKcdZHZKmA3sDfwQ2H8jJU/67WRerNpqcBpwEPJ+Mc6zW9mLgfuD/lZe5z5S0AY5VXRFxDzAHuAtYRpET65c4Xs00io1/91t7P3Bx+d3xGiP6taHX9itCxipJk4CfAidExGPdrs9oJOmNwPKImN/tuvSA8cA+wLciYm9gJWP3smNL5f1lhwPbAVsCG0h6V3dr1bP8u9+EpE9T3LLz/YFRdWZzvPpQvzb02n5FyFgkaV2KRt73I+K8cvR9krYop28BLO9W/UaRVwKHSbqD4jaAAyV9D8eqniXAkoj4Yzn8E4qGn2NV32uB2yPi/oh4FjgP+Bscr2Yaxca/+w1Ieg/wRuCoWJM81/EaI/q1oVflNSJjmiRR3Ed1c0T8ZzLpAuA95ff3AP8z0nUbbSLikxExLSKmUxxLl0XEu3Cs1hIR9wJ3S9q5HHUQcBOOVSN3AS+X9ILynDyI4n5Zx6uxRrG5ADhS0vqStgN2BK7uQv1GFUkHAx8HDouIJ5JJjtcY0bdvxpA0m+K+qoHXiHyuuzUaXSS9CrgSWMia+84+RXGf3o+BbSj+CL01IvKboccsSQcAJ0bEGyVtimO1Fkl7UTy0sh6wmOIVPevgWNUl6V+Bt1NcVvsTcAwwCccLST8EDgCmAPcBnwF+RoPYlJcn308RyxMi4uK1S+1fDeL1SWB94MFytqsi4rhy/jEdr7Gibxt6ZmZmZmNdv166NTMzMxvz3NAzMzMz61Nu6JmZmZn1KTf0zMzMzPqUG3pmZmZmfcoNPTPrKEmbSlpQfu6VdE/5fYWkb3ZonSdIOrr8vku5vj9J2r4T62ujXnMl7djNOpjZ2OL0KmY2YiSdDKyIiDkdXMd44Dpgn4hYJekTwMSI+Ew2nyh+A5+vV06H6vYa4F0R8YGRWqeZjW3u0TOzrpB0gKRflN9PlnSOpF9KukPS30r6kqSFki4pX9eHpBmSrpA0X9KlA6/CyhwIXFc28mYDJwDHSLpc0nRJN5c9idcBW0v6lqRrJS0qkxcP1O8OSZ+X9Idy+j7lOm+TdFwy38ckXSPphoHlJW0g6UJJ10u6UdLby9mvBF5bNkbNzDrODT0zGy22Bw4FDge+B1weEXsATwKHlo29rwFviYgZwFlAvTfevBKYDxARFwGnA6dGxKxy+s7AuRGxd0TcCXw6ImYCLwVeI+mlSVl3R8QrKBpoZwNvAV4OfBZA0uspXh21H7AXMEPS/sDBwNKI2DMidgcuKevzPHArsOdQAmVmVpX/V2lmo8XFEfGspIUUry68pBy/EJhO0UDbHfhVcdWVccCyOuVsQfG+2EbujIirkuG3STqW4vdwC+AlwA3ltIF3ZC8EJkXE48Djkp6StDHw+vLzp3K+SRQNvyuBOZK+CPwiIq5M1rcc2JKyMWpm1klu6JnZaPE0FL1ekp6NNTcQP0/xWyVgUdnD1syTwIQm01cOfClf5n4isG9EPCzp7GzZp5M6PJ2MT+v0hYj4r3wlkmYAs4EvSPplRHy2nDShrKOZWcf50q2Z9YpbgKmSXgEgaV1Ju9WZ72Zgh4plbkjR8HtU0ubAIW3W6VLg/ZImlXXaStJmkrYEnoiI7wFzgH2SZXYCFrW5HjOzQXGPnpn1hIh4RtJbgK9K2oji9+s01m40XQx8t2KZ10v6U1nGYuB/26zTLyXtCvyhvJy8AngXRUPzy5KeB54F/gGgbEw+GRH1LjmbmQ07p1cxs74j6XzgpIj4a7frkpL0UeCxiPhOt+tiZmODL92aWT/6BMWDFaPNI8A53a6EmY0d7tEzMzMz61Pu0TMzMzPrU27omZmZmfUpN/TMzMzM+pQbemZmZmZ9yg09MzMzsz71/wNsVXKgKgSkjAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import os\n", "import copy\n", "import numpy as np\n", "from matplotlib import pyplot as plt\n", "from matplotlib import colors\n", "\n", "import sys\n", "sys.path.append('..')\n", "import libfmp.b\n", "import libfmp.c4\n", "import libfmp.c5\n", "import libfmp.c7\n", "%matplotlib inline\n", "\n", "# Compute chromagram\n", "fn_wav = os.path.join('..', 'data', 'C5', 'FMP_C5_F01_Beatles_LetItBe-mm1-4_Original.wav')\n", "N = 4096\n", "H = 2048\n", "X, Fs_X, x, Fs, x_dur = libfmp.c5.compute_chromagram_from_filename(fn_wav, N=N, H=H, gamma=0.1, version='STFT')\n", "#X, Fs_X, x, Fs, x_dur = libfmp.c5.compute_chromagram_from_filename(fn_wav, N=N, H=H, gamma=100, version='IIR')\n", "#X, Fs_X, x, Fs, x_dur = libfmp.c5.compute_chromagram_from_filename(fn_wav, N=N, H=H, version='CQT')\n", "\n", "# Chord recognition\n", "chord_sim, chord_max = libfmp.c5.chord_recognition_template(X, norm_sim='max')\n", "chord_labels = libfmp.c5.get_chord_labels()\n", "\n", "#Plot\n", "fig, ax = plt.subplots(2, 2, gridspec_kw={'width_ratios': [1, 0.03], \n", " 'height_ratios': [1, 2]}, figsize=(9, 6))\n", "\n", "title = 'Chromagram (N = %d)' % X.shape[1]\n", "libfmp.b.plot_chromagram(X, Fs=1, ax=[ax[0, 0], ax[0, 1]],\n", " chroma_yticks = [0, 4, 7, 11], clim=[0, 1], cmap='gray_r',\n", " title=title, ylabel='Chroma', colorbar=True)\n", "\n", "title = 'Time–chord representation of chord recognition result (N = %d)' % X.shape[1]\n", "libfmp.b.plot_matrix(chord_max, ax=[ax[1, 0], ax[1, 1]], Fs=1, \n", " title=title, ylabel='Chord', xlabel='Time (frames)')\n", "ax[1, 0].set_yticks(np.arange(len(chord_labels)))\n", "ax[1, 0].set_yticklabels(chord_labels)\n", "ax[1, 0].grid()\n", "plt.tight_layout()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we read the annotation file that contains reference annotations needed for our evaluation. In our scenario, these annotations are given in the form of labeled segments, each specified as a triple $(s,t,\\lambda)$ with start and end time $s,t\\in\\mathbb{R}$ (given in seconds) and label $\\lambda$. To apply our frame-wise evaluation measures, we need some preparation:\n", "\n", "* First, we need to convert the **segment-based annotation** into a **frame-based label sequence** adapted to the feature rate used for the chroma sequence. This step is not trivial, since the time grid introduced by sampling may not be conform with segment boundaries.\n", "* Second, one may need to convert the labels used in the annotation file to match the label conventions used in the automated approach. This step is often problematic, in particular when the reference annotation is given on a different semantic level (e.g., using more than the $24$ major and minor triads).\n", "\n", "Following the [FMP notebook on evaluation](../C4/C4S5_Evaluation.html), we provide in the next code cell such an adaption function, which reads the original annotation file and converts it into various formats:\n", "\n", "* Segment-based annotation with segments (given in seconds)\n", "* Segment-based annotation with segments (given in indices)\n", "* Label sequence (specified on the frame level)\n", "* Encoding of label sequence as segment-based annotation (given in indices) \n", "* Encoding of label sequence in form of a binary time–chord representation" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2024-02-15T08:56:02.280324Z", "iopub.status.busy": "2024-02-15T08:56:02.279870Z", "iopub.status.idle": "2024-02-15T08:56:03.349653Z", "shell.execute_reply": "2024-02-15T08:56:03.349119Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAGoCAYAAADW2lTlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABd80lEQVR4nO3deZgcdbn3//cnCxmSQJAdEiBhJ4QlhCCKQgBFCMji48IqiqDwiIKKbPr88HhUUKPigqInckAg5iCLBmU9yLApEMIWJkCAsCRhCciayIQs9++PqplUOt2zpburl8/ruvqarqWr7v52V/U9Vd+6SxGBmZmZmTWPfnkHYGZmZmbV5QTQzMzMrMk4ATQzMzNrMk4AzczMzJqME0AzMzOzJuME0MzMzKzJOAG0PpPUJmlC3nEASHpO0kcquPyQtHWllt+IJJ0raXIO6z1C0lxJCyWNLcPytpP0kKR3JH21HDFaz0m6UdLxVV7nIEmzJG1czfWuLkn3S9ox7zisPjgBtJLSH9COx3JJ72aGj4mIHSOiNe84rfwkfUfSFb2Yf4KkedlxEfGDiDix/NF1axJwakQMjYiHyrC8M4HWiFgrIn5RhuU1DUmtknr8HSj2vYuIgyLisvJH16UvAndGxMtpXJem/wTukYl1a0m9LqQr6dOS/iHp35JaC6atL+keSf+S9Kakf0raKzN9kKSfSXpR0huSfi1pYGYRk4Dv9jYma05OAK2k9Ad0aEQMBV4APp4Zd2Xe8VWCpAGr+XpJKtt2tbrxNKktgLaezNjD9u3x8vq4fKs9XwIuLxj3OvC9Miz7deBC4IIi0xYCJwAbAO8Dfghcn/kenQ3sDowBtgV2A76def00YF9Jm5QhTmt0EeGHH90+gOeAj5QaB3wH+BNwBfAOMJNkB3UOsACYCxyQee0w4PfAS8B8kh1r/x7EcRLweLqOWcBumVjOAB4F3gL+B2gpeN3TJDvfacCmmWkBfBl4Cng2HffNNLYXSXbIAWxdIqZW4PvAPcC7wNbA9sCt6fqeBD6dmf9S4OJ0+jvAHcAW3cRzCPAw8CbwD2DnzPxnpW34Trqu/dPx/Uh+MJ4B/gVcBaybThuZrud4kuT+NeBb6bQDgfeAJSQ/SI+k4z+fafs5wJfS8UPS9708nX8hsGn6nbgiE+ehJInUm2mb7VDwXSr5+RW0dz+SH73nSb5bfyD5Pg1K1x3AIuCZEq/vcfsCfweWAe3psrdN1zMpbbdX0s9yzXT+CcC89DN5mSSJ6NPnkE7vD5ybvvYdYAawWTqt5HesyHsu+tkVxPyNtD1fAj5f8H29CPhb+vr7gK0y0z8ITE8/t+nAB9Px3y9ou1+l439Osj94O30/H+7me9cKnNjVZ9/DttwDeCBd7yvAT0u01eYk3+cBBW3w0/Qz3ScdtzUQq7FPPZHkyHKp6f2Aj6fvacN03APApzLzHA3MLXjdrcDxfY3Lj+Z55B6AH/XxoGcJYDvwMWBAumN+FvgWMJAkAXs289o/A78lSR42BO7P/iiViOFTJInOeEDpDniLTCz3kyQe65L82J2cTtsv/THYjeTH+5ckp3c6lhvpTnNdYM30h+gVkv+yhwBT6D4BfAHYMX3vw0h+4D6fDu+Wrn/HdP5LSX5I907j+Tlwdxfx7EbyY/d+koTg+PT9DgK2S9e1afrakaQ/zsDpwL3AiHTe3wJ/zMwXwH+l69gFWEyalFGQvKXjDga2Stt+H+DfrEjAJwDzCubvXAZJ4rQI+Gj6fTiTJCFfo7vPr0h7n5C+dktgKHAtcHlB+xX9rHrbvpnP98TM6y8k+SdiXWAt4Hrg/Ew7LCU5cjMoXf7qfA7fJPlnaru03XcB1iP5Xpb8jhV5z919dktJTh0OBCam09+X+b6+TpJADQCuBKam09YF3gCOS6cdlQ6vV6zt0nHHpu9hAEnS+TJpsk/x713nMrr67HvQlv8EjkufDwX27KKt2grGXUryT+pXSbdVChJA4Nck/0AUezxaZD0lE0CSf4Te63g/mfEzWPmfyWPSeYZlxv2CEsmtH35kH7kH4Ed9POhZAnhrZtrHSf6L758Or5XuqNYBNkp3zGtm5j8KuL2bGG4GTusivmMzwz8CLk6f/x74UWbaUJKjDCPT4QD2y0y/BLggM7wt3SeA380Mfwa4q2Ce3wLnpc8vJf0BzcSzjBVHdgrj+Q3wnwXLe5Lkh3xrkuTlI8DAgnkeJz0amA5vkr7vAaz4sRyRmX4/cGTm87yi2PvNzP/njs+D7hPA/wdclZnWjySZn9Dd51dkvbcB/zczvF3H+8q0X3cJYI/aN/P5diQgIklks0fAPsCKI4kTSH64s0efV+dzeBI4rMh76PI71t2jyGdXeMRrAWmCRPJ9nZyZNhF4In1+HHB/wbL/CXyusO26iOUNYJdS37uC9i/52fegLe8E/gNYv5t4jgHuLRh3KUkCOIjkn72DqPwRwBaS/eLxmXHfIznTsAGwMcnR2AA2yczzfeCSvsblR/M83AfQyumVzPN3gdciYllmGJJkZwuSIw0vpR2d3yT58doQQNIzBRegPJe+djOSU2GlvJx5/u90XZAcVXq+Y0JELCQ5FTc8M//czPNNC4afp3vZ+bcA3t/x3tL3dwzJDnuV+dN4Xk/XW2p53yhY3mYkR/2eJjnC9B1ggaSpkjbNvO66zGseJ0k0N8osu1SbrULSQZLulfR6uryJwPql5i9Q+BksT99j9jPoaSwrLSt9PoCV31d3etS+RV63ATAYmJGZ96Z0fIdXI6K9YPl9/RxKfed78h3r1IPP7l8RsbREDF3FV/hZkA4PpwRJ35D0uKS30liG0cfvEcU/+1KxfoHkn7knJE2XdEiJdbxB8g/rKiJiMfCf6UM9jLlPIqI9Iv4InC1pl3T094GHSLor/IMkkV9CkrB3WIvkqKNZl5wAWh7mkhwBXD8i1kkfa0fEjgARsVVkLkCJiJGZ123Vh/W9SPKDCYCkISSnoOZn5onM85dIfng7bN6DdWRfPxe4I/Pe1knfxymZeTqXL2koyam0F7tY3vcLljc4/XEgIqZExIfS9xgkpx87XndQwetaIiL7vnvyfpA0CLiGpO/bRhGxDnADK34EV5q/iMLPQCRt0JNYulwWyeezlJX/AelOj9u3wGsk/8zsmJl3WCQXShVbdsfy+/o5lPrO9+Q7BvTos1sdhZ8FJJ9Hx3sr/B59mKR/5KdJTjGvQ9J3sE/fI3rx2UfEUxFxFMk/mj8Erk73BYUeBbbs4gKe/yZJWo/IjpR0ccE/rtlHny4iSg0kOeVNRLwbEadGxPCI2JLkH9kZmX+0AXYAHlmN9VmTcAJoVRcRLwG3AD+RtLakfpK2krRPNy+dDJwhaVx6te3Wkgp/fIqZAnxe0q7pj+EPgPsi4rkS818FfE7SaEmDgfN69s46/RXYVtJxkgamj/GSdsjMM1HShyStQXI04b6ImFt8cfwXcLKk96fve4ikgyWtpaRG3X7p+2onSU46fgwuBr7f0UaSNpB0WA/fwyvAyMwVzWuQnP56FVgq6SDggIL515M0rMTyrgIOlrR/WrbiGyT/BPyjh/Fk/RH4mqRRafL8A+B/Co5g9UbJ9i2cMT1y+V/AzyR1HLEeLuljXSx/dT6HycB/StomjW1nSevRs+9Yh+4+u9VxQxrH0ZIGSPoMMDqND5LvxZaZ+dciSdheBQZI+v+AtTPTC793hfr82Us6VtIG6Wf4Zjp6WeF8ETGP5AKhPQqnpdOXkhxxP6tg/MkF/7hmH521+ST1l9RCcuSyn6SWdJtA0p4d+wVJa0o6i+To5n3p9OGSNk2/C3uSdK04L7PsQcA4kj6uZl1yAmh5+SzJD9MsklMuV5P0jSopIv5EcgpkCslFFH8mOXLWpYi4jWRHeQ3J0b2tgCO7mP9Gko7+fyfpcP737tZR8Pp3SH5gjyQ5YvEyKy4K6DCFZMf9OskO+5gulvcAyUU0vyJpq6eBz6WTB5GUk3gtXc+GJFeNQnJxyTTgFknvkFyI8P4evo0/pX//JenB9D19lSSRe4Pk6sNpmRifIPlxnqPklORKp08j4kmSzv+/TGP9OElZofd6GE/WJSRX195JcqFRO/CVPiynI7au2reYs9J57pX0NvC/JH3RSlmdz+GnJG1+C8nVq78n6Tvbk+9Yx/vr8rNbHRHxL5IrqL9BcjTqTOCQiHgtneXnwCeV1Kz7BUk/3huB2SSnb9tZ+XT8St+7Iqtcnc/+QKBN0sI0riMLTtVn/Zakf2MpfyTZl/TFcST/qP0G+HD6/L/SaYNIrrj+F8lR1InAwRHRcXZgK5J/mhYBlwFnR8QtmWUfStKvMHs2wawoRXR3xN3MyknSpSQXTHy7u3nNrPrSI2kPkVy809dEr+ok3Qd8ISIeyzsWq30uUmpmZpaRXuwxOu84eisienpk2cyngM3MzMxqmaRLJC2QVPTobtov9BeSnpb0qKTdul2mTwGbmZmZ1S5Je5PU1v1DRIwpMn0iSX/YiSR9jH/e3RFhHwE0MzMzq2ERcSfJRYOlHEaSHEZE3Auso27uCd2wfQDXX2/dGLnFZiz6dztDBrfkHU7NW5L+K9C+qJ2WIc3ZXgOX9P41i9rbGdLSuO21hIFlX2Z7+yJaWoqVX6t9A/v34Uuymmp9H7akxg4j5LIPW1L+7aRayrU95rFtVNqMhx59LSI26H5OkLS6p1PbSK5q7/C7iPhdL14/nJWvqJ+Xjit5EVOuCaCkZST3uRRJPaZTI6IvdcFWMXKLzXjgjhtpnd7GhPE7dv+CJvdiWvGsrbWNHSc0Z3tt2ofCCa1tbUzYsXHb68WiN8NYPW1trey444SyL7caNl2r+tU1an0f9mLRe2bkJ5d92Ivl306qpVzbYx7bRqVp7eE9uQtUubRHxO6r8fpihd27TErzPgL4bkTsCpAWUj2f5P6mZmZmZnWjX7++Hw5fvnz56q5+HivfwWoEK99dahW1dPB+bZIipUiaIOkOSVdJmi3pAknHSLpf0kxJfbkdmJmZmVlFSOrzowymAZ/N3CXmre5qWOZ6FXDmFHALyV0g9ouIGZImkNzlYQeSTo9zgMkRcZ6k04BREXF6keV9EfgiwEYbbTRu6pTLWbionaFN2qetNzr7AC5sp2Voc7ZXX/oALmxvZ6j7APZKe/tCWlqGdj9jDcqjn1Ot78Nqrg9gHvuwuu4DWJ7tsRH7AO67/wEzenpaVlIMGND3k6pLly7tcl2S/ghMANYnuWXieST3iSYiLlaSRf6K5I43/wY+n97lqKRaOgX8AeAPkjoub57ekb1KeobkVkiQJIz7FltY2mHydwC777ZLTBi/Y833n6kV7gPoPoDFuA/gytwHcFXuA4j7ANKYfQB7Q9JqnQLuTkQc1c30AL7cm2XmnQB2ioh/Slof6LjiZnFm8vLM8HJqKG4zMzOzMp3KrZqaSaQkbQ/0J7kJtpmZmVndcALYO2tKejh9LuD4iFhWb41oZmZmzavSp4AroeIJoKQjgGuBHSLiiYLJVwHnAIcDL0fE3wAiohVo7ZgpIiZknq80zczMzCxv9Xbwqhrp6lHA3cCRRaaNiojnSGr/3VWFWMzMzMzKLucyML1W0QRQ0lBgL+ALZBJASVdKmgVsl54CPgD4m6QT0+nPSfqBpH9KekDSbpJulvSMpJMrGbOZmZlZb9VbAljpU8CHAzdFxGxJr0vaLSIejIhjJH2apGr1NcCPI+JTBa+dGxEfkPQz4FKSRLKF5H55F1c4bjMzM7MecR/AVR0FXJg+n5oOP5gOjwX+F9gJeLjIa6elf2cCQyPiHeAdSe2S1omINwtfUFAImtbpbSxc1E7r9LbyvJsGli0E3dbanO01u4+FoFvbGre9ljC77Mtsb19IW1tr2ZdbDbNzKgRdy/uwWiwEXfV92JLybyfVUq7tMY9to9bUWx/AiiWAktYD9gPGSAqSEi8hqRX4PjAKOISk7t8iSR+JiGyB52zdv8KagEXjdiHovnMhaBeCLsaFoFfmQtCrciFoXAgaF4IGJ4BZnwT+EBFf6hgh6Q7gbWAccGdE7CXpNuCIiHi7grGYmZmZVYxPAa9wFHBBwbhrgKOBd4FHJK0BDHTyZ7Vg0+HDe/2asydN4ugDDqhANLXhgfn53SvczKxe5HkxR19VLAHM1u7LjPtFZrDjJsV7F9YKjIiRmddcSnIRSMfwSMzMzMxqSL0lgLVyvLKrWoFmZmZmNa1fv359fuQSby5rzShWK1DSBEl3SLpK0mxJF0g6RtL9kmZK2irXoM3MzMwyXAew9w6noFZgOn4XYAfgdWAOMDki9pB0GvAV4PQ8gjUzMzPLqsc+gIrIt5O3pL8BF0bErZK+SlIc+m/AtyLio+k8dwLnRMQ9kvYDvhoRhxdZVrYO4LipUy5n4aJ2hg5pqdbbqVvZOoAtQ5uzvR6f8WivX7PxiBG8PG9eBaKpDTvsPK7sy2xvX0hLy9CyL7caBuZUB7CW92G1WAew6vuwJQOru74yKtf2mMe2UWn77n/AjIjYvSfzrrHGGrHhhhv2eV3z58/v8brKJdcjgKVqBQI3sGrtv2xdQNcBLDPXAYTj9+391bxnT5rEBWecUYFoakMlrgJ2HcDeqfV9mOsA4jqAuA4g1N9FIHmfAi5VK/BD+YVkZmZm1jtOAHunVK3AU4Bnqh+ONbMX58/v9Wta29r69Lp64f/pzcy653sB91IXtQJ/UWq+iGgFWisbmZmZmVnP1dsRwIqmq5I2kjRF0hxJMyT9My36nJ2nVVKLpAsl7VnJeMzMzMwqod7KwFQsAVTyjv5Mcs/fLSNiHEmdvxGZedYElkVEOzAemFGpeMzMzMwqoeMUsAtBJ/YD3ouIiztGRMTzEfFLAEm3AzNJrgCeCewETJc0MZ2+UNIP0yOH/ytpj/Ro4RxJh1YwbjMzM7NeqbcjgBWrA5jW9BsVEV/rYp4zSS72+BdwcER8MzMtgIkRcaOk64AhwMHAaOCyiNi1yPJcB7CPXAcQBvahjNXC9naGtjRuey2h/PXNXAewd2p9H+Y6gLgOIK4D2NLSEptvvnmf1/XUU081bh1ASReRlHd5LyLGp6PHklz1OxF4uOAl7wE3pc9nAosjYkl6tHBksXW4DmDfuQ4gbNqHS15b29qYsGPjtteLlL++mesA9k6t78NcBxDXAcR1AAFfBZzRBvyfjoGI+LKk9YEHJJ0InApsTXK7t82BVyRNjIhj0pcsiRWHJzsLQUfEckl5l68xMzMzA+rzVnCVTFf/DrRIOiUzbjBAREwGDgD+np7KfToidsgkf2ZmZmZ1o976AFbsSFpEhKTDgZ+lff1eBRYBZ6Wz7A3cLWkz4PlKxWFmZmZWafV2BLCip1Ij4iWS0i/Fpl0taSPgZ8A4STNI+v39KCKui4ihmXm/U/Da+uxBbmZmZg3JfQB7KFMn8LKIODodtwXgEi9mZmZWN9wHsHdK1gmU9DlJf5Z0vaRnJZ0q6euSHpJ0r6R1c4zbzMzMbCWV7AMo6UBJT0p6WtLZRaYPS3OmRyS1Sfp8d8vM82raHYEHu5g+hqRMTAvwNHBWRIyV9DPgs8CFhS8oqANI6/Q2Fi5qp3V6W7ljbzjZOoBtrc3ZXrP7WAewta1x22sJs8u+zPb2hbS1tZZ9udUwO6c6gLW8D6vFOoBV34ctKf92Ui3l2h7z2DZqTaVOAUvqD1wEfBSYR3LTjGkRMSsz25eBWRHxcUkbAE9KujIi3iu13Jopp5KtE0jyRm+PiHeAdyS9BVyfzjoT2LnYMlwHsO9cB9B1AItxHcCVuQ7gqlwHENcBxHUAoaIXgexBUi1lTrqeqcBhQDYBDGCttHvdUOB1YGlXC80zASxZJzAdtTgz7/LM8HJqKHE1MzOz5laGPoDrS3ogM/y79KAWwHBgbmbaPOD9Ba//FTANeBFYC/hMRCzvaoV5JlJ/B34g6ZSI+E06bnCO8ZiZmZn1yWqeAn6ti1vBFcssC+/j+zGSO6rtB2wF3Crproh4u9QKc+u9kd7l43Bgn/RCj/uBy1hRJ9DMzMysLlTwIpB5wGaZ4REkR/qyPg9cG4mngWeB7btaaMWPAEpaRtJvr8PhEfEcJHUCJW1Mcju4C4CpEXFvOt+lHS+IiJGZ55dmp5mZmZnlrYJ9AKcD20gaBcwnqa98dME8LwD7A3elNZa3A+Z0tdBqnAJ+N73d2yokrQksi4h2SeOBb1YhHjMzM7OykVSxq4AjYqmkU4Gbgf7AJRHRJunkdPrFwH8Cl0qaSXLK+KyIeK2r5eZZCPp2kkOaa6UBb0FyafO5EXGDpIUkVwN/BHgDOBf4EbA5cHpETMspdDMzM7OVVLIQdETcANxQMC5bR/lF4IDeLFNJV7zKKTgF/GxEHJGZdibwDPAv4OCI+GZmWgATI+JGSdcBQ4CDgdEkdw/Ztci6snUAx02dcjkLF7UzdEhLZd5cA8nWAWwZ2pztNbCPdQCHtjRuey1hYNmX2d6+kJaW+ryb48Cc6gDW8j6sFusAVn0ftqT820m1lGt7zGPbqLR99z9gRhcXZqxk6NChscsuu/R5Xf/4xz96vK5yyfUUMEmh52uAiSRXr2S9B9yUPp8JLI6IJenRwpHFFuY6gH3nOoCuA1iM6wCuzHUAV+U6gLgOIK4DWMlTwJWSyylgSScCpwJbk1wAsjnwiqSJEXFMOtuSWHF4srMOYEQsl+Q6gGZmZlYz6u1ewLkkUhExWdI0YHJEHCrp/ojYI49YzMzMzFaXE8Ce2xu4W9JmwPM5xmFmZma2WnwKuEBEFO1dGhFXdzyX9AlJD2cmH559XUR8pyfLNDMzM6u2MtwKrupqpS9dVxeKmJmZmdU0J4BlIulzJLeK6w+MAX4CrAEcR3JByMSIeD2v+MzMzMw6OAHsmzUzp4CztQLHkJSKaQGeJqlsPVbSz4DPAhdmF1JQB5DW6W0sXNRO6/S2KryF+patA9jW2pztNbuPdQBb2xq3vZYwu+zLbG9fSFtba9mXWw2zc6oDWMv7sFqsA1j1fdiS8m8n1VKu7TGPbaPWuA9g35Q6BXx7RLwDvCPpLeD6dPxMYOfCmV0HsO9cB9B1AItxHcCVuQ7gqlwHENcBxHUA3Qew/BZnni/PDC+n9mM3MzOzJuEE0MzMzKzJ+BSwmZmZWZPxEcBekrQMmJm5CGRqRFwQEZcCl3bMFxEjM89XmmZmZmaWF/cB7BvXADQzM7O6Vm+ngGs2WknPSfqBpH9KekDSbpJulvSMpJPzjs/MzMysQ8dRwL488lALRwCzNQABzo+I/0mfz42ID6R1/y4F9iKpCdgGXFy4INcB7DvXAXQdwGJcB3BlrgO4KtcBxHUAcR1AcB/AvujqFPC09O9MYGimJmC7pHUi4s3szK4D2HeuA+g6gMW4DuDKXAdwVa4DiOsA4jqAkuruFHAtJIBdydb9K6wJWOuxm5mZWZPwEUAzMzOzJuMEsPcK+wDeFBFn5xWMmZmZWW/4FHBGR30/YCCwFLgMuDAilhfMehdwIHABSQ3Ae6Hrun/ZaWZmZmZ58xHAFTov7pC0ITAFGAac1zGDpDWBZRHRLmk88M0KxmNmZmZWEfWWAFbleGVELCApz3Kq0haSdDvJEcIxkmYCOwHTJU1Mpy+U9ENJMyT9r6Q9JLVKmiPp0GrEbWZmZtadjlPAfX3kEnNEVGbB0sKIGFow7g1g+4h4JR0+E3gG+BdwcER8MzNvABMj4kZJ1wFDgIOB0cBlxUrHFNQBHDd1yuUsXNTO0CEtFXmPjSRbB7BlaHO218A+1gEc2tK47bWEgWVfZnv7QlpahnY/Yw0amFMdwFreh9ViHcCq78OWlH87qZZybY95bBuVtu/+B8yIiN17Mu96660XBx54YJ/XNWXKlB6vq1yqfRFI4fHRscA1wETg4YJp7wE3pc9nAosjYkl6tHBksYW7DmDfuQ6g6wAW4zqAK3MdwFW5DiCuA4jrAEL9nQKuWgIoaUtgGbBA0onAqcDWwA7A5sArkiZGxDHpS5bEisOTnXUAI2K5pFq4etnMzMwMqL97AVclkZK0Acmt236VJnWTJU0DJkfEoZLuj4g9qhGLmZmZWTnleU/fvqpkAthR36+jDMzlwE8z0/cG7pa0GfB8BeMwMzMzqygngKmI6N/N9KvTWoFHAwMlPUKmVmD2ApKI+E7Ba+uzB7mZmZk1pHpLAPM+Yf1uROwaETsCHyW5GOS8bl5jZmZmVlMqWQZG0oGSnpT0tKSid0uTNEHSw5LaJN3R3TJr5mKKiFiQlnGZLuk7wPHA4UB/YAzwE2AN4DiSC0ImRsTr+URrZmZmlqhkH0BJ/YGLSA6UzSPJk6ZFxKzMPOsAvwYOjIgX0htwdKlmEkCAiJgjqR/QEfgYklIxLcDTwFkRMVbSz4DPAhdmX19QB5DW6W0sXNRO6/S2ar2FupWtA9jW2pztNbuPdQBb2xq3vZYwu+zLbG9fSFtba9mXWw2zc6oDWMv7sFqsA1j1fdiS8m8n1VKu7TGPbaPWVPAU8B7A0xExJ13PVOAwYFZmnqOBayPiBei8AUeXaioBTGVb8PaIeAd4R9JbwPXp+JnAzoUvdB3AvnMdQNcBLMZ1AFfmOoCrch1AXAcQ1wGE1S4Ds76kBzLDv0tzGoDhwNzMtHnA+wtevy3J9RStwFrAzyPiD12tsKYSwGytwHTU4szk5Znh5dRY7GZmZta8VvMI4Gtd3Amk2IILb+M2ABgH7A+sCfxT0r0RUfLwdM0kUYW1AuvtahozMzNrThWuAzgP2CwzPAIoPOQ6jySJXAQsknQnsAuU7seTdwLYXa1AMzMzs5pXwTuBTAe2kTQKmA8cSdLnL+svwK/SO6WtQXKK+GddLbTiCaCkjUku1hhPcgr3OeD0iJgdEf0l/RE4h+SK35cjYjlARFwKXNqxnIgYmXm+0jQzMzOzPFXqCGBELJV0KnAzSWWUSyKiTdLJ6fSLI+JxSTcBj5J0k5scEY91tdyKJoBKWuM64LKIODIdtyuwESsOS46KiOck7UNyf2AzMzOzulLJrmsRcQNwQ8G4iwuGfwz8uKfLrPQF/PsCS7JBRsTDEXGXpCslzQK2S08DHwD8TdKJAJKek/QDSf+U9ICk3STdLOmZjqzXzMzMLG+SKloIuhIqfQp4DDCj2ISIOEbSp0k6Nl4D/DgiPlUw29yI+EBa9+9SYC+SmoBtJBeMrMR1APvOdQBdB7AY1wFcmesArsp1AHEdQFwHEOrvVnBdJoCSrmfVS407RcShq7n+scD/AjsBDxeZPi39OxMYmqkJ2C5pnYh4syAe1wHsI9cBdB3AYlwHcGWuA7gq1wHEdQBxHUBosAQQmJT+/QSwMXBFOnwUycUc3WkDPlk4UtJE4AfAKOAQYAOSy5Y/EhH7ZmbN1v0rrAmY9xXMZmZmZp2ngOtJl9FGxB0RcQcwNiI+ExHXp4+jgQ/1YPl/BwZJOqljhKTxwCKSgoWPRcROJIni2ILkz8zMzKwudNQC7MsjDz1NVzdI79IBQFqLZoPuXhQRARwBfDS9eKMN+A5JAcOxwCOS1gAGRsTbvQ3ezMzMrBbUWwLY09OopwOtkuakwyNJL7boTkS8CHy6xOQH0jqBL0p6hpXrBI7MLONSStQENDMzM8tbvZ0C7jYBlNQPGAZsA2yfjn4iIhaXflXP9LBOoJmZmVnNyvNIXl91mwBGxHJJp0bEVcAjZV5/0TqBkiZIugN4BdgVuJbkSuDTSG5yfHhEPFPmWMzMzMz6pOESwNStks4A/ofkAg4AIuL11Vx/yTqBJDcx3gF4HZhDcluTPSSdBnyF5LT0SlwHsO9cB9B1AItxHcCVuQ7gqlwHENcBxHUAoQFPAadOSP9+OTMugC2LzFsu0yPiJYC0f+At6fiZJEcOV+E6gH3nOoCuA1iM6wCuzHUAV+U6gLgOIK4DCA16BDAiRlVo/UXrBKYK6/5lawK6BqCZmZnVhHrsA9ij45WSBkr6qqSr08epkgaWYf2l6gTuU4Zlm5mZmVVFo5aB+Q0wEPh1OnxcOu7E1Vl5RISkI4ALJZ0NtJOUgfnz6izXzMzMrJoatQ/g+IjYJTP8d0lluSK4izqB/5V5/mFgclo2ZhlwajnWbWZmZlYO9XYKuKcJ4DJJW3WUXknvCrKscmGt4t2I2DVd98eA8/FpYjMzM6sB9dgHsKcJ4DeB29M7gQjYAvh8xaLq2trAGzmt28zMzGwVDXkKOCJuk7QNsB1JAliWO4H0wpqSHgZagE2A/aq4bjMzM7MuNeoRQIBxJPcAHgDsIomI+ENFolpV9hTwB4A/SBoTEZGdyYWg+86FoF0IuhgXgl6ZC0GvyoWgcSFoXAgaGjQBlHQ5sBXwMCv6/gVQrQSwU0T8U9L6wAbAgoJpLgTdRy4E7ULQxbgQ9MpcCHpVLgSNC0HjQtCSGvMUMLA7MLrwiFseJG0P9Af+lXcsZmZmZtCgRwCBx4CNgZcqGEtXOvoAQtIH8fiIqOZVyGZmZmYlNVQCKOl6klO9awGzJN1P5hZtEXFouQJJC0JfC+wQEU8UTL4KOAc4HHg5Iv5WrvWamZmZrY5GPAU8DdgIuKtg/D7A/DLHchRwN3Ak8J2CaaMi4jlJ++Ai0GZmZlZj6u0IYHfp6mHAtIi4I/sAbiA5GlcWkoYCewFfIEkAO8ZfKWkWsF16CvgA4G+SVusWdGZmZmbl1Gj3Ah4ZEY8WjoyIBySNLGMchwM3RcRsSa9L2i0iHoyIYyR9GtgMuAb4cUR8qozrNTMzM1ttjXYKuKWLaWuWMY6jgAvT51PT4QfT4bHA/wI7kZShKcl1APvOdQBdB7AY1wFcmesArsp1AHEdQFwHsBFvBTdd0kkR8V/ZkZK+AMwoRwCS1iO5s8cYSUFS4iUktQLfB0YBh5DU/Vsk6SMRsW+xZbkOYN+5DqDrABbjOoArcx3AVbkOIK4DiOsAQv31AewuATwduE7SMaxI+HYH1gCOKFMMnwT+EBFf6hgh6Q7gbZK7j9wZEXtJug04IiLeLtN6zczMzMqioU4BR8QrwAcl7QuMSUf/LSL+XsYYjgIuKBh3DXA08C7wiKQ1gIFO/szMzKwWNdoRQAAi4nbg9koEEBETioz7RWbwgfTv3pVYv5mZmdnqqHQfQEkHAj8n6SY3OSIKD5x1zDceuBf4TERc3dUy6+Z4paQjJEV6KzgzMzOzmtGvX78+P7oiqT9wEXAQMBo4StLoEvP9ELi5R/H2+h3mJ1so2szMzKxmVLAO4B7A0xExJyLeI6mWcliR+b5C0oVuQU/irYsEsFShaDMzM7NasJoJ4PqSHsg8vphZ9HBgbmZ4Xjouu+7hJBfnXtzTeHvUB7AGHE6RQtGFM7kOYN+5DqDrABbjOoArcx3AVbkOIK4DiOsAlqEP4GsRsXupxRcZFwXDFwJnRcSynsZRLwlgV4WiO7kOYN+5DqDrABbjOoArcx3AVbkOIK4DiOsAQkXLwMwjuSNahxFAYYPvDkztOJoITJS0NCL+XGqhNZ8AdlEo+syIKMyAzczMzKquglcBTwe2kTQKmE/SFe7o7AwRMSoTx6XAX7tK/qA++gB2FIreIiJGRsRmwLPAh3KOy8zMzAyo3EUgEbEUOJXk6t7Hgasiok3SyZJO7mu8NX8EkK4LRd9V/XDMzMzMVpBU0TuBRMQNwA0F44pe8BERn+vJMnNPACVtBPwM2BN4A3gP+FFEXAdJoWhJrem9gS8AphYUijYzMzPLVb3dCSTXU8BKWuvPJPf73TIixpGc2x6RmWdNYFlEtAPjWXFPYjMzM7OaUME6gBWR9xHA/YD3socxI+J54JcAkm4nufJlLUkzgS2A6ZLOTQ+HmpmZmeWq0qeAKyHvBHBHipRz6RAR+0o6E3gG+BdwcER8s9T8rgPYd64D6DqAxbgO4MpcB3BVrgOI6wDiOoBQf6eA804AVyLpIpKre9+LiPHp6LEkF31MBB7u6vWuA9h3rgPoOoDFuA7gylwHcFWuA4jrAOI6gOAEsLfagP/TMRARX5a0PvCApBNJLnveGtgB2Bx4RdLEiDgml2jNzMzMCtTjKeC8o/070CLplMy4wQARMRk4APh7ROxKciPkHZz8mZmZWa3xRSC9EBEh6XDgZ2lfv1eBRcBZ6Sx7A3dL2gx4Pp8om8PwTZP7Sk86exIHHH1AztHkIx6Yn3cIZnWnY99RK/LYh81/wDelMp8C7rWIeImk9EuxaVdDZ63AJZLmUKRWoJmZmVme6u0UcO4JYHcytQIvi4ij03FbAIfmGZeZmZkZkOup3L6q+QSQbmoFmpmZmeWt3hJARdR23wVJXwVGRcTXejBvtg7guKlTLmfhonaGDmmpdJh1b8ZjjwIwYuMRzHt5Xs7R5GPcDjv3+jUL29sZ2tK4368lDCz7MtvbF9LSMrTsy62GgTnVAazlfVjHvqNW5LEP23mHcVVdXzmVa3vMY9uotH33P2BGROzek3m33nrr+MlPftLndR1++OE9Xle51MMRwJWUqBUIuA7g6tj32KTT9KSzJ3HGBWfkHE0++nIRiOsA9p7rAPZOre/DOvYdtSKPfVg9XwTiOoDlU29HAOshASxZKzC/kMzMzMwS9dgHsB4uWSlZK9DMzMysFrgOYJn1oFaglcH8F5PTn22tbZ3Pm47PYJj1Wq3tL3LZh3nfYbgMTJ9JWgbMzIw6PCKeg6RWoKSNSW4JdwEwNSLurX6UZmZmZquqt1PANZMAAu+mt3xbhaQ1gWUR0S5pPPDNqkZmZmZmVkI99gGspQSwKEm3A5sBa0maCWwBTJd0bkTckG90ZmZmZj4FvDrWlPRw+vzZiDgCICL2Tfv+PQP8Czg4IooeASyoA0jr9DYWLmqndXpb5aOvc0vS7237wnbaWpuzvWb3oYzVwvZ2Wtsat72WMLvsy2xvX0hbW2vZl1sNs3OqA1jL+7AlNfabl8s+bEn5t5NqKdf2mMe2UWt8BLDvSp4CBsYC1wATgYdLLcB1APvuxbWSv22tbew4oTnba9M+dOR2HcDecx3A3qn1fVjHvqNW5LIPe7H820m1uA5g+TgBLCNJJwKnAluTXACyOfCKpIkRcUyuwZmZmZmRJH8+BVxGETFZ0jRgckQcKun+iNgj77jMzMzMsnwEsPz2Bu6WtBnwfN7BmDWT4cPLf2pr0qSzOeCAo8u+3GqIt30DIltVJbaTainX9uhtwwlgn0VE0btRR8TVsKJOYOZCkc46gWZmZmZ58SngyurqIhEzMzOz3PgIoJmZmVmTqbcEUBGRdww9UnCruM46gQXzZOsAjps65XIWLmpn6JCWKkZan7J1AFuGNmd7DexjHcChLY3bXjMefbzsyxwxYmPmzXu57MuthnFjd6j6Omt9H1aLdQCrvQ97dEb5t5NqKdf2mMe2UWn77n/AjIjYvSfzbr/99nHJJZf0eV177bVXj9dVLvV0BLDbU8CuA9h3rgPoOoDF7HvA8WVf5qRJZ3PGGReUfbnVkEdH91rfh7kOIBywb/m3k2op1/bY7BeB+FZwZmZmZk2o3hLAGjt4b2ZmZlZ/+vXr1+dHdyQdKOlJSU9LOrvI9GMkPZo+/iFpl+6W6SOAZlbS/Pnlv71TW1trRZZbHfUat1VS/X6fy7k91m8blEuljgBK6g9cBHwUmAdMlzQtImZlZnsW2Cci3pB0EEl3uPd3tdx6SgDXzNQABJgaEfXZkcjMzMwaRoX7AO4BPB0Rc9J1TQUOAzoTwIj4R2b+e4ER3S20nhJA1wE0MzOzmrSahaDXl5S9kuZ36YWtAMOBuZlp8+j66N4XgBu7W2E9JYBmZmZmNWk1jwC+1kUZmGILLlrDT9K+JAngh7pbYT0lgIWngM+PiP/JzlBQB5DW6W0sXNRO6/S2KoZZn7J1ANtam7O9ZvexDmBrW+O21xJml32Z7e0LaWtrLftyq2F2/z58SVZTre/DarEOYNX3YUvKv51US7m2xzy2jVpTwVPA84DNMsMjKNLpUtLOwGTgoIj4V3cLracE0HUAK8h1AF0HsJgXKf9N7tvaWtlxxwllX241bLpW9Tu61/o+zHUAgRfLv51US7m2xzy2jVpS4T6A04FtJI0C5gNHAkcXrH9z4FrguIjo0X8k9ZQAmpmZmdWk1ewDWFJELJV0KnAz0B+4JCLaJJ2cTr8Y+P+A9YBfp4no0u7uLOIE0MzMzGw1VbIQdETcANxQMO7izPMTgRN7s8x6SgAL+wDeFBGrFEM0MzMzq7Z6uxNI7gmgpGXATGAgsBS4DLgwIpYXzHoXcCBwAUkNwHurGqiZmZlZEZIqdgq4UnJPAMlc3CFpQ2AKMAw4r2MGSWsCyyKiXdJ44Jt5BGpmZmZWTL0dAaypdDUiFpCUcTlVaUtKup3kCOEYSTOBnUhugzIxv0jNzMzMVui4Ergvj1zijShaS7B6AUgLI2Jowbg3gO0j4pV0+EzgGeBfwMERUfQIYEEdwHFTp1zOwkXtDB3SUtH30AiydQBbhjZnew3sYx3AoS2N215LGFj2Zba3L6SlZWj3M9aggTnVAazlfVgt1gGs+j5sSfm3k2op1/aYx7ZRafvuf8CM7q6k7bDTTjvFtdde2+d1bbvttj1eV7nUwingYgrT4bHANcBE4OFSL3IdwL5zHUDXASzGdQBX5jqAq3IdQFwHENcBhPo7BVxzCaCkLYFlwAJJJwKnAlsDOwCbA69ImhgRx+QYppmZmVknJ4CrQdIGwMXAryI5Nz1Z0jRgckQcKun+iNgj3yjNzMzMVuargHuvo75fRxmYy4GfZqbvDdwtaTPg+eqHZ2ZmZlZanhdz9FXuCWBE9O9mlv8huQr4eGCppK9TvE6gmZmZWS6cAJZft3UCzczMzPJUb6eA6yraYnUCzczMzPJWb3UA6+EI4EoiYo6kfsCGwCvZaQV1AGmd3sbCRe20Tm/LIdL6kq0D2NbanO01u491AFvbGre9ljC77Mtsb19IW1tr2ZdbDbNzqgNYy/uwWqwDWPV92JLybyfVUq7tMY9to5a4D2D1FG1l1wHsO9cBdB3AYlwHcGWuA7gq1wHEdQBxHUCov1PAdZcAZusE5h2LmZmZGfgikIoqUifQzMzMLHdOAMuvuzqBZmZmZrmRVHengGsiWkkbS5oq6RlJsyTdIGlb6KwT+DhwMPDfwDzXADQzM7NaUm9XAeeeAKblXK4DWiNiq4gYDZwLbJSZbVREPAfsA9xV/SjNzMzMSqu3BLAWTgHvCyyJiIs7RkTEwwCSrgTGApukp4G3Af4m6VcRMTmHWM3MzMxW4T6AvTcGmFFsQkQcI+nTwGbANcCPI+JT1QzOzMzMrCv12AewFhLA7owF/hfYCXi4qxldCLrvXAjahaCLcSHolbkQ9KpcCBoXgsaFoMFHAPuiDfhk4UhJE4EfAKOAQ4ANgEWSPhIR+xZbkAtB950LQbsQdDEuBL0yF4JelQtB40LQuBA01F8CWAv/u/0dGCTppI4RksYDi4BxwGMRsRNJoji2VPJnZmZmloeOU8B9feQh9wQwLeh8BPDRtAxMG/Ad4EWS07+PSFoDGBgRb+cXqZmZmVlxvgq4DyLiReDTJSY/ACDp05KmAuOBxcBzwOkRUbTzxaOPPMqmw4dz9n9M4ujDD6hA1I3lgbfn5x2CWc3bdPjwqq+z1vdh3ncY5LNt1Jp6OwVcEwlgdzK1Ai+LiCPTcbuS1Aqs3963ZmZmVvd8FXDllKwVaGZmZpY3HwGsjJK1As3MzMzyVm8JoJJrMGqbpK+S3A7ua93M11kHcNiwYeO+e97/Y+PhI3h5/rxqhFnXdhi7M5DU0GoZ2pJzNPkY2Mc6gENbGre9ljCw7Mtsb19IS8vQsi+3Gh5/rPr/h9b6Pqxj31ErctmHLSn/dlIt5doe89g2Ku20r58xIyJ278m848aNi/vuu6/P6xo4cGCX65J0IPBzoD8wOSIuKJiudPpE4N/A5yLiwa7WWS8J4P7AeRGxd09fs0Z/xfpDkg7UF5x3RgWjawwdHbldB7B3XAew9+q5DuDu21f/P/xa34fV2kUgrgPYO+XaHvPYNirtpXfocQK4++67r1YCOGDAgJLrktSf5HqHjwLzgOnAURExKzPPROArJAng+4GfR8T7u1pnvfRYLForUNI+OcZkZmZmBlS0DMwewNMRMSci3gOmAocVzHMY8IdI3AusI2mTrhZaFwlgN7UCzczMzHJVwULQw4G5meF56bjezrOSujgF3BeSXgWeB9YHXss5nHri9uodt1fvuc16x+3VO26v3nF7lbZFRGzQkxkl3UTSln3VArRnhn+X3t4WSZ8CPhYRJ6bDxwF7RMRXMuv/G3B+RNydDt8GnBkRJTtn1stVwL3W8aFJeqCn5/DN7dVbbq/ec5v1jturd9xeveP2Ko+IOLCCi58HbJYZHsGqZ0B7Ms9K6uIUsJmZmVmTmg5sI2lUemvcI4FpBfNMAz6rxJ7AWxHxUlcLbdgjgGZmZmb1LiKWSjoVuJmkDMwlEdEm6eR0+sXADSRXAD9NUgbm890ttxkSwN/lHUCdcXv1jtur99xmveP26h23V++4vepARNxAkuRlx2XvjhbAl3uzzIa9CMTMzMzMinMfQDMzM7Mm07AJoKQDJT0p6WlJZ+cdT62RtJmk2yU9LqlN0mnp+HUl3SrpqfTv+/KOtZZI6i/pIUl/TYfdXl2QtI6kqyU9kX7XPuA2K03S19Lt8TFJf5TU4vZamaRLJC2Q9FhmXMk2knRO+jvwpKSP5RN1fkq014/TbfJRSddJWiczranbq5k0ZAKY3jblIuAgYDRwlKTR+UZVc5YC34iIHYA9gS+nbXQ2cFtEbAPclg7bCqcBj2eG3V5d+zlwU0RsD+xC0nZusyIkDQe+CuweEWNIOnsfidur0KVAYcmNom2U7tOOBHZMX/Pr9PehmVzKqu11KzAmInYmucXYOeD2ajYNmQDSs9umNLWIeKnjRtER8Q7JD/Nwkna6LJ3tMuDwXAKsQZJGAAcDkzOj3V4lSFob2Bv4PUBEvBcRb+I268oAYE1JA4DBJHW83F4ZEXEn8HrB6FJtdBgwNSIWR8SzJFdI7lGNOGtFsfaKiFsiYmk6eC9JzThwezWVRk0Ae31LlGYmaSQwFrgP2KijdlD6d8McQ6s1FwJnAssz49xepW0JvAr8d3rafLKkIbjNioqI+cAk4AXgJZI6Xrfg9uqJUm3k34LunQDcmD53ezWRRk0Ai91Z2Zc7FyFpKHANcHpEvJ13PLVK0iHAgq5uq2OrGADsBvwmIsYCi/Dpy5LSfmuHAaOATYEhko7NN6q659+CLkj6Fkl3oCs7RhWZze3VoBo1Aez1LVGakaSBJMnflRFxbTr6FUmbpNM3ARbkFV+N2Qs4VNJzJF0K9pN0BW6vrswD5kXEfenw1SQJodusuI8Az0bEqxGxBLgW+CBur54o1Ub+LShB0vHAIcAxsaIenNuriTRqAtiT26Y0NUki6Zv1eET8NDNpGnB8+vx44C/Vjq0WRcQ5ETEiIkaSfJ/+HhHH4vYqKSJeBuZK2i4dtT8wC7dZKS8Ae0oanG6f+5P0zXV7da9UG00DjpQ0SNIoYBvg/hziqymSDgTOAg6NiH9nJrm9mkjDFoKWNJGkz1bHbVO+n29EtUXSh4C7gJms6NN2Lkk/wKuAzUl+kD4VEYUdrpuapAnAGRFxiKT1cHuVJGlXkotm1gDmkNyeqB9us6Ik/QfwGZLTcg8BJwJDcXt1kvRHYAKwPvAKcB7wZ0q0UXqa8wSSNj09Im5cdamNq0R7nQMMAv6VznZvRJyczt/U7dVMGjYBNDMzM7PiGvUUsJmZmZmV4ATQzMzMrMk4ATQzMzNrMk4AzczMzJqME0AzMzOzJuME0MzMzKzJOAE0MzMzazJOAM3MzMyajBNAMzMzsybjBNDMzMysyTgBNDMzM2syTgDNzMzMmowTQDMzM7Mm4wTQzMzMrMk4ATQzMzNrMk4AzczMzJqME0AzMzOzJuME0MzMzKzJOAE0MzMzazJOAM3MzMyajBNAMzMzsybjBNDMzMysyTgBNDMzM2syTgDNzMzMmowTQDMzM7MmMyDvACpl2LC1Y8P13pd3GHVj0XuLGbjmoLzDyNXSRYsZPLC526DQosVLGThocN5h1Iyl7y1i8JoD8w6jpnjfAYsXLWXQwObeThph21D/gaw9bJ3O4RkzZrwWERvkF1FlNWwCuOF67+OpG3+Vdxh145TLpzDxe0fnHUau7jhlCpMmNncbFDplyh1MPHpS3mHUjDuuP4VJ35iYdxg1xfsOmHLKHRw9sbm3k0bYNq5/YB4fP+aUzmFJz+cYTsX5FLCZmZlZk2nYI4C15p4HZ3HB767hHw89waJ32xm+0XpM3HscPznrBNZYo74Pm6+OJ+97kmt+eA2P3/M4i95YxFrrrcXmYzbnoFMO4oOf+GDe4VVERDDqpJN4fsECAGZddBE7bLZZzlHVnhNPHMmCBav+A37hhQ+x5Za7Vj+gGuF9SaIZ9x1ZzbJ9+PteOU4Aq2Dq3+7k2DN/yrJly9ll+1GM32kbnpv/Chf/z03852nHNO2X+O4/3c2koyaxfNlyRmw/gvGHjOfdd95l9n2zuXPKnQ27E7+zra0z+QO4/Pbb+cFnP5tjRLVt/PhD2HjjrTqHhw1r2C453fK+JNGs+45iGnn78Pe9spwAVti/313Ml7/7W5YtW86xh07gsgtOp1+/5Mz7My+8xOCW5uw8vfjfi/nNyb9h+bLlfPjID/P1y79O/wH9AVi2bBnzn5yfc4SVc0VrKwBjt9ySh+bMYcqdd/L9445DEhPOPZc7HnuM0z7+ce6bPZtHnn2Ww97/fn5w3HGc8Mtfcv/s2Xx49GimnHEG6661Vr5vpEo++tEvsOeeh+cdRu68L0k0876jmEbdPvx9rzwngBV2z4OzeP2tdwD49smf7vwCA2y1+SZ5hZW7WffM4p3Xk3Y56ryjOnfgAP3792fz0ZvnFVpFLV6yhKvvuQeAn5xwAv/nggt4fsEC7mxrY58xYzrnu+iGGzjywx9m1ty5TL3rLm588EEmjBnDBsOGcfNDD/HTv/yF7x17bF5vo6puvfX3zJzZ2jl80kkX5hVKrrwvSTTrvqOURt0+/H2vPF8EUmELXn+r8/kWwzfMMZLa8taCFe2y4cikXS47+zIO1aGdj0b01+nTeXPRIjYcNox9xozhkPHjgRVHBTscv99+XP71r3PEnnsCsO2mm/Lnb32Lbxx+OAAPzZlTzbBzNX36X7n++p93PpqV9yWJZt13lNKo24e/75XnBLDCNlx3WOfz5+cv6GLO5jJswxXt8trc1wAY/aHR7HP0PnmFVBUdid7H99iDfv36dSZ4f7rnHhYvWdI53w4jRgCwzpAhAGw3fDgAa625JgCL2turFXLuzj33OqZNi85Hs/K+JNGs+45SGnX78Pe98pwAVtgHx+7A+4YNBeB7F1/F8uXLO6c9P38BS5YszSu0XI3eazRrrZv0YfvT+X8iIhh/yHiO+OYROUdWOW8sXMgNDzwAwO9vvRUdeiifOP98AN5atIjr77+/c97+/VbeNAuHrfl4X5Joxn1HM/L3vfLcB7DChgxu4Zff/iKfPetCrpjWyszZz7PHTtvw4oLXufUfD/PKPX9gnYFD8w6z6gYNHsSXLvoSPz3mp9z237cx58E5bPv+bXn1hVfzDq1irrr7bt5bupS1Bw9m35126hw/a+5cnnrxRS6//fYco7Na531John3Hc3I3/fKcwJYBcd8fAKbbbw+P5x8Lf98+Akef2YuIzZen5M+dUBTX8m095F7s/6I9bnmh9fwxD+eYO6suQzbcBhjPzaWvT65V97hld2V6enfL33sY/zo85/vHH/HY48x4dxzufHBBztP9ZoV431Jotn2Hc3K3/fKcgJYJXuPH8Pe48d0P2OTGf2h0Yz+0Oi8w6iKOy+4oOj4fcaMIaZNKzrtwpNO4sKTTuoc/tz++/O5/fevSHy1ZvLk5/IOoSZ5X5Jopn1HMc2yffj7XjnuWGRmZmbWZJwAmpmZmTUZRTTOZeNZkt4Bnsw7jjqyPvBa3kHUEbdX77nNesft1Ttur95xe3Vvi4honHvrFWjkPoBPRsTueQdRLyQ94PbqObdX77nNesft1Ttur95xe5lPAZuZmZk1GSeAZmZmZk2mkRPA3+UdQJ1xe/WO26v33Ga94/bqHbdX77i9mlzDXgRiZmZmZsU18hFAMzMzMyvCCaCZmZlZk2m4BFDSgZKelPS0pLPzjqcWSdpM0u2SHpfUJum0dPy6km6V9FT69315x1pLJPWX9JCkv6bDbq8SJK0j6WpJT6Tfsw+4vUqT9LV0W3xM0h8ltbi9VibpEkkLJD2WGVeyjSSdk/4OPCnpY/lEnZ8S7fXjdJt8VNJ1ktbJTGvq9mpGDZUASuoPXAQcBIwGjpLUvDeLLG0p8I2I2AHYE/hy2k5nA7dFxDbAbemwrXAa8Hhm2O1V2s+BmyJie2AXknZzexUhaTjwVWD3iBgD9AeOxO1V6FLgwIJxRdso3Z8dCeyYvubX6e9DM7mUVdvrVmBMROwMzAbOAbdXs2qoBBDYA3g6IuZExHvAVOCwnGOqORHxUkQ8mD5/h+THeThJW12WznYZcHguAdYgSSOAg4HJmdFuryIkrQ3sDfweICLei4g3cXt1ZQCwpqQBwGDgRdxeK4mIO4HXC0aXaqPDgKkRsTgingWeJvl9aBrF2isibomIpengvcCI9HnTt1czarQEcDgwNzM8Lx1nJUgaCYwF7gM2ioiXIEkSgQ1zDK3WXAicCSzPjHN7Fbcl8Crw3+kp88mShuD2Kioi5gOTgBeAl4C3IuIW3F49UaqN/FvQvROAG9Pnbq8m1GgJoIqMc52bEiQNBa4BTo+It/OOp1ZJOgRYEBEz8o6lTgwAdgN+ExFjgUX49GVJab+1w4BRwKbAEEnH5htV3fNvQRckfYukK9CVHaOKzOb2anCNlgDOAzbLDI8gOZViBSQNJEn+royIa9PRr0jaJJ2+CbAgr/hqzF7AoZKeI+lWsJ+kK3B7lTIPmBcR96XDV5MkhG6v4j4CPBsRr0bEEuBa4IO4vXqiVBv5t6AESccDhwDHxIpCwG6vJtRoCeB0YBtJoyStQdKpdVrOMdUcSSLpn/V4RPw0M2kacHz6/HjgL9WOrRZFxDkRMSIiRpJ8p/4eEcfi9ioqIl4G5kraLh21PzALt1cpLwB7Shqcbpv7k/TLdXt1r1QbTQOOlDRI0ihgG+D+HOKrKZIOBM4CDo2If2cmub2aUMPdCUTSRJL+Wv2BSyLi+/lGVHskfQi4C5jJij5t55L0A7wK2JzkR+lTEVHY6bqpSZoAnBERh0haD7dXUZJ2JblgZg1gDvB5kn843V5FSPoP4DMkp+UeAk4EhuL26iTpj8AEYH3gFeA84M+UaKP0NOcJJG16ekTcuOpSG1eJ9joHGAT8K53t3og4OZ2/qdurGTVcAmhmZmZmXWu0U8BmZmZm1g0ngGZmZmZNxgmgmZmZWZNxAmhmZmbWZJwAmpmZmTUZJ4BmVjWS1pP0cPp4WdL89PlCSb+u0DpPl/TZ9Pn26foekrRVJdbXi7imStomzxjMrHm5DIyZ5ULSd4CFETGpgusYADwI7BYRSyWdDawZEecVzCeS/eHyYsupUGz7AMdGxEnVWqeZWQcfATSz3EmaIOmv6fPvSLpM0i2SnpP0CUk/kjRT0k3pbQyRNE7SHZJmSLq545ZgBfYDHkyTv4nA6cCJkm6XNFLS4+mRxweBzST9RtIDktrS4swd8T0n6QeS/plO3y1d5zOSTs7M901J0yU92vF6SUMk/U3SI5Iek/SZdPa7gI+kSaqZWVU5ATSzWrQVcDBwGHAFcHtE7AS8CxycJoG/BD4ZEeOAS4Bid/3ZC5gBEBE3ABcDP4uIfdPp2wF/iIixEfE88K2I2B3YGdhH0s6ZZc2NiA+QJG6XAp8E9gS+CyDpAJJbaO0B7AqMk7Q3cCDwYkTsEhFjgJvSeJYDTwO7rE5DmZn1hf/zNLNadGNELJE0k+S2jjel42cCI0kStzHArcnZW/oDLxVZziYk99Ut5fmIuDcz/GlJXyTZN24CjAYeTad13Fd8JjA0It4B3pHULmkd4ID08VA631CShPAuYJKkHwJ/jYi7MutbAGxKmqSamVWLE0Azq0WLITlKJmlJrOisvJxkvyWgLT0i15V3gZYupi/qeCJpFHAGMD4i3pB0acFrF2diWJwZn43p/Ij4beFKJI0DJgLnS7olIr6bTmpJYzQzqyqfAjazevQksIGkDwBIGihpxyLzPQ5s3cNlrk2SEL4laSPgoF7GdDNwgqShaUzDJW0oaVPg3xFxBTAJ2C3zmm2Btl6ux8xstfkIoJnVnYh4T9IngV9IGkayL7uQVZOpG4HLe7jMRyQ9lC5jDnBPL2O6RdIOwD/T09ILgWNJEtAfS1oOLAFOAUiTzHcjotipazOzinIZGDNraJKuA86MiKfyjiVL0teAtyPi93nHYmbNx6eAzazRnU1yQUeteRO4LO8gzKw5+QigmZmZWZPxEUAzMzOzJuME0MzMzKzJOAE0MzMzazJOAM3MzMyajBNAMzMzsybjBNDMzMysyTgBNDMzM2syTgDNzMzMmowTQDMzM7MmMyDvACpl2LC1Y8P13tc53N6+mJaWQUWHu5rW2+FyLquacS56bzED11wxvLh9MYNaejbcm3nzXHZ38y5dtJjBAzPttXgxLYOKD3c1bXWHa2lZixYvZeCgwUl7LW5n0KCWzmnlHK6XZS19bxGD1xy4or1qdHuu5rJ6s++o131Dt8OLljJo4OAVw3X43V7d4ey20Sjf7aeffeG1iNiABtWwCeCG672Pp278Vefw9349hW//36OLDnc1rbfD5VxWNeM85fIpTPzeiuEp35vC0d/u2XBv5s1z2d3Ne8cpU5g0MdNeU6bw7aOLD3c1bXWHa2lZp0y5g4lHT0raa8r3OProb3dOK+dwvSzrjutPYdI3Jq5orxrdnqu5rN7sO+p139Dt8Cl3cPTESSuG6/C7vbrD2W2jUb7b2v7Q52lgPgVsZmZm1mScAJqZmZk1GSeAZmZmZk3GCaCZmZlZk3ECaGZmZtZknACamZmZNRkngGZmZmZNxgmgmZmZWZNxAmhmZmbWZJwAmpmZmTUZJ4BmZmZmTcYJoJmZmVmTUUTkHUNFSHoVeB5YH3gt53Dqidurd9xevec26x23V++4vXrH7VXaFhGxQd5BVErDJoAdJD0QEbvnHUe9cHv1jtur99xmveP26h23V++4vZqXTwGbmZmZNRkngGZmZmZNphkSwN/lHUCdcXv1jtur99xmveP26h23V++4vZpUw/cBNDMzM7OVNcMRQDMzMzPLcAJoZmZm1mQaNgGUdKCkJyU9LensvOOpNZI2k3S7pMcltUk6LR2/rqRbJT2V/n1f3rHWEkn9JT0k6a/psNurC5LWkXS1pCfS79oH3GalSfpauj0+JumPklrcXiuTdImkBZIey4wr2UaSzkl/B56U9LF8os5Pifb6cbpNPirpOknrZKY1dXs1k4ZMACX1By4CDgJGA0dJGp1vVDVnKfCNiNgB2BP4ctpGZwO3RcQ2wG3psK1wGvB4Ztjt1bWfAzdFxPbALiRt5zYrQtJw4KvA7hExBugPHInbq9ClwIEF44q2UbpPOxLYMX3Nr9Pfh2ZyKau2163AmIjYGZgNnANur2bTkAkgsAfwdETMiYj3gKnAYTnHVFMi4qWIeDB9/g7JD/Nwkna6LJ3tMuDwXAKsQZJGAAcDkzOj3V4lSFob2Bv4PUBEvBcRb+I268oAYE1JA4DBwIu4vVYSEXcCrxeMLtVGhwFTI2JxRDwLPE3y+9A0irVXRNwSEUvTwXuBEenzpm+vZtKoCeBwYG5meF46zoqQNBIYC9wHbBQRL0GSJAIb5hharbkQOBNYnhnn9iptS+BV4L/T0+aTJQ3BbVZURMwHJgEvAC8Bb0XELbi9eqJUG/m3oHsnADemz91eTaRRE0AVGed6N0VIGgpcA5weEW/nHU+tknQIsCAiZuQdSx0ZAOwG/CYixgKL8OnLktJ+a4cBo4BNgSGSjs03qrrn34IuSPoWSXegKztGFZnN7dWgGjUBnAdslhkeQXIqxTIkDSRJ/q6MiGvT0a9I2iSdvgmwIK/4asxewKGSniPpUrCfpCtwe3VlHjAvIu5Lh68mSQjdZsV9BHg2Il6NiCXAtcAHcXv1RKk28m9BCZKOBw4BjokVBYHdXk2kURPA6cA2kkZJWoOkU+u0nGOqKZJE0jfr8Yj4aWbSNOD49PnxwF+qHVstiohzImJERIwk+T79PSKOxe1VUkS8DMyVtF06an9gFm6zUl4A9pQ0ON0+9yfpm+v26l6pNpoGHClpkKRRwDbA/TnEV1MkHQicBRwaEf/OTHJ7NZGGvROIpIkkfbb6A5dExPfzjai2SPoQcBcwkxV92s4l6Qd4FbA5yQ/SpyKisMN1U5M0ATgjIg6RtB5ur5Ik7Upy0cwawBzg8yT/eLrNipD0H8BnSE7LPQScCAzF7dVJ0h+BCcD6wCvAecCfKdFG6WnOE0ja9PSIuHHVpTauEu11DjAI+Fc6270RcXI6f1O3VzNp2ATQzMzMzIpr1FPAZmZmZlaCE0AzMzOzJuME0MzMzKzJOAE0MzMzazJOAM3MzMyajBNAMzMzsybjBNDMqkbSepIeTh8vS5qfPl8o6dcVWufpkj6bPt8+Xd9DkraqxPp6EddUSdvkGYOZNS/XATSzXEj6DrAwIiZVcB0DgAeB3SJiqaSzgTUj4ryC+USyP1xebDkVim0f4NiIOKla6zQz6+AjgGaWO0kTJP01ff4dSZdJukXSc5I+IelHkmZKuim9hzWSxkm6Q9IMSTd33Au2wH7Ag2nyNxE4HThR0u2SRkp6PD3y+CCwmaTfSHpAUlt6V46O+J6T9ANJ/0yn75au8xlJJ2fm+6ak6ZIe7Xi9pCGS/ibpEUmPSfpMOvtdwEfSJNXMrKqcAJpZLdoKOBg4DLgCuD0idgLeBQ5Ok8BfAp+MiHHAJUCx2z3uBcwAiIgbgIuBn0XEvun07YA/RMTYiHge+FZE7A7sDOwjaefMsuZGxAdIErdLgU8CewLfBZB0AMm9U/cAdgXGSdobOBB4MSJ2iYgxwE1pPMuBp4FdVqehzMz6wv95mlktujEilkiaSXI/75vS8TOBkSSJ2xjg1uTsLf2Bl4osZxPg8S7W83xE3JsZ/rSkL5LsGzcBRgOPptOmZWIYGhHvAO9Iape0DnBA+ngonW8oSUJ4FzBJ0g+Bv0bEXZn1LQA2JU1SzcyqxQmgmdWixZAcJZO0JFZ0Vl5Ost8S0JYekevKu0BLF9MXdTyRNAo4AxgfEW9IurTgtYszMSzOjM/GdH5E/LZwJZLGAROB8yXdEhHfTSe1pDGamVWVTwGbWT16EthA0gcAJA2UtGOR+R4Htu7hMtcmSQjfkrQRcFAvY7oZOEHS0DSm4ZI2lLQp8O+IuAKYBOyWec22QFsv12Nmttp8BNDM6k5EvCfpk8AvJA0j2ZddyKrJ1I3A5T1c5iOSHkqXMQe4p5cx3SJpB+Cf6WnphcCxJAnojyUtB5YApwCkSea7EVHs1LWZWUW5DIyZNTRJ1wFnRsRTeceSJelrwNsR8fu8YzGz5uNTwGbW6M4muaCj1rwJXJZ3EGbWnHwE0MzMzKzJ+AigmZmZWZNxAmhmZmbWZJwAmpmZmTUZJ4BmZmZmTcYJoJmZmVmTcQJoZmZm1mScAJqZmZk1GSeAZmZmZk2mYe8FPGzY2rHheu/LO4y6sei9xQxcc1DeYeRu6aLFDB7odshatHgpAwcNzjuMmrH0vUUMXnNg3mHUDO87EosXLWXQQG8n0DjbyNPPvvBaRGyQdxyV0rAJ4IbrvY+nbvxV3mHUjVMun8LE7x2ddxi5u+OUKUya6HbIOmXKHUw8elLeYdSMO64/hUnfmJh3GDXD+47ElFPu4OiJ3k6gcbYRbX/o83nHUEk+BWxmZmbWZBr2CGCtuefBWVzwu2v4x0NPsOjddoZvtB4T9x7HT846gTXWqP9D5avjyfue5JofXsPj9zzOojcWsdZ6a7H5mM056JSD+OAnPph3eBUREYw66SSeX7AAgFkXXcQOm22Wc1S158QTR7Jgwar/hF944UNsueWu1Q+oBnhfskIz7jsKNds24u9/+TgBrIKpf7uTY8/8KcuWLWeX7UcxfqdteG7+K1z8Pzfxn6cd09Rf2rv/dDeTjprE8mXLGbH9CMYfMp5333mX2ffN5s4pdzbsTvzOtrbO5A/g8ttv5wef/WyOEdW28eMPYeONt+ocHjasYbvldMn7khWadd9RSjNsI/7+l5cTwAr797uL+fJ3f8uyZcs59tAJXHbB6fTrl5x5f+aFlxjc0rydpxf/ezG/Ofk3LF+2nA8f+WG+fvnX6T+gPwDLli1j/pPzc46wcq5obQVg7JZb8tCcOUy5806+f9xxSGLCuedyx2OPcdrHP859s2fzyLPPctj7388PjjuOE375S+6fPZsPjx7NlDPOYN211sr3jVTJRz/6Bfbc8/C8w8iV9yUrNPO+o5RG30b8/S8/J4AVds+Ds3j9rXcA+PbJn+78wgJstfkmeYVVE2bdM4t3Xk/a5qjzjurcgQP079+fzUdvnldoFbV4yRKuvuceAH5ywgn8nwsu4PkFC7izrY19xozpnO+iG27gyA9/mFlz5zL1rru48cEHmTBmDBsMG8bNDz3ET//yF7537LF5vY2quvXW3zNzZmvn8EknXZhXKLnxvmSFZt13dKXRtxF//8vPF4FU2ILX3+p8vsXwDXOMpPa8tWBF22w4Mmmby86+jEN1aOejEf11+nTeXLSIDYcNY58xYzhk/HhgxVHBDsfvtx+Xf/3rHLHnngBsu+mm/Plb3+Ibhx8OwENz5lQz7FxNn/5Xrr/+552PZuR9yQrNuu/oSqNvI/7+l58TwArbcN1hnc+fn7+gizmbz7ANV7TNa3NfA2D0h0azz9H75BVSVXQkeh/fYw/69evXmeD96Z57WLxkSed8O4wYAcA6Q4YAsN3w4QCsteaaACxqb69WyLk799zrmDYtOh/NyPuSFZp139GVRt9G/P0vPyeAFfbBsTvwvmFDAfjexVexfPnyzmnPz1/AkiVL8wotd6P3Gs1a6yZ92P50/p+ICMYfMp4jvnlEzpFVzhsLF3LDAw8A8Ptbb0WHHsonzj8fgLcWLeL6++/vnLd/v5U3z8Jhay7el6zQjPuOZufvf/m5D2CFDRncwi+//UU+e9aFXDGtlZmzn2ePnbbhxQWvc+s/HuaVe/7AOgOH5h1mLgYNHsSXLvoSPz3mp9z237cx58E5bPv+bXn1hVfzDq1irrr7bt5bupS1Bw9m35126hw/a+5cnnrxRS6//fYco7Na5n3JCs2472h2/v6XnxPAKjjm4xPYbOP1+eHka/nnw0/w+DNzGbHx+pz0qQOa/sqlvY/cm/VHrM81P7yGJ/7xBHNnzWXYhsMY+7Gx7PXJvfIOr+yuTE//fuljH+NHn/985/g7HnuMCeeey40PPth5qteskPclKzTbvsP8/S83J4BVsvf4Mew9fkz3Mzah0R8azegPjc47jKq484ILio7fZ8wYYtq0otMuPOkkLjzppM7hz+2/P5/bf/+KxFdrJk9+Lu8Qao73JSs0076jlGbbRvz9Lx93KjIzMzNrMk4AzczMzJqMIhrvcnEASe8AT+YdRwNYH3gt7yAahNuyPNyO5eO2LA+3Y/nUUltuERGNd0+9VCP3AXwyInbPO4h6J+kBt2N5uC3Lw+1YPm7L8nA7lo/bsnp8CtjMzMysyTgBNDMzM2syjZwA/i7vABqE27F83Jbl4XYsH7dlebgdy8dtWSUNexGImZmZmRXXyEcAzczMzKwIJ4BmZmZmTabhEkBJB0p6UtLTks7OO556JWkzSbdLelxSm6TT8o6pnknqL+khSX/NO5Z6JmkdSVdLeiL9bn4g75jqkaSvpdv1Y5L+KKkl75jqhaRLJC2Q9Fhm3LqSbpX0VPr3fXnGWA9KtOOP0237UUnXSVonxxAbXkMlgJL6AxcBBwGjgaMkNfeNIvtuKfCNiNgB2BP4sttytZwGPJ53EA3g58BNEbE9sAtu016TNBz4KrB7RIwB+gNH5htVXbkUOLBg3NnAbRGxDXBbOmxdu5RV2/FWYExE7AzMBs6pdlDNpKESQGAP4OmImBMR7wFTgcNyjqkuRcRLEfFg+vwdkh/a4flGVZ8kjQAOBibnHUs9k7Q2sDfwe4CIeC8i3sw1qPo1AFhT0gBgMPBizvHUjYi4E3i9YPRhwGXp88uAw6sZUz0q1o4RcUtELE0H7wVGVD2wJtJoCeBwYG5meB5OWlabpJHAWOC+nEOpVxcCZwLLc46j3m0JvAr8d3o6fbKkIXkHVW8iYj4wCXgBeAl4KyJuyTequrdRRLwEyT/PwIY5x9MITgBuzDuIRtZoCaCKjHOdm9UgaShwDXB6RLyddzz1RtIhwIKImJF3LA1gALAb8JuIGAsswqfaei3tn3YYMArYFBgi6dh8ozJbQdK3SLohXZl3LI2s0RLAecBmmeER+NRGn0kaSJL8XRkR1+YdT53aCzhU0nMkXRL2k3RFviHVrXnAvIjoOBJ9NUlCaL3zEeDZiHg1IpYA1wIfzDmmeveKpE0A0r8Lco6nbkk6HjgEOCZcqLiiGi0BnA5sI2mUpDVIOjZPyzmmuiRJJH2tHo+In+YdT72KiHMiYkREjCT5Pv49Iny0pQ8i4mVgrqTt0lH7A7NyDKlevQDsKWlwup3vjy+mWV3TgOPT58cDf8kxlrol6UDgLODQiPh33vE0uoZKANPOo6cCN5Ps0K6KiLZ8o6pbewHHkRyxejh9TMw7KGt6XwGulPQosCvwg3zDqT/pEdSrgQeBmSS/A779Vg9J+iPwT2A7SfMkfQG4APiopKeAj6bD1oUS7fgrYC3g1vQ35+Jcg2xwvhWcmZmZWZNpqCOAZmZmZtY9J4BmZmZmTcYJoJmZmVmTcQJoZmZm1mScAJqZmZk1GSeAZlZRktbLlBJ6WdL89PlCSb+u0DpPl/TZSiy7LyQ9J2n9LqZPlbRNNWMys+bmMjBmVjWSvgMsjIhJFVzHAJIad7tlbiyfq/ROMLtHxGslpu8DHBsRJ1U1MDNrWj4CaGa5kDRB0l/T59+RdJmkW9KjZZ+Q9CNJMyXdlN6WEEnjJN0haYakmztuv1VgP+DBjuRP0lclzZL0qKSp6bghki6RNF3SQ5IOS8f3lzQpXe+jkr6Sjt8/nW9m+rpB6fjnJP2HpAfTadun49dL38tDkn5Lep/ydL1/k/SIpMckfSaN+S7gI2nyamZWcU4AzaxWbAUcDBwGXAHcHhE7Ae8CB6dJ4C+BT0bEOOAS4PtFlrMXMCMzfDYwNiJ2Bk5Ox32L5LZ844F9gR9LGgJ8ERiVmf9KSS3ApcBn0ngGAKdklv9aROwG/AY4Ix13HnB3RIwluU3Y5un4A4EXI2KXiBgD3AQQEcuBp4FdetNgZmZ95QTQzGrFjRGxhOT2ZP1Jk6N0eCSwHTCG9DZRwLeBEUWWswnwamb4UZJE7lig45TwAcDZ6XJagRaSJO0jwMUdRw8j4vV0vc9GxOz0tZcBe2eWf236d0YaJ+n0K9Jl/A14I/NePiLph5I+HBFvZZazANi0aMuYmZWZTzeYWa1YDMnRMElLYkUH5eUk+yoBbRHxgW6W8y5JQtfhYJKE7FDg/0naMV3W/4mIJ7MvlCSgsGO0ehI3sIyV96mrdLCOiNmSxgETgfMl3RIR300nt6Sxm5lVnI8Amlm9eBLYQNIHACQNTJO5Qo8DW6fz9AM2i4jbgTOBdYChwM3AV9KED0lj09feApzc0RdP0rrAE8BISVun8xwH3NFNrHcCx6TLOAh4X/p8U+DfEXEFMAnYLfOabYG27pvBzGz1OQE0s7oQEe8BnwR+KOkR4GHgg0VmvZEVp2j7A1dImgk8BPwsIt4E/hMYCDwq6bF0GGAy8EI6/hHg6IhoBz4P/CldznLg4m7C/Q9gb0kPkpxufiEdvxNwf3rq+VvA9wAkbQS8GxEv9aw1zMxWj8vAmFnDkXQdcGZEPJV3LD0h6WvA2xHx+7xjMbPm4COAZtaIzia5GKRevElycYmZWVX4CKCZmZlZk/ERQDMzM7Mm4wTQzMzMrMk4ATQzMzNrMk4AzczMzJqME0AzMzOzJvP/A4MSPTzH0mTnAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "def convert_chord_label(ann):\n", " \"\"\"Replace for segment-based annotation in each chord label the string ':min' by 'm'\n", " and convert flat chords into sharp chords using enharmonic equivalence\n", "\n", " Notebook: C5/C5S2_ChordRec_Eval.ipynb\n", "\n", " Args:\n", " ann (list): Segment-based annotation with chord labels\n", "\n", " Returns:\n", " ann_conv (list): Converted segment-based annotation with chord labels\n", " \"\"\"\n", " ann_conv = copy.deepcopy(ann)\n", "\n", " for k in range(len(ann)):\n", " ann_conv[k][2] = ann_conv[k][2].replace(':min', 'm')\n", " ann_conv[k][2] = ann_conv[k][2].replace('Db', 'C#')\n", " ann_conv[k][2] = ann_conv[k][2].replace('Eb', 'D#')\n", " ann_conv[k][2] = ann_conv[k][2].replace('Gb', 'F#')\n", " ann_conv[k][2] = ann_conv[k][2].replace('Ab', 'G#')\n", " ann_conv[k][2] = ann_conv[k][2].replace('Bb', 'A#')\n", " return ann_conv\n", "\n", "def convert_sequence_ann(seq, Fs=1):\n", " \"\"\"Convert label sequence into segment-based annotation\n", "\n", " Notebook: C5/C5S2_ChordRec_Eval.ipynb\n", "\n", " Args:\n", " seq (list): Label sequence\n", " Fs (scalar): Feature rate (Default value = 1)\n", "\n", " Returns:\n", " ann (list): Segment-based annotation for label sequence\n", " \"\"\"\n", " ann = []\n", " for m in range(len(seq)):\n", " ann.append([(m-0.5) / Fs, (m+0.5) / Fs, seq[m]])\n", " return ann\n", "\n", "def convert_chord_ann_matrix(fn_ann, chord_labels, Fs=1, N=None, last=False):\n", " \"\"\"Convert segment-based chord annotation into various formats\n", "\n", " Notebook: C5/C5S2_ChordRec_Eval.ipynb\n", "\n", " Args:\n", " fn_ann (str): Filename of segment-based chord annotation\n", " chord_labels (list): List of chord labels\n", " Fs (scalar): Feature rate (Default value = 1)\n", " N (int): Number of frames to be generated (by cutting or extending).\n", " Only enforced for ann_matrix, ann_frame, ann_seg_frame (Default value = None)\n", " last (bool): If 'True' uses for extension last chord label, otherwise uses nonchord label 'N'\n", " (Default value = False)\n", "\n", " Returns:\n", " ann_matrix (np.ndarray): Encoding of label sequence in form of a binary time-chord representation\n", " ann_frame (list): Label sequence (specified on the frame level)\n", " ann_seg_frame (list): Encoding of label sequence as segment-based annotation (given in indices)\n", " ann_seg_ind (list): Segment-based annotation with segments (given in indices)\n", " ann_seg_sec (list): Segment-based annotation with segments (given in seconds)\n", " \"\"\"\n", " ann_seg_sec, _ = libfmp.c4.read_structure_annotation(fn_ann)\n", " ann_seg_sec = convert_chord_label(ann_seg_sec)\n", " ann_seg_ind, _ = libfmp.c4.read_structure_annotation(fn_ann, Fs=Fs, index=True)\n", " ann_seg_ind = convert_chord_label(ann_seg_ind)\n", "\n", " ann_frame = libfmp.c4.convert_ann_to_seq_label(ann_seg_ind)\n", " if N is None:\n", " N = len(ann_frame)\n", " if N < len(ann_frame):\n", " ann_frame = ann_frame[:N]\n", " if N > len(ann_frame):\n", " if last:\n", " pad_symbol = ann_frame[-1]\n", " else:\n", " pad_symbol = 'N'\n", " ann_frame = ann_frame + [pad_symbol] * (N-len(ann_frame))\n", " ann_seg_frame = convert_sequence_ann(ann_frame, Fs=1)\n", "\n", " num_chords = len(chord_labels)\n", " ann_matrix = np.zeros((num_chords, N))\n", " for n in range(N):\n", " label = ann_frame[n]\n", " # Generates a one-entry only for labels that are contained in \"chord_labels\"\n", " if label in chord_labels:\n", " label_index = chord_labels.index(label)\n", " ann_matrix[label_index, n] = 1\n", " return ann_matrix, ann_frame, ann_seg_frame, ann_seg_ind, ann_seg_sec\n", "\n", "# Annotations\n", "fn_ann = os.path.join('..', 'data', 'C5', 'FMP_C5_F01_Beatles_LetItBe-mm1-4_Original_Chords_simplified.csv')\n", "chord_labels = libfmp.c5.get_chord_labels(ext_minor='m', nonchord=False)\n", "N_X = X.shape[1]\n", "ann_matrix, ann_frame, ann_seg_frame, ann_seg_ind, ann_seg_sec = convert_chord_ann_matrix(fn_ann, chord_labels, \n", " Fs=Fs_X, N=N_X, last=True)\n", "\n", "color_ann = {'C': [1, 0.5, 0, 1], 'G': [0, 1, 0, 1], \n", " 'Am': [1, 0, 0, 1], 'F': [0, 0, 1, 1], 'N': [1, 1, 1, 1]}\n", "\n", "# Plot\n", "cmap = libfmp.b.compressed_gray_cmap(alpha=1, reverse=False)\n", "fig, ax = plt.subplots(4, 2, gridspec_kw={'width_ratios': [1, 0.03], \n", " 'height_ratios': [4, 0.3, 0.3, 0.3]}, \n", " figsize=(9, 6))\n", "\n", "libfmp.b.plot_matrix(ann_matrix, ax=[ax[0, 0], ax[0, 1]], Fs=1, \n", " title='Time–chord representation of reference annotations (N=%d)' % ann_matrix.shape[1],\n", " ylabel='Chord', xlabel='')\n", "ax[0, 0].set_yticks(np.arange( len(chord_labels) ))\n", "ax[0, 0].set_yticklabels(chord_labels)\n", "libfmp.b.plot_segments_overlay(ann_seg_frame, ax=ax[0, 0], \n", " print_labels=False, colors=color_ann, alpha=0.1)\n", "ax[0, 0].grid()\n", "libfmp.b.plot_segments(ann_seg_ind, ax=ax[1, 0], time_label='Time (frames)', time_max=N_X,\n", " colors=color_ann, alpha=0.3)\n", "ax[1, 1].axis('off')\n", "libfmp.b.plot_segments(ann_seg_frame, ax=ax[2, 0], time_label='Time (frames)', \n", " colors=color_ann, alpha=0.3, print_labels=False)\n", "ax[2, 1].axis('off')\n", "libfmp.b.plot_segments(ann_seg_sec, ax=ax[3, 0], time_max=x_dur, time_label='Time (seconds)',\n", " colors=color_ann, alpha=0.3)\n", "ax[3, 1].axis('off')\n", "plt.tight_layout()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We now implement the evaluation measures and apply them to our Beatles example. Based on a **time–chord grid** (corresponding to the set $\\mathcal{I}$ of items), the visualization shows the TP-, FP-, and FN-items in a color-coded form." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2024-02-15T08:56:03.352314Z", "iopub.status.busy": "2024-02-15T08:56:03.352125Z", "iopub.status.idle": "2024-02-15T08:56:03.804504Z", "shell.execute_reply": "2024-02-15T08:56:03.803976Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ ":79: MatplotlibDeprecationWarning: The 'cmap' parameter to Colorbar has no effect because it is overridden by the mappable; it is deprecated since 3.3 and will be removed two minor releases later.\n", " cbar = plt.colorbar(im, cax=ax[1], cmap=eval_cmap, norm=eval_norm, boundaries=eval_bounds, ticks=eval_ticks)\n", ":79: MatplotlibDeprecationWarning: The 'norm' parameter to Colorbar has no effect because it is overridden by the mappable; it is deprecated since 3.3 and will be removed two minor releases later.\n", " cbar = plt.colorbar(im, cax=ax[1], cmap=eval_cmap, norm=eval_norm, boundaries=eval_bounds, ticks=eval_ticks)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAE8CAYAAABQLQCwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABGGklEQVR4nO3deZxcVZn/8c+XsAUiibJDgmGTxbCEJAgiEEARwu6CbIIiODIyghoQcOYH44yAGpbRUZFBBUWNCKIEBEGhISAoCQRC2AwhSAAJa0iHEELy/P44t5ObSlV33e6urqqu7/v16lfq7uc+uffWU/ece64iAjMzMzNrHavUuwBmZmZm1recAJqZmZm1GCeAZmZmZi3GCaCZmZlZi3ECaGZmZtZinACamZmZtRgngA1IUpukk2q07nMkXVGLdfcFSWMlzSm4zBqSHpW0Ua3KZWZmfUfS3yS9v97laGZOAHtA0mxJCyW15/7+t97l6lAuWYqI8yOiJsllPWT/Bx/uYrbPA3dFxD+zZa6UFJJ2za1nK0mFO8WUdKSkv0h6U1JbybT1JN0j6RVJr0u6V9IeuelrSLpE0vOSXpP0A0mrVbHNY3PH20JJS/PHYDZP/th8UdJPJQ3qrX3Lpu8saWo2faqknXPTRkj6o6SXi8Y1O25X2CdJk7Jp50lanI17PSvf7gXXv4+k6dnyr0i6XtKmuenvkfTrrOwvS/qFpHWqXHe+fB1/Z2bT2iS9JWlYbv4PS5pdpPzZcldLekHSG5KeLP3BmP3fPSZpfvbj5/AC6w5JC7KyPyfpYkkDCpbvPVlcF0h6RtIxncx7WUm8Fkman01bQ9KPs3XMl/SgpANzyx5bsuybWflH9dW+5sr5k+z/45+SvtLJvOeUlLnjHF4vmz5B0t+z/X1c0vG5ZfcsWbY924ePV1nOct9ZmxTc14rnfZl5Z5Rs653cufw+Sb+X9JKkV5WuF9vklq14XGQmAN8oUnYrERH+6+YfMBv4cA3W2wac1AvrGQvMqVNsVq3RelfYp2r+D4BHgD1yw1cCrwC35sZtlU6HwuX5MHAk8P+AtpJpawLbkH5oCTgceLUjNsC5wGTgPcD6wH3Af/bG/3E+LsCmWQwu7MV9Wx14BvgysAbwpWx49Wz6NsDngMOKxrWz4xY4D7g6+7wa8G3gBUAF1r8hsEn2eY1sHTfkpv8AuBVYBxgM/Am4uMp1LytfmWlt2XF3eUmMZ3fjuHs/sEb2eVvgn8Co3P/328CB2XF3EPAmsEGV6w5gq5J1f6Fg+X4F/BoYBHwImAe8v8plrwR+kn1eO4vp8Ow8OhiYDwyvsOxngKeqPR5K9nUr4Dng5G78f1xAOpffDWyXxeyAAsfM7bnh/8zivgrwAeA14IOdnCvzgbWr3NZsevCdRRfnfRfLCpgFHJ8N70q6RrwnO5f/C3i8muMiG16TdD3duLv70+p/vgNYA9mvwdcljciNWz/75bWBpHdLujH75fNa9nlohXWdJ+nq3PDw7BffqtnwZ3O/9GdJ+pds/NrAzcAm+V96ZdZ3aPYr7XWlOxTb5abNljRe0sOS5indFVmzQjk/o3S36xJJrwLnZXGYIOkfSnehLpM0MJt/vWy/X89+/U2WtEo2LSRtlVv3lZL+u8w2fw5sBkxS7k5LyTybAVsCfy2ZdBWwo6S9y+1PtSLiTxFxDfB8mWlvRcQTEbGUdPFbQvqCeE82yyHAdyPi1Yh4CfgucGJPylOhjM+RjoURXc1bslzFfSN98awKXBoRiyLiu6R93Ddb9omI+DEwoydl76J8i0n/jxsB6xZY7sWIyO/TEtKXf4fNgd9FxBsRMQ+4npRw9YbvAkfnj+/uiIgZEbGoYzD72zIbHgq8HhE3R3ITsCA3vch2HiclNlUfO9m15+PAf0REe0TcDdwAfLrAsldl218QEedFxOyIWBoRNwJPA5Xu8J0A/CyyDKGIiJgJ3APsXHRZ4HjgvyLitYh4DPg/UjLaKUkixeWqXDnOjYjHs/39Kyn+le5ynwBcGxELulHm7hhLJ+d9F/YCNgCuA4iIv0XEj7Pr32LgEmAbSSudy6XHRbb8W8BUYP+e7VLrcgJYA9mF+bfA0bnRRwJ3RsRcUtx/CryXlMAsBLpbdTyX9Kt4HeCzwCWSdskuCAcCz0fEoOxvhS9ySe8j/VI/nXQH6g+kZGr1knIfQPpS3JHOL2ofIP3C2wD4JvAt4H2kC+pWpDsT/y+b96vAnGy7GwLnkL7EqhYRnwb+ARyS7d+3y8y2AzArIt4pGf8mcH5WzpUoVce+XuHv4SLlzOZ/i/QleEV2DEC6cCo/KzBU0uAi669i+8OAccCD2XBv7Nv7gYdLvmgfpvcSpS5JWoN0PM6JiJclfaiT/Xpd0odyy24m6XXSuTeedBeww/eBg7Mfau8mffHc3EvFfo6UHJxXYZ9u7KT8N5bM+wNJbwKPk+6C/iGbNAV4LPtxN0Cp+ncR6f+nEEnbA3uy/NippnzvA5ZExJO5VT1EdcfGx4GXgLsqlGfDbP0r/bCQ9F5SkvGzKnevdPltSfs6Mzeuy3MlO0Y2Ie1jh2r3d0/S9e+6CmUaCIyh/P6uBXyCXFLUE12cO2dls/XkvO8qWd0L+GdEvFJmWqXj4jFgpyq2bWWsWu8C9AO/k5RPLs6IiP8DfglcDnw9G38M8COA7ABfdsJL+iZwR3c2nv2673CnpFtJF5UHqlj8U8BNEXFbVo4JwGnAB0nVVZDuUD2fTZ9E57+On4+I72XzLgFOBnaMiFezceeT4nI2sBjYGHhv9st7chXl7Y4hpCqScn4EjFdqU/T3/ISI+FfgX3ujABGxY3bn9AhSFUqHm4HTJN0BDCBVpwCsRaoy66mOY3MecBMp4e2tfRvEymWcB7yrh+vtsEmWoHX4fHY3EuBISQeTqjkfIVWtk91pGlLNyiPiH8AQSe8hHaeP5yY/QPp/6vgi+jOpWrhaHeXrsH3Jj68LgJkq04A9Ig4uHVdJRPyrpH8j3R0aS0ryiIglkn5GOtfWJMXpkwXvEj2QncOvAleQfrBWW76eHBsV7+AptY/9BXBVdmey1PHA5Ih4uort5D2g1O5vLWAiuf/rKs+Vjra1+X0usr/XRkR7hemXkZLJP5aZ9nHgZeDOKraTl//OaouIwwEiYkgVy3br/zaXrB5aYfpQ0g+vSm0nKx0X80nfI9YNvgPYc4dHxJDc3/9l428HBkr6QPbLdGdSVRKS1pL0I6WGzW+QftUMUfcaHx8o6T6latTXSXd61qty8U1I7TcAyKoqnyXdqevwz9znN1l+sSvn2dzn9UkX1KkdvyKBW7LxAN8h/dK+Vanq+ixq4zUqXJyyO7X/lf2p3Dy9JasO/hVwlqSOX6zfJN1ZmQb8BfgdKTGeW24d3dBxbL43Iv41Ihb20noB2kl3nfPWoXKyXdTzJefVNblp12TjNoiIfSNianc3kv04uQr4vbJmFcBvgCdJx806pDZlV5dfQ1nXlJR9hTvvWXX//9ILDdgjYkmW+A4FToH0YAnpjuZYUiK7N3CFOmmsX8YuEfHuiNgyIv49uzZUq1vHRnanem/K3MFTah7yc1Iye2qFVRxP9+6G7UK6rn2KVIuxdsHlO5K3/D5Xs78DgU9SocySvkOqej+yQpV2d6u7899Zhxdctrvn/cdIPyZWSlYlrU9qc/uD7BpZOr3icUE6R1/vstRWlhPAGskumNeQqoGPAW6MiI6T5KukRvIfiIh1SLe+oXwSsoCUSHVY1pVJVgV2HelpqA2zX3B/yK2nqwvD86Rq6I71CRhGqqbqjvz2XiZVr70/d7EZHBGDACJifkR8NSK2ILWF+4qk/bJl36TCPnexzXIeBrbIfbmX+impof8R+ZFa+Qm0/F9P2rWtBmwBEBELI+LUiNg0i8MrwNSIWNKD9Xepl/ZtBqkNZf6Y3ZEatvnriso/IZn/27PCoquSmi10fLHtBPwoUvuzdtJdmHG9XNzvAPtQ0pZN0s2dlL+zauhVWd7Gb2fSU+9TsnZk95PawHb1tHyXqizfk8CqkrbOLboTXR8bxwN/iYhZJdsU8GNSVenHs/ZipeXag/SD9tru7Fck1wD3sryZSlXnSkS8RqqCz1dFVrO/HUlRW5n9+U9SE579I+KNMtOHkRL8blV3l9PFuXNONlt3z/uyyapS9fmtpIewyjbHocJxkdmOFaverQAngLX1S9KvymOzzx3eRUqOXs+qoM7tZB3TgL2U2iwNJlWfdlid9CTWS8A7WVVmvkHsi8C6qtym7BrgIEn7ZdUrXyVVI/2lyv2rKEuA/4/UJnEDAEmbSvpo9vlgpa5XBLxBaojfkfhMA45Rar90AOnXXyUvkiVUFcoxh1S9u2uF6e+Q2mN9rWT8F3JtJ0v/llXdZWVck/QFvIqkNbNYImk3pXZpq0saKOlrpC+xv+bisYmS3YD/IHcsKD38cmUn+94tvbFvpC+tJcCXlB726bgrc3u2rLJlV8+G18x+sNRs3yJicif7NSgiJmfb/pikbSStkt19uBh4MLsbCHA/cFL2fzaQ1I3Qsi8ZpYejPtPDsr4OXAScWTL+wE7Kf2C2/Q0kHSVpUPZ/9FHSD83bc+XfU9kdP0kjSc1COtqsfUbd6Hqm2vJFqmr+LfANSWtnydlhpDt4nTme9KRnqR+SvugP6eQu9gnAdbkf2UC39vVC4PPK+gyt9lwhJWL/rtRudFtSs4Jy+1Ja5nJJ0dmkmwYfifLt4SA9OPKXiHiqZNmx6kZ3VgBdnDvnZ7O10cl5X45S9e4+lNzpVOpa6Y/APRHRWQ1Q2eMiu56MAm6rbg+tlBPAnut4ArXj7/qOCZGe4FpA+mWa//V+KTCQdJfsPlLVaFmR2uf9mnTxngrcmJs2n9Ru7BpSVecxpAcNOqY/TnrIY5ZSNewK/T1FxBPAccD3srIcQrrIvl0wBpV8jVTNe59SVfefSHc+AbbOhttJv7p/EBFt2bTTsrK8Tkqef9fJNi4gXXhflzS+wjw/ovMnEH9F+gXfHZ8mJfM/JH3JLiQlvpCS8++T7uw9R7qLdFAsrxLckpRsLyBdHM+KiFtz6x5GeiqxXiruW3aMHE66OL9Oenr58Nyx895s/o47AwuBJ3Lrrue+bUo65+YD04GlrHgH+ERStyNzSP9vW5A9/KT0gNS6pPO2p/6H5T96ighSde8c0nk/ATg9In4PEBF3kn7UXKvUb9p1wPm5Y6svYv+vpGvcXNL5dUpEzIBlD+C0Kz2hTzZud1I19m/yK1FqPvMvpLua/8xdZ4/NzbMm6WG1clWphfY1IqaTqinPqHaZzLmkpgLPZMt/JyKWXddVcgdaqd/JfSl/B+980sOBfy9zB65DperuYaTraU10dd4r9ctYejfw08C9pckq6ZwbA3y25Du0y+MicyipDWO5XgqsCoriT8ubNZXsl+KDwH4R0d1Er09licZDpIdoVqryambNvG9KTxJ/MSKO7nLmBqX0oNhpkbor6ddaaV8BlN7y9JuIKPfQSL8i6a/A5yLikXqXpVk5ATQzMzNrMa4CNjMzM2sxTgDNzMzMWowTQDMzM7MW02/fBLLeeuvF8OHDWbBgAWuvXbRfz9bleBXnmBXnmBXjeBXnmBXjeFU2e/ZsXn755apeFtDdbnhy/hgRB/RwHVWpawKo9Kqh6aSOi5cAp0ZEj/ugAxg+fDhTpkyhra2NsWPH9sYqW4LjVZxjVpxjVozjVZxjVozjVdno0aP7cnPVvsmrx+p9B3BhROwMkHVmegGdd/prZmZmZj3USG0A1yF1atrRm/mdkq6R9KSkC7MOJv8mabqkLbtYl5mZmZlVUNd+AHNVwGsCGwP7RsRUSWNJb3/YjvSuxFnAFRFxrqTTgM0j4vQy6/s86bVNbLjhhqMmTpxIe3s7gwYN6oO96R8cr+Ics+Ics2Icr+Ics2Icr8rGjx/PlClT+qoN4NSI6JM650aqAt4d+JmkEdm0+zve2iDpKdILoyEljPuUW1lEXA5cDjB69OgYO3as2zUU5HgV55gV55gV43gV55gV43i1noapAo6Ie0mNH9fPRi3KTV6aG15K/RNXMzMzs6bVMAmgpG2BAcAr9S6LmZmZWX9W7ztpAyVNyz4LOCEilkhVVbWbmZmZWTfUPAGUdATwW2C7iHi8ZPI1wNnA4cA/I+ImgIhoA9o6ZoqIsbnPK0wzMzMzs2L6ogr4aOBu4Kgy0zaPiNmkvv8m90FZzMzMzFpeTRNASYOAPYDPkUsAJf1C0qPANlkV8P7ATZJOyqbPlnS+pHslTZG0i6Q/SnpK0hdqWWYzMzOz/q7WVcCHA7dExJOSXpW0S0Q8EBHHSjoSGAZcB3wnIj5ZsuyzEbG7pEuAK0mJ5JrADOCyGpfbzMzMrN+qdQJ4NHBp9nliNvxANjwS+BOwAzCtzLI3ZP9OBwZFxHxgvqS3JA2JiNdLFyjpCJq2tjba29tpa2vrlZ1pBY5XcY5ZcY5ZMY5XcY5ZMY5X66lZAihpXWBfYETWM/YAICS1Ad8ENgcOJvX7t0DShyMi38Fzvt+/0j4By5bbHUH3nONVnGNWnGNWjONVnGNWjOPVemrZBvATwM8i4r0RMTwihgFPA28Ao4BHImIHUpXuyJLkz8zMzMxqpJZVwEcDF5aMuw44BlgIPCRpdWC1iHijhuUwq96kSSsM6tBDu1xkwoQJ7LNPY/1+iRtu6Hqmal1+ee+tq8Nhh8FFF3U9X8n/RyGHHNJ76zIz62dqlgDm++7LjftubnBK9u9epX0FRsTw3DJXkh4C6RgejpmZmZl1W6O8Cq6zvgLNzMzMrBfVPQEs11egpLGS7pR0jaQnJV0o6VhJf5M0XdKWdS20mZmZWROrewJIrq9A4FVJu2TjdwJOI3UT82ngfRGxK3AF8G/1KKiZmZlZf6CIqG8BpJuASyPiNklfInUOfRPw9Yj4SDbPXcDZEXGPpH2BL0XE4WXWle8HcNTEiRNpb29n0KBBfbU7Ta/l4zVv3gqDU2fO7HKRoUOHMmfOnFqVqFtGbbVV763spZd6b12Z9iFDGPT6613P2JP9KP2/682Y9LGWPy+7wTErxvGqbPz48UyZMkXVzJt1e9cTUyNidIV1rwv8ORvcCFgCdFygdwIeIj3b8RhwQkS82dmGat0RdKcq9RUI/IGV+/7L9wvofgBrpOXjVfKk6D7jx3e5yIQJExhfxXx9qVefAv7973tvXZm2ww5jbDXr7cmTu6VPGTfxU8Atf152g2NWjOPV+CLiFWBnAEnnAe0RMSEbbo+Ijmm/AL4AXNzZ+updBVypr8AP1blcZmZmZs1oMtBllUdd7wBSua/AU4Cn+r441vJK+o6rpolEW1tbVfM1rdL+9HpDW1vt78g18R0/M7PukLQqcCBwS1fz1jUB7KSvwO9Wmi8i2oC22pbMzMzMrM+tJ2lKbvjyrHlbVwZKmpZ9ngz8uKsFapoAStoQuATYDXgNeBv4dkRcn5unDTiAdCdwYkTcV8symZmZmTWolys9BNKFhR1tAKtVszaAkgT8DrgrIraIiFGkfv6G5uYZCCyJiLeAMcDUWpXHzMzMzJJaPgSyL/B2RFzWMSIinomI7wFIugOYTnoCeDqpv7/7JY3LprdL+pakqZL+JGlXSW2SZknq+gWtZmZmZlZWzfoBzPr02zwivtzJPGeSHvZ4BTgoIs7ITQtgXETcLOl6YG3gIGB74KpytzrdD2DPOV7FOWbFOWbFOF7FOWbFOF6VNUo/gL2tzx4CkfR9Uvcub0fEmGz0SNJTv+OAaSWLvM3yp1imA4siYnF2t3B4uW24H8Cec7yKc8yKc8yKcbyKc8yKcbxaTy0TwBnAxzsGIuKLktYDpkg6CTiV1E/NdsBmwIuSxkXEsdkii2P57cllHUFHxNLsMWczMzMz64ZatgG8HVhT0im5cWsBRMQVwP7A7VlV7syI2C6X/JmZmZlZjdQsAczu3h0O7C3paUl/A64CvpbNshdwt6RhwDO1KoeZmZmZraimVakR8QKp65dy067N9RM4StJUcv0ERsSg3LznlSzrlqpmZmZm3VS3dwFX00+gmZmZmfW+ej5MUbafQOB7kj5Dqj4eAIwALgJWBz5NehhkXES82tcFNjMzM+sPatYPYJcb7qSfwCwB/HdSNzFrAjOBr0XEZZIuAZ6JiEvLLOd+AHvI8SrOMSvOMSvG8SrOMSvG8arM/QDWWL6fQOD7wB0RMR+YL2keMCmbdTqwY7l1uB/AnnO8inPMinPMinG8inPMinG8Wk/d2gCS+gncpWMgIr4I7Aesn41alJt3aW54KQ2UuJqZmZk1m3omgBX7CTQzMzOz2qlbAlhFP4FmZmZmVgM1r0qVtITUbq/D4RExG1I/gZI2Ir0O7kJgYkTcl813ZccCETE89/nK/DQzMzMzK6Yv2tItzF73thJJA4ElEfGWpDHAGX1QHjMzM7OWVs+OoO8g3RkcIWk6sANwv6Rx2fR2Sd+SNFXSnyTtKqlN0ixJh9ar3GZmZmbNrub9AJZUAT8dEUfkpp0JPAW8AhwUEWfkpgWpw+ebJV0PrA0cBGwPXFXurqL7Aew5x6s4x6w4x6wYx6s4x6wYx6sy9wPYfRWrgEkdPV8HjAOmlUx7G7gl+zwdWBQRi7O7hcPLrcz9APac41WcY1acY1aM41WcY1aM49V66tKfnqSTgFOBrUgPgGwGvChpXEQcm822OJbfnlzWD2BELJXkfgDNzMzMuqkubQAj4gpgf+D27O7gzIjYLpf8mZmZmVmN1PNO2l7A3ZKGAc/UsRxmZmZmPTZqq62Ycskl3V5ehxzSi6XpXM0TwIgo26o0Iq7t+CzpY5Km5SYfnl8uIs6rZp1mZmZm1rVGaUvX2YMiZmZmZtaLGiUBXImkz5BeFTcAGAFcBKwOfJr0QMi4iHi1XuUzMzMza1aNkgAOzFUB5/sKHEHqKmZNYCbwtYgYKekS4Hjg0vxKSvoBpK2tjfb2dtra2mq/B/2E41WcY1acY1aM41WcY1aM49V6GiUBrFQFfEdEzAfmS5oHTMrGTwd2LJ3Z/QD2nONVnGNWnGNWjONVnGNWjOPVeur2KrgqLcp9XpobXkrjJK9mZmZmTaXRE0AzMzMz62W+i2ZmZtbsetJ/3KRJXc9j/U7dE0BJS4DpuYdAJkbEhRFxJXBlx3wRMTz3eYVpZmZmZla9uieAuA9AMzMzsz7VsG0AJc2WdL6keyVNkbSLpD9KekrSF+pdPjMzM7Nm1Qh3AAeWvAbugoj4dfb52YjYPev370pgD1KfgDOAy0pX5H4Ae87xKs4xK84xK8bxKq7lYnbYYd1f1t+VLakREsDOqoBvyP6dDgzK9Qn4lqQhEfF6fmb3A9hzjldxjllxjlkxjldxLReziy7q/rKTJrVevKxxq4Az+X7/SvsEbITk1czMzKzpNHoCaGZmZma9rBHuopW2AbwlIs6qV2HMzMyajvvys4JqlgB29O8HrAa8A1wFXBoRS0tmnQwcAFxI6gPwPui837/8NDMzMzMrppZVwAsjYueIeD/wEWAccG5+BkkDgSUR8RYwBphaw/KYmZmZGX3UBjAi5pK6ZzlVkgAk3UG6QzhC0nRgB+B+SeOy6e2SviVpqqQ/SdpVUpukWZIO7Ytym5mZmfVHiojarFhqj4hBJeNeA7aNiBez4TOBp4BXgIMi4ozcvAGMi4ibJV0PrA0cBGwPXFWu65iSfgBHTZw4kfb2dgYNGlQ6q1XgeBXnmBXnmBXjeBXnmBXjeFU2fvx4pkyZomrmHb311jHlkku6vS0dcsjUiBjd7RUU0NcPgZQGcCRwHal6eFrJtLeBW7LP04FFEbE4u1s4vNzK3Q9gzzlexTlmxTlmxThexTlmxThezSH3fEWHw0k50R3AoRExKZvvRmBCRLRVWlefJYCStgCWAHMlnQScCmwFbAdsBrwoaVxEHJstsjiW355c1g9gRCyV1AhPL5uZmZn1pZVeniFpODAH+DpQ9ePgfdIGUNL6pFe3/W8kVwD7A7dnOzIzIrbLJX9mZmZmVp2HgHmSPlLtArW8k9bRv19HNzA/By7OTd8LuFvSMOCZGpbDzJrVIYd0f9nSftF6c11m/ckhh6R3CffkdXIdfK701HqSpuSGL8+at3XI9538dEQckZv239nfbdVsqGYJYEQM6GL6tVld9jHAapIeItdXYP4Bkog4r2RZt1Q1MzOz/ublLh4CWakKuENETJaEpD2r2VC929It2xFJGwC/BAZT0l+gmZmZmXXpm6S2gO90NWPDvAu4tK9ASZ+R9DtJkyQ9LelUSV+R9KCk+yS9p95lNjMzM2sUEXEr8G5gp67mrfcdwBVExCxJqwAbZKNGkLqKWROYCXwtIkZKugQ4Hrg0v3xJP4C0tbXR3t5OW1tbH+1B83O8inPMiqs6Zocd1v2NlK6/N9fVx3yMFeeYFXDYYbQPGUJbT86RDo55I/gm8PuuZmqoBDCT7yvwjoiYD8yXNI/ljzdPB3YsXdD9APac41WcY1Zc1THrSaP00sbovbmuPuZjrDjHrICLLqLtsMMY+/suc4au+SGQmir3DETW119bbvgGVu53eSUNUwUMK/YVmI1alJu8NDe8lMZMXs3MzMwaXsMkgKV9Bda7PGZmZmb9Vb3vonXVV6CZtbLerE5y1ZRZeZMmpbZ7PkdaSs3vAEraSNJESU9JelTSHyS9D5b1FfgYcBDwU2BORCzNpl0ZEad2rCcihkfEy+WmmZmZmVn1apoAShJwPdAWEVtGxPbAOcCGudk2j4jZwN7A5FqWx8zMzMxqfwdwH2BxRFzWMSIipmW9Vf9C0qPANlk18P7ATZJOApA0W9L5ku6VNEXSLpL+mN1J/EKNy21mZmbWb9W6DeAIYGq5CRFxrKQjgWHAdcB3IuKTJbM9GxG7Z/3+XQnsQeoTcAbpgZEVuB/AnnO8inPMinPMinG8inPMinG8Wk+nCaCkSUDFJ3Ij4tAebn8k8CdgB2Bamek3ZP9OBwbl+gR8S9KQiHi9pDzuB7CHHK/iHLPiHLNiHK/iHLNiHK/W09UdwAnZvx8DNgKuzoaPBmZXsf4ZwCdKR0oaB5wPbA4cDKwPLJD04YjYJzdrvt+/0j4B6/0Es5mZmVlT6rQNYETcGRF3AiMj4lMRMSn7Owb4UBXrvx1YQ9LJHSMkjQEWAKOARyJiB1KiOLIk+TMzMzOzGqj2IZD1s7d0ACBpc9Jdu05lHTofAXwke3hjBnAe8Dyp+vchSasDq0XEG0ULb2ZmZmbFVVuNejrQJmlWNjyc7GGLrkTE88CRFSZPkbQR8Lykp0jVvLOB0yNieG4dV5IeAukYHo6ZmZmZdUuXCaCkVYDBwNbAttnoxyNiUeWlqpPrJ/CqiDgqG7czqZ/AJ3u6fjMzMzNbWZdVwNmbOU6NiEUR8VD21+PkL1O2n0BggKQ7JV0j6UlJF0o6VtLfJE2XtGUvbd/MzMys5VRbBXybpPHAr0kPcAAQEa/2cPsV+wkEdgK2A14FZgFXRMSukk4D/o1ULb0C9wPYc45XcY5ZcY5ZMY5XcY5ZMY5X66k2ATwx+/eLuXEBbFFm3t5yf0S8AJC1D7w1Gz+ddOdwJe4HsOccr+Ics+Ics2Icr+Ics2Icr9ZTVQIYEZvXaPtl+wnMlPb7l+8T0H0AmpmZmXVTVd3ASFpN0pckXZv9nSpptV7YfqV+AvfuhXWbmZmZWRnV9gP4Q1LHzT/I/kZl43qki34CzczMzKwGqq1KHRMRO+WGb5f0UG8UoJN+Av8v93lP4Iqs25glwKm9sW0zMzOzXvPSS3D55fUuRVWqvQO4JN/1SvZWkCW1KVJZCyNi5ywJPRu4oA+3bWZmZtavVHsH8AzgjuxNIALeC3y2ZqXq3DrAa3XatpmZmVnTq/Yp4D9L2hrYhpQA9sqbQAoYKGkasCawMbBvH27bzMzMrF9Reg6jihmlD5LeAbwsaYyIn9WmWCttuz0iBmWfdweuAEZESeFLOoIeNXHiRNrb2xk0aFBfFLNfcLyKc8yKc8yKcbyKc8yKcbwqGz9+PFOmTFE1844eMiSm7LVXt7elSZOmRsTobq+ggKruAEr6ObAlMI3lbf8C6JMEMC8i7pW0HrA+MLdkmjuC7iHHqzjHrDjHrBjHqzjHrBjHq/VU2wZwNLB96R23epC0LTAAeKXeZTEzMzNrRtUmgI8AGwEv1LAsneloAwipDeIJEdGXTyGbmZmZ9RudJoCSJpGqet8FPCrpb+Re0RYRh/ZWQSQdAfwW2C4iHi+ZfA2p+5fDgX9GxE29tV0zMzOzVtPVHcAbgA2BySXj9wae6+WyHA3cDRxFehtI3uYRMVvS3rgTaDMzM7Me6aoj6MOAGyLizvwf8AfS3bheIWkQsAfwOVIC2DH+F5IeBbbJqoD3B26SdFJvbdvMzMys1XR1B3B4RDxcOjIipkga3ovlOBy4JSKelPSqpF0i4oGIOFbSkcAw4DrgOxHxyV7crpmZmVnL6SoBXLOTaQN7sRxHA5dmnydmww9kwyOBPwE7kLqhqaikH0Da2tpob2+nra2tF4vavzlexTlmxTlmxThexTlmxTheraerBPB+SSdHxP/lR0r6HDC1NwogaV3Smz1GSApSFy8hqQ34JrA5cDCp378Fkj4cEfuUW5f7Aew5x6s4x6w4x6wYx6s4x6wYx6v1dJUAng5cL+lYlid8o4HVgSN6qQyfAH4WEf/SMULSncAbwCjgrojYQ9KfgSMi4o1e2q6ZmZlZS+o0AYyIF4EPStoHGJGNvikibu/FMhwNXFgy7jrgGGAh8JCk1YHVnPyZmZmZ9VxVHUFHxB3AHbUoQESMLTPuu7nBKdm/3X+5npmZmZkt01U3MA1D0hGSInsVnJmZmZl1U9MkgKzYUbSZmZmZdVNTJICVOoo2MzMzs+KqagPYAA6nTEfRpTO5H8Cec7yKc8yKc8yKcbyKc8yKcbxaT7MkgJ11FL2M+wHsOcerOMesOMesGMerOMesGMerOUhaAkzPjTocGA78HphFeoHHxIj4z67W1fAJYCcdRZ8ZEVHf0pmZmZn1mYURsXN+RPZq3skRcbCktYFpkm6MiE5f2NEMbQA7Oop+b0QMj4hhwNPAh+pcLjMzM7OGERELSC/u2LKreZshATwauL5kXEdH0WZmZmb9xXqSpuT+Pl8yfaCkadlfaW7UUWu6GzCjqw3VvQpY0obAJaQCvwa8DXw7Iq6H1FG0pLbs3cAXkuq2v1tpfWZmZmZN6uWIGN3J9JWqgDN7SnoQWApcGBGNnQBKEvA74KqIOCYb917g0Nw8A4ElEfGWpDHAGfUoq5mZmVmDmhwRBxdZoN5VwPsCb0fEZR0jIuKZiPgegKQ7SE+7jJA0HdgBuF/SuLqU1szMzKwfqHcV8Psp051Lh4jYR9KZwFPAK8BBEVHxDqD7Aew5x6s4x6w4x6wYx6s4x6wYx6v11DsBXIGk75Oe7n07IsZko0eSHvoYB0zrbHn3A9hzjldxjllxjlkxjldxjlkxjldziIhBZca1AW1F11XvBHAG8PGOgYj4oqT1gCmSTgJOBbYCtgM2A16UNC4ijq1Lac3MzMz6gXq3AbwdWFPSKblxawFExBXA/sDt2RMvMyNiOyd/ZmZmZj1T1zuAERGSDgcuydr6vQQsAL6WzbIXcLekYcAz9SllP3bIISsM6sYbmTBhAvvss0+dCtT34oYbVhxREhMzy3RxbujGG/uoINXpi2uZrx/WzOpdBUxEvAAcVWHatbCsr8DFkmZRpq9AMzMzM6tevauAu5TrK/CuiNgiIkaREsahdS2YmZmZWZOq+x3AKpTtKxD4Xv2KZGZmZta8FBH1LkOnJH0J2DwivlzFvPl+AEdNnDiR9vZ2Bg1a6alpA5g5c4XBqfPmMXToUObMmVOnAvW9UVttteKIwYMLr8PHWHGOWTENEa+S60WpqfPm9VFBqtMX17LeuH40ioY4xhrU+PHjmTJliqqZd/SQITFlr726vS1NmjS1i1fB9ZpmuAO4ggp9BQLuB7Cwiy5aYXCf7CGQ8ePH16lAfW+lRtzdOFZ8jBXnmBXTEPEquV6U2qcBHwKp9bWsN64fjaIhjjHrUw3fBpDUV+AuHQMR8UVgP2D9upXIzMzMrIk1QwJYsa9AMzMzMyuu4auAq+gr0Lpr0qQVBoNUDdDo7ULNrA5KrhelGu2q4WuZWecaJgGUtASYnht1eETMhtRXoKSNSK+EuxCYGBH39X0pzczMzJpfwySAwMLslW8rkTQQWBIRb0kaA5zRpyUzMzMz60cavg2gpDtIdwZHSJoO7ADcL2lcfUtmZmZm1pwaph/AkirgpyPiiNy0M4GngFeAgyKi7B1A9wPYc45XcY5ZcY5ZMY5XcY5ZMY5XZe4HsPYqVgEDI4HrgHHAtEorcD+APed4FeeYFeeYFeN4FeeYFeN4tZ5GSgBXIukk4FRgK9IDIJsBL0oaFxHH1rVwZmZmZk2qodsARsQVwP7A7dndwZkRsZ2TPzMzM7Pua+g7gJm9gLslDQOeqXdhzPq9Qw5Zcfjzn+/9bSxd2mW/cg2tNEbWmkqOA9XxdXgrvZauqN46J31uNI2GSQAjomzr04i4FpY/JCJpWjZpWT+BZmZmZnW31VbQk2RcVT1r0isaJgGsQmcPiZiZmZlZlRq6DaCZmZmZ9b6G6QewK531E5ibx/0A9pDjVVy/i9nMmSsOr79+r2+iHWjqiA0e3Keb63fHWB/ok5iVnCtT582r7fY6MWqrrXq0fK+dk318bvSFQv0Ajh4dU6ZM6fa2JLVkP4Bd6bIK2P0A9pzjVVy/i9lFF604XIOHQNqWLmXsKk1cAdHH/9/97hjrA30Ss5JzZZ8mfgik185JH6dNo4mvwGZmZmbWHU4AzczMzFpMM1UBm1lf6Iv++draXFVkza/kXGmOFvUV+JxsOc2UAA7M9QEIMDEiLqxXYczMzMyaVTMlgO4H0MzMzKwXuA2gmZmZWYtp1n4AAS6IiF+XzON+AHvI8SrOMSvOMSvG8SrOMSvG8arM/QDWn/sB7AOOV3GOWXGOWTGOV3GOWTGOV+txFbCZmZlZi3ECaGZmZtZimqkKuLQbmFsi4qx6FcbMzMysWdU9Acw93LEa8A5wFXBpRCwtmXUycABwIakPwPv6tKBmZmZm/UQjVAEvjIidI+L9wEeAccC5+RkkDQSWRMRbwBhgat8X08zMzKx/aIQEcJmImEvqxuVUSQKQdAfpDuEISdOBHYD7JY2rX0nNzMzMmlfd+wGU1B4Rg0rGvQZsGxEvZsNnAk8BrwAHRcQZFdblfgB7yPEqzjErzjErxvEqzjErxvGqzP0A9q3SQI8EriNVD0+rtJD7Aew5x6s4x6w4x6wYx6s4x6wYx6vxSVoX+HM2uBGwBHgpG94JuDgivprNOx4YFBHnVVpfwyWAkrYg7dRcSScBpwJbAdsBmwEvShoXEcfWsZhmZmZmfSYiXgF2BpB0HtAeEROy4beAj0m6ICJermZ9DdUGUNL6wGXA/0ZyBbA/cHv2FpCZEbGdkz8zMzOzZd4h1YB+udoFGuEOYEf/fh3dwPwcuDg3fS/gbknDgGf6vnhmZmZmfWI9SflGhJdnzduq8X3gYUnfrmbmuieAETGgi1l+TXoK+ATgHUlfoXw/gWZmZmbN7OXuPgQSEW9I+hnwJWBhV/PXPQGswsKs+hdJGwC/BAZT0legmZmZWYu7FHgA+GlXMzZUG8CulOsn0MzMzMwgIl4FrgE+19W8zXAHcAURMUvSKsAGwIv5aSX9ANLW1kZ7ezttbW19X9Am5XgV55gV55gV43gV55gV43j1KxeRelDpVNMlgJmyd//cD2DPOV7FOWbFOWbFOF7FOWbFOF7NpbR/v/wLNbKXaKzV1TqaqgoYVuwnsN5lMTMzM2tGTZUAlvYTWO/ymJmZmTWjZqgC7qqfQDMzMzMroCHuAEraSNJESU9JelTSHyS9D5b1E/gYcBDpseY57gPQzMzMrPvqngBm3blcD7RFxJYRsT1wDrBhbrbNI2I2sDcwue9LaWZmZtZ/1D0BBPYBFkfEZR0jImJaREyW9AtJjwLbZNXA+wM3STqpTmU1MzMza3qN0AZwBDC13ISIOFbSkcAw4DrgOxHxyUorcj+APed4FeeYFeeYFeN4FeeYFeN4tZ5GSAC7MhL4E7ADMK2zGd0PYM85XsU5ZsU5ZsU4XsU5ZsU4Xq2nERLAGcAnSkdKGgecD2wOHAysDyyQ9OGI2Kdvi2hmZmbWfzRCG8DbgTUkndwxQtIYYAEwCngkInYgJYojnfyZmZmZ9UzdE8CsQ+cjgI9k3cDMAM4DnidV/z4kaXVgtYh4o34lNTMzM+sfGqEKmIh4HjiywuQpAJKOlDQRGAMsAmYDp0fEk+UWmjp1KpKYMGEC++zjm4blxA03rDjikEPqU5B66mqfJ03qm3L0tp78XzbrPtdSSTx14419uvlGuI6tdL0o1YrXD1tJ6tnNmkHd7wBWo8q+As3MzMysCg1xB7AKZfsKrF9xzMzMzJpXU9wBpJO+As3MzMysGKVnMBqbpC+RXgf35S7mW9YR9ODBg0f9x3/8B0OHDmXOnDl9UcymM2qrrVYcMXgw7e3tDBo0qD4FqoeZMzufXhqjMhoyZl3tV2eq2OeeasiYdaYknlPnzevTzTfCdWyl60WpwYP7piBVarpjrM56K15Tp/a/ezXjx48nIqpq3Dh69OiYMmVKt7claWpEjO72Copsq0kSwP2AcyNirwLLBKTG0+PHj69Z2ZpZuYdAWq4z0F54CKQhY9bgD4E0ZMw60wAPgdT7OtZsD4E03TFWZ70Vr/76EEh/TACbpQq4bF+BkvauY5nMzMzMmlJTJIBd9BVoZmZmZgU0RRVwd0h6CXgGWA94uc7FaSaOV3GOWXGOWTGOV3GOWTGOV2XvjYj1q5lR0i2kWHbXyxFxQA+Wr1q/TQA7SJrSV/Xp/YHjVZxjVpxjVozjVZxjVozj1XqaogrYzMzMzHqPE0AzMzOzFtMKCeDl9S5Ak3G8inPMinPMinG8inPMinG8Wky/bwNoZmZmZitqhTuAZmZmZpbTbxNASQdIekLSTEln1bs8jUjSMEl3SHpM0gxJp2Xj3yPpNkl/z/59d73L2kgkDZD0oKQbs2HHqxOShki6VtLj2bG2u2PWOUlfzs7JRyT9StKajtlykn4iaa6kR3LjKsZH0tnZd8ETkj5an1LXV4WYfSc7Lx+WdL2kIblpLR+z/q5fJoCSBgDfBw4EtgeOlrR9fUvVkN4BvhoR2wG7AV/M4nQW8OeI2Br4czZsy50GPJYbdrw69z/ALRGxLbATKXaOWQWSNgW+BIyOiBHAAOAoHLO8K4HSvtLKxie7ph0FvD9b5gfZd0SruZKVY3YbMCIidgSeBM4Gx6xV9MsEENgVmBkRsyLibWAicFidy9RwIuKFiHgg+zyf9MW8KSlWV2WzXQUcXpcCNiBJQ4GDgCtyox2vCiStA+wF/BggIt6OiNdxzLqyKjBQ0qrAWqS3HjlmmYi4C3i1ZHSl+BwGTIyIRRHxNDCT9B3RUsrFLCJujYh3ssH7gKHZZ8esBfTXBHBT4Nnc8JxsnFUgaTgwEvgrsGFEvAApSQQ2qGPRGs2lwJnA0tw4x6uyLYCXgJ9m1eZXSFobx6yiiHgOmAD8A3gBmBcRt+KYdaVSfPx9UJ0TgZuzz45ZC+ivCaDKjPPjzhVIGgRcB5weEW/UuzyNStLBwNyImFrvsjSRVYFdgB9GxEhgAa1dddmlrO3aYcDmwCbA2pKOq2+pmpq/D7og6eukJkG/6BhVZjbHrJ/prwngHGBYbngoqQrFSkhajZT8/SIifpuNflHSxtn0jYG59Spfg9kDOFTSbFKzgn0lXY3j1Zk5wJyI+Gs2fC0pIXTMKvsw8HREvBQRi4HfAh/EMetKpfj4+6ATkk4ADgaOjeX9wjlmLaC/JoD3A1tL2lzS6qTGrDfUuUwNR5JIbbMei4iLc5NuAE7IPp8A/L6vy9aIIuLsiBgaEcNJx9TtEXEcjldFEfFP4FlJ22Sj9gMexTHrzD+A3SStlZ2j+5Ha5zpmnasUnxuAoyStIWlzYGvgb3UoX8ORdADwNeDQiHgzN8kxawH9tiNoSeNI7bUGAD+JiG/Wt0SNR9KHgMnAdJa3aTuH1A7wGmAz0pfRJyOitMF1S5M0FhgfEQdLWhfHqyJJO5MemlkdmAV8lvTj0zGrQNJ/Ap8iVcs9CJwEDMIxA0DSr4CxwHrAi8C5wO+oEJ+sivNEUjxPj4ibV15r/1YhZmcDawCvZLPdFxFfyOZv+Zj1d/02ATQzMzOz8vprFbCZmZmZVeAE0MzMzKzFOAE0MzMzazFOAM3MzMxajBNAMzMzsxbjBNDMzMysxTgBNLM+JWldSdOyv39Kei773C7pBzXa5umSjs8+b5tt70FJW9ZiewXKNVHS1vUsg5m1JvcDaGZ1I+k8oD0iJtRwG6sCDwC7RMQ7ks4CBkbEuSXziXRNXFpuPTUq297AcRFxcl9t08wMfAfQzBqEpLGSbsw+nyfpKkm3Spot6WOSvi1puqRbsndYI2mUpDslTZX0x453wZbYF3ggS/7GAacDJ0m6Q9JwSY9ldx4fAIZJ+qGkKZJmZG/k6CjfbEnnS7o3m75Lts2nJH0hN98Zku6X9HDH8pLWlnSTpIckPSLpU9nsk4EPZ0mqmVmfcQJoZo1qS+Ag4DDgauCOiNgBWAgclCWB3wM+ERGjgJ8A5V75uAcwFSAi/gBcBlwSEftk07cBfhYRIyPiGeDrETEa2BHYW9KOuXU9GxG7kxK3K4FPALsB3wCQtD/pvam7AjsDoyTtBRwAPB8RO0XECOCWrDxLgZnATj0JlJlZUf7VaWaN6uaIWCxpOumd3rdk46cDw0mJ2wjgtlR7ywDghTLr2Rh4rJPtPBMR9+WGj5T0edL1cWNge+DhbNoNuTIMioj5wHxJb0kaAuyf/T2YzTeIlBBOBiZI+hZwY0RMzm1vLrAJWZJqZtYXnACaWaNaBOkumaTFsbzB8lLStUvAjOyOXGcWAmt2Mn1BxwdJmwPjgTER8ZqkK0uWXZQrw6Lc+HyZLoiIH5VuRNIoYBxwgaRbI+Ib2aQ1szKamfUZVwGbWbN6Alhf0u4AklaT9P4y8z0GbFXlOtchJYTzJG0IHFiwTH8ETpQ0KCvTppI2kLQJ8GZEXA1MAHbJLfM+YEbB7ZiZ9YjvAJpZU4qItyV9AviupMGk69mlrJxM3Qz8vMp1PiTpwWwds4B7CpbpVknbAfdm1dLtwHGkBPQ7kpYCi4FTALIkc2FElKu6NjOrGXcDY2b9nqTrgTMj4u/1LkuepC8Db0TEj+tdFjNrLa4CNrNWcBbpgY5G8zpwVb0LYWatx3cAzczMzFqM7wCamZmZtRgngGZmZmYtxgmgmZmZWYtxAmhmZmbWYpwAmpmZmbUYJ4BmZmZmLcYJoJmZmVmLcQJoZmZm1mL67buABw9eJzZY9931LkZTWfD2IlYbuEa9i1FX7yxYxFqrtXYMSi1Y9A6rrbFWvYvRUN55ewFrDVyt3sVoGL52JIsWvMMaq7X2udIfzg0NWI11Bg9ZNjx16tSXI2L9+pWoNvptArjBuu/m7zf/b72L0VRO+fkvGfffx9S7GHV15ym/ZMK41o5BqVN+eSfjjplQ72I0lDsnncKEr46rdzEahq8dyS9PuZNjxrX2udIfzo1JU+ZwyLGnLBuW9Ewdi1MzrgI2MzMzazFOAM3MzMxajBNAMzMzsxbTb9sANpp7HniUCy+/jr88+DgLFr7Fphuuy7i9RnHR105k9dWbu8FsTz3x1ye47lvX8dg9j7HgtQW8a913sdmIzTjwlAP54Mc+WO/i9bqIYPOTT+aZuXMBePT732e7YcPqXKrGdNJJw5k7d+XmN5de+iBbbLFz3xeoQfh6slyrXT9KtdI54uO+dzkB7AMTb7qL4868mCVLlrLTtpszZoetmf3ci1z261v4r9OObekD9+7f3M2EoyewdMlShm47lDEHj2Hh/IU8+dcnueuXd/XLC/hdM2YsS/4Afn7HHZx//PF1LFHjGzPmYDbaaMtlw4MH97sH8qrm68lyrXj9qKS/nyM+7nufE8Aae3PhIr74jR+xZMlSjjt0LFddeDqrrJJq3p/6xwustWbrdp2w6M1F/PALP2TpkqXsedSefOXnX2HAqgMAWLJkCc898VydS1gbV7e1ATByiy14cNYsfnnXXXzz059GEmPPOYc7H3mE0w45hL8++SQPPf00h33gA5z/6U9z4ve+x9+efJI9t9+eX44fz3ve9a767kgf+shHPsduux1e72LUna8ny7Xq9aOS/nyO+LivDSeANXbPA4/y6rz5APz7F45cdtACbLnZxvUqVkN49J5Hmf9qis3R5x697OINMGDAADbbfrN6Fa1mFi1ezLX33APARSeeyMcvvJBn5s7lrhkz2HvEiGXzff8Pf+CoPffk0WefZeLkydz8wAOMHTGC9QcP5o8PPsjFv/89/33ccfXajT53220/Zvr0tmXDJ598ab2KUle+nizXitePzvTnc8THfW34IZAam/vqvGWf37vpBnUsSeOZN3d5bDYYnmJz1VlXcagOXfbX39x4//28vmABGwwezN4jRnDwmDHA8ruCHU7Yd19+/pWvcMRuuwHwvk024Xdf/zpfPfxwAB6cNasvi113999/I5Mm/c+yv1bl68lyrXj96Ex/Pkd83NeGE8Aa2+A9g5d9fua5uZ3M2XoGb7A8Ni8/+zIA239oe/Y+Zu96FanmOhK9Q3bdlVVWWWVZgvebe+5h0eLFy+bbbuhQAIasvTYA22y6KQDvGjgQgAVvvdVXRW4I55xzPTfcEMv+WpWvJ8u14vWjM/35HPFxXxtOAGvsgyO3492DBwHw35ddw9KlS5dNe+a5uSxe/E69ilZ32++xPe96T2rH9psLfkNEMObgMRxxxhF1LlltvNbezh+mTAHgx7fdhg49lI9dcAEA8xYsYNLf/rZs3gGrrHhqlg5ba/L1ZLlWu360Mh/3teE2gDW29lpr8r1//zzHf+1Srr6hjelPPsOuO2zN83Nf5ba/TOPFe37GkNUG1buYdbHGWmvwL9//Fy4+9mL+/NM/M+uBWbzvA+/jpX+8VO+i1cQ1d9/N2++8wzprrcU+O+ywbPyjzz7L359/np/fcUcdS2fNwNeT5Vrt+tHKfNzXhhPAPnDsIWMZttF6fOuK33LvtMd57KlnGbrRepz8yf1b/umlvY7ai/WGrsd137qOx//yOM8++iyDNxjMyI+OZI9P7FHv4vWqX2TVv//y0Y/y7c9+dtn4Ox95hLHnnMPNDzywrKrXrBJfT5ZrpetHq/Nx3/ucAPaRvcaMYK8xI7qesQVt/6Ht2f5D29e7GDV314UXlh2/94gRxA03lJ126cknc+nJJy8b/sx++/GZ/farSfka0RVXzK53ERqSryfLtcr1o5JWOkd83PcuNywyMzMzazFOAM3MzMxajBNAMzMzsxbjBNDMzMysxTgBNDMzM2sxiuhfPYZ3kDQfeKLe5Wgy6wEv17sQTcTxKs4xK8bxKs4xK84x69x7I2L9eheit/XnbmCeiIjR9S5EM5E0xTGrnuNVnGNWjONVnGNWnGPWmlwFbGZmZtZinACamZmZtZj+nABeXu8CNCHHrBjHqzjHrBjHqzjHrDjHrAX124dAzMzMzKy8/nwH0MzMzMzKcAJoZmZm1mL6XQIo6QBJT0iaKemsepenEUkaJukOSY9JmiHptGz8eyTdJunv2b/vrndZG4mkAZIelHRjNux4dULSEEnXSno8O9Z2d8w6J+nL2Tn5iKRfSVrTMVuRpJ9Imivpkdy4ijGSdHb2ffCEpI/Wp9T1UyFe38nOy4clXS9pSG5aS8erlfSrBFDSAOD7wIHA9sDRkravb6ka0jvAVyNiO2A34ItZnM4C/hwRWwN/zoZtudOAx3LDjlfn/ge4JSK2BXYixc4xq0DSpsCXgNERMQIYAByFY1bqSuCAknFlY5Rd144C3p8t84Pse6KVXMnK8boNGBEROwJPAmeD49Vq+lUCCOwKzIyIWRHxNjAROKzOZWo4EfFCRDyQfZ5P+mLelBSrq7LZrgIOr0sBG5CkocBBwBW50Y5XBZLWAfYCfgwQEW9HxOs4Zl1ZFRgoaVVgLeB5HLMVRMRdwKsloyvF6DBgYkQsioingZmk74mWUS5eEXFrRLyTDd4HDM0+t3y8Wkl/SwA3BZ7NDc/JxlkFkoYDI4G/AhtGxAuQkkRggzoWrdFcCpwJLM2Nc7wq2wJ4CfhpVm1+haS1ccwqiojngAnAP4AXgHkRcSuOWTUqxcjfCV07Ebg5++x4tZD+lgCqzDj3c1OBpEHAdcDpEfFGvcvTqCQdDMyNiKn1LksTWRXYBfhhRIwEFuCqy05l7dYOAzYHNgHWlnRcfUvV9Pyd0AlJXyc1CfpFx6gyszle/VR/SwDnAMNyw0NJVShWQtJqpOTvFxHx22z0i5I2zqZvDMytV/kazB7AoZJmk5oV7CvpahyvzswB5kTEX7Pha0kJoWNW2YeBpyPipYhYDPwW+CCOWTUqxcjfCRVIOgE4GDg2lncI7Hi1kP6WAN4PbC1pc0mrkxqz3lDnMjUcSSK1zXosIi7OTboBOCH7fALw+74uWyOKiLMjYmhEDCcdU7dHxHE4XhVFxD+BZyVtk43aD3gUx6wz/wB2k7RWdo7uR2qf65h1rVKMbgCOkrSGpM2BrYG/1aF8DUXSAcDXgEMj4s3cJMerhfS7N4FIGkdqrzUA+ElEfLO+JWo8kj4ETAams7xN2zmkdoDXAJuRvow+GRGlja1bmqSxwPiIOFjSujheFUnamfTQzOrALOCzpB+djlkFkv4T+BSpWu5B4CRgEI7ZMpJ+BYwF1gNeBM4FfkeFGGXVnCeSYnp6RNy88lr7rwrxOhtYA3glm+2+iPhCNn9Lx6uV9LsE0MzMzMw619+qgM3MzMysC04AzczMzFqME0AzMzOzFuME0MzMzKzFOAE0MzMzazFOAM2sT0laV9K07O+fkp7LPrdL+kGNtnm6pOOzz9tm23tQ0pa12F6Bck2UtHU9y2BmrcndwJhZ3Ug6D2iPiAk13MaqwAPALhHxjqSzgIERcW7JfCJdE5eWW0+NyrY3cFxEnNxX2zQzA98BNLMGIWmspBuzz+dJukrSrZJmS/qYpG9Lmi7pluxVhkgaJelOSVMl/bHjdWAl9gUeyJK/ccDpwEmS7pA0XNJj2Z3HB4Bhkn4oaYqkGVnHzB3lmy3pfEn3ZtN3ybb5lKQv5OY7Q9L9kh7uWF7S2pJukvSQpEckfSqbfTLw4SxJNTPrM04AzaxRbQkcBBwGXA3cERE7AAuBg7Ik8HvAJyJiFPAToNybf/YApgJExB+Ay4BLImKfbPo2wM8iYmREPAN8PSJGAzsCe0vaMbeuZyNid1LidiXwCWA34BsAkvYnvT5rV2BnYJSkvYADgOcjYqeIGAHckpVnKTAT2KkngTIzK8q/Os2sUd0cEYslTSe92vGWbPx0YDgpcRsB3JZqbxkAvFBmPRuT3qlbyTMRcV9u+EhJnyddHzcGtgcezqZ1vFt8OjAoIuYD8yW9JWkIsH/292A23yBSQjgZmCDpW8CNETE5t725wCZkSaqZWV9wAmhmjWoRpLtkkhbH8gbLS0nXLgEzsjtynVkIrNnJ9AUdHyRtDowHxkTEa5KuLFl2Ua4Mi3Lj82W6ICJ+VLoRSaOAccAFkm6NiG9kk9bMymhm1mdcBWxmzeoJYH1JuwNIWk3S+8vM9xiwVZXrXIeUEM6TtCFwYMEy/RE4UdKgrEybStpA0ibAmxFxNTAB2CW3zPuAGQW3Y2bWI74DaGZNKSLelvQJ4LuSBpOuZ5eycjJ1M/DzKtf5kKQHs3XMAu4pWKZbJW0H3JtVS7cDx5ES0O9IWgosBk4ByJLMhRFRrurazKxm3A2MmfV7kq4HzoyIv9e7LHmSvgy8ERE/rndZzKy1uArYzFrBWaQHOhrN68BV9S6EmbUe3wE0MzMzazG+A2hmZmbWYpwAmpmZmbUYJ4BmZmZmLcYJoJmZmVmLcQJoZmZm1mL+Pxn7EpJ0rOQdAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "def compute_eval_measures(I_ref, I_est):\n", " \"\"\"Compute evaluation measures including precision, recall, and F-measure\n", "\n", " Notebook: C5/C5S2_ChordRec_Eval.ipynb\n", "\n", " Args:\n", " I_ref (np.ndarray): Reference set of items\n", " I_est (np.ndarray): Set of estimated items\n", "\n", " Returns:\n", " P (float): Precision\n", " R (float): Recall\n", " F (float): F-measure\n", " num_TP (int): Number of true positives\n", " num_FN (int): Number of false negatives\n", " num_FP (int): Number of false positives\n", " \"\"\"\n", " assert I_ref.shape == I_est.shape, \"Dimension of input matrices must agree\"\n", " TP = np.sum(np.logical_and(I_ref, I_est))\n", " FP = np.sum(I_est > 0, axis=None) - TP\n", " FN = np.sum(I_ref > 0, axis=None) - TP\n", " P = 0\n", " R = 0\n", " F = 0\n", " if TP > 0:\n", " P = TP / (TP + FP)\n", " R = TP / (TP + FN)\n", " F = 2 * P * R / (P + R)\n", " return P, R, F, TP, FP, FN\n", "\n", "def plot_matrix_chord_eval(I_ref, I_est, Fs=1, xlabel='Time (seconds)', ylabel='Chord',\n", " title='', chord_labels=None, ax=None, grid=True, figsize=(9, 3.5)):\n", " \"\"\"Plots TP-, FP-, and FN-items in a color-coded form in time–chord grid\n", "\n", " Notebook: C5/C5S2_ChordRec_Eval.ipynb\n", "\n", " Args:\n", " I_ref: Reference set of items\n", " I_est: Set of estimated items\n", " Fs: Feature rate (Default value = 1)\n", " xlabel: Label for x-axis (Default value = 'Time (seconds)')\n", " ylabel: Label for y-axis (Default value = 'Chord')\n", " title: Title of figure (Default value = '')\n", " chord_labels: List of chord labels used for vertical axis (Default value = None)\n", " ax: Array of axes (Default value = None)\n", " grid: If \"True\" the plot grid (Default value = True)\n", " figsize: Size of figure (if axes are not specified) (Default value = (9, 3.5))\n", "\n", " Returns:\n", " fig: The created matplotlib figure or None if ax was given.\n", " ax: The used axes\n", " im: The image plot\n", " \"\"\"\n", " fig = None\n", " if ax is None:\n", " fig, ax = plt.subplots(1, 1, figsize=figsize)\n", " ax = [ax]\n", " I_TP = np.sum(np.logical_and(I_ref, I_est))\n", " I_FP = I_est - I_TP\n", " I_FN = I_ref - I_TP\n", " I_vis = 3 * I_TP + 2 * I_FN + 1 * I_FP\n", "\n", " eval_cmap = colors.ListedColormap([[1, 1, 1], [1, 0.3, 0.3], [1, 0.7, 0.7], [0, 0, 0]])\n", " eval_bounds = np.array([0, 1, 2, 3, 4])-0.5\n", " eval_norm = colors.BoundaryNorm(eval_bounds, 4)\n", " eval_ticks = [0, 1, 2, 3]\n", "\n", " T_coef = np.arange(I_vis.shape[1]) / Fs\n", " F_coef = np.arange(I_vis.shape[0])\n", " x_ext1 = (T_coef[1] - T_coef[0]) / 2\n", " x_ext2 = (T_coef[-1] - T_coef[-2]) / 2\n", " y_ext1 = (F_coef[1] - F_coef[0]) / 2\n", " y_ext2 = (F_coef[-1] - F_coef[-2]) / 2\n", " extent = [T_coef[0] - x_ext1, T_coef[-1] + x_ext2, F_coef[0] - y_ext1, F_coef[-1] + y_ext2]\n", "\n", " im = ax[0].imshow(I_vis, origin='lower', aspect='auto', cmap=eval_cmap, norm=eval_norm, extent=extent,\n", " interpolation='nearest')\n", " if len(ax) == 2:\n", " cbar = plt.colorbar(im, cax=ax[1], cmap=eval_cmap, norm=eval_norm, boundaries=eval_bounds, ticks=eval_ticks)\n", " elif len(ax) == 1:\n", " plt.sca(ax[0])\n", " cbar = plt.colorbar(im, cmap=eval_cmap, norm=eval_norm, boundaries=eval_bounds, ticks=eval_ticks)\n", " cbar.ax.set_yticklabels(['TN', 'FP', 'FN', 'TP'])\n", " ax[0].set_xlabel(xlabel)\n", " ax[0].set_ylabel(ylabel)\n", " ax[0].set_title(title)\n", " if chord_labels is not None:\n", " ax[0].set_yticks(np.arange(len(chord_labels)))\n", " ax[0].set_yticklabels(chord_labels)\n", " if grid is True:\n", " ax[0].grid()\n", " return fig, ax, im\n", "\n", "\n", "P, R, F, TP, FP, FN = compute_eval_measures(ann_matrix, chord_max)\n", "\n", "fig, ax = plt.subplots(2, 2, gridspec_kw={'width_ratios': [1, 0.03], \n", " 'height_ratios': [2, 0.2]}, figsize=(9, 4.5))\n", "\n", "title = 'Evaluation result (N=%d, TP=%d, FP=%d, FN=%d, P=%.3f, R=%.3f, F=%.3f)' % (N_X, TP, FP, FN, P,R,F)\n", "plot_matrix_chord_eval(ann_matrix, chord_max, ax=[ax[0, 0], ax[0, 1]], Fs=1, \n", " title=title, ylabel='Chord', xlabel='Time (frames)', chord_labels=chord_labels)\n", "\n", "libfmp.b.plot_segments(ann_seg_ind, ax=ax[1, 0], time_label='Time (frames)', time_max=N_X,\n", " colors=color_ann, alpha=0.3)\n", "ax[1, 1].axis('off')\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\"FMP_C5_F16_score.png\"\n", "\n", "
\n", "\n", "Let us have a closer look at this chord recognition result. Using a feature rate of roughly $10.8~\\mathrm{Hz}$ we obtain $N=139$ frames. The annotations on the half-measure level are transferred to the physical time axis of the recording and further quantized to match the audio frames. For the evaluation measures, we obtain $\\mathrm{P}=\\mathrm{R}=\\mathrm{F}=0.727$. Most of the incorrect labels occur for frames with **chord ambiguities** due to additional passing or suspended notes. This becomes clear when looking at the annotation of the finer level. For example, the chord $\\mathbf{Fmaj7}$ in the second measure consists of the four pitch classes $\\mathrm{F}$, $\\mathrm{A}$, $\\mathrm{C}$, and $\\mathrm{E}$. Although musically close to $\\mathbf{F}$, three of the four pitch classes also occur in the chord $\\mathbf{Am}$. As a result, the automated procedure erroneously labeled some of these frames as $\\mathbf{Am}$ (and some as $\\mathbf{Dm}$). A second source for deviations are **transition regions** between chords, where the ending sound of one chord may be present in the same analysis window as the beginning sound of the next chord. For example, one encounters some misclassified frames in the transition from the chord $\\mathbf{C}$ to the next chord $\\mathbf{G}$ in the first measure." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Non-Chord Labels\n", "\n", "In our previous examples, we assumed that all frames of the music recording should be assigned to a chord label. In practice, this is not always meaningful. For example, in the case that the recording starts with silence or ends with applause, there is no meaningful chord annotation for these sections. In such cases, the corresponding frames should be left unconsidered in the evaluation. As already explained above, we can model this property by adding to our label set an additional symbol $\\mathbf{N}$, which stands for **non-chord label**. Thus, in the case that there is no meaningful reference chord label for a given frame $n\\in[1:N]$, we set $\\lambda^\\mathrm{Ref}_{n}=\\mathbf{N}$. Similarly, the chord recognizer may be modified to also output a non-chord label $\\lambda_{n}=\\mathbf{N}$ (e.g., in the case that all similarity values between a chroma feature and the templates are below a certain threshold). Recall that, in our evaluation measures based on precision, recall, and F-measure, we did not treat the non-chord label simply as an additional label. Rather, we **disregard** in our evaluation all items with a non-chord label. In other words, in the binary time–chord representations of the estimation or reference annotation there may be **gaps**, where certain frames are left without any chord label assigned. In this case, the precision, recall, and F-measure may yield different values. This is demonstrated by the following example, where we replace in the reference annotation the chord label $\\mathbf{F}$ by the non-chord label $\\mathbf{N}$. Note that, as a result, the estimations of all these frames are now regarded as incorrect, resulting in an increase of FP-items. At the same time, one has a decrease of TP- und FN-items." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2024-02-15T08:56:03.808507Z", "iopub.status.busy": "2024-02-15T08:56:03.808166Z", "iopub.status.idle": "2024-02-15T08:56:04.124398Z", "shell.execute_reply": "2024-02-15T08:56:04.123900Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ ":79: MatplotlibDeprecationWarning: The 'cmap' parameter to Colorbar has no effect because it is overridden by the mappable; it is deprecated since 3.3 and will be removed two minor releases later.\n", " cbar = plt.colorbar(im, cax=ax[1], cmap=eval_cmap, norm=eval_norm, boundaries=eval_bounds, ticks=eval_ticks)\n", ":79: MatplotlibDeprecationWarning: The 'norm' parameter to Colorbar has no effect because it is overridden by the mappable; it is deprecated since 3.3 and will be removed two minor releases later.\n", " cbar = plt.colorbar(im, cax=ax[1], cmap=eval_cmap, norm=eval_norm, boundaries=eval_bounds, ticks=eval_ticks)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAE8CAYAAABQLQCwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABG9UlEQVR4nO3de5gcZZn38e+PcAoEE+UMCYaTkBAOIQFRFAIoYiAcXEAQEWXBxVdeBA1yUBfWVwUkCKuLIosKChpZESQgCAoDgQUlgUAICAZIJJzCGSaEEJL7/aOeTiqd7pmumenpnunf57rmmu6q6uq77+muuft5nnpKEYGZmZmZtY5VGh2AmZmZmfUuF4BmZmZmLcYFoJmZmVmLcQFoZmZm1mJcAJqZmZm1GBeAZmZmZi3GBWAfIKlN0nF12veZki6rx757g6RxkuYVfMwakh6RtFG94jIzs54j6SRJ5zY6jv7EBWAPkjRH0kJJ7bmf/2p0XCWViqWI+F5E1KW4bIT0N/hYJ5t9EbgzIp5Pj7lcUkjaNbefrSQVniRT0uGS/lfSW5LaytatJ+luSS9Lek3SPZJ2z61fQ9KFkp6V9KqkH0tarYbnPCr3flsoaWn+PZi2yb83X5D0C0mDCr62TSX9QdIrkuZJOqHW11bDvit9djaRNDz9bUrL5kg6vUjcZc+zZ9rfd8qWry/p1yn2VyVdVeP+yuNrl/RgWvf5tO7UssfMkzSuYNyjJP1J0kuV3peSTpQ0TdIiSZcX3Pflkt5Jsb8i6VZJ2xbZR9rPKZKel/S6pJ9LWqODbQdI+k56r78p6QFJQ3Lrt5B0Q1r3kqTv59aNkHRbep7Zkg7p7dea9vUZSXMlLZB0naT3dbDtTpKmppjnSfr33DpJ+oakf0p6Q9JkSe+psI/3SXpR0l0FYjxb0uKy9+fXC77ONdLf84309/1qB9ueWfZcpePRerltPibp/pS3pyUdnlsXaXnp8fnGiUuBz0raoEj8Vp0LwJ43ISIG5X5ObHRAzUDSqo2OIeffgF+VLXsF+E6FbYt6BbgIqPRNtR04FlgfeC9wHjAll5vTgbHAKOADwM7ANzt7woi4qvR+Az4JPJt/D+Y2nZDu7wzsUsu+y1wJPAVsCOwPfE/SXjW+tlqUf3aeza0bkmI/Evh3SfsVjB1lxfR/An+tsPr3wPPA+4ENgEkFdz8kF/eOueWvAKdV+ode0GLgauBfq6x/luz9+/Mu7v/7Kb9DgfnA5UUeLOkTZO/ffYDhwBbAf3TwkP8APgx8CHgPcDTwdtrX6sCtwG3ARimmK9O6VYE/ADcA7yP7MnelpA8UCLf0WjcFngF+VuCxpDi2A36a4t4QeAv4cQcP+TVwZ4p5T+BLkg5M6z6X9rM7sAkwEPhRhX2cBzxaNFbgt2Wfq+93/pAVnA1sTfbZ2Av4erXPX2pQyB97zgPaIuIlAEkjyXLxDWAwsBMwvWw3O+b2cVxu328DN5Hly3qAC8BekL5BvSZpVG7Z+unb0QaS3pu+7b6orPXhBklDq+zrbElX5u6XWiBWTfe/IOnR9M35SUn/lpavTfbh2UQrtrCU7+9ASbNSvG2SRuTWzZE0UdJD6ZvsbyWtWSXOzytrEbpQ0ivA2SkPk9I33RckXSJpYNp+vfS6X0vfzKdKWiWtC0lb5fZ9ucpacNLyXwGbkRUeFb/pStoM2JKVi4ArgB0k7Vnp9dQqIv4cEVeT/UMuX/d2RDwWEUsBAUvIiqVSy8EE4IcR8UpEvAj8kKyo6lER8QzZe2FUZ9uWKGstHAd8NyIWR8SDwO9K8dXw2noq9nuAWUViz/kacAvw9/xCSfsCw4BTI+L19Poe6HawmUeBe4BTurOTlNufkb32Sut/HxHXAS9383neIvsHXTS/xwA/i4hZEfEq8P+Az1faUNJ7gZOB4yNibmQeTv/gSY97NiJ+EBEL0nvrobRuW7Ii6cKIWBIRtwF3kxVQhUTEQrKieqeijwWOAqZExJ0R0Q58C/iUpHWqbD8cuCrF/ARwF7BdWjeBLHdPp32dB3xa0lqlB0v6ENnf5BddiLW7Pgf8v4h4NSIeBf6bKn/bPEki+7tckVv8TeCnEXFTRLwbES+nfNSqjezLp/UAF4C9ICIWkbUwHJlbfDhwR0TMJ/s7/ILsG9ZmwEKgq13H84EDyL5VfwG4UNLOEbGAlVuHVihS0rfo35AdnNcH/khWTK1eFvd+wObADnR8IPgg8CRZi8p3yQ5sHyA74G5F9g281BXyNWBeet4NgTOBQl2wEXE08E+WtyRV+qa7PfBkRLxbtvwt4HspzpUo6459rcrPQ5UeU03a/m3geuCy9B6ArHBSflNgqKTBRfZfw/MPA8YDD6T7tbw2lf0u3V6hUOjgtfVE3FLWrbxdLvaHOoj9x7nHvp+sWP12hV3vBjwGXKGsC/u+7n4RKPMt4BRV6CJU1o1YLf7X0heWXpMK/aNYnt9a49sOeDC3qweBDSWtW+FptgfeBQ5V1qX4uKQv59bvBsyRdJOy7t82SduXQqwUNl34QpC+FB8JzM4t+0gnr/cjlV5vKmLeITu+VXIR8DlJq0nahqzl88+5+Ms/V2uQtbohaQBwMXAiBY+JHanlc5+K9U1Y+W+7XaV9lvko2bH8mtyy3dJ+Z0p6TtKVFT4Xd6b3xe8lDS9b9yiwI9YjXAD2vOvKPkjHp+W/ZsUC8DNpGelb0DUR8VZEvElWhHTpH1BE3BgRT6Rv1XeQtXh8tMaHfxq4MSJujYjFZN1gA8m6akp+GBHPRsQrwBQ6/vb8bET8KBVbbwPHA6ekFq43yQquI9K2i4GNgfenFpipUZ8LVQ8B3qyy7qfAZpI+Wb4iIv5PRAyp8rNDkQDS9u8hew/kx/PcBHxFWevwRsBJafla9IzrJL2WnvMOsvzX9NrS3+tu4FuS1pS0M/Av5bF18Npqji/9XFe27iWy7tTLgNMj4i+l5+sg9v+Te/wPgW+lFpZyQ4F9gdvJuhwvAP6g3LilGryUi31ifkVEzCD7HJ5W/qCI+HUH8Q+JiH8WiKE7Jqb3xmxgEOmLXYH4BgGv5/ZXul2pRWwoWfffB8i+SB5K1kPw8dz6I8j+ZpsAN5L9PVYna72dD5yaiql9yY6VRT4jpdf6JvARcq2HEXFXJ6+39J4uf72l11ytBfCG9DoXptfws4i4L627CThOWW/OYJa/T0qv6STgrxFR3lVaq8PL/idtkl5rLce00hCS8r9ttdeZdwzwu7LP3FCyfP8LWYFb3t29J1lr6bZkvSg3aMVhJG+SvXesB7gA7HkHl32Q/jstvw0YKOmDqTViJ+BaAElrSfqpsgHFb5CNFRmSvvkVIumTku5V1o36GllLT63/yDYB5pbuRNad9zRZS13J87nbb7H8AFHJ07nb65Md0KaXDkTAzWk5wPlk/3xuUdZ13eWB/p14lSoHr9RS+//ST6WWhh4TWbfWb4DTJZW+0X6XrOVlBvC/wHVkhXFPtaKV3pvvTwf/hQUffxTZP+yngZ8AV5G12q6gymsrEt+QiDi4bN16EfHeiBgRET8sErSkCcA6EfHbKpssBOZExM/Sl4/JZK+x5pNYUnyl2CuNH/x3snFfzXrm+aQU+0YRcWAU65aDbAxofpxj6XalL1ul9923I2JhZN27k8mOVaX1d0XWTfgO2RfRdYER6YvpwWTdgM+T9RxcTYX3YQcmRcQQskJjIbBNgceWlL9e0v2VXm9q4bqZrPV5TbLhBp+QVPqC8nOynpc2si7+29PyealYO4lszFxXXV32P2ml4SkdKBVv5X/bal+iAVA2tOcwVuz+hSzfv4iIx1Nh+D2W/92JrEv9nYh4DfgK2fFmRO7x67By4W1d5AKwl6Ri6mqyVsDPADekVhXIDmLbAB+MiPcAe6TllYqQBaz4bXfZPxRlZ91dQ3bA3DAd5P6Y209nLWrPknVDl/YnsoPVM508rpr8871E9uHfLncgGhzpJIWIeDMivhYRW5CNifmqpH3SY9+iymvu5DkreQjYQtVPTvgF2TfMFc4sVDZesb3KT8VxWTVajWzAPOmf4YkRsWnKw8vA9IhY0o39d6rW1xbZeK0DImL9iPgg2T/lv9Xy2uoY+6wOYr8kbbYPMDZ1Kz1P1tJ9sqQ/pPUP0YNda5VExN/JhoGcWRb/UR3E365e7gIuVyC+WazYNbcj8EJEVBqTWBpWUC3nHf49IuKhiNgzItaNiE+Qvcc6eh9W288/yYqM/9Tyscgf7eT1lnpTVni9krYg67Z9vMJTbQEsiYhfRjbubR65gjcilkbEWRExPCKGpn0/k352JesZeSS9d/8T2DW9lws3EOTV8rmPbDznc6z8t+3smPcpshb7trLlRT9rwYr/B0ewYne0dYMLwN71a7J/Pkel2yXrkBVHr6Vvi2d1sI8ZwB6SNkvdBWfk1q1OdhB6EXg3dWXum1v/ArCuqo8puxrYX9I+ys6Y/BqwiKw1qltSAfzfZGMSN4Bl04p8It0+QNnUKwLeIDuJoFT4zAA+o2zqiP3ouHv8BTooOtLB9x9kB9ZK698lO+vttLLlJ8SKZ9Llf5aNh0kxrgmsCqyirLt0tbRuN2VjjFaXNFDSaWRjZP6ay8cmyuxGNnbsrNy+L1fBKT5qUeC1jZC0Tor/s2TvrR/U+NrGqQvT6tQQ+3YdxF6apuZbLB97uhPZ+MT/JhsjC1lL/HslHZP+foeStXrfnWI/W2VT+nTRf6TnHJKL/6oO4h+UipTS+Mc1yT7jpPfVsmlWJK2a1g8ABqT1q+bWhwpOPVMkPuCXwL9KGqls3Ng3qXImcWpdnAp8Q9mJYSPIjos3pE2uBHZTNl3IALIxyS+RzoCVtEN6fWsp627fOP9cRV5rRNxK9sX3i+n+1E5e79T00KuACalgXJusde/3uS/1eY9nYekzklZR1gr8aVIho2x6ly3T33gk2Wfq2+mYeRNZS+VO6effyXoJdip9MVR2ct7na3m9Za+9ps892d/2m8pOVtyWbCjP5Z3s/hjglxErDeP5BfAFZdP8rEV2nL0hvY7tlE2XM0DZWNQLyIrg/JnPe5LlxHqAC8CeVzoDtfRzbWlFRPyVrAVvE1Z8E19ENhbiJeBesu6CitIB67dk36Sms/ygWRqndRJZIfcqWUvj9bn1fyfranhSubEgufWPAZ8lG5PxEllL3ITUDdMTTiPr5r1XWVf3n1ne/bJ1ut9OdtbkjyOiLa37SorlNbLi+boOnuMcsoPVSmOxckrTN1TzG7JvvV1xNFkx/xOysZcLyYoNyIrzi8la9p4hawHYP9clsyVZsb2ArOvk9Ii4JbfvYaSipEE+QXZSz6vACcB+kZ2tDJ2/tmFkf9del1qXny/9kP1NFkQ2jpX0+0BgIln30unAQZGmrqCH8h4RT5FNP7R2Fx7+/hR3qeVlIdmJKyXfTMtOJ/sML0zLUDajQDsws0uB1yAibga+T9Z9OTf95L+83CQp3/p5JNlreplsjN+3Yvm4ztJx6BKy99pBwIG549DRZJ/P+WStux+PbPhGV1/r+WRTm1Sdt7DC651F9hm4KsWxDrBszGlqXbskbfsGWYvYKen1zAAeZvkJZ+uR9dQsIPu/8POIuDQ9dlHZe/d1YHEsn8N0dbKW+HsLvN6izgKeIPub3gGcn/7epdeabxlF0qbA3mSF4woi4udp+V/T/haxfKzzhmT/294gO84MBw6IrNuf9AVnPCt3K1sXaeUC3ax/Swf6B4B9IqKrhV6vSgf6B4EdSgfEvkTZhK7/ExF/anQsRUmaQfZe6dYUK42SWmu3i4gzOt24j2ul1wrZWcvAlyPiyE437uMk/V9gWEQUmsjaqnMBaGZmZtZi3AVsZmZm1mJcAJqZmZm1GBeAZmZmZi2myIXa+5T11lsvhg8fzoIFC1h77a6cdNeanK/inLPinLNinK/inLNinK/q5syZw0svvVTTxQF6YLqrP0XEft3cR00aWgBKWkJ2un7p4vEnRkS355wDGD58ONOmTaOtrY1x48b1xC5bgvNVnHNWnHNWjPNVnHNWjPNV3dixY3vz6YpcgrJbGt0CuDAidgJIEwKfQxevgWtmZmZmtWmmMYDvIZsks3TVgDskXS3pcUnnKrsk0d8kzZS0ZYNjNTMzM+uzGjoPYK4LeE2yy/nsHRHT02V8riO77t8rZLOCXxYRZ0n6CrB5RJxcYX9fJF3SZ8MNNxwzefJk2tvbGTRoUC+8mv7B+SrOOSvOOSvG+SrOOSvG+apu4sSJTJs2rbfGAE6PiF7pc26mLuAPAb+UNCqtu690lQZJTwClS2LNBPaqtLN0+ZxLAcaOHRvjxo3zuIaCnK/inLPinLNinK/inLNinK/W0zRdwBFxD9ngx/XTokW51Utz95fS+MLVzMzMrM9qmgJQ0rbAALKLg5uZmZlZnTS6JW1gutA6ZFPBHBMRS6SautrNzMzMrAvqXgBKOgT4PTAiIv5etvpq4AzgYOD5iLgRICLagLbSRhExLnd7hXVmZmZmVkxvdAEfCdwFHFFh3eYRMYds7r+pvRCLmZmZWcurawEoaRCwO/Cv5ApASVdJegTYJnUB7wvcKOm4tH6OpO9JukfSNEk7S/qTpCcknVDPmM3MzMz6u3p3AR8M3BwRj0t6RdLOEXF/RBwl6XBgGHANcH5EHFb22Kcj4kOSLgQuJysk1wRmAZfUOW4zMzOzfqveBeCRwEXp9uR0//50fzTwZ2B7YEaFx16ffs8EBkXEm8Cbkt6WNCQiXit/QNlE0LS1tdHe3k5bW1uPvJhW4HwV55wV55wV43wV55wV43y1nroVgJLWBfYGRqWZsQcAIakN+C6wOXAA2bx/CyR9LCLyEzzn5/0rnxOwYtyeCLr7nK/inLPinLNinK/inLNinK/WU88xgIcCv4yI90fE8IgYBjwFvAGMAR6OiO3JunRHlxV/ZmZmZlYn9ewCPhI4t2zZNcBngIXAg5JWB1aLiDfqGIdZ7aZMWeGuDjyw04dMmjSJvfZqru8vcf31nW9Uq0sv7bl9lRx0EFxwQefblf09Cpkwoef2ZWbWz9StAMzP3Zdb9sPc3Wnp9x7lcwVGxPDcYy4nOwmkdH84ZmZmZtZlzXIpuI7mCjQzMzOzHtTwArDSXIGSxkm6Q9LVkh6XdK6koyT9TdJMSVs2NGgzMzOzPqzhBSC5uQKBVyTtnJbvCHyFbJqYo4EPRMSuwGXA/21EoGZmZmb9gSKisQFINwIXRcStkk4imxz6RuAbEfHxtM2dwBkRcbekvYGTIuLgCvvKzwM4ZvLkybS3tzNo0KDeejl9Xsvn6/XXV7g7ffbsTh8ydOhQ5s2bV6+IumTMVlv13M5efLHn9pW0DxnCoNde63zD7ryO8r9dT+akl7X857ILnLNinK/qJk6cyLRp01TLtmnau+6YHhFjq+x7XeAv6e5GwBKgdIDeEXiQ7NyOR4FjIuKtjp6o3hNBd6jaXIHAH1l57r/8vICeB7BOWj5fZWeK7jVxYqcPmTRpEhNr2K439ehZwH/4Q8/tK2k76CDG1bLf7py5W36WcR8+C7jlP5dd4JwV43w1v4h4GdgJQNLZQHtETEr32yOitO4q4ATgBx3tr9FdwNXmCvxIg+MyMzMz64umAp12eTS0BZDqcwV+CXii98Oxllc2d1wtQyTa2tpq2q7PKp9Prye0tdW/Ra4Pt/iZmXWFpFWBTwI3d7ZtQwvADuYK/GG17SKiDWirb2RmZmZmvW49SdNy9y9Nw9s6M1DSjHR7KvCzzh5Q1wJQ0obAhcBuwKvAO8D3I+La3DZtwH5kLYGTI+LeesZkZmZm1qReqnYSSCcWlsYA1qpuYwAlCbgOuDMitoiIMWTz/A3NbTMQWBIRbwO7ANPrFY+ZmZmZZep5EsjewDsRcUlpQUTMjYgfAUi6HZhJdgbwTLL5/u6TND6tb5d0nqTpkv4saVdJbZKelNT5BVrNzMzMrKK6zQOY5vTbPCJO6WCbr5Od7PEysH9EnJpbF8D4iLhJ0rXA2sD+wEjgikpNnZ4HsPucr+Kcs+Kcs2Kcr+Kcs2Kcr+qaZR7AntZrJ4FIuphsepd3ImKXtHg02Vm/44EZZQ95h+VnscwEFkXE4tRaOLzSc3gewO5zvopzzopzzopxvopzzopxvlpPPQvAWcC/lO5ExJclrQdMk3QccCLZPDUjgM2AFySNj4ij0kMWx/LmyWUTQUfE0nSas5mZmZl1QT3HAN4GrCnpS7llawFExGXAvsBtqSt3dkSMyBV/ZmZmZlYndSsAU+vdwcCekp6S9DfgCuC0tMkewF2ShgFz6xWHmZmZma2orl2pEfEc2dQvldb9LjdP4BhJ08nNExgRg3Lbnl32WI9UNTMzM+uihl0LuJZ5As3MzMys5zXyZIqK8wQCP5L0ebLu4wHAKOACYHXgaLKTQcZHxCu9HbCZmZlZf1C3eQA7feIO5glMBeA3yaaJWROYDZwWEZdIuhCYGxEXVXic5wHsJuerOOesOOesGOerOOesGOerOs8DWGf5eQKBi4HbI+JN4E1JrwNT0qYzgR0q7cPzAHaf81Wcc1acc1aM81Wcc1aM89V6GjYGkGyewJ1LdyLiy8A+wPpp0aLctktz95fSRIWrmZmZWV/TyAKw6jyBZmZmZlY/DSsAa5gn0MzMzMzqoO5dqZKWkI3bKzk4IuZANk+gpI3ILgd3LjA5Iu5N211eekBEDM/dvjy/zszMzMyK6Y2xdAvT5d5WImkgsCQi3pa0C3BqL8RjZmZm1tIaORH07WQtg6MkzQS2B+6TND6tb5d0nqTpkv4saVdJbZKelHRgo+I2MzMz6+vqPg9gWRfwUxFxSG7d14EngJeB/SPi1Ny6IJvw+SZJ1wJrA/sDI4ErKrUqeh7A7nO+inPOinPOinG+inPOinG+qvM8gF1XtQuYbKLna4DxwIyyde8AN6fbM4FFEbE4tRYOr7QzzwPYfc5Xcc5Zcc5ZMc5Xcc5ZMc5X62nIfHqSjgNOBLYiOwFkM+AFSeMj4qi02eJY3jy5bB7AiFgqyfMAmpmZmXVRQ8YARsRlwL7Abal1cHZEjMgVf2ZmZmZWJ41sSdsDuEvSMGBuA+MwMzMz67YxW23FtAsv7PLjNWFCD0bTsboXgBFRcVRpRPyudFvSpyTNyK0+OP+4iDi7ln2amZmZWeeaZSxdRyeKmJmZmVkPapYCcCWSPk92qbgBwCjgAmB14GiyE0LGR8QrjYrPzMzMrK9qlgJwYK4LOD9X4CiyqWLWBGYDp0XEaEkXAp8DLsrvpGweQNra2mhvb6etra3+r6CfcL6Kc86Kc86Kcb6Kc86Kcb5aT7MUgNW6gG+PiDeBNyW9DkxJy2cCO5Rv7HkAu8/5Ks45K845K8b5Ks45K8b5aj0NuxRcjRblbi/N3V9K8xSvZmZmZn1KsxeAZmZmZtbD3IpmZmbW13Vn/rgpUzrfxvqdhheAkpYAM3MngUyOiHMj4nLg8tJ2ETE8d3uFdWZmZmZWu4YXgHgOQDMzM7Ne1bRjACXNkfQ9SfdImiZpZ0l/kvSEpBMaHZ+ZmZlZX9UMLYADyy4Dd05E/DbdfjoiPpTm/bsc2J1sTsBZwCXlO/I8gN3nfBXnnBXnnBXjfBXXcjk76KCuP9b/K1tSMxSAHXUBX59+zwQG5eYEfFvSkIh4Lb+x5wHsPuerOOesOOesGOeruJbL2QUXdP2xU6a0Xr6sebuAk/y8f+VzAjZD8WpmZmbW5zR7AWhmZmZmPawZWtHKxwDeHBGnNyoYMzOzPsdz+VlBdSsAS/P7AasB7wJXABdFxNKyTacC+wHnks0BeC90PO9ffp2ZmZmZFVPPLuCFEbFTRGwHfBwYD5yV30DSQGBJRLwN7AJMr2M8ZmZmZkYvjQGMiPlk07OcKEkAkm4nayEcJWkmsD1wn6TxaX27pPMkTZf0Z0m7SmqT9KSkA3sjbjMzM7P+SBFRnx1L7RExqGzZq8C2EfFCuv914AngZWD/iDg1t20A4yPiJknXAmsD+wMjgSsqTR1TNg/gmMmTJ9Pe3s6gQYPKN7UqnK/inLPinLNinK/inLNinK/qJk6cyLRp01TLtmO33jqmXXhhl59LEyZMj4ixXd5BAb19Ekh5AkcD15B1D88oW/cOcHO6PRNYFBGLU2vh8Eo79zyA3ed8FeecFeecFeN8FeecFeN89Q258ytKDiariW4HDoyIKWm7G4BJEdFWbV+9VgBK2gJYAsyXdBxwIrAVMALYDHhB0viIOCo9ZHEsb55cNg9gRCyV1AxnL5uZmZn1ppUuniFpODAP+AZQ8+ngvTIGUNL6ZJdu+6/IXAbsC9yWXsjsiBiRK/7MzMzMrDYPAq9L+nitD6hnS1ppfr/SNDC/An6QW78HcJekYcDcOsZhZn3VhAldf2z5vGg9uS+z/mTChOxawt25nFyJPyvdtZ6kabn7l6bhbSX5uZOfiohDcuu+k35ureWJ6lYARsSATtb/LvVlfwZYTdKD5OYKzJ9AEhFnlz3WI1XNzMysv3mpk5NAVuoCLomIqZKQ9NFanqjRY+mWvRBJGwC/BgZTNl+gmZmZmXXqu2RjAd/tbMOmuRZw+VyBkj4v6TpJUyQ9JelESV+V9ICkeyW9r9Exm5mZmTWLiLgFeC+wY2fbNroFcAUR8aSkVYAN0qJRZFPFrAnMBk6LiNGSLgQ+B1yUf3zZPIC0tbXR3t5OW1tbL72Cvs/5Ks45K67mnB10UNefpHz/PbmvXub3WHHOWQEHHUT7kCG0deczUuKcN4PvAn/obKOmKgCT/FyBt0fEm8Cbkl5n+enNM4Edyh/oeQC7z/kqzjkrruacdWdQevlg9J7cVy/ze6w456yACy6g7aCDGPeHTmuGzvkkkLqqdA5EmuuvLXf/elaed3klTdMFDCvOFZgWLcqtXpq7v5TmLF7NzMzMml7TFIDlcwU2Oh4zMzOz/qrRrWidzRVoZq2sJ7uT3DVlVtmUKdnYPX9GWkrdWwAlbSRpsqQnJD0i6Y+SPgDL5gp8FNgf+AUwLyKWpnWXR8SJpf1ExPCIeKnSOjMzMzOrXV0LQEkCrgXaImLLiBgJnAlsmNts84iYA+wJTK1nPGZmZmZW/xbAvYDFEXFJaUFEzEizVV8l6RFgm9QNvC9wo6TjACTNkfQ9SfdImiZpZ0l/Si2JJ9Q5bjMzM7N+q95jAEcB0yutiIijJB0ODAOuAc6PiMPKNns6Ij6U5v27HNidbE7AWWQnjKzA8wB2n/NVnHNWnHNWjPNVnHNWjPPVejosACVNAaqekRsRB3bz+UcDfwa2B2ZUWH99+j0TGJSbE/BtSUMi4rWyeDwPYDc5X8U5Z8U5Z8U4X8U5Z8U4X62nsxbASen3p4CNgCvT/SOBOTXsfxZwaPlCSeOB7wGbAwcA6wMLJH0sIvbKbZqf9698TsBGn8FsZmZm1id1OAYwIu6IiDuA0RHx6YiYkn4+A3ykhv3fBqwh6fjSAkm7AAuAMcDDEbE9WaE4uqz4MzMzM7M6qPUkkPXTVToAkLQ5Watdh9KEzocAH08nb8wCzgaeJev+fVDS6sBqEfFG0eDNzMzMrLhau1FPBtokPZnuDyedbNGZiHgWOLzK6mmSNgKelfQEWTfvHODkiBie28flZCeBlO4Px8zMzMy6pNMCUNIqwGBga2DbtPjvEbGo+qNqk5sn8IqIOCIt24lsnsDHu7t/MzMzM1tZp13A6cocJ0bEooh4MP10u/hLKs4TCAyQdIekqyU9LulcSUdJ+pukmZK27KHnNzMzM2s5tXYB3yppIvBbshM4AIiIV7r5/FXnCQR2BEYArwBPApdFxK6SvgL8X7Ju6RV4HsDuc76Kc86Kc86Kcb6Kc86Kcb5aT60F4LHp95dzywLYosK2PeW+iHgOII0PvCUtn0nWcrgSzwPYfc5Xcc5Zcc5ZMc5Xcc5ZMc5X66mpAIyIzev0/BXnCUzK5/3LzwnoOQDNzMzMuqimaWAkrSbpJEm/Sz8nSlqtB56/2jyBe/bAvs3MzMysglrnAfwJ2cTNP04/Y9KybulknkAzMzMzq4Nau1J3iYgdc/dvk/RgTwTQwTyB/527/VHgsjRtzBLgxJ54bjMzM7Me8+KLcOmljY6iJrW2AC7JT72SrgqypD4hVbQwInZKRegZwDm9+NxmZmZm/UqtLYCnArenK4EIeD/whbpF1bH3AK826LnNzMzM+rxazwL+i6StgW3ICsAeuRJIAQMlzQDWBDYG9u7F5zYzMzPrV5Sdh1HDhtKHya4BvKxojIhf1ieslZ67PSIGpdsfAi4DRkVZ8GUTQY+ZPHky7e3tDBo0qDfC7Becr+Kcs+Kcs2Kcr+Kcs2Kcr+omTpzItGnTVMu2Y4cMiWl77NHl59KUKdMjYmyXd1BATS2Akn4FbAnMYPnYvwB6pQDMi4h7JK0HrA/ML1vniaC7yfkqzjkrzjkrxvkqzjkrxvlqPbWOARwLjCxvcWsESdsCA4CXGx2LmZmZWV9UawH4MLAR8FwdY+lIaQwgZGMQj4mI3jwL2czMzKzf6LAAlDSFrKt3HeARSX8jd4m2iDiwpwKRdAjwe2BERPy9bPXVZNO/HAw8HxE39tTzmpmZmbWazloArwc2BKaWLd8TeKaHYzkSuAs4guxqIHmbR8QcSXviSaDNzMzMuqWziaAPAq6PiDvyP8AfyVrjeoSkQcDuwL+SFYCl5VdJegTYJnUB7wvcKOm4nnpuMzMzs1bTWQvg8Ih4qHxhREyTNLwH4zgYuDkiHpf0iqSdI+L+iDhK0uHAMOAa4PyIOKwHn9fMzMys5XRWAK7ZwbqBPRjHkcBF6fbkdP/+dH808Gdge7JpaKoqmweQtrY22tvbaWtr68FQ+zfnqzjnrDjnrBjnqzjnrBjnq/V0VgDeJ+n4iPjv/EJJ/wpM74kAJK1LdmWPUZKCbIqXkNQGfBfYHDiAbN6/BZI+FhF7VdqX5wHsPuerOOesOOesGOerOOesGOer9XRWAJ4MXCvpKJYXfGOB1YFDeiiGQ4FfRsS/lRZIugN4AxgD3BkRu0v6C3BIRLzRQ89rZmZm1pI6LAAj4gXgw5L2AkalxTdGxG09GMORwLlly64BPgMsBB6UtDqwmos/MzMzs+6raSLoiLgduL0eAUTEuArLfpi7Oy397vrF9czMzMxsmc6mgWkakg6RFOlScGZmZmbWRX2mAGTFiaLNzMzMrIv6RAFYbaJoMzMzMyuupjGATeBgKkwUXb6R5wHsPuerOOesOOesGOerOOesGOer9fSVArCjiaKX8TyA3ed8FeecFeecFeN8FeecFeN89Q2SlgAzc4sOBoYDfwCeJLuAx+SI+I/O9tX0BWAHE0V/PSKisdGZmZmZ9ZqFEbFTfkG6NO/UiDhA0trADEk3RESHF+zoC2MASxNFvz8ihkfEMOAp4CMNjsvMzMysaUTEArILd2zZ2bZ9oQA8Eri2bFlpomgzMzOz/mI9SdNyP18sWz9Q0oz0U14blXpNdwNmdfZEDe8ClrQhcCFZwK8C7wDfj4hrIZsoWlJbujbwuWR92z+stj8zMzOzPuqliBjbwfqVuoCTj0p6AFgKnBsRzV0AShJwHXBFRHwmLXs/cGBum4HAkoh4W9IuwKmNiNXMzMysSU2NiAOKPKDRXcB7A+9ExCWlBRExNyJ+BCDpdrKzXUZJmglsD9wnaXxDojUzMzPrBxrdBbwdFaZzKYmIvSR9HXgCeBnYPyKqtgB6HsDuc76Kc86Kc86Kcb6Kc86Kcb5aT6MLwBVIupjs7N53ImKXtHg02Ukf44EZHT3e8wB2n/NVnHNWnHNWjPNVnHNWjPPVN0TEoArL2oC2ovtqdAE4C/iX0p2I+LKk9YBpko4DTgS2AkYAmwEvSBofEUc1JFozMzOzfqDRYwBvA9aU9KXcsrUAIuIyYF/gtnTGy+yIGOHiz8zMzKx7GtoCGBEh6WDgwjTW70VgAXBa2mQP4C5Jw4C5jYmyH5swYYW7uuEGJk2axF577dWggHpfXH/9igvKcmJmSSefDd1wQy8FUpveOJb5+GF9WaO7gImI54Ajqqz7HSybK3CxpCepMFegmZmZmdWu0V3AncrNFXhnRGwREWPICsahDQ3MzMzMrI9qeAtgDSrOFQj8qHEhmZmZmfVdiohGx9AhSScBm0fEKTVsm58HcMzkyZNpb29n0KCVzpo2gNmzV7g7/fXXGTp0KPPmzWtQQL1vzFZbrbhg8ODC+/B7rDjnrJimyFfZ8aLc9Ndf76VAatMbx7KeOH40i6Z4jzWpiRMnMm3aNNWy7dghQ2LaHnt0+bk0Zcr0Ti4F12P6QgvgCqrMFQh4HsDCLrhghbt7pZNAJk6c2KCAet9Kg7i78F7xe6w456yYpshX2fGi3F5NeBJIvY9lPXH8aBZN8R6zXtX0YwDJ5grcuXQnIr4M7AOs37CIzMzMzPqwvlAAVp0r0MzMzMyKa/ou4BrmCrSumjJlhbtB1g3Q7ONCzawByo4X5ZrtqOFjmVnHmqYAlLQEmJlbdHBEzIFsrkBJG5FdEu5cYHJE3Nv7UZqZmZn1fU1TAAIL0yXfViJpILAkIt6WtAtwaq9GZmZmZtaPNP0YQEm3k7UMjpI0E9geuE/S+MZGZmZmZtY3Nc08gGVdwE9FxCG5dV8HngBeBvaPiIotgJ4HsPucr+Kcs+Kcs2Kcr+Kcs2Kcr+o8D2D9Ve0CBkYD1wDjgRnVduB5ALvP+SrOOSvOOSvG+SrOOSvG+Wo9zVQArkTSccCJwFZkJ4BsBrwgaXxEHNXQ4MzMzMz6qKYeAxgRlwH7Arel1sHZETHCxZ+ZmZlZ1zV1C2CyB3CXpGHA3EYHY9bvTZiw4v1O5n8za1nln5VG8ufUCmqaAjAiKo4+jYjfwfKTRCTNSKuWzRNoZmZm1nBbbQXl14guQjWda9IjmqYArEFHJ4mYmZmZWY2aegygmZmZmfW8ppkHsDMdzROY28bzAHaT81Vcv8vZ7Nkr3t9qqx5/in6XszpzvorrlZyVf1YaqZufU7/Hqis0D+DYsTFt2rQuP5eklpwHsDOddgF7HsDuc76K63c5u+CCFe/XYXB5v8tZnTlfxfVKzso/K43Uzc+p32Otx13AZmZmZi3GBaCZmZlZi+lLXcBm1hs8n5hZbfxZsT6sLxWAA3NzAAJMjohzGxWMmZmZWV/VlwpAzwNoZmZm1gM8BtDMzMysxfTVeQABzomI35Zt43kAu8n5Ks45K845K8b5Ks45K8b5qs7zADae5wHsBc5Xcc5Zcc5ZMc5Xcc5ZMc5X63EXsJmZmVmLcQFoZmZm1mL6Uhdw+TQwN0fE6Y0KxszMzKyvangBmDu5YzXgXeAK4KKIWFq26VRgP+BcsjkA7+3VQM3MzMz6iWboAl4YETtFxHbAx4HxwFn5DSQNBJZExNvALsD03g/TzMzMrH9ohgJwmYiYTzaNy4mSBCDpdrIWwlGSZgLbA/dJGt+4SM3MzMz6robPAyipPSIGlS17Fdg2Il5I978OPAG8DOwfEadW2ZfnAewm56s456w456wY56s456wY56s6zwPYu8oTPRq4hqx7eEa1B3kewO5zvopzzopzzopxvopzzopxvpqfpHWBv6S7GwFLgBfT/R2BH0TE19K2E4FBEXF2tf01XQEoaQuyFzVf0nHAicBWwAhgM+AFSeMj4qgGhmlmZmbWayLiZWAnAElnA+0RMSndfxv4lKRzIuKlWvbXVGMAJa0PXAL8V2QuA/YFbktXAZkdESNc/JmZmZkt8y5ZD+gptT6gGVoAS/P7laaB+RXwg9z6PYC7JA0D5vZ+eGZmZma9Yj1J+UGEl6bhbbW4GHhI0vdr2bjhBWBEDOhkk9+SnQV8DPCupK9SeZ5AMzMzs77spa6eBBIRb0j6JXASsLCz7RteANZgYer+RdIGwK+BwZTNFWhmZmbW4i4C7gd+0dmGTTUGsDOV5gk0MzMzM4iIV4CrgX/tbNu+0AK4goh4UtIqwAbAC/l1ZfMA0tbWRnt7O21tbb0faB/lfBXnnBXnnBXjfBXnnBXjfPUrF5DNoNKhPlcAJhVb/zwPYPc5X8U5Z8U5Z8U4X8U5Z8U4X31L+fx++QtqpItorNXZPvpUFzCsOE9go2MxMzMz64v6VAFYPk9go+MxMzMz64v6QhdwZ/MEmpmZmVkBTdECKGkjSZMlPSHpEUl/lPQBWDZP4KPA/mSnNc/zHIBmZmZmXdfwAjBN53It0BYRW0bESOBMYMPcZptHxBxgT2Bq70dpZmZm1n80vAAE9gIWR8QlpQURMSMipkq6StIjwDapG3hf4EZJxzUoVjMzM7M+rxnGAI4CpldaERFHSTocGAZcA5wfEYdV25HnAew+56s456w456wY56s456wY56v1NEMB2JnRwJ+B7YEZHW3oeQC7z/kqzjkrzjkrxvkqzjkrxvlqPc1QAM4CDi1fKGk88D1gc+AAYH1ggaSPRcRevRuimZmZWf/RDGMAbwPWkHR8aYGkXYAFwBjg4YjYnqxQHO3iz8zMzKx7Gl4ApgmdDwE+nqaBmQWcDTxL1v37oKTVgdUi4o3GRWpmZmbWPzRDFzAR8SxweJXV0wAkHS5pMrALsAiYA5wcEY9XetD06dORxKRJk9hrLzcaVhLXX7/iggkTGhNII3X2mqdM6Z04elp3/pZ99TXXU1k+dcMNvfr0zXAcW+l4Ua4Vjx+2kmxmN+sLGt4CWIsa5wo0MzMzsxo0RQtgDSrOFdi4cMzMzMz6rj7RAkgHcwWamZmZWTHKzsFobpJOIrsc3CmdbLdsIujBgweP+da3vsXQoUOZN29eb4TZ54zZaqsVFwweTHt7O4MGDWpMQI0we3bH68tzVEFT5qyz19WRGl5zdzVlzjpSls/pr7/eq0/fDMexlY4X5QYP7p1AatTn3mMN1lP5mj69/7XVTJw4kYioaXDj2LFjY9q0aV1+LknTI2Jsl3dQ5Ln6SAG4D3BWROxR4DEB2eDpiRMn1i22vqzSSSAtNxloD5wE0pQ5a/KTQJoyZx1pgpNAGn0c62sngfS591iD9VS++utJIP2xAOwrXcAV5wqUtGcDYzIzMzPrk/pEAdjJXIFmZmZmVkCf6ALuCkkvAnOB9YCXGhxOX+J8FeecFeecFeN8FeecFeN8Vff+iFi/lg0l3UyWy656KSL268bja9ZvC8ASSdN6qz+9P3C+inPOinPOinG+inPOinG+Wk+f6AI2MzMzs57jAtDMzMysxbRCAXhpowPoY5yv4pyz4pyzYpyv4pyzYpyvFtPvxwCamZmZ2YpaoQXQzMzMzHL6bQEoaT9Jj0maLen0RsfTjCQNk3S7pEclzZL0lbT8fZJulfSP9Pu9jY61mUgaIOkBSTek+85XByQNkfQ7SX9P77UPOWcdk3RK+kw+LOk3ktZ0zpaT9HNJ8yU9nFtWNT+Szkj/Cx6T9InGRN1YVXJ2fvpcPiTpWklDcutaPmf9Xb8sACUNAC4GPgmMBI6UNLKxUTWld4GvRcQIYDfgyylPpwN/iYitgb+k+7bcV4BHc/edr479J3BzRGwL7EiWO+esCkmbAicBYyNiFDAAOALnLO9yoHyutIr5Sce0I4Dt0mN+nP5HtJrLWTlntwKjImIH4HHgDHDOWkW/LACBXYHZEfFkRLwDTAYOanBMTScinouI+9PtN8n+MW9Klqsr0mZXAAc3JMAmJGkosD9wWW6x81WFpPcAewA/A4iIdyLiNZyzzqwKDJS0KrAW2VWPnLMkIu4EXilbXC0/BwGTI2JRRDwFzCb7H9FSKuUsIm6JiHfT3XuBoem2c9YC+msBuCnwdO7+vLTMqpA0HBgN/BXYMCKeg6xIBDZoYGjN5iLg68DS3DLnq7otgBeBX6Ru88skrY1zVlVEPANMAv4JPAe8HhG34Jx1plp+/P+gNscCN6XbzlkL6K8FoCos8+nOVUgaBFwDnBwRbzQ6nmYl6QBgfkRMb3QsfciqwM7ATyJiNLCA1u667FQau3YQsDmwCbC2pM82Nqo+zf8POiHpG2RDgq4qLaqwmXPWz/TXAnAeMCx3fyhZF4qVkbQaWfF3VUT8Pi1+QdLGaf3GwPxGxddkdgcOlDSHbFjB3pKuxPnqyDxgXkT8Nd3/HVlB6JxV9zHgqYh4MSIWA78HPoxz1plq+fH/gw5IOgY4ADgqls8L55y1gP5aAN4HbC1pc0mrkw1mvb7BMTUdSSIbm/VoRPwgt+p64Jh0+xjgD70dWzOKiDMiYmhEDCd7T90WEZ/F+aoqIp4Hnpa0TVq0D/AIzllH/gnsJmmt9Bndh2x8rnPWsWr5uR44QtIakjYHtgb+1oD4mo6k/YDTgAMj4q3cKuesBfTbiaAljScbrzUA+HlEfLexETUfSR8BpgIzWT6m7UyycYBXA5uR/TM6LCLKB1y3NEnjgIkRcYCkdXG+qpK0E9lJM6sDTwJfIPvy6ZxVIek/gE+Tdcs9ABwHDMI5A0DSb4BxwHrAC8BZwHVUyU/q4jyWLJ8nR8RNK++1f6uSszOANYCX02b3RsQJafuWz1l/128LQDMzMzOrrL92AZuZmZlZFS4AzczMzFqMC0AzMzOzFuMC0MzMzKzFuAA0MzMzazEuAM3MzMxajAtAM+tVktaVNCP9PC/pmXS7XdKP6/ScJ0v6XLq9bXq+ByRtWY/nKxDXZElbNzIGM2tNngfQzBpG0tlAe0RMquNzrArcD+wcEe9KOh0YGBFnlW0nsmPi0kr7qVNsewKfjYjje+s5zczALYBm1iQkjZN0Q7p9tqQrJN0iaY6kT0n6vqSZkm5O17BG0hhJd0iaLulPpWvBltkbuD8Vf+OBk4HjJN0uabikR1PL4/3AMEk/kTRN0qx0RY5SfHMkfU/SPWn9zuk5n5B0Qm67UyXdJ+mh0uMlrS3pRkkPSnpY0qfT5lOBj6Ui1cys17gANLNmtSWwP3AQcCVwe0RsDywE9k9F4I+AQyNiDPBzoNIlH3cHpgNExB+BS4ALI2KvtH4b4JcRMToi5gLfiIixwA7AnpJ2yO3r6Yj4EFnhdjlwKLAb8G0ASfuSXTd1V2AnYIykPYD9gGcjYseIGAXcnOJZCswGduxOoszMivK3TjNrVjdFxGJJM8mu6X1zWj4TGE5WuI0Cbs16bxkAPFdhPxsDj3bwPHMj4t7c/cMlfZHs+LgxMBJ4KK27PhfDoIh4E3hT0tuShgD7pp8H0naDyArCqcAkSecBN0TE1NzzzQc2IRWpZma9wQWgmTWrRZC1kklaHMsHLC8lO3YJmJVa5DqyEFizg/ULSjckbQ5MBHaJiFclXV722EW5GBblludjOiciflr+JJLGAOOBcyTdEhHfTqvWTDGamfUadwGbWV/1GLC+pA8BSFpN0nYVtnsU2KrGfb6HrCB8XdKGwCcLxvQn4FhJg1JMm0raQNImwFsRcSUwCdg595gPALMKPo+ZWbe4BdDM+qSIeEfSocAPJQ0mO55dxMrF1E3Ar2rc54OSHkj7eBK4u2BMt0gaAdyTuqXbgc+SFaDnS1oKLAa+BJCKzIURUanr2sysbjwNjJn1e5KuBb4eEf9odCx5kk4B3oiInzU6FjNrLe4CNrNWcDrZCR3N5jXgikYHYWatxy2AZmZmZi3GLYBmZmZmLcYFoJmZmVmLcQFoZmZm1mJcAJqZmZm1GBeAZmZmZi3GBaCZmZlZi3EBaGZmZtZiXACamZmZtZh+ey3gwYPfExus+95Gh9GnLHhnEasNXKPRYTTUuwsWsdZqrZ2Dcm+/+y5rrrVWo8NoKm+/tYA111it0WE0DR87Mu++/S5rrdnan5X+8NnQgNV4z+Ahy+5Pnz79pYhYv3ER1Ue/LQA3WPe9/OOm/2p0GH3Kl371a8Z/5zONDqOh7vjSr5k0vrVzUO47d9zBNydNanQYTeU7p32Jbx47vtFhNA0fOzJ3fOcOJn2ztT8r/eGzMWXaPCYc9aVl9yXNbWA4deMuYDMzM7MW4wLQzMzMrMW4ADQzMzNrMf12DGCzufv+Rzj30mv43wf+zoKFb7Pphusyfo8xXHDasay+et8eMNtdj/31Ma457xoevftRFry6gHXWXYfNRm3GJ7/0ST78qQ83OrweFxFsfvzxzJ0/H4BHLr6YEcOGNTiq5jN8+HDmzp3LxhtvzBNPPMHAgQOZMWMGo0ePBrI8tiofT5ZrteNHXqt9Rvy+71luAewFk2+8kz2PPpMb2u5j2MbrcfRBe7HFsA255Lc389bbixodXkPd9T93cdrup3HvtfeyzvvWYdzR4xj50ZE8+/iz3PnrOxsdXl3cOWvWsuIP4Fe3397AaJrfc889x09+8pNGh9E0fDxZrhWPH5W0wmfE7/ue5xbAOntr4SK+/O2fsmTJUj574DiuOPdkVlklq7uf+OdzrLVm606dsOitRfzkhJ+wdMlSPnrER/nqr77KgFUHALBkyRKeeeyZBkdYH1e2tQEweosteODJJ/n1nXfy3aOPRhLjzjyTOx5+mK9MmMBfH3+cB596ioM++EG+d/TRHPujH/G3xx/noyNH8uuJE3nfOus09oX0Ekmcd955nHDCCY0OpeF8PFmuVY8flfT3z4jf9/XhFsA6u/v+R3jl9TcB+OYJhy970wJsudnGLd1s/cjdj/DmK1lujjzryGUHb4ABAwaw2cjNGhVa3SxavJjf3X03ABcceyzvHTSIufPnc+esWStsd/Ef/8hWG2/MaquuyuSpUxl9yikMXmst1h88mD898AA/+MMfGhF+Qxx22GHMnz+fiy++uNGhNJyPJ8u14vGjmv7+GfH7vj5cANbZ/FdeX3b7/Ztu0MBIms/r85fnZoPhWW6uOP0KDtSBy376mxvuu4/XFixgg8GD2XPUKA7YZRdgeatgyTF7782vvvpVDtltNwA+sMkmXPeNb/C1gw8G4IEnn+zNsBvq05/+NCNHjuT888+nvb290eE0lI8ny7Xi8aOa/v4Z8fu+PlwA1tkG7xu87PbcZ+Z3sGXrGbzB8ty89PRLAIz8yEj2/MyejQqp7kqF3oRdd2WVVVZZVuD9z913s2jx4mXbjRg6FIAha68NwDabbgrAOgMHArDg7bd7K+SGW2WVVTjrrLN48cUX+a//au3J3X08Wa4Vjx/V9PfPiN/39eECsM4+PHoE7x08CIDvXHI1S5cuXbZu7jPzWbz43UaF1nAjdx/JOu/LxrH9zzn/Q0SwywG7cMiphzQ4svp4tb2dP06bBsDPbr0VHXggnzrnHABeX7CAKX/727JtB6yy4kez/H6rOeyww9h+++25+uqrGx1KQ/l4slyrHT86058/I37f14dPAqmztddakx9984t87rSLuPL6NmY+Ppddt9+aZ+e/wq3/O4MX7v4lQ1Yb1OgwG2KNtdbg3y7+N35w1A/4yy/+wpP3P8kHPvgBXvzni40OrS6uvusu3nn3Xd6z1lrstf32y5Y/8vTT/OPZZ302cAckcdZZZ3HooYc2OpSG8vFkuVY7fnSmP39G/L6vDxeAveCoCeMYttF6nHfZ77lnxt959ImnGbrRehx/2L4tf/bSHkfswXpD1+Oa867h7//7d55+5GkGbzCY0Z8Yze6H7t7o8HrUVan7998+8Qm+/4UvLFt+x8MPM+7MM7np/vuXdfXayj71qU+x0047MWPGjEaH0lA+nizXSsePWvTnz4jf9z3PBWAv2WOXUeyxy6hGh9GURn5kJCM/MrLRYdTdneeeW3H5nqNGEddfX3HdRccfz0XHH7/s/uf32YfP77NPXeJrNnPmzFnhviQeeOCBxgTTZHw8Wa5Vjh+VtNpnxO/7ntXaA4vMzMzMWpALQDMzM7MW4wLQzMzMrMW4ADQzMzNrMS4AzczMzFqMIqLRMdSFpDeBxxodRx+zHvBSo4PoQ5yv4pyzYpyv4pyz4pyzjr0/ItZvdBA9rT9PA/NYRIxtdBB9iaRpzlntnK/inLNinK/inLPinLPW5C5gMzMzsxbjAtDMzMysxfTnAvDSRgfQBzlnxThfxTlnxThfxTlnxTlnLajfngRiZmZmZpX15xZAMzMzM6vABaCZmZlZi+l3BaCk/SQ9Jmm2pNMbHU8zkjRM0u2SHpU0S9JX0vL3SbpV0j/S7/c2OtZmImmApAck3ZDuO18dkDRE0u8k/T291z7knHVM0inpM/mwpN9IWtM5W5Gkn0uaL+nh3LKqOZJ0Rvp/8JikTzQm6sapkq/z0+fyIUnXShqSW9fS+Wol/aoAlDQAuBj4JDASOFLSyMZG1ZTeBb4WESOA3YAvpzydDvwlIrYG/pLu23JfAR7N3Xe+OvafwM0RsS2wI1nunLMqJG0KnASMjYhRwADgCJyzcpcD+5Utq5ijdFw7AtguPebH6f9EK7mclfN1KzAqInYAHgfOAOer1fSrAhDYFZgdEU9GxDvAZOCgBsfUdCLiuYi4P91+k+wf86ZkuboibXYFcHBDAmxCkoYC+wOX5RY7X1VIeg+wB/AzgIh4JyJewznrzKrAQEmrAmsBz+KcrSAi7gReKVtcLUcHAZMjYlFEPAXMJvs/0TIq5SsibomId9Pde4Gh6XbL56uV9LcCcFPg6dz9eWmZVSFpODAa+CuwYUQ8B1mRCGzQwNCazUXA14GluWXOV3VbAC8Cv0jd5pdJWhvnrKqIeAaYBPwTeA54PSJuwTmrRbUc+X9C544Fbkq3na8W0t8KQFVY5nluqpA0CLgGODki3mh0PM1K0gHA/IiY3uhY+pBVgZ2Bn0TEaGAB7rrsUBq3dhCwObAJsLakzzY2qj7P/xM6IOkbZEOCriotqrCZ89VP9bcCcB4wLHd/KFkXipWRtBpZ8XdVRPw+LX5B0sZp/cbA/EbF12R2Bw6UNIdsWMHekq7E+erIPGBeRPw13f8dWUHonFX3MeCpiHgxIhYDvwc+jHNWi2o58v+EKiQdAxwAHBXLJwR2vlpIfysA7wO2lrS5pNXJBrNe3+CYmo4kkY3NejQifpBbdT1wTLp9DPCH3o6tGUXEGRExNCKGk72nbouIz+J8VRURzwNPS9omLdoHeATnrCP/BHaTtFb6jO5DNj7XOetctRxdDxwhaQ1JmwNbA39rQHxNRdJ+wGnAgRHxVm6V89VC+t2VQCSNJxuvNQD4eUR8t7ERNR9JHwGmAjNZPqbtTLJxgFcDm5H9MzosIsoHW7c0SeOAiRFxgKR1cb6qkrQT2UkzqwNPAl8g+9LpnFUh6T+AT5N1yz0AHAcMwjlbRtJvgHHAesALwFnAdVTJUermPJYspydHxE0r77X/qpKvM4A1gJfTZvdGxAlp+5bOVyvpdwWgmZmZmXWsv3UBm5mZmVknXACamZmZtRgXgGZmZmYtxgWgmZmZWYtxAWhmZmbWYlwAmlmvkrSupBnp53lJz6Tb7ZJ+XKfnPFnS59LtbdPzPSBpy3o8X4G4JkvaupExmFlr8jQwZtYwks4G2iNiUh2fY1XgfmDniHhX0unAwIg4q2w7kR0Tl1baT51i2xP4bEQc31vPaWYGbgE0syYhaZykG9LtsyVdIekWSXMkfUrS9yXNlHRzupQhksZIukPSdEl/Kl0OrMzewP2p+BsPnAwcJ+l2ScMlPZpaHu8Hhkn6iaRpkmaliZlL8c2R9D1J96T1O6fnfELSCbntTpV0n6SHSo+XtLakGyU9KOlhSZ9Om08FPpaKVDOzXuMC0Mya1ZbA/sBBwJXA7RGxPbAQ2D8VgT8CDo2IMcDPgUpX/tkdmA4QEX8ELgEujIi90vptgF9GxOiImAt8IyLGAjsAe0raIbevpyPiQ2SF2+XAocBuwLcBJO1LdvmsXYGdgDGS9gD2A56NiB0jYhRwc4pnKTAb2LE7iTIzK8rfOs2sWd0UEYslzSS7tOPNaflMYDhZ4TYKuDXrvWUA8FyF/WxMdk3dauZGxL25+4dL+iLZ8XFjYCTwUFpXurb4TGBQRLwJvCnpbUlDgH3TzwNpu0FkBeFUYJKk84AbImJq7vnmA5uQilQzs97gAtDMmtUiyFrJJC2O5QOWl5IduwTMSi1yHVkIrNnB+gWlG5I2ByYCu0TEq5IuL3vsolwMi3LL8zGdExE/LX8SSWOA8cA5km6JiG+nVWumGM3Meo27gM2sr3oMWF/ShwAkrSZpuwrbPQpsVeM+30NWEL4uaUPgkwVj+hNwrKRBKaZNJW0gaRPgrYi4EpgE7Jx7zAeAWQWfx8ysW9wCaGZ9UkS8I+lQ4IeSBpMdzy5i5WLqJuBXNe7zQUkPpH08CdxdMKZbJI0A7knd0u3AZ8kK0PMlLQUWA18CSEXmwoio1HVtZlY3ngbGzPo9SdcCX4+IfzQ6ljxJpwBvRMTPGh2LmbUWdwGbWSs4neyEjmbzGnBFo4Mws9bjFkAzMzOzFuMWQDMzM7MW4wLQzMzMrMW4ADQzMzNrMS4AzczMzFqMC0AzMzOzFvP/AcCe5rLQLls2AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "ann_matrix[5, :] = 0\n", "ann_seg_ind[3][2] = 'N'\n", "ann_seg_ind[6][2] = 'N'\n", "\n", "P, R, F, TP, FP, FN = compute_eval_measures(ann_matrix, chord_max)\n", "\n", "\n", "fig, ax = plt.subplots(2, 2, gridspec_kw={'width_ratios': [1, 0.03], \n", " 'height_ratios': [2, 0.2]}, figsize=(9, 4.5))\n", "\n", "title = 'Evaluation result (N=%d, TP=%d, FP=%d, FN=%d, P=%.3f, R=%.3f, F=%.3f)' % (N_X, TP, FP, FN, P,R,F)\n", "plot_matrix_chord_eval(ann_matrix, chord_max, ax=[ax[0, 0], ax[0, 1]], Fs=1, \n", " title=title, ylabel='Chord', xlabel='Time (frames)', chord_labels=chord_labels)\n", "\n", "libfmp.b.plot_segments(ann_seg_ind, ax=ax[1, 0], time_label='Time (frames)', time_max=N_X,\n", " colors=color_ann, alpha=0.3)\n", "ax[1,1].axis('off')\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ambiguities in Chord Recognition\n", "\n", "In the following, we address some of the most typical challenges one encounters in automated chord recognition. As the discussion of the Beatles example showed, different chords may be closely related by sharing some of their notes. Most of the misclassifications stem from **chord ambiguities** due to an **oversimplification of the chord models** (e.g., when only considering the $24$ major and minor triads). Such ambiguities are illustrated by the following figure.\n", "\n", "\"FMP_C5_F17\"\n", "\n", "The first example shows that the chord $\\mathbf{C}$ shares two notes with the chords $\\mathbf{Am}$, $\\mathbf{Cm}$, and $\\mathbf{Em}$, respectively, while the second example indicates that the chord $\\mathbf{Cmaj7}$ includes the chords $\\mathbf{C}$ and $\\mathbf{Em}$. The misclassification problem may be mitigated by extending the chord label set. For example, besides the major and minor triads, one may also introduce chord templates that correspond to major seventh chords. However, on the downside, increasing the number of possible chords also increases the confusion probability in the classification stage.\n", "\n", "Another challenge stems from acoustic properties of the recorded music. In particular, **acoustic ambiguities** are introduced harmonic partials, which may have a significant influence on the results of a chord recognizer. For example, playing a single note $\\mathrm{C3}$ on an instrument may result in substantial energy in the $\\mathrm{G}$-band (third harmonic) or $\\mathrm{E}$-band (fifth harmonic) in a resulting chromagram representation. This often results in some problem known as **major–minor confusion**.\n", "\n", "Obviously, as discussed in the [FMP notebook on tuning and transposition](../C3/C3S1_TranspositionTuning.html), a deviation from the assumed center frequencies may introduce severe degradations in the quality of musically informed audio features such as chroma-based features. Such **tuning issues** may occur deliberately (e.g., when an orchestra used a different reference tuning), but may also be due to a modification of the playback speed or the application of other postprocessing operations.\n", "\n", "Finally, one may also have to deal with **segmentation ambiguities** that are the result of broken chords. To illustrate this problem, let us consider the beginning of the famous $\\mathrm{C}$ major prelude by Johann Sebastian Bach. \n", "\n", "\"FMP_C5_20a\"\n", "\n", "
\n", "\n", "\n", "\n", "In this example, each half-measure starts with a bass note. Then the other notes join in and gradually build up the sound of an entire chord. Even though the notes are not played simultaneously, a broken chord as a whole may be perceived as a single harmonic unit. As for our basic **frame-level** chord recognition procedure, where we chop up the signal into short frames and classified each frame separately, such broken chords are problematic. In the following code cell, we illustrate the behavior of our chord recognizer showing the results for different window sizes used to compute the input chromagram." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2024-02-15T08:56:04.127056Z", "iopub.status.busy": "2024-02-15T08:56:04.126873Z", "iopub.status.idle": "2024-02-15T08:56:06.739723Z", "shell.execute_reply": "2024-02-15T08:56:06.739147Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ ":79: MatplotlibDeprecationWarning: The 'cmap' parameter to Colorbar has no effect because it is overridden by the mappable; it is deprecated since 3.3 and will be removed two minor releases later.\n", " cbar = plt.colorbar(im, cax=ax[1], cmap=eval_cmap, norm=eval_norm, boundaries=eval_bounds, ticks=eval_ticks)\n", ":79: MatplotlibDeprecationWarning: The 'norm' parameter to Colorbar has no effect because it is overridden by the mappable; it is deprecated since 3.3 and will be removed two minor releases later.\n", " cbar = plt.colorbar(im, cax=ax[1], cmap=eval_cmap, norm=eval_norm, boundaries=eval_bounds, ticks=eval_ticks)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAGoCAYAAADW2lTlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACEDElEQVR4nO2debwdRZn3v78khAQSCJCFJYEACWsQwuaCQCLKQGR1kAFRcUHFV8ZBBwUd3wF9HQQJyrgMyEQHUFZFlEURHQibIiQQCCEsIQQICQkhJGQny/P+UV331D23z13Puefe08/387mf26e6u+p5qqr7PKeq69cyMxzHcRzHcZzi0KfeBjiO4ziO4zjdiweAjuM4juM4BcMDQMdxHMdxnILhAaDjOI7jOE7B8ADQcRzHcRynYHgA6DiO4ziOUzA8AHR6LZIukvSretvRSEhaKWm3VvbPk/TBKpf5TUlTOnnuBEnzq2lPB8rutN1FQtLRkn5Xbzvag6RrJH23Hcc9Kmnf7rDJcWqFB4BOj0bSxyRNywKThZL+KOn99barUTGzQWY2F9r/ZViFMi82s7NqXU616Ul2S9pc0i8kvS3pdUlfbeP4j0l6WdIqSb+TtG2ybydJv5e0VNJ8SWcn+4ZKeljSm5KWSfqbpMPaMO9i4JKuedjjmAx8p95GOE5X8ADQ6bFkX2JXEL5ARgA7A/8FnNiJvPpV1bgq0pNtc3oNFwFjgV2AicDXJR2Td2A2cvUz4BOE62o14bqK/Ap4Kdv3YeBiSROzfSuBzwDDgG2AS4E7KvVhSYcAW5vZI11xrgdyOzBR0g71NsRxOosHgE6PRNLWhF/YXzKz35rZKjNbb2Z3mNnXkkP7S7pO0gpJsyQdnOQxT9L5kp4CVknqJ+mE7LhlkqZK2rvs+K9JeiobGfm5pBHZqOMKSX+RtE1y/K+z0Zblkh5Ip4QkbSfpjmxE5jFJ35X0ULLfJH1J0gvAC1naf0p6NTtnuqTDk+Mvysr7VWbLTEl7SPqGpMXZeUdXqMtPS7oj+TxH0i3J51clHZDYNUbS54EzCIHEyvR84ICsjpZLulnSgArlvizpoGz741ne+2Sfz4rTgkqm8iWNzo47U9IrkpZI+rckz4HZyORbkp4BDikrc++sXZdl7XxClr5rltYn+zxF0uLkvF9JOreCH+dLei2r9+ckHZVj90+yeop/GyRdlO3bUdKtkt6Q9JKkL+eV00U+Cfw/M3vLzGYD/w18qsKxZwB3mNkDZrYS+L/ARyQNljQImAD8R3a9PQn8hhD0YWZrzew5M9sECNhICAS3zSsIOBa4P35Q4IdZn12e9aNx2b7NJU3O2n2RpKskDUzOPVHSjOz6eFFZgJvV7+0KI5ZzJH0uOeciSbeo8j1ivKTHs303AwOSfUMl3Zn1m6WSHoz9x8zWAtOB3GvOcXoDHgA6PZX3Em7Gt7Vx3AnATcAQwq/yn5TtP50wijEE2A24ETiXMILxB8LoRf/k+H8EPgTsARwP/BH4JjCUcL2kX95/JIy6DAceB65P9v0UWAVsD5yZ/ZVzEvBuYJ/s82PAAYQv0xuAX5cFV8cDvyR84T4B/CmzaSdCsPyznDIgfAEfLqmPwojFZsBhAArP+w0CnkpPMLOrM3++n00LH5/sPhU4BtgVeBeVA437CcEEwBHAXODI5PP9OedE3g/sCRwF/LtKgfqFwO7Z3z+Q1KukzYA7gHsIbfLPwPWS9jSzl4C3gfHZ4YcDK5N8c+2RtCdwDnCImQ3OypxXfpyZnZPV06DM9reA32cBwx3Ak4R2Ogo4V9I/5Dkt6YIs4Mj9q3DONsCOWRmRJ4FKz6jtmx5rZi8C7xD6vGK2aRHAuLIynwLWEq65KWa2mHz2A55LPh9NqOs9CNfkPwFvZvsuzdIPAMYQ6uvfs/IOBa4DvpaddwSldrgRmE+og1MII5ZHJWXm3iOy6/53hGtqW+DXhOs/8q9ZvsMIo6HfBNJ3p84G9q/gt+P0eDwAdHoq2wFLzGxDG8c9ZGZ/MLONhBt5+Q35R2b2qpmtIXzZ3GVmfzaz9YTneAYC70uO/7GZLTKz14AHgb+b2RNmto4QjMYAAjP7hZmtyPZdBOwvaWtJfQlfJBea2Wozewa4Nsf275nZ0sw2zOxXZvammW0ws8uBzQlBUORBM/tTVie/JnwxXZL5chMwWtKQ8kKyZ/pWEL5YjyQEjq9J2iv7/GA2otNefmRmC8xsKSG4OaDCcfdTCvgOB76XfD6S1gPAb5vZmmwE6klK7XoqYXRqqZm9CvwoOec9hGD2EjN7x8zuBe4k/AhoskfS9tnn32SfdwW2onkAFdlIaId9JG1mZvOygCkXScMIQcU/m9kThBHKYWb2ncymuYTRudPyzjezS8xsSKW/CsUOyv4vT9KWA4NbOX55WdpyYLCZrQAeBv6vpAGSDiT05S3K7HwXoc4+BjxEZYYQ+l5kfWbXXoDMbLaZLZQk4HPAV7K2XUF49CPW02eBX2TX7iYze83MnpU0ihBwn5+NTs4AphCmtyOV7hHvIfwYuiIb7fwN4UdYausOwC7Z/gfNLA0AV2T+OU6vxANAp6fyJjBUbT8f93qyvRoYUHbOq8n2jsDL8UMW9LxKGGmILEq21+R8HgQgqa+kS7KpqLcpjUYMJQRm/crKTrdz0yT9q6TZ2dTYMmDrLL9Kti3JvtTiZygFA+XE0bg40jWVEIS1FYjlUV7nrZV5eBZw9QVuBg6TNJrg24xOlLEjzevt5WR7R+DVsmD2ZUrtm9bBAzSvg9wg2MzmEEaMLwIWS7pJ0o55BmcjkL8BbjCzm7LkXYAdy0bxvkkYUaoWK7P/WyVpW9E88Co/fquytPT4Mwiju68CVxJGglustM4CrhuBCyRVGgl7iyQQzYLynxBGyBdJulrSVoRrZgtgelJPd2fpAKOAvMB7RyAGjJG0zaHyPWJH4LWyoC7tT5cBc4B7JM2VdEFZ2YOBZRX8dpwejweATk/lb4QpppO6mE96c19A+EIGwvNIhC+W1zqR78cIi1E+SAhmRsdsgTeADcDI5PhRrdmm8Lzf+YQRrm2y0Z7lNJ+K6wox+Dk8246jc60FgFYhvV1kwdNqwrT5A9mX9OvA5wmjMh0ZdYwspHld7pxsLwBGxee0kv2xfe8n+D8h236IMBXeahBsZjeY2fsJfccIU5V5/JgQRH0rSXsVeKlsJG+wmU3Ky0BBWmZlpb8K9r1FqJc0CNsfmFXBzlnpsdljAJsDz2f5vWxmx5nZMDN7N2E0/tEKeUEYRaskHfQUYVo3tfdHZnYQYSp6D8K07hLCj5h9k3raOptSh1CPu+fkvwDYVlI62pm2eWssBHbK7gPpudHOFWb2r2a2G+Hxi6+WTS3vTf6oseP0CjwAdHokZrac8PzPTyWdJGkLSZtJOlbS9zuZ7S3AhyUdlY3W/CuwDvhrJ/IanJ37JmHk4uLE9o3Ab4GLMrv3Ijyk31Z+GwjBYz9J/07LUZqucD9hdehAM5tPmN4+hvDl/kSFcxZR+Yu9I+WeQynAmlr2uaPcAnxD0jaSRhKe84v8nfDc5dezvjKB8MV9E4CZvUAIMj5OCEjfJvj4j5XskbSnpA9I2pzwg2QNYVq4/LgvEALJj5UFto8CbyssJBmYjRyPU1gd2wIL0jKDKv21Ui/XAd/K6mUvwnTqNRWOvR44XtLhkrYkPD/62ziKprCQZrCk/pI+Tnhu7wfZvvdIen+2b6Ck8wmjmX+vUNYfKE37I+kQSe/Orr9VhDrdmNXZfwM/lDQ8O3an5FnJnwOfzq7dPtm+vbLHAP4KfC+bsn4XYbo4fR63En8jXHNfVlgg9hHg0MTW4xQWRInw/OjG7I+sPxwE/Lkd5ThOj8QDQKfHYmY/AL5KGFF5gzAKcA7hGavO5Pcc4cv/x4QRh+OB483snU5kdx1huug14BmgXObiHMLI4OuE545uJASMlfgTYVHJ81m+a8mfNu4UZvY8Yervwezz24RFGQ8n08jl/Jzw7NsydV7I935CcPtAhc8d5duE+nmJsNjjl3FH1o4nEFaeLiFIm3zSzJ4ts+dNM3sl+SwqB8GbEzTslhDacjhhCrec0wnB8oJkxO6bWd0eT3hO8qUsnymEvlFNLiRMkb5M8OkyM7s77szsORzAzGYBZxOCpMWE9vg/SV7/QOgbb2XHHWNmb2T7NidM375J6PuTgA+b2YI8o8zscWC5pHdnSVsRAr23MlvfJDyLC2EEfA7wSPZYxV/InoE1s0eBTwM/JIyM309pNP90wgj8AsJzuheaWZuBWdZfPkJYxPQW4Rnh3yaHjM1sWEkIFv/LzKZm+04Aplby23F6A2r++IPjOLVA0qXA9maWtxrYcRoWBXmi/2NmJ9Xblmoh6e/AZ83s6Xrb4jidxQNAx6kB2TRcf2AmYSXoH4CzzOx39bTLcRzHccCngB2nVgwmTCetIjy3djnw+7pa5DiO4/RYFF7nuFhS7siyAj9SEDx/SkGmKe47RkGofk7OivX88nwE0HEcx3Ecp75IOoLwzOl1ZjYuZ/8kwsK3SYSXCPynmb1bQXv2ecJLDOYT9CxPt6BBWxEfAXQcx3Ecx6kzZvYAsLSVQ04kBIdm4f3aQxTe7nQoMMfM5maLm27Kjm2Vhn0J/eDBg23YsGGwcT39Nw9v+krlnpred5Skbdy4MSY2pfXtE2LkTclIaZ9MZswSmbR0JNU2BRWITZtKahBxb1pen2w7lS1THzUrN7U2PTct7513Wi5i7dO3T4vjot2xDIBNG4ONffv2LaVtainPFusmVbjo06dvst0nNbUZluS3MW4ndvXt17IbxvJSu/om5cW6b1Ynm0La+vWl+oj+90vK2Jj5nJ7bV32bHV++v7lUWKBPn/b9fop59kny2JQz8p7mF9sgr8+mZzblnXNu2o7R/zQtbm+22WZNae+sKy1U7pPVfV6/y/M9PS7mndZnbMu0P6T10C/bvzG9brL96fXQ2pxFsxkNa9lH+iT9af369WF/cn60cdmG1U1pG9aHl9E03R+ALbbYomV5ZXlA8/puuraT/THv9JpUZlFe3mlbbdgYzm3WFqn72YdmbZBdQ6kvsW/E+oDSPWXjptJx8foaMLD0dsJ4/0jvhem1Fv3vk9zjor1p3sq5x+X1oaZ+nNyH8q7NtB6a9ieHNV1ftLzGN9uYHrcx21eyP9Y7lPqlkjaIddzMxqycjcm58T60Wf9Sm27aGMsrfxNftDH8T/tx9HVTUp8bc9pls36btbAh7xqPp6Rpqc803QMSG2J+ze5DG9PssrSc+3+8LyQHpnUX23/zzTcv7c+5hzfZ2Oyyye4BqV1ZHad1+Pycl5aY2TDagaSuTJvOIig8RK628NrN9rITzdUh5mdpeenvpg16RQAoaSPhYfr48vFzzKxV7bZhw4bx3e9+F1YsYPTo0UDzG1PsqOkNdfny5S2O23LLLQFYl3wxDhgQboDpzT0NwtauDe27Zs2aprR4bJp37NBpx47bsdzMfwD69y+9sja9Wb/88svNjkvP37ChdOFGu9PyVq4M2rJbb11SpVi1alWL/JYtWxbK3VAqd4uBpbdDxfLSG0C8cGN9pOWlX0DbbtvyPfKxLYYMGdKUNnhwSes1np+2Xyxn4cKFTWmxnrbbbrumtBUrVrQ4d0jfIc2Oh+b1HdstvfIHDkhf0xuIdZZ+acU2GJAcn9ZJJAYV6f60PqMNaZvG7fTc2H5pnx06NLxQJPqe7h8+fHhTWuxLUKrv5sFzqPe0D8UbeHpctCG1Nfax1Pf0GoltlNoYy0uvh425X5K0KC9up+2c9qEFCxY0sz+18a5FJVWYxYvDa25jnwQYPz68ETDtL7HN0z4b6wFK7Z9eazHvvPpM8473jx13LL2E5K233gKat33qf7QnzWfQoCAl+PbbbzelxXpftKj0opnYD+L1CqV223ff0iuGYz7pvTD2NYDVq1c38z21N23nvD4Uz03tj3mnfTtt30jeD4+0nWPeaXkxn+2Xl3yJ/qfts3RpaYAm9suBAwc2pcU6Tvt50w+L7D6a5r3DDju0SEvtSvt5TE/7cfQ1batYt+n9evsR4Q2Iy98u9ePBg1pe47Et0/vfm2++WdqfBWfp/T+Sdx9K+0as9/T+H6+HNC2tu9j+u+5WkiRdlfmaZ2OzwZic4DHWU2wngIknnJG+AaZNcn90tIPs7TkHd+rkrOi8bFtJb5VeEQACa8zsAIBMGDR9p6jjOI7jOE63kP6Y6AjpD7ROMp/mb0IaSdC/7F8hvVV6SwCYshVBtNNxHMdxHKfbkFTPAPB24BxJNxGmeJeb2UJJbwBjJe1KEGg/jfC60lbpLQHgQEkzgAHADsAH8g6S9HnCe0abTUM4juM4juN0la4EgO3I+0bCu8qHSppPeMPPZgBmdhVBT3YS4Y05qwlvx8HMNkg6h/BGqb7AL7I3/rRKbwkA0yng9wLXSRpnZU9JZw9TXg2w2267ub6N4ziO4zhVpVYBoJmd3sZ+A75UYd8fCAFiu+ktAWATZvY3SUOBYYT3WDqO4ziO49ScWo4Adje9LgDMXrHVl/AS8YoMGDCAPfbYA1YMYsg2Q4Dmq5b65ix/33777Zvti/lA81W+cWVmulIpXY0UByZfe+21prS40ild1RnzjqsR0+NSaYDI5v1LK5nSlXFjx44Fmq+MiyucUrvj/tTnaHe6ImqbbbZpcdyIESPCRrLWaOCA0sq3SFpeWieRWCfpqsC4ki6VLIj2pCsm05VqsY7TMmLZeavm0lWk72QyMVGCA6Dv6par9FIbY5+YP39+C//SFXlxhWBcoQmlfpKudo6rBtMy0vaLq9bSvhhXr82ePZty8uozXVUXV+KlZcTVn+lK3HQ1Y8wntSGutEv7X5TxWbO6JJ3y+uuvA83bIvpUyee4QjBdRRv3p+0cr5e0reJ1NWxYSckh9avcp3Q7b0XfyJEjm7Z32mknoPlq09i+aX5511KzleaZX+k1Eus79S+en9of+3G6mjFep2l56WrNWE56TiwvfRYp5t10jVPqq+k1F/NL73vRp7SPpHUSVwmn13Hsx+mK0dgGad+I5aX3zHitpXWY1nHsQ+kq5+hz3nWa1l1k+y1KPq9bG/pfWofpqt1ob+pLvDZSu2I9LlmypEV5W221VdN2tDv1Oe0b0Zd08iuWk9ZJ7AdpW0Qb0++bmN/q5NqNPqU2pP7Ftk7bKm6nfTZeN2k+cdV7ntJG6lNqTzw2radN2SNead1EG9N7U/QvLS+ukE7btKN4AFhlJJ1MeHXW3mb2bNnuLSQ9A2wNbADONLON5Xk4juM4juPUikYaAexJbwI5HXiIsHqlnEfNbB/gUeB9ZnZXt1rmOI7jOE7hiQFgZ/56Gj0iAJQ0CDgM+CxJACjp+mzkb89sFfDRwF2SzqqLoY7jOI7jFJpGCQB7yhTwScDdZva8pKWSDjSzx83sDEmnEgQObwUuM7OPVsoklYGJz/M5juM4juNUA58Crj6nE15eTPY/XQo9HpgB7Jf9r4iZXW1mB5vZwfEBacdxHMdxnGrhI4BVQtJ2BGHncdlLlvsCJmkq8B/ArsBxBNmXVZI+aGYT62Wv4ziO4zjFpJFGAOseAAKnANeZ2RdigqT7gbeBg4AHzOwwSf8LnGxmb1fIx3Ecx3Ecp2Z4AFhdTgcuKUu7lfAeuzXAk5L6A9sDyyXlycS0QFLQ+Vk/oEkLKNX7itupRlFs1FSPKGpepedGHav03FR3KmpLpbpF/TbLqjp5P0ksL9XIiuWsXVPS2or2L1++vCkt1T+Kml6p5lPMu5mW05ZBJ2nN6pJWU6rl1HRcovkUifmkekppnaxatapFWrQ39S+Wl+rNxbzTc2PdpVp2abtEXbtU+yralpYXNf/69ku0HfsEGzb2K+W9fk3QjoraeOU2Rs2oVEMr9o3Uhrlz5wLN9e2i7lS0GUrtl/qUtlXUoUvTor5Vqi+Zp3246667trAhkmqTxbqN9pXvj3m2dU6s91QjMeqdpXUTr5toX5oflOo47zWOqX7azJkzK+Z9yCGHNKVFrb5U7yvt21HPLfUv1nH/HUvXV98+oe9stXXpeo6+pvUQ2zftQ6kmWewvee0Sdemg9Pxyeo3Hc9M+FPtnqv2X7o/1k5YX+1P6BRbvH+m5MS2tm7id9r+YT2p/XvvF9oF8nbxoV9pWMe+0DvN0IVP/8zRa4/npNRLLTush9sVUbzVqx6Z1oz6lfKIWapp3LDu9tmN95mn6pXnHayk9Lr0HRBvT+/DqNatb2L31kHAP7Ne3dFz0NdUjjfft9JGpWDepDWk95elLRl9T/b54fnqNx++oNO88HcPBW5U0G+N35voNpX4Q/Uq1QGOdNH3XUrp2074Wv1vSftVRPACsEmY2ISftR8nHaQCSZgFLCauEL+oO2xzHcRzHcSI+AtjNJDIxE4Hb8QDQcRzHcZw64AFg93ISOTIx5QelMjDp63ocx3Ecx3G6SiONAPYUGZi2aE0mpgmXgXEcx3Ecp1bU+k0gko6R9JykOZIuyNn/NUkzsr+nJW2UtG22b56kmdm+aW2V1eNHAFuRifm6pU/ZOo7jOI7j1JhajQBK6gv8FPgQMB94TNLtZvZMPMbMLgMuy44/HviKmS1NsploZktoB71hBDDKxOxiZqPNbBTwEvD+OtvlOI7jOE6BqPEI4KHAHDOba2bvEGY8T2zl+NOBGzvrS91HACWNAH4IvAd4C3gH+L6Z3ZYdcjqwraQBBLmYmyjJxDzYSr5h6Xe/fjw982mg+dLzuGQ8XYK/bSbfsDFbsg/5EgJRdiAdgIzL6QGGDBkCNJcRieWkS+fjdmrD4MFh+fucF+eUbHgn2BBlLVK7oPS8Y96y/ChJk26nHfGNN95oYUOUUUmX7+d13vSc5557DsiXLEjlaaINad1FX6LvUKq7VO7gmWeafgQ1lZPWQ7Q7lTmI8hOprbGe0scENq4Mti5cuLApLc0nyjikbRr7RNqvmmREkrRIWg/R/7TN0j4W929I+mJkv/32a1Feales4zS/WE4qpxL7bCpXlMoqRImTPJ/Tc6K0T9qmUcoktSEel9ZN3jW5Zk1JpqhflOtI+lVsy1TSJcqDDB8+vClt1KhRQHNZoLQ+o/9516lU6vtRPimVTBozZkwLGyJPP/1003ba5lEqKq27uJ0nM5VKV8S+OmvWrKa0eA2k9T5s2LAW9qT+xTbNk78atGXpXhF9jfcyKNXNHnvs0cK/tF4fffTRpu3WJEXSdomk13Pss+lxzz4bFMDS+0J6n8qT0InlpdIwsc7SeojXzbzZ81rYkJInX5NKmESZnPQ7IdqTSuTkydzEfpDeC1Mbog9pfcd7eCo/FPNObY3tl6bF49L7QrQ1lQ9Kv0fS+o7EYxcvXtyivNT+PHmvaEPqU1petDf6CaV6SqXR0mu/PO/0+yv6l9ZxR+nCCODQsqnZq83s6uTzTsCryef5wLvzMpK0BXAMcE6SbMA92Wzpz8rybkFdA0CFVvwdcK2ZfSxL2wU4ITnsWOBOM1sr6RDga2b2SLcb6ziO4zhOoeniIpAlZnZwa9nnpFV61O144OGy6d/DzGyBpOHAnyU9a2YPVCqs3lPAHwDeMbOrYoKZvWxmPwaQdB8wk/D830zC+4AfkzSpLtY6juM4jlNYajwFPB8YlXweCSyocOxplE3/mtmC7P9i4DbClHJF6j0FvC/QQs4lYmYTJX0deBF4E/iwmX2tu4xzHMdxHMdJqaEMzGPAWEm7Aq8RgryPlR8kaWvgSODjSdqWQB8zW5FtHw18p7XC6h0ANkPSTwmLO94xs/hOp/GEZ/4mATPaOL9JB3DHHXesnaGO4ziO4xSOWuoAmtkGSecAfyIonvzCzGZJOjvbH2dLTwbuMbNVyekjgNuy5yP7ATeY2d2tlVfvAHAW8I/xg5l9SdJQYJqkswgPN44B9gZ2BhZJmmRmZ+Rllj3weDXAuHHjXCLGcRzHcZyqUkshaDP7A/CHsrSryj5fA1xTljYX2L8jZVXtGUBJ75H0mKSVkt7JxAnfbuO0e4EBkr6YpG0BYGZTCEOY95rZAYSl0XtXCv4cx3Ecx3FqiST69OnTqb+eRjVHAH9CmK/+NXAw8EnC6F1FzMwknQT8MHvW7w1gFXB+dsgRwEOSRgEvd8SYpmHavn2ZO3cu0FwKJJJKA+y1115AvsRAulT/1VfDKu3Vq1envjRtx+Xl6ZL/KAmQSlzstNNOQPMl73H/jCdmNKXF5e9RHgJgu6GlJf9R5iFdJh99PfDAA5vSomRDasOcOXOa2Qcl/1Npg5EjRzbbB82X8sc6TpfyxzpJZSiihMTKVSVflr4ZFjHF+oCSXEAqIfDYY481bUcZgNTuWN+pTMrrr78ONK+b973vfUB+f1i0aFHudqyLVGogle6IRMmCPI3ytN5jm+fJkkCpztI2j+XlyZak5UVJhlTuIco8pMfF9kvLXbCg9LxxlITJk21J+2y0K+0Psez0uonbqbRI2sfyrrXoS1rXsey0L0bZkrSOo61pGel2rIsojZKWt3BT6dqOckBRxgVK9Z6OBEQbUrmitH1j3occckiLtPS4aGNaT7Gcp556qsVxaT8++ODSAsN47aT+lfsEJSmT9H4WfUn7RrQhbYtod1oPzz//fNN2lHBJ5YXGjh3bIu/Y9umXZLQ/7e9/+9vfgOZ9Mq276H9qT+wTaX+JcjlpWpT3eiu7l6V2peQ9XpT6Mnv27Bb7o72pBFBsl7R9RowYATS/76U2RJmql18ufR3G8+M9Gkp9J23TeN3EMtJy4ndaek5ar6lkSswnbat4TppPnhRNlOlJfYp9Iy0jT5YmlVeKfdBoeT9L2zRes2mbxf15Ej/toZFeBVfVKWAzmyOpr5ltBP5H0l/bcc5CQuCYt+830KQVuF7SXPK1Ah3HcRzHcWqOB4AtWS2pPzBD0veBhcCWbZzTJu3UCnQcx3Ecx6kpPgKYzycIq1bOAb5C0LL5x1bPaB+5WoHAj6uQt+M4juM4TrvxALCMLCgDWAN8u1r50oZWYIrLwDiO4ziOUysaaQSwmquAj5P0hKSlkt6WtKIdq4A7U85PJT0p6bHyfWZ2tZkdbGYHpw85O47jOI7jdJUavwmkW6nmFPAVwEeAmZa3BLLzVNQKrGIZjuM4juM4bdITg7nOoGrFatl7e48ys5baGl3LV8AjwDVmdmWWtjPwgJmNrnTeuHHj7De/+Q2sWNBMsiISl4Cny9HjUv4ogZCVBTRfbr540WKguRRGumQ+5plKFWyxxRZASfYBSsv3U2mA2LFSCZJIKmGRLq2P8i6pXELMZ+nS0nui4xL8NO/oQ5pfXCaf5rd4cfA5XTqfygBEuZW0TgYMDPX4zrqWdqd1XJ4HlORW0iX9UbImLSeVwIj2pHbH7bSd12TSP5sn7bNm8ZoW/qVEOYtUViGWl7ZzlJxI/cuT2Yik0geplMS8efOA5rItse6ihAU073eR6HM6Ch7lEFIZkWjXW2+91ZQ2alTpNZSx76e+xO0+yQ1w66z/ppJK0da0v8c2S/tx7LtpeTNmzGhKy5NsiNdSKkcS7UrrK/aNVI4pbYPp06c3KwNKdfLiNiU5mVjHqS9Rsiht+1he2v9SSZtY9jbbbNOivLR/Rime9JqMdZt+8cRy0usw9tM0z9S/KK+R+hJtTNNi3ab3j1jvqRRSXvuk2zHP1O7UnnLSvhjbMk/aJy0jvQfkzfzEvpFKp+RpskU5ksOH796UFtsgvc7SMmI95ckd5fWNtL9vsWWoz/T+GO8B6XF5pG2Vd1+J/SC9duM9PO0j0ca0jmO9bzmoZMP6d0r+5Ukgrd8Q9r+xuCS3Fe9t6XUazxm8Vem+F/NekUhebZXcF+M5cxN5nlg/aTtGX1K7Yj9ZmdxbB+XU7W77v3+6mR3cYkcOw4cPt1NOOaU9h7bgyiuvbHc53UE1RwC/DvxB0v1AU+80sx+052RJG4GZSdJJZjYv0Qp8UtL5wADCO/LOz8nGcRzHcRynZjTKCGA1A8D/AFYSArT+bRybx5rsjR95LCNMLR8l6WFggpmtr3Cs4ziO4zhO1WmkRSDVDAC3NbOjq5gf0DS1PAoYLGkmsAvwmKRvZu/McxzHcRzHqTmNFABW8+V0f5HUlQBwoKQZ2V/TGz7MbCJwNfB/gH8GfmZmB+QFf5I+L2mapGnpsySO4ziO4zjVoJargCUdI+k5SXMkXZCzf4Kk5Um89O/tPbecao4Afgn4uqR3gDg9a2a2VSvnpLQ2BTweuBWYBMyolIGZXU0IFhk3blw1VyI7juM4jlNwajkCKKkv8FPgQ8B8wmzn7Wb2TNmhD5rZcZ08t4lqCkEPbvuojiHpLMKbRcYAewM7A4skTTKzM6pdnuM4juM4TmvUcAr4UGCOmc0FkHQTcCJQMYjryrnVHAFE0gnAEdnHqWZ2Z1fyM7Mpkm4HppjZCZIeNbNDu2yo4ziO4zhOB+niCOBQSamG8dXZzGVkJ+DV5PN84N05+bxX0pPAAuA8M5vVgXObqFoAKOkS4BDg+izpXyS938zanIdugyOAhzKZmBWSZmTpJ5nZvEonmVnQSlq3jn6bZVpV/UvaUXkaWVFnbmWiRxS1ttIGj9pDUcevfH8k1feLuk2p1tvyt5cD8MYbJe2kVavD/m2GlLTCouZRqneV6p1F3al0f9TsSrWvohZc1BmD0ivztku00tZkulKpFtX8+fOb+QGw+YBSfQ7YfECL/bFuU62mqKu1NjluXaZxFjXKAJa+FfTHli9b3sJWKLVfql8VdadSza5UgyrySlYn6bkrFoS23GGHHZrSUr2sqLWVanvFNk/T8ojnpppcsY+l+m/p/qjVmOdfek60Ie2LO++yC9Bcb2/58uXN8k3Pee2115rS0vqKfSzNZ+eddwaa67ANzOxOr6U8fcJI2k/TvCNvvvlmCxvT43bbbTegTIcsuwZSzb/Yf6Pv0Lwvvvrqqy1sjT68vUeiZ5n5l+ryRS28VPMv5p1qO6ZtFa+N1IZoY3pfiNds+hxzbKPx48c3pUX/03tB3n0qbdPYn1555ZWmtHj/Se2O11p6DcR2S+9r2223HdBc2zC1J7ZfvB9Bqb7T+ozbf/3rX5vSovZhqi+51157UU56jcS2Sq/JPL3EeD9L+0a0ay+V/It2p98JabvEfpmWF3U603qP9ZDmE89J/VuzNviyYX2pT6bXS2yP9D4b6ztt+7TfRaLOYXoPiPWe6rfm6ZamNsY6S6+bWO/pfSGWlxJ9Tu2Pddjsfvx26SVieddNLLs1HVQo1Xf6nRdtWLhwYYtz20MXA8AlbegAtvzCgvLH2R4HdjGzlZImAb8Dxrbz3GZUcwRwEnBAFIKWdC3wBNCuANDMWqo1h/TfZPn9u5kNqY6pjuM4juM4HaeGU8DzCaonkZGEUb4mzOztZPsPkv4reztam+eWU9UpYGAIEKXjt27lOMdxHMdxnF5FjWVgHgPGStqV8MKL04CPlZW/PbAoe0nGoQQ1lzcJesmtnltONQPAi4EnMt0+EaZuv1HF/Acm078vmdnJ5QdI+jzweWg+lec4juM4jlMNahUAmtkGSecAfwL6Ar8ws1mSzs72XwWcAnxR0gZgDXCahecAcs9trbyqBICS+gCbgPcQngMUcL6Zvd7qiR2jNZkYoLkMzL777usyMI7jOI7jVI1aC0FnGsd/KEu7Ktn+CfCT9p7bGlUJAM1sk6RzzOwW4PZq5Ok4juM4jtOTaKQ3gVRzCvjPks4DbgaalrSZ2dLKpziO4ziO4/QePABsyWey/19K0gzYrUr5b5k8Awhwk5ldUungPn36hCX8G7fgraVh2X66rD0u70+lN56e9TQAS94oyZGkS/Aj22+/PdB8mX8qjRAlKaJcBZQkTlI5iyj9kEq1xKXw6TOMUZJhl0zeA+DFF19s2o7pS5eWYu1o4zPPlDQgo5REKtcRJQvSeojL6FNph3juO+sT+1eWpCvGjBkDNJcfiOXkyYikUhFxqX4qrxDrK5USeP/h72/aXrc2SAMMGTKkKS0u699pp52a0qI9aXkvvPAC0FwOYd2SkF8qKzBrVunxiVg/o0ePbkqLN4FU+iDKKaR9I/ahtN6jPWn/SqUkRo0a1WJ/7GOp5EssO22/KKuT1l2Ue3jXu97VlBavh0MOOaQpLZVaiPIgaR3HvpHKQsR8UqmPPAmIWLdpf0jrLm7HPpLak0o7ROmUtL9E/+O1l6albZrW54EHHtjChlhPS0aX2iL6Gq+p8rIjeW2fflFEu1MpkDyJoCh1ktbxe979nmBrKr2UnZO2WVrvsbx0f7QtvUby6ikv7ybJmuS6HzBwQAs/02st5pPKycR+lfaX2CfS6yuem9ZNnvRN2n5RMiTtY7GcsWPHNqXFtkxtiG0xZFHpeyISr0eAJ554omk7SmuldRfv+6nMTTxu4Balfrx2zdoWtsb7VSpbkiclFOV3ALbddlugeVvlycVE/1IJoPgdlH5XxbpNr/u0fRcvXhzsX1fqn1FsJG2/eC2mdZNna7yfpWlvJzIw8TsxtSfmmUqVxT6dXpux7qLEG5RkbNL7aEfwEcAczGzXauVVgVVtPQPoOI7jOI5TSzwAzEHS+4DRab5mdl01y3Acx3Ecx6kHPgKYg6RfArsDM4A4Zm1AtQLAgWVTwN8zs5vLbGiSgUnfGuE4juM4jtNVPADM52BgH0sfzqguHZKB2W+//VwGxnEcx3GcquIBYEueBrYHOveCPcdxHMdxnB6MjwAmSLqDMNU7GHhG0qNA09IjMzuhq2U4juM4juPUm0YKANXVGVtJnwNGAA+W7ToSeM3Mft7G+RuBmcBmwAbgWuAKM9tUdpwBTwE7Am8BvzWzCyrlu//++9vdd98NKxY0LXVPl+XH5eOphMAjjzwCwPDhw5vSYkOnUgRxuXpad0Zpe9PGYHqfvon8AkF+IZX6iHICqcTFpszt4cNKNsRyUimFdHl/zDNdRh/zfPzxx5vSogxAKiEwePDgUG4ijxHLGbzV4Ka0Z2c/CzSXu0nrLvWh3O5UFiMuy8+T/5g9e3ZTWpRnSO1KJRtinmm7RNmB1JYou9C3T+mCjfIu6UU8cENL6ZtUriNKEKTyO3lSLrF+Uv+i3VGmBkrSBum56Xb0IU+mIkopQEl6JCXK3KT1HvtLKv8R80ttTaVqYl2k9RTlgFKZhph3KtMQ+1B6zUW5i9dfL70gKC0vXqep3Er0IZXCiHWcJ7Hy3HPPtTg3bcdUJiZKX6TXUryGUhmY2C5pfUaZjrTNYt5pH0plKiKp/FDeNRLPT22N9ZS2d2y3VEbk1VdfbdqO9ZPWcdxO7yXR5/S4KJWRXl/R17T9UhsjqYRVPD+t4yi/kcqDNEmw5EiPpNdA7E+prek9de7cuS3sjv0qbZf0/HJbd1pZaovYfml+8+fPb9qO7ZHuj3WX3itj+6bXQ15aKglWbheU+ssWSb8alNPH8vybOXMmAH37la6bt5eH63j33XdvSov9Ie0j0Sco1WfaF/OkmdLzm/LOvhM3rC+1fWzftF5T8q6heD9I/Yz55AVnsV9A8/td5PBJ/zTdzA7ONaCM3Xff3S699NL2HNqCj370o+0upzuoxhTwicA3zeypNFHSKuBCoNUAkOTZPknDgRuArbNzY14DgXvN7ChJDwMTzKzlncdxHMdxHKdGNNIIYJ+2D2mT0eXBH4CZTSNIwrQbM1tMWMV7jrKfR5LuI4wQjpM0E9gPeEzSpK4a7jiO4ziO0xH69u3bqb+eRjVGAAe0sq/lvGAbmNlcSX2A4cAiM5so6evAi8CbwIfN7Gt556YyMOlUl+M4juM4TlfxEcDmPJY9B9gMSZ8FpncyT5V9Hk/QF9wv+5+LmV1tZgeb2cHpc26O4ziO4zjVoE+fPp36aw+SjpH0nKQ5klqsc5B0hqSnsr+/Sto/2TdP0kxJMyRNa6usaowAngvcJukMSgHfwUB/4OSOZiZpN4KQ9GJJZwHnAGOAvYGdgUWSJpnZGVWw3XEcx3Ecp13UcgRQUl/gp8CHgPmEAbbbzeyZ5LCXgCPN7C1JxxK0j9+d7J9oZkvaU16XA0AzWwS8T9JEYFyWfJeZ3dvRvCQNA64CfpIJSk+RdDswxcxOkPSomR3aVZsdx3Ecx3E6So2ngA8F5pjZ3KysmwgLbZsCQDP7a3L8I8DIzhZWNSFoM7sPuK8Tp8ZXvEUZmF8CP0j2LySM+j0HjJD0VXJkYspZt25dWPq9YkHT8vB0WjhKEaTDslH+JV2+Hpfgp0v14zL4VJoilR5ZtmwZ0FyeIW+J+rBhw4Dm0gepHEQkLq2P+ZaX98YbbwAwaHBJtiXKyaR5x/LSc6P/qdRAtHGzfiWfhw4dCjSvm836l/ZHWZN0eX8klXuIchDrk7RYXpp3lGxI6zBKRaTbsVwoSVKsXbu2KS1KV6TtF+UL0nrou7rlBZ32lzxJkdgeaVqUaEmlBqKMweLFi5vS3nzzTaC5nEran0aPHt3C7uhzXlrq80svvdQi71hPaX+P7ZKmpdIOcTuVgIh9LdoPpXpI5TjiqxjT/GI+qRxO2qbxmoy+Q6ke0+PidZr27VgnqQxM7DvxeoXmbRVlOlLpirg9anTpB3WeZE9syzS/pUuXAs1fQ5leV9GXVKolXg/pfSE+v5z2oehfWl48J/UvzTv6n95TYp2NGTOmKS32nbT9ot1pWvQ/7VfRntSGtD9FH9I6jvUZ+1Lqy9ixY5vS4vWc1nvsG+m5qRRIlPtIJbpieWl/ycsn+jxiu9Et7I99szyfeG2n9654bNpWMe/0fjVixIgWtsa803pPr/co25XWd8w7reNod3pPiddiamsqNxaJ97D0vp1KsQwa3PL+GWXO0us09r88qafUvyhLMziVGEv2x/NXJXlH0rqJ96H4PQetS1SlbdFRuhAADi2bmr06e4NZZCfg1eTzfJqP7pXzWeCPyWcD7slk835WlncLqvkmkE5hZm3V5Boz2xEqy8Q4juM4juPUmi6OAC5pQwew5QgQichwczsmEgLA9yfJh5nZgixW+rOkZ83sgUqFVWMRSLeRJxPjOI7jOI7TXdRQBmY+MCr5PBJYUH6QpHcBU4ATzaxpOsbMFmT/FwO3EaaUK9KrAkAIMjEEu1uOXTuO4ziO49SIOAJYowDwMWCspF0l9QdOA24vK39n4LfAJ8zs+SR9S0mD4zZwNPB0a4XVfQq4k+SO/qU6gPH5CsdxHMdxnGpQy0UgZrZB0jnAn4C+wC/MbJaks7P9VwH/DmwH/Fc2Ebohm1YeQVBkgRDb3WBmd7dWXq8LAFOZmPJ92QOPVwPstddeXXvJseM4juM4Thm1FII2sz8AfyhLuyrZPgs4K+e8ucD+5emt0asCwByZGMdxHMdxnG6hkd4E0hsCwLZkYhzHcRzHcboFDwCriKTtgSuAQ4B1wDzgXDN73sz6SroR+AZwEvB6WxqAEPSIHn/8cVixoEn3J9Xk6r950BlKdet22GEHoLn2XNSgSrWM8tJSzaeokZZqpUUNplRPKeaT6qxFfaSoGwgl3aJUOynVaJo/fz7QXOsoaiLtsssuTWlRnytdQL1kyZIWPsfB1VR/K2ripVp2qf+b9Y/1ub4pLV4keRp1mw8oaZz13yycm9ZN1K9KNcVS/2JdpDpzr7/+OgAvvvhiU1rcn16wsT6jRhTAoD7huAULWiy4AkqaZGm7RHvT+ox9LG2fqGm4Pqmb7bffvkUZqa5WrLO0vFhOWiexvFTbK/qV1k20Jy+/9HnZqKMGpbZO+0Esb/fdd29Ki36l7Rf7UOpT1N3bKtH7Su2J5aRtlafDWe5T6uuoUaUFdLGc1P68toq6Z1DST1sysHStRQ3MlGhP3jWSlpFeszHvZ599tikt6rql11I8J/UvapulbR91zNL6nDFjRtN2rNs8LcJUHy7akKaVH5/6te+++7ZIS7XX0n4e+3HaD+J1mrZ9tNE2lSZ2+m0W6iRt+9g38vTtoFQ/ad7xnLRfxb6aak7GtLUz5zWlvfLKKy1sSOsk+prqBMbrPe0bsezZs2c3pUVNvPT+GG1I6yutz3ifTu9dGzeFunh1fkk+bv074ZwNGxMtvy1a3q+iX6+99lpTWtR5TOs47362cG1JzzO2X2p3vAekmq9RpzKtz3jPTdssLTteD2k/j98z6URgvO+n97DYH6LNadlpHXYEHwGsIpmcy23AtWZ2WpZ2AOGBxrjCZVczmyfpSMKr4RzHcRzHcboVDwCry0RgfdlDjjMAJF0PjAd2yKaBxwJ3SfqJmU2pg62O4ziO4xQYDwCrxzhget4OMztD0qkEYcRbgcvM7KOVMkplYNIhX8dxHMdxnK7iI4Ddy3jgL8B+wIzWDkxlYHbeeWdfJew4juM4TlXxALB6zAJOKU+UNAm4GNgVOA4YBqyS9EEzm9i9JjqO4ziOU3QaaQSwJ7wK7l5gc0mfiwmSDgFWAQcBT5vZfoRAcbwHf47jOI7j1IMavwquW6n7CKCZmaSTgSskXQCsJZOBIUz/Ppm9E28L4OosOGwmFZOX74YNG4IMy4o3Wb16NVCSRoGS9EoqqzBu3DiguSRDXHafLumPkhtRpgDgnXUlGZW4hD2VFImNn5Y3cuRIoLm8SSxv+PDSq47zpBtSX15++WUAXnn1laa0pUuXtsi73BYoSRFEaQYoScOkMjZR+iGVi0nt2XHHHVv4F+UL0uX2UbImTYv1HfNIyxk0uCTxMGpkSeIjSgPEtk3tnTNnTlNalAlI7dp3XPBFyRsFB6wPMgZvvfVWU1qUQ0jTd9pppxZ2RzkOKEkVpHUcJSLSPhTtSeswLS/STO4hOzaVLYl1nNoQ2zyVjygvF0rSDqlUSdqvoj1pP4jP1qY2RAmkVG4kXiOpT9H/VM4hlXGIdZYnSZS2S7we0us0Smmk/T2V64ik8hPxnLy2mvNiy/LyJInS9om2pvnltUEqmRLtSeshbqftEvt5lGyBUn2mfSiVwYnpabvEc1LZklheKkcV2zSVDIl+pXUY6yTtIwM2L5UX+1hqY+wbqWRIeblQur+uWV3q21sPCeem/T3tL1GyJ22DaGPefS+VHon9Yf4rpftorJM8SZ40Pe0HUVombftYxy/MeaEpbdPG0BZpP433/fRekfoX+0SebFC850Ppu2fgFqU63mnHnVr4EmVn0vaL1+ySN5c0pfXtU6q7WMepf9HeVHYs9rG0rWLeqfRNJO3baR/LyzvWZ1o38+bNa1YulPrYzjvv3OK49D7UUXpiMNcZ6h4AApjZAuDUCrunqXQXmtqKVIzjOI7jOE7NaKQp4B4RALaDilIxjuM4juM43UEjBYA94RnA9lBRKiZF0uclTZM0LZ0adBzHcRzHqQa1fAZQ0jGSnpM0J3ssrny/JP0o2/+UpAPbe245vWUEsF2kMjA77rijy8A4juM4jlM1ajkCKKkv8FPgQ8B84DFJt5vZM8lhxxJeijEWeDdwJfDudp7bjN4SAOZKxTiO4ziO43QnNZwCPhSYY2ZzASTdBJwIpEHcicB1FlbCPCJpiKQdgNHtOLcZvWUKOFcqJns3sOM4juM4Ts2psQzMTsCryef5WVp7jmnPuc3oFSOAbUjF5LJw4cIl3/72t1cBSyod05LbumRnD2ToxT+6pgP+NxRD6VDbNxxF9r/IvoP7X2T/i+w7dN7/Xdo+JDB9+vQ/9enTZ2gnygAYIGla8vnq7NG1iMpPAMofZ6t0THvObUavCAChTamYvOOHSZpmZgfX0KweTZH9L7LvUGz/i+w7uP9F9r/IvkP3+G9mx9Qw+/nAqOTzSGBBO4/p345zm9FbpoAdx3Ecx3EamceAsZJ2zV6AcRpwe9kxtwOfzFYDvwdYbmYL23luM3rNCKDjOI7jOE6jYmYbJJ0D/AnoC/zCzGZJOjvbfxXwB2ASMAdYDXy6tXNbK6/RA8Cr2z6koSmy/0X2HYrtf5F9B/e/yP4X2XdoAP/N7A+EIC9NS1+CYcCX2ntuayh9B6XjOI7jOI7T+PgzgI7jOI7jOAWjYQPAjr4SpTcjaZSk+yTNljRL0r9k6RdJek3SjOxvUr1trRWS5kmamfk5LUvbVtKfJb2Q/d+m3nZWG0l7Ju07Q9Lbks5t5LaX9AtJiyU9naRVbGtJ38juA89J+of6WF09Kvh/maRns1dD3SZpSJY+WtKapB9cVTHjXkAF3yv29YK0/c2J7/MkzcjSG63tK33PFebarzYNOQWs8EqU50leiQKc3torUXozCirgO5jZ45IGE96bfBJBNmelmU2up33dgaR5wMFmtiRJ+z6w1MwuyX4EbGNm59fLxlqT9fvXCK8H+jQN2vaSjgBWEtTwx2VpuW0taR/gRoLC/o7AX4A9zGxjnczvMhX8Pxq4N3sQ/FKAzP/RwJ3xuN5OBd8vIqevF6Xty/ZfTlgV+p0GbPtK33OfoiDXfrVp1BHAptepmNk7QHwlSkNiZgvN7PFsewUwmzYUwAvCicC12fa1hJtFI3MU8KKZvVxvQ2qJmT0ALC1LrtTWJwI3mdk6M3uJsHLu0O6ws1bk+W9m95jZhuzjIwQNsIajQttXohBtH5Ekwo/+G7vVqG6ile+5wlz71aZRA8AOvxKlUch+9Y0H/p4lnZNNC/2iEadAEwy4R9J0SZ/P0kZk+khk/4fXzbru4TSa3/yL0vZQua2LeC/4DPDH5POukp6QdL+kw+tlVI3J6+tFa/vDgUVm9kKS1pBtX/Y959d+J2nUALDDr0RpBCQNAm4FzjWzt4Ergd2BA4CFwOX1s67mHGZmBwLHAl/KpkoKg4Lw5wnAr7OkIrV9axTqXiDp34ANwPVZ0kJgZzMbD3wVuEHSVvWyr0ZU6uuFanvgdJr/AGzIts/5nqt4aE5aI7d/h2nUALA9r1NpKCRtRrgorjez3wKY2SIz22hmm4D/poGHv7NXBWJmiwkvdT4UWJQ9NxKfH1lcPwtrzrHA42a2CIrV9hmV2row9wJJZwLHAWdkWmFk019vZtvTgReBPepnZfVppa8Xqe37AR8Bbo5pjdj2ed9z+LXfaRo1AOzwK1F6M9mzHz8HZpvZD5L0HZLDTgaeLj+3EZC0ZfZQMJK2BI4m+Ho7cGZ22JnA7+tjYbfQ7Nd/Udo+oVJb3w6cJmlzSbsCY4FH62BfTZF0DHA+cIKZrU7Sh2WLg5C0G8H/ufWxsja00tcL0fYZHwSeNbP5MaHR2r7S9xwFv/a7QkO+CaQzr0Tp5RwGfAKYGSUAgG8Cp0s6gDDsPQ/4Qj2M6wZGALeF+wP9gBvM7G5JjwG3SPos8Arw0TraWDMkbUFY8Z627/cbte0l3QhMAIZKmg9cCFxCTltnr1G6BXiGMDX6pd6+CrCC/98ANgf+nF0Hj5jZ2cARwHckbQA2AmebWXsXUfQ4Kvg+Ia+vF6XtzezntHz+Fxqs7an8PVeYa7/aNKQMjOM4juM4jlOZRp0CdhzHcRzHcSrgAaDjOI7jOE7B8ADQcRzHcRynYHgA6DiO4ziOUzA8AHQcx3EcxykYHgA6juM4juMUDA8AHcdxHMdxCoYHgI7jOI7jOAXDA0DHcRzHcZyC4QGg4ziO4zhOwfAA0HEcx3Ecp2B4AOg4juM4jlMwPAB0uhVJUyWdVaO8vylpSi3y7g4kTZA0v4PnbC7pGUnb18oux3F6Ftl1/6yk4fW2xem9eADo5CJpnqQ1klYmfz+pt12RvGDJzC42s5oEl/Uga4MPtnHY54EHzOz17JxrJJmkQ5N8xkiyTpQ/WdILklZkXzafLNt/gKTpklZn/w8o27+bpDuz85dI+n47yjwj6W9rJG1K+2B2TNo3F0n6H0mDOujbqZL+mtk+NWe/SVqVlD0l2fcpSRvLro0J7Sx3QrlPku7I9l0kaX2Wtiyz770d9Csv/zPb63cbeaf2xb+vZ/umSloraVRy/AclzetIGWV5xTKeK9t/VNYfV0u6T9IuHci7vF2XdcK+dpdfVlcrs37z42zf6MyedP//zcmjf1Ze0/3OzNYBvwDO76j9jhPxANBpjePNbFDyd069DeoJSOpXbxsSvgD8sixtKfDdKuS9Cjge2Bo4E/hPSe+D8KUE/B74FbANcC3w+yw97v8zcC+wPTAyO7ZVzOz62N+AY4EFaR9MDj0++3wgcAjwrQ76thS4AriklWP2T8ou/2Hxt7JrY2oHyl5Qdu7xyb6bM7+GAQ8Bv5WkDuSdl/+1yb72+N0aN5flnQb1q4AWAUwnOScpY8+YKGko8NusnG2BacDNHcw7bdchHTmxo+WX9d0RwBrg12WHDUmO+3852XwNWJyTfgNwpqTNO+KD40Q8AHQ6hMLUwzJJ45K0YdmIzHBJ22SjPm9IeivbHlkhr4sk/Sr5HH8R98s+f1rSbIURpLmSvpClbwn8Edgx+eW8Y05+J0ialdk7VdLeyb55ks6T9JSk5ZJuljSggp2fkvSwpB9KWgpclNXDZEmvKIxCXSVpYHb80MzvZZKWSnpQUp9sn0kak+R9jaQWwZqkXwI7A3ekIy1lx+wM7A78vWzXtcC7JB2Z5097MbMLzexZM9tkZn8HHgTiiNQEoB9whZmtM7MfAQI+kO3/FCEQ+YGZrTKztWb2VFfsqWDja4S+MK6tY8vO+4uZ3QIsqLZN1cDM1hPacXtguyrmW0u/fwScnvbvGvARYJaZ/drM1gIXAftL2quGZVar/FMIgdyD7S1M0q7Ax4Hvle8zs/nAW8B72puf46R4AOh0iGzq4bfA6UnyqcD9ZraY0Kf+B9iFEMCsATo7dbwYOA7YCvg08ENJB5rZKlqODjX7QpO0B3AjcC5hNOUPhGCqf5ndxwC7Au8iBC2VeDcwFxgO/AdwKbAHcAAwBtgJ+Pfs2H8F5mfljgC+CXRoCtbMPgG8QmkUNm/6dD9grpltKEtfDVyc2dkCSf+VBad5f7lBWhbcHgLMypL2BZ4ys9Svp7J0CF9K8yT9UWH6d6qk/drheodQmHKcBDzRWd9a4QFJr0v6raTRZfvGZ349L+n/VntUOBvV+RQw38yWSHp/K34tk/T+5PTh2Y+Sl7IfLVtW07ZWeA34b0JQ1ILkR1He351lh38vq9+H1Xx6fV/gyfghuxe8SKnfdQpJO7dRvx+rQvlnAteVXTMAL0uar/Aow9CyfT8m3D/WVMhzNrB/O8p2nBZ4AOi0xu/KboKfy9JvoHkA+LEsDTN708xuNbPVZraCEIR0aiTKzO4ysxctcD9wD3B4O0//J+AuM/tzNpoyGRgIvC855kdmtsDMlgJ3EIK5Siwwsx9nwdZa4HPAV8xsaebnxcBp2bHrgR2AXcxsvZk9mHPTrwZDgBUV9v0M2FnSseU7zOz/mNmQCn/vqpDfVYQvvj9lnwcBy8uOWQ4MzrZHEurjR8COwF0kU8RV4HcKz289BNxPqP/O+pbHkcBoYC/CaNmdSZD3AGHEcTjwj4Rr4WsdyHvHsuvq1GTfqZlfrwIHASdlfj3Uil9DzOyh7PxnCf14B8Jo7EHADzpgW1ucWmb7jmX7vwccL6lFQGRmx7Vi/3HJoecDuxF+VF1N+OG2e7avrX7XHh5P7P9RZtsrbdTvDV0pPxutP5IwqhtZQvhRtQuhnQYD1yfnnAz0M7PbWsl6BeE+4DgdxgNApzVOKrsJ/neWfi8wUNK7FR6APgC4DUDSFpJ+JullSW8TviyHSOrb0cIlHSvpkWwadRlhpKf8F3IldgRejh/MbBPhS3Wn5JjXk+3VhJt7JV5NtocBWwDT4xcJcHeWDnAZMAe4R2Hq+oJ22txR3qLCF082Uvv/sr+OPkPWDEmXEQKeU5NAdiVhZDZlK0oB6RrgITP7o5m9QwjAtwP2pjrEvrlLFvRVGiHpFGb2gJm9Y2bLgH8hjBLvne2ba2YvZVPjM4HvEKb32suCsuvqlmTfLVnacDP7gJlN76Ddr5vZM5ltLwFf76BtbXFLme3NRt7N7A3CiP93OluAmf3dzFZYeLTgWuBhwrUPbfe79nBgYv+XO2heZ8v/JOF6eCkmmNlKM5tmZhvMbBFwDnC0pK2yUdvvA//cRr6DgWUdccBxIh4AOh0mC6ZuIYx8fAy4MxsFgzD9uSfwbjPbCjgiS88LQlYRAqlIk5RJNgV2KyFwGGHhYe0/JPm0NaK2gPDLOuYnYBRhmqozpOUtIQQ4+yZfJFtbtkgh+/L6VzPbjbCI4quSjsrOXU0Fn9soM4+ngN1amX78H8ICjpPTRIXnFctXJ8a/WWXHfpsw3X60mb2d7JpFeM4wbdd3UZoifqod9ledjvjWQYzKgXRr+6qCpMNb8WulpEoj4zW3LYfLgImEUa0mFB4HqGT/H1vJL/VhFsmUZxYo7U6p33WKbAq4tfo9o4vlf5Lmo395xOtFwFjCCPSDkl4nPHazg8IjCaOTc/YmmZJ2nI7gAaDTWW4gTLOekW1HBhOCo2WStgUubCWPGcAR2c13a+Abyb7+wObAG8CGbCrz6GT/ImC77Lw8bgE+rCDZsBkhMF0H/LWd/lUkC4D/m/BM4nAASTtJ+ods+zgF6RUBbwMbs7/o88ck9ZV0DK1Pjy8iTIVVsmM+8AJwaIX9GwjPY51fln62NV/Jmf41Td1J+gYhwP+Qmb1Zlv3UzKcvKyyIiSvE783+/wp4j4IUSF/Cs5hLCM8sxcUv17Tie6fogG99FRb99AP6SBqQ9RMk7asgcdNXQV7mcsIPh2j7sZJGZNt7EVaE/j7Ju+q+WXiMoJJfg8zswazsCdn1JIXnIy8ps62i39n+eZI+1UVblxHq7Otl6ce2Yv+xWflDJP1DZle/LPA6gtKjB7cB4yT9Y+bHvxOeRX02O/9T6oT0TDYF3Fr9xqnZVsvPQ2Hl/E6Urf5VmEHZU1IfSdsRHpeYambLgacJP1gPyP7OItwPDiCbjZC0E2El8iMd9ddxwANAp3XiCtT41/QsioVVoasIU63pr/crCM/aLSHcmO6ulLmZ/ZkgofAUMB24M9m3AvgyIZB7ixCI3J7sf5awyGOucp5FMrPnCKvnfpzZcjxhQcU7HayDSpxPmOZ9RGGq+y+EkU8Iv97/Qpgu+hvwX1aSCfmXzJZlhOD5d62U8T3gW5l/51U45mfAJ1rJ40ZgYRu+VOJiwkKeF5I+8E2ArB5PIoxsLAM+Q5iWfSfbH+v/KkL7nQickNT/KMLUXr34BOGHypWE50rXEIJ6CAt3biYE73MJIzHHWXiWFOAo4ClJqwij0r8lewYxo56+HUjoc6sIP3aeJlxHkYp+KzyfuR3VCSj+k9KPno6wGUHC6A3CdfvPhH71HDRNMf8j4dnitwiLs05Lzq9p3bdVvoIYfflo5pnAb5NZkshuhPvjCkI7rSN7tjqbFn49/hHkezZln2O9fgy41sLjHo7TYWQ1eTbdcZzuQGGq/AngKDPrbKDXrWSBxpPAu5KgqiHozb4prCT+kpmd3ubBPRRJ9wD/Ymaz621LLcmu+yeBIyyoLzhOh/EA0HEcx3Ecp2D4FLDjOI7jOE7B8ADQcRzHcRynYHgA6DiO4ziOUzB60kvtq8rQoUNt2LBhbLlld70FqeexatWqwvpfZN+h2P5X3fc5c1qmjanl6267Rre2faybWtRHJ+vd+34xfYfO+z99+vQlZjas7SPD+9w7XECJP5nZMV04v6rUNQCUtBGYSRC+3AicY2Zd1mkDGD16NJMnT2bChAnVyK5XMnXq1ML6X2Tfodj+V933449vmXbHHdXLv8p0a9vHuqlFfXSy3r3vT6i3GXWjs/5Lernto6pCe99k1S3UewRwjZkdAJCJ6H6PTr431nEcx3Ecx2kfPekZwK0IwppRzf5+SbdIel7SJZLOkPSopJkqvRjccRzHcRzH6SB11QFMpoAHADsAHzCz6ZImEN6QsDdBAX0uMMXMLpT0L8CuZnZuTn6fBz4PMGLEiIOmTJnCoEGDusGTnsnKlSsL63+RfYdi+19133vZM4Dd2vY98BlA7/vF9B067//EiROnm9nB7Tm2i88Atruc7qAnTQG/F7hO0rhs32PxzQaSXgTuydJnEl403gIzuxq4GuDggw+2QYMG+fMQBfW/yL5Dsf2vuu+XX94yzZ8BDMS6qUV9dLLeve9PqLcZdaPo/neUHjMFbGZ/IzwgGVfipO833JR83kT9A1fHcRzHcZxeS48JpCTtBfQF3qy3LY7jOE304NG+ulPLuvF6d5yaUvMRQEknS7IswCtnC0nPSHoN+BNwppltrLVNjuM4juM4RaY7poBPBx4CTsvZ96iZ7QM8CrzPzO4CMLOpZnZcPMjMJpjZtLx9juM4juM4TseoaQAoaRBwGPBZkgBQ0vWSngH2lDQDOBq4S9JZ2f55ki6W9DdJ0yQdKOlPkl6UdHYtbXYcx3Ecx2l0aioDI+njwEQz+6ykvxLe9PF4tu9UYBRwK3CZmX00OW8ecKmZXSnph8BRhEByADDLzIZXKM9lYBKKLAlQZN+h2P4X2Xdw/4vsf5F9B5eB6Si1XgRyOnBFtn1T9vnx7PN44C/AfsCMnHNvz/7PBAaZ2QpghaS1koaY2bLyE1wGpjlFXhJfZN+h2P4X2Xdw/4vsf5F9B/e/o9QsAJS0HfABYFwWMfcFTNJU4D+AXYHjCLIvqyR90MxSfb9U9qVcEqbHrF52HMdxHMfpbdQykDoFuM7MvhATJN0PvA0cBDxgZodJ+l/gZDN7u4a2OE73kPcC+0iRZC28HhzHcXo0tVwEcjpwW1narcDHCNO/T0rqD2wGHNWKVIzjOI7jOI5TRWo2AmhmE3LSfpR8nJb9P0LSLZSkYi4ys9HJOdcA1ySfm/Y5juM4juM4Hafur4LLk4qRNEHS/ZJukfS8pEsknSHpUUkzJe1eV6Mdx3Ecx3F6MTWVgWmXATlSMcBWwO+AvYGlwFxgipldKOlfgF3N7NycvFwGJqHIkgB1833OnMr7xozpNjPq3vZ1rIe6+15n3P/i+l9k38FlYDpKT1hNmycVcxfwmJktBJD0InBPdsxMYCI5uAxMc4q8JL5uvl9+eeV93bj4oe5tX8d6qLvvdcb9L67/RfYderf/mXLK/2Yftwc2Am9kn/cHniTEbLMJr81d3dUy6xoAVpKKAf5AS+mXVBamJwSujuM4juM4XcbM3gQOAJB0EbDSzCZnn1eaWdx3PXA28IOullnvZwCjVMwuZjbazEYBLwHvr7NdjuM4juM4PY0Hgao8R1PTkTRJI4AfAu8B3gLeAb5vZlEe5nRgW0kDgEsIU8C3Al8EXqylbY5TE1zjLuD14DiOU85QSdOSz1dnj661C0n9gGOBu6thTC3fBCLCQo5rzexjWdouwAnJYccCd5rZWkmHAF8zs0eAVC6mmaSMmU0FptbKbsdxHMdxnBqwpJOLQAZKmpFtPwj8vBrG1HIK+APAO2Z2VUwws5fN7McAku4jLOgYJ2km4Z3Aj0malO1fKelSSdMl/UXSoZKmSpor6YSc8hzHcRzHcRqNNWZ2QPb3z2b2TjUyreUU8L7A45V2mtlESV8nTPW+CXzYzL6WHLIlMNXMzpd0G/Bd4EPAPsC1wO01s9xxHMdxHKeB6bbVtJJ+Sljc8Y6ZHZIljyc88zcJmFF2yjuU5rlnAuvMbH02Wji6QhmpDiArV65k6tSpVfSid1Fk/4vsOxTb/yL7Du5/kf0vsu/g/neUWgaAs4B/jB/M7EuShgLTJJ1FEHweQxB73hlYJGmSmZ2RnbLeSirVTTIwZrYpexCyBa4D2JzerInUVYrsOxTb/yL7Du5/kf0vsu/QOP6b2UVln2ui7l3LZwDvBQZI+mKStgWAmU0BjgbuzbRt5pjZ3knw5ziO4ziO49SImo0AmplJOgn4Yfas3xvAKuD87JAjgIckjQJerpUdjtNjOP740naUSclLq2V5taS7y3NaJ7aHt4XjODnU9BnA7FVup1XY95tEJ/AgSdNJdALTIc/uGg51HMdxHMcpAnV7E0iiE/iAme1mZgcRgsWR9bLJcRzHcRynCNTznbq5OoHAjyV9CjiJ8G7gccDlQH/gE4TFIJPMbGl3G+w4juM4jtMIqLTQtpsLlr4M7GpmX8nZ9yngWwSZmAHAHOB8M7tK0g+Bl83sipzzUhmYg6ZMmcKgQcWdLV65cmVh/e+Rvs+ZU9oeM6ZyWhVYuXIlg15/vSZ5V6RGvnSUHtn23UiT/7E96tgW9aDI7V9k36Hz/k+cOHF6e9/QIakrQVO7y+kO6jkC2IxUJxD4KXCfma0AVkhaDsQnmWcC78rLw2VgmtMoS+I7Q4/0/fLLS9vxwfy8tCowdepUJvz+9zXJuyI18qWj9Mi270aa/I/tUbBFIEVu/yL7Du5/R6nbM4AEncAD4wcz+xJwFDAsS1qXHLsp+byJHhS4Oo7jOI7j9DbqGUjdC1ws6YtmdmWWtkUd7XGc2pI3ElPL0ZnuHvkp2EhTj8fbw3GcVqh5AChpI2HaNnKSmc1LdAKflHQ+4Vm/1wg6gQNrbZfjOI7jOE5R6Y4RwDXZ2z7yWAbMNLOjJD0MTDCz9dm+a+JBZjY62b4m3ec4juM4juN0jHrqAN5HGBkcJ2kmsB/wmKRJ2f6Vki6VNF3SXyQdKmmqpLmSTqiX3Y7jOI7jOL2dmsvAlE0Bv2RmJyf7vg68CLwJfNjMvpbsM4Le3x8l3QZsCXwY2Ae4Nm9U0WVgmlNkSYAi+w7F9r/IvoP7X2T/i+w7uAxMR6n3FPB44FZgEjCjbN87wN3Z9kxgnZmtz0YLR+dl5jIwzSnykvgi+w7F9r/IvoP7X2T/i+w7uP8dpS6rgCWdBZwDjAH2BnYGFkmaZGZnZIett9LwZJMMjJltkuQyMI7jOI7jOJ2kLoGUmU2RdDswxcxOkPSomR1aD1scx0k4/vjStsuIOI7jNCz1HEk7AnhI0ijgEEkzkn0n1cUix3Ecx3GcChw0ZgzTfvjDTp2r9Ad2D6DmAaCZ5T6RaWa/iduSVuU8JzgoOfai9uTpOI7jOI7jtE2PfZZO0qcII4F9gXHA5UB/4BOE5wEnmdnSetnnOI7jOI7TW6m5DEy7jMiRiskCwG8RVgoPAOYA55vZVZJ+CLxsZleU5eMyMAlFlgQosu/QBf/nzCltjxlTPYO6EW9797+o/hfZd+geGZiDx461LkwBF04Gpj1Ukoq5z8xWACskLQfiU+kzgXeVH+wyMM0p8pL4IvsOXfD/8stL2710EYi3vftfVP+L7Du4/x2lbm8CaSfrku1NyedN9Jzg1XEcx3Ecp1fhQZTjOCV66aif4ziO0zHqPgKYPf83UNKM7O+CetvkOI7jOI7TyPSEEcA1ebIuZnYNcE3yeXSlfY7jOI7jOE77qfsIYCUkzZN0saS/SZom6UBJf5L0oqSz622f4ziO4zhOb6XuMjBlEjAA3zOzmyXNAy41sysz2ZejgMMIkjCzzGx4Tl4uA5NQZEmAIvsOxfa/yL6D+19k/4vsO7gMTEfpKVPAB1TYd3v2fyYwKJGEWStpiJktSw92GZjmFHlJfJF9h2L7X2Tfwf0vsv9F9h3c/47SY6eAM1LZl3JJmJ4QvDqO4ziO4/Q6enoA6DiO4ziO41SZmgWAkjZmsi6zJD0p6auS8srbMtv/hqTnJV1SK5scx3Ecx3Gc2k6jNj3bJ2k4cAOwNXBhPEDSQOBeMztK0sPABDNbD63LvqT7HMdxHMdxnI7RLVPAZraYsDr3HEkCkHQfYXHHOEkzgf2AxyRNyvavlHSppOmS/iLpUElTJc2VdEJ32O04juM4jtOI1EwGRtLKcoFnSW8Be5nZouzz14EXgTeBD5vZ15JjDZhkZn+UdBuwJfBhYB/g2ryVwy4D05wiSwIU2Xcotv9F9h3c/yL7X2TfwWVgOkp3r6RV2efxwK3AJGBG2b53gLuz7ZnAOjNbn40Wjs7L3GVgmlPkJfFF9h2K7X+RfQf3v8j+F9l36P3+5+gin0SId+4DTjCzO7Lj7gQmm9nUrpTXbQGgpN2AjcBiSWcB5wBjgL2BnYFFkiaZ2RnZKeutNDzZJANjZpskuQSM4ziO4ziNRAtdZEmjgfnAvwF3VLOwbnkGUNIw4CrgJxaYAhxNWAByADDHzPZOgj/HcRzHcRwHngSWS/pQNTOt5UjaQEkzgM2ADcAvgR8k+48AjpM0Cxgp6UngWuAKM9tUQ7scpyV3VPWHVZvohLCOyW6/vdX97SXNRyecwOTJk5mwYkWH86tkTzXpqG8dZfLkyUycOLFLedT1FZnHHx/+p30yL63a5aV08/XQI6hlHTtOYKikacnnq7NH1yIxbgJ4ycxOTvZ9N/v7c7WMqVkAaGZ929j/G0mrzWxfaCkVky4gMbOLys4t7lOujuM4juP0Rpa0sQik4qtxzexBSUg6vFrG9Jhn6cxscbaK9zFJFwFnEh6A7AuMAy4H+gOfIDwPOMnMltbHWsdxHMdxnG7lPwjPAm6oRmY96lVwZjaXYNPwLGkc8DHgUILjq81sPPA34JN1MdJxHMdxHKebMbN7gG2A/auRX810ANtVeL5W4DJgT+BY4DAz+1yW/grwXjN7TdJngHeZ2bll57oOYEKRNaE67Pvy5bUzJofpc+YAcNCYMa3uby9pPtPnzGHkyJGMGDCgw/lVsqeadNS3jjJy5Ejmz5/fpTwOOuigKlnTCWL9pG2Rl1aBDvf9vPbohn5QKzp93+tAHfdUinzPh96vA1ghJpoAnGdmx2WfTwB+D0zsNTIw7SGVismS1iW7NyWfN5Fju+sANqe3ayJ1hQ773s0Pfk887zyg8qKLuL+9pPlMPO88Jk+ezD/tsUeH8+uORSAd9a2jTJ48mfO6WEZdF4Fcfnn4n/bJvLQKdLjvx7xTevFCiE7f9zpQxz2VIt/zoff7n7e+IQvypiafb6elpnKn6DFTwOVSMfW2x3Ecx3Ecp1Gp9whgW1IxjtM95Elh1JC2fuN05TeQmTF16lRIfgn3pN9UtbZl6tSpPcrfDpM3AlXLUalePOJVVbwenIJR8xFASdtLuknSi5KekfQHSXtAk1TMbMI7fv8HmB81AM3sGjM7J+ZjZqPNbEnePsdxHMdxHKf91DQAlCTgNmCqme1uZvsA3wRGJIftambzgCOBB2tpj+M4juM4jtPGFLCkO4CKcylm1pak/0TCO32vSs6ZkeV9PTAe2CGbBh4L3CXpJ2Y2RdI8gjD0RMIU8eeB7xHeH3xZmqfjOI7jOI7Tftp6BnBy9v8jwPbAr7LPpwPz2pH/OGB63g4zO0PSqcAo4FZCUPfRssNeNbP3SvohcA1wGDAAmEVYMNKMMhkYVq5cGZ6FKihF9r/IvkOx/S+y7+D+F9n/IvsO7n9HaTUANLP7AST9PzM7Itl1h6QHqlD+eOAvwH7AjJz9UZNiJjDIzFYAKyStlTTEzJaV2esyMAm9fUl8Vyiy71Bs/4vsO7j/Rfa/yL6D+99R2rsKeJik3bI3dSBpV2BYO86bBZxSnihpEnAxsCtwXJbXKkkfNLP0Le6p7l+5JmC9VzA7juM4juP0StobRJ0LTJU0N/s8mmyqtQ3uBS6W9Dkz+28ASYcAq4CDgAfM7DBJ/wucbGZvd8R4x+kRpBIyjS4l0ZpcTqP77jiO00C0GQBK6gNsTViksVeW/KyZrat8VsDMTNLJwBWSLgDWEp4dPJcw/fukpFGEKeAnJK1L9juO4ziO4zg1oM0A0Mw2STrHzG4BnuxoAWa2ADg1b5+k6cBfgX+Pq3olHQCMMLPRSR7XEBaBxM+jcRzHcRzHcTpFe3UA/yzpPEmjJG0b/6pQfiWZmL6S7pd0i6TnJV0i6QxJj0qaKWn3KpTtOI7jOI5TSNSeVyZJeikn2cxsty4VLn2ZIAT9lbL0CcDvgL2BpcBcYIqZXSjpX7Jzzs3JL5WBOWjKlCkMGtTi3cqFYeXKlYX1v1t9nzOntD1mTPeU2QY18z/1tZxG972X4P4X1/8i+w6d93/ixInTzezg9hx78NixNu2HP+xwGQA6/vh2l9MdtGsRiJntWmtDcnjMzBYCSHoRuCdLn0kYOWyBy8A0p8hL4rvV98svL233kIUQNfM/9bWcRve9l+D+F9f/IvsO7n9HaVcAKGkz4ItA1AKcCvzMzNZ3sfxcmZiMctmXVBLGJWAcx3Ecx3E6SXufAbySINvyX9nfQVlaV7kX2FzS52JCJhNzZBXydhzHcRzHcXJo70jaIWa2f/L5XkkdXhFcTisyMb8rO/RI4HpJa4GBwBtdLdtxqkYPmfrsForka5FxvUfHyeeNN+Dqq+ttRVVobwC4UdLuZvYigKTdgI3VMKAVmZj/TrZXmdmeWdn/AHyzGmU7juM4juMUkfYGgF8D7sveBCJgF+DTNbOqdbYC3qpT2Y7jOI7jOL2edsnAAEjaHNiTEAC2600g1ULSRsLq3wHADsAHzGx6znEuA5NQZEmAIvsOxfa/yL5DlfzvBXI/lShy+xfZd+gmGZghQ2zaEUe0fWAOuuOO3icDk3EQ4R3A/YD9JWFm19XEqpasMbMDACS9F7hO0jgri15dBqY5RV4SX2Tfodj+F9l3qJL/vUDupxJFbv8i+w7uf0dprwzML4HdgRmUnv0zoLsCwCbM7G+ShgLDgMXdXb7jOI7jOE5vp70jgAcD+5SPuNUDSXsBfYE3622L4ziO4zhOb6S9AeDTwPbAwloZksnB/BbY28yeLdu9haRngK2BDcCZZlaVVciO4zg9klSKpdrTrm3l3cOnebtMnsxNo/vsOGW0GgBKuoMw1TsYeEbSoyRv6DCzE6poy+nAQ8BpwEVl+x41s/dIug04x8xeq2K5juM4juM4haKtEcDbgRHAg2XpRwJVC8IkDQIOI7zj93ayAFDS9cB4YAdJM4CxwF2SfmJmU6pVvuM4juM4TpFoVQZG0p3AN83sqbL0g4ELzawVufgOGCF9HJhoZp+V9FfCKN/j2b5TgVHArcBlZvbRVvJxGZiEIksCFNl3KLb/DeN7KsXSAemVdvnfybx7Ax32P9IA9dAwfb+TuAxMx2hrBHB0efAHYGbTJI2uoh2nA1dk2zdlnx/PPo8H/gLsR1iFXBGXgWlOkZfEF9l3KLb/DeN7KsXSgefT2uV/J/PuDXTY/0gD1EPD9P1OUnT/O0pbAeCAVvYNrIYBkrYDPgCMk2SEFb4maSrwH8CuwHEE2ZdVkj5oZhOrUbbjOI7jOE4R6dPG/sckfa48UdJngRZv4ugkpwDXmdkuZjbazEYBLwFvE8Snnzaz/YBZwHgP/hzHcRzHcbpGWyOA5wK3STqDUsB3MNAfOLlKNpwOXFKWdivwMWAN8KSk/gQZmuWS8mRiHMdxGotaTkk2wHRnlyi6/45DGwGgmS0C3idpIjAuS77LzO6tlgFmNiEn7UfJx2kAkmYBS8mXiXEcx3Ecx3HaSbuEoM3sPuC+GttSkUoyMY7jOI7jOE7HaesZwJ7CScDdZvY8sFTSgXW2x3Ecx3Ecp9fSqg5gT0HSXcAVZvZnSV8GRpnZ13KOcx3AhCJrQhXZdyi2/0X2Hdz/IvtfZN+h9+sAStoIzEySTgJGA78H5hKUWW4ys293yoAy2vsu4LrRikzM160senUdwOYUWROpyL5Dsf0vsu/g/hfZ/yL7Dg3h/xozOyBNyDSXHzSz4yRtCcyQdKeZdVmJpTdMAVeSiXl/ne1yHMdxHMfpFsxsFUGRZfdq5NcbAsDTgdvK0qJMjOM4juM4Tm9gqKRpyd/ny/YPlDQj+yuPe+KM6HsIushdpu5TwJJGAD8kOPUW8A7wfTO7DYJMjKSp2ZtBLiHMf/+oUn6O4ziO4zg9kCVtPGvYYgo443BJTwCbgEvMrPcHgJIE/A641sw+lqXtApyQHDMQ2GhmayUdArRY/OE4juM4jtOgPGhmx1U703pPAX8AeMfMrooJZvaymf0YQNJ9hBUx4yTNBPYjvJ5uUl2sdRzHcRzHaQDqPQW8L/B4pZ1mNlHS14EXgTeBD+fJv0TKZGBYuXIlU6dOra7FvYgi+19k36HY/hfZd3D/i+x/kX0H97+j1DsAbIaknxJW975jZodkyeMJiz4mATNaO99lYJrTAEviO02RfYdi+19k38H9L7L/RfYder//ZtZCxNDMpgJTa1FevQPAWcA/xg9m9iVJQ4Fpks4CzgHGAHsDOwOLJE0yszPqYq3jOI7jOE4DUO8A8F7gYklfNLMrs7QtAMxsiqTbgSlmdoKkR83s0LpZ6jhOcbjjjk6fqhNOaHW/3X57q8em+zuaN8DkyZOZOHFiUz4dLaOrtMfG9pBnY0f872jeTRx/fJtlOE4jUNdFINmbPE4CjpT0kqRHgWuB87NDjgAekjQe2F7SXEnTJf1N0sn1sdpxHMdxHKd3U+8RQMxsIXBahX2/yaRi/gpcHFcLl0vFOI7jOI7jOO2n7gFgO8iVigF+XD+THMdxHMdxei8Ks7A9F0lfBnY1s6+049hUBuagKVOmMGhQi0U1hWHlypWF9b/IvkOx/a+K78uXd/rU6XPmtLr/oDFjWj023d/RvAFGjhzJ/Pnzm/LpaBldpT02toc8Gzvif0fzbmLrrdsso6dS5OseOu//xIkTp7fxho4mDh4yxKYdcUSHywDQHXe0u5zuoDeMADajglQM4DIw5fT2JfFdoci+Q7H9r4rvXVgEMvG881rdny5AyDu2tQUKbeUNYRHEeeed15RPR8voKu2xsT3k2dgR/zuadxO9+Lop8nUP7n9HqfebQNrDLODA+MHMvgQcBQyrm0WO4ziO4zi9mN4QAN4LDJD0xSRti3oZ4ziO4ziO09vpMVPAkjYS3vsbOcnM5pmZSToJeFLS+cAA4DVKUjGO4zjVpQtacB15rrqjz2C35/ipU6c2O667n/OuZXmd8d9xnHx6TAAIrDGzAyrsWwbMNLOjJD0MTDCz9d1mmeM4juM4TgPR46eAJd1HGBkcJ2kmsB/wmKRJ9bXMcRzHcRynd9JjZGDKpoBfMrOTk31fB14E3gQ+bGZfq5CHy8AkFFkSoMi+Q7H9L7Lv4P4X2f8i+w4uA9NRessU8HjgVmASMKNSBi4D05wiL4kvsu9QbP+L7Du4/0X2v8i+g/vfUXpSANgCSWcB5wBjgL2BnYFFkiaZ2Rl1Nc5xHMdxHKeX0qOfATSzKcDRwL3Z6OAcM9vbgz/HcRzHcZzO06NHADOOAB7KnhFcIWlGln6Smc2reNacOeHv8su7pOrvOL2CVLbE+3vX8fp0HCePMWOgs2/SkaprSxfpMQGgmeU+uWlmvwGQ9O9mNqRbjXIcx3Ecx2lAevQUsOM4juM4jlN9eowMTFu0JhOTHFOSgdlmm4OmXH01g5YtC0O2BaTIkgCF833OnNL2mDHF8z+hKr6X1WdvoshtD8X2v8i+QzfJwBx8sE2bNq3DZQBIchmYTtKaTAxQJgMzZIgNWraMCb//fWGf4SnykvjC+X755aXtO+4onv8JVfG9rD57E0Vueyi2/0X2Hdz/juJTwI7jOI7jOAXDA0DHcRzHcZyC0ZumgLdMJGAAbjKzSyoePWZM+Otl0zeO0ym8n1cXr0/HcRqc3hQArmrrGUDHcRzHcRynbXwK2HEcx3Ecp2D0VhkYgO+Z2c1lx5RkYEaMOGjKlCm+JL6g/hfZdyi2/0X2Hdz/IvtfZN/BZWA6Sm+aAu6YDMzBB9ugQYMKvSS8yEvii+w7FNv/IvsO7n+R/S+y7+D+dxSfAnYcx3EcxykYHgA6juM4juMUjLoHgJI2SpohaZakJyV9VVKeXVtm+9+Q9LykyhIwjuM4juM4TkV6wjOATc/2SRoO3ABsDVwYD5A0ELjXzI6S9DAwwczW18NYx3Ecx3Gc3k7dRwBTzGwxYRXvOZIEIOk+wurfcZJmAvsBj0maVD9LHcdxHMdxei89YQSwGWY2N5sCHg4sMrOJkr4OvAi8CXzYzL5WVyMdx3Ecx3F6MXXXAZS00swGlaUtA/Y0s0XZ5xuBbwGTgKVmdn2FvFwHMKHImlBF9h2K7X+RfQf3v8j+F9l36N06gJK2A/43+7g9sBF4I/u8P/ADM/vX7NjzgEFmdlGnDMnocSOAknYjOL5Y0lnAOcAYYG9gZ2CRpElmdkb5ua4D2JwiayIV2Xcotv9F9h3c/yL7X2TfoXf7b2ZvAgcASLoIWGlmk7PPa4GPSPqemS2pVpk96hlAScOAq4CfWGAKcDRhAcgBwBwz2zsv+HMcx3Ecx2lANhAGt75SzUx7wgjgQEkzgM0ITv4S+EGy/wjgIUmjgJe73zzH6SaOP760fccd9bPDaZu0rcppq+16ezvn2d/bfXKc7mGopHT++Ops5rI9/BR4StL3q2VM3QNAM+vbxiE3E1YBnwlskPRV4Aoz21Rz4xzHcRzHcarDks6+C9jM3pZ0HfBlYE01jKl7ANgO2tQJdBzHcRzHaXCuAB4H/qcamfWoZwDbIk8n0HEcx3Ecp9Exs6XALcBnq5Ff3WVg2qKCTMxbwF5RJiZJdxmYhCJLAvRK3+fMKW2PGdOlrHql/1WiW3xP26qcttquiu2cR839z7O/xj51BO/7xfQdercMTNlxF9F8FXBTHCRpBPAS8P2Gk4FpJ7mjfy4D05zevCS+q/RK3y+/vLTdxQfpe6X/VaJbfE/bqpy22q6K7ZxHzf3Ps7/GPnUE7/sT6m1G3WgU/8sDu3QQLBv42qIa5fSqKWBorhNYb1scx3Ecx3F6I70qACzXCay3PY7jOI7jOL2RHjEFLGl7wuqWQ4B1wDzgXDN7nqAT+BbhlShbAvcB366PpY5TQ1w/rffQlbbq7e2cZ39v98lxCkjdRwCz1by3AVPNbHcz2wf4JjACmnQCnzOzPYBHgfNdA9BxHMdxHKfz1D0ABCYC683sqphgZjPM7EFJ10t6Btgze1vI0cBd2TuCHcdxHMdxnE5QdxkYSV8GdjWz3HfcSToVGAXcClxmZh9tJS+XgUkosiRAkX2HYvtfZN/B/S+y/0X2HRpHBqa76BHPALbBeOAvwH7AjNYOdBmY5jTKkvjOUGTfodj+F9l3cP+L7H+RfQf3v6P0hABwFnBKeaKkScDFwK7AccAwYJWkD5rZxO410XEcx3Ecp3HoCc8A3gtsLulzMUHSIcAq4CDgaTPbjxAojvfgz3Ecx3Ecp2vUfQTQzEzSycAVki4A1pLJwBCmf5+U1J+gfH11FhyWS8W0SlFfGzx58mQmTixmvNxR3+244zpfWKNKYBx/fMu0RvXVcTJ68/dFke/54P53lLoHgABmtgA4tcLuaSpdkVPN7DQASQcQpGLaDAAdx3Ecx3GcEj0iAGwHuVIx9TPHcRzHcRyn91J3GZj20JZUTHJcrgzM9OnTu8PMHsfIkSOZP39+vc2oCx31/aCtt+58YWPGdP7cGlEVOYg5c1qm9UBfy3EpDPe/K/735u+LIt/zofP+n3feeS4D09upJANT1GcCJk+ezHnnnVdvM+pCR31vtGcAqyKHcPnlLdN6oK/lFF0Kwv3vmv+9+fuiyPd8cP87Sk9YBdweZhFWBDuO4ziO4zhdpLcEgLlSMZKOrKNNjuM4juM4vZJe8QwggKQdgSsII4FNUjFm9kKF498gaAku6SYTeyJDKa7/RfYdiu1/kX0H97/I/hfZd+i8/7uY2bD2HCjp7qyczrDEzI7p5LlVp9cEgJ1B0rSe9MBld1Nk/4vsOxTb/yL7Du5/kf0vsu/g/neU3jIF7DiO4ziO41QJDwAdx3Ecx3EKRqMHgFfX24A6U2T/i+w7FNv/IvsO7n+R/S+y7+D+d4iGfgbQcRzHcRzHaUmjjwA6juM4juM4ZXgA6DiO4ziOUzAaNgCUdIyk5yTNkXRBve2pJZJGSbpP0mxJsyT9S5Z+kaTXJM3I/ibV29ZaIWmepJmZn9OytG0l/VnSC9n/beptZ7WRtGfSvjMkvS3p3EZue0m/kLRY0tNJWsW2lvSN7D7wnKR/qI/V1aOC/5dJelbSU5JukzQkSx8taU3SD66qm+FVoILvFft6Qdr+5sT3eZJmZOmN1vaVvucKc+1Xm4Z8BlBSX+B54EPAfOAx4HQze6auhtUISTsAO5jZ45IGA9OBk4BTgZVmNrme9nUHkuYBB5vZkiTt+8BSM7sk+xGwjZmdXy8ba03W718D3g18mgZte0lHACuB68xsXJaW29aS9gFuBA4FdgT+AuxhZhvrZH6XqeD/0cC9ZrZB0qUAmf+jgTvjcb2dCr5fRE5fL0rbl+2/HFhuZt9pwLav9D33KQpy7VebRh0BPBSYY2Zzzewd4CbgxDrbVDPMbKGZPZ5trwBmAzvV16oewYnAtdn2tYSbRSNzFPCimb1cb0NqiZk9ACwtS67U1icCN5nZOjN7CZhDuD/0WvL8N7N7zGxD9vERYGS3G9YNVGj7ShSi7SOSRPjRf2O3GtVNtPI9V5hrv9o0agC4E/Bq8nk+BQmIsl9944G/Z0nnZNNCv2jEKdAEA+6RNF3S57O0EWa2EMLNAxheN+u6h9NofvMvSttD5bYu4r3gM8Afk8+7SnpC0v2SDq+XUTUmr68Xre0PBxaVvR61Idu+7HvOr/1O0qgBoHLSGm+uuwxJg4BbCe9Ifhu4EtgdOABYCFxeP+tqzmFmdiBwLPClbKqkMEjqD5wA/DpLKlLbt0ah7gWS/g3YAFyfJS0Edjaz8cBXgRskbVUv+2pEpb5eqLYHTqf5D8CGbPuc77mKh+akNXL7d5hGDQDnA6OSzyOBBXWypVuQtBnhorjezH4LYGaLzGyjmW0C/psGHv42swXZ/8XAbQRfF2XPjcTnRxbXz8KacyzwuJktgmK1fUalti7MvUDSmcBxwBmWPdydTX+9mW1PB14E9qifldWnlb5epLbvB3wEuDmmNWLb533P4dd+p2nUAPAxYKykXbORkdOA2+tsU83Inv34OTDbzH6QpO+QHHYy8HT5uY2ApC2zh4KRtCVwNMHX24Ezs8POBH5fHwu7hWa//ovS9gmV2vp24DRJm0vaFRgLPFoH+2qKpGOA84ETzGx1kj4sWxyEpN0I/s+tj5W1oZW+Xoi2z/gg8KyZzY8Jjdb2lb7nKPi13xX61duAWpCthDsH+BPQF/iFmc2qs1m15DDgE8DMKAEAfBM4XdIBhGHvecAX6mFcNzACuC3cH+gH3GBmd0t6DLhF0meBV4CP1tHGmiFpC8KK97R9v9+obS/pRmACMFTSfOBC4BJy2trMZkm6BXiGMDX6pd6+CrCC/98ANgf+nF0Hj5jZ2cARwHckbQA2AmebWXsXUfQ4Kvg+Ia+vF6XtzezntHz+Fxqs7an8PVeYa7/aNKQMjOM4juM4jlOZRp0CdhzHcRzHcSrgAaDjOI7jOE7B8ADQcRzHcRynYHgA6DiO4ziOUzA8AHQcx3EcxykYHgA6jlNTJG0naUb297qk17LtlZL+q0Zlnivpk9n2Xll5T0javRbldcCumySNracNjuM44DIwjuN0I5IuAlaa2eQaltEPeBw4MNMEvQAYaGYXlh0nwj1wU61sybHtSODjZva57irTcRwnDx8BdBynLkiaIOnObPsiSddKukfSPEkfkfR9STMl3Z29AgpJB2Uvtp8u6U9lb4GIfIDwWrwNkiYB5wJnSbpP0mhJs7ORx8eBUZKulDRN0ixJ307smyfpYkl/y/YfmJX5oqSzk+O+JukxSU/F87O309wl6UlJT0v6p+zwB4EPZkGq4zhO3fAA0HGcnsLuwIeBE4FfAfeZ2X7AGuDDWRD4Y+AUMzsI+AXwHzn5HAZMBzCzPwBXAT80s4nZ/j2B68xsvJm9DPybmR0MvAs4UtK7krxeNbP3EgK3a4BTgPcA3wGQdDThFVOHAgcAB0k6AjgGWGBm+5vZOODuzJ5NwBxg/65UlOM4TlfxX6GO4/QU/mhm6yXNJLzC8e4sfSYwmhC4jaP0urO+wMKcfHYAZrdSzstm9kjy+VRJnyfcD3cA9gGeyvbFd4jPBAaZ2QpghaS1koYQ3jt9NPBEdtwgQkD4IDBZ0qXAnWb2YFLeYmBHsiDVcRynHngA6DhOT2EdhFEySeut9IDyJsK9SsCsbESuNdYAA1rZvypuZC+JPw84xMzeknRN2bnrEhvWJempTd8zs5+VFyLpIGAS8D1J95jZd7JdAzIbHcdx6oZPATuO01t4Dhgm6b0AkjaTtG/OcbOBMe3McytCQLhc0gjg2A7a9CfgM5IGZTbtJGm4pB2B1Wb2K2AycGByzh7ArA6W4ziOU1V8BNBxnF6Bmb0j6RTgR5K2Jty/rqBlMPVH4JftzPNJSU9kecwFHu6gTfdI2hv4WzYtvRL4OCEAvUzSJmA98EWALMhcY2Z5U9eO4zjdhsvAOI7TcEi6Dfi6mb1Qb1tSJH0FeNvMfl5vWxzHKTY+Bew4TiNyAWFBR09jGXBtvY1wHMfxEUDHcRzHcZyC4SOAjuM4juM4BcMDQMdxHMdxnILhAaDjOI7jOE7B8ADQcRzHcRynYHgA6DiO4ziOUzA8AHQcx3EcxykYHgA6juM4juMUDA8AHcdxHMdxCoYHgI7jOI7jOAXDA0DHcRzHcZyC4QGg4ziO4zhOwehXbwNqxdZbb23Dhw9n7epVDNh8s3qb4/Rw1q5Zx4D+m9fbDKeHsGrDOjbbwvtDEdmweh1bbO5t3+io72ZstfUQAKZPn77EzIbV16Lup2EDwOHDh/PCCy/w3fO/yLc+M6ne5jg9nO9ecgPf+sjH6m2G00P44v03MGmy94cicv/5NzD5M972jc4d0+Zz/BlfBEDSy3U2py74FLDjOI7jOE7BaKgRQEnzgF2AhbvtthsACxctQXudAIA9e3vdbOsJPPz4M1xy9a389YlnWbVmLTuN2I5JRxzE5ed/hv79fZq8kRl91lm8vHgxkthi880ZutVWHDp2LP960km8e889622e0wN47u/PceultzL74dmsemsVg7cbzM7jdubYLx7L+z7yvnqb59QA/04oNo06ArjD8uXL621Dj+Kmux7gyE98kzunPsaoHYbyiRMnstuoEVx1892sXruu3uY53cSHDz6YUw87jM0324xfP/ww77/gAn790EP1NsupMw/9+iHOP+x8HrntEQZvO5gJn5jAPofvw4LnF/DADQ/U2zynBvh3gtNQI4AJtmzZMq1evbredvQIVq9Zx5e+8zM2btzEx0+YwLWXnEufPiH2f/GVhWwxwB94Lgqf/dCHOOk972HDxo184gc/4KYHH+TsK6/kw4ccwpYf/SgAl555Jlf+8Y+8tWoV3zzlFN67116c9ZOfsGjZMj45cSI/+vzn6+yFU03WrV7HlWdfyaaNmzj8tMP56i+/St9+fQHYuHEjrz33Wp0tdKqNfyc40LgjgL/euHEjP/3pT+ttR4/g4cefYenyFQB86+xTmy50gN133sGH+gtIv759ufD00wFYumIFDz/zTNO+y3/3O967114sX7WKC667jlMuuYT37LEH69av58d33slfZsyok9VOLXjm4WdYsTTcH06/8PSm4A+gb9++7LzPzvUyzakR/p3gQOMGgDf379+fyy67jHfWr6+3LXVn8dLSdPguOw2voyVOT2KXYSXVg8XJIxOXf+Yz3HDeeewyfDhmxpkf+ADXfuUrTDroIACemDu32211asfyxaW2Hz463B+uveBaTtAJTX9OY+HfCQ40bgC4aZtttuGNN97gkcefrrctdWf4tls3bb/82uI6WuL0JF5+442m7eFbl/rI3qNGATBkyy0B2HOnnQAYPHAgAKvWru0uE51uYOvhpbZf8uoSAPZ5/z4c+bEj62WSU2P8O8GBxg0AGTRoEPvttx+znn2x3qbUnfeN35ttth4EwHevuoVNmzY17Xv5tcWsX7+hXqY5dWLDxo18+8YbAdh28GAO22efpn19+zS/LfTt2xencdnnsH0YvO1gAH79vV9jZhxy3CGc/LWT62yZUyv8O8GBxl0EgiQuvPBCTjnllHqbUne23GIAP/7W5/nk+Vfwq9unMvP5lzl0v7EsWLyUP/91Bosevo4hmw2qt5lON/DzP/+Z2//+dx5+9lmef+01+vXty1Vf/KK/+aDAbL7F5nzhp1/gB2f8gP/9n/9l7uNz2ePde/DGK2+0fbLTK/HvBAcaOAAE+MhHPsL2w7fj9cVv1tuUunPG8RMYtf1QLp3yW/4241lmv/gqI7cfyuc+erSv+CoQd02bxsD+/Rm29dac+v73868nncShe+xRb7OcOnPEaUcwdORQbr30Vp7967O8+syrbD18a8b/w3gOO+Wwepvn1AD/TnAaKgA0s9Fxe+zYsUjiS5/6qL8KLuOIQ8ZxxCHj6m2GUwfmTZnS5jF2e3Oh9Bn/+Z/NPl9z7rlcc+651TTL6UHs8/592Of9+7R9oNMw+HdCsWnYZwAdx3Ecx3GcfDwAdBzHcRzHKRgeADqO4ziO4xQMDwAdx3Ecx3EKhsys3jbUBEkrgOfqbUcdGQosqbcRdaLIvkOx/S+y71Bs/4vsOxTb/676vouZDWv7sMaioVYBl/GcmR1cbyPqhaRpRfW/yL5Dsf0vsu9QbP+L7DsU2/8i+94VfArYcRzHcRynYHgA6DiO4ziOUzAaOQC8ut4G1Jki+19k36HY/hfZdyi2/0X2HYrtf5F97zQNuwjEcRzHcRzHyaeRRwAdx3Ecx3GcHDwAdBzHcRzHKRgNFwBKOkbSc5LmSLqg3vbUGkmjJN0nabakWZL+JUu/SNJrkmZkf5PqbWutkDRP0szMz2lZ2raS/izphez/NvW2s9pI2jNp3xmS3pZ0biO3vaRfSFos6ekkrWJbS/pGdi94TtI/1Mfq6lDB98skPSvpKUm3SRqSpY+WtCbpA1fVzfAqUcH/in29AG1/c+L3PEkzsvRGbPtK33OFuPZrRUM9AyipL/A88CFgPvAYcLqZPVNXw2qIpB2AHczscUmDgenAScCpwEozm1xP+7oDSfOAg81sSZL2fWCpmV2S/RDYxszOr5eNtSbr+68B7wY+TYO2vaQjgJXAdWY2LkvLbWtJ+wA3AocCOwJ/AfYws411Mr9LVPD9aOBeM9sg6VKAzPfRwJ3xuEaggv8XkdPXi9D2ZfsvB5ab2XcatO0rfc99igJc+7Wi0UYADwXmmNlcM3sHuAk4sc421RQzW2hmj2fbK4DZwE71tapHcCJwbbZ9LeFm0cgcBbxoZi/X25BaYmYPAEvLkiu19YnATWa2zsxeAuYQ7hG9kjzfzeweM9uQfXwEGNnthnUTFdq+Eg3f9hFJIvzgv7FbjepGWvmeK8S1XysaLQDcCXg1+TyfAgVD2S+/8cDfs6RzsqmhXzTiFGiCAfdImi7p81naCDNbCOHmAQyvm3Xdw2k0/wIoSttD5bYu2v3gM8Afk8+7SnpC0v2SDq+XUd1AXl8vUtsfDiwysxeStIZt+7LvOb/2u0CjBYDKSWucOe5WkDQIuBU418zeBq4EdgcOABYCl9fPuppzmJkdCBwLfCmbLikMkvoDJwC/zpKK1PatUZj7gaR/AzYA12dJC4GdzWw88FXgBklb1cu+GlKprxem7YHTaf7jr2HbPud7ruKhOWmN2v6dptECwPnAqOTzSGBBnWzpNiRtRrgorjez3wKY2SIz22hmm4D/poGHv81sQfZ/MXAbwddF2XMj8fmRxfWzsOYcCzxuZougWG2fUamtC3E/kHQmcBxwhmUPdWdTX29m29OBF4E96mdlbWilrxel7fsBHwFujmmN2vZ533MU/NrvKo0WAD4GjJW0azYqchpwe51tqinZ8x8/B2ab2Q+S9B2Sw04Gni4/txGQtGX2UDCStgSOJvh6O3BmdtiZwO/rY2G30GwEoChtn1CprW8HTpO0uaRdgbHAo3Wwr2ZIOgY4HzjBzFYn6cOyhUFI2o3g+9z6WFk7WunrDd/2GR8EnjWz+TGhEdu+0vccBb72q0G/ehtQTbKVcOcAfwL6Ar8ws1l1NqvWHAZ8ApgZZQCAbwKnSzqAMOw9D/hCPYzrBkYAt4X7A/2AG8zsbkmPAbdI+izwCvDROtpYMyRtQVj1nrbv9xu17SXdCEwAhkqaD1wIXEJOW5vZLEm3AM8Qpke/1JtXAVbw/RvA5sCfs2vgETM7GzgC+I6kDcBG4Gwza+8Cih5JBf8n5PX1IrS9mf2cls/+QgO2PZW/5wpx7deKhpKBcRzHcRzHcdqm0aaAHcdxHMdxnDbwANBxHMdxHKdgeADoOI7jOI5TMDwAdBzHcRzHKRgeADqO4ziO4xQMDwAdx6kpkraTNCP7e13Sa9n2Skn/VaMyz5X0yWx7r6y8JyTtXovyOmDXTZLG1tMGx3EccBkYx3G6EUkXASvNbHINy+gHPA4cmGmDXgAMNLMLy44T4R64qVa25Nh2JPBxM/tcd5XpOI6Th48AOo5TFyRNkHRntn2RpGsl3SNpnqSPSPq+pJmS7s5eA4Wkg7IX3E+X9KeyN0FEPkB4Nd4GSZOAc4GzJN0nabSk2dnI4+PAKElXSpomaZakbyf2zZN0saS/ZfsPzMp8UdLZyXFfk/SYpKfi+dkbau6S9KSkpyX9U3b4g8AHsyDVcRynbngA6DhOT2F34MPAicCvgPvMbD9gDfDhLAj8MXCKmR0E/AL4j5x8DgOmA5jZH4CrgB+a2cRs/57AdWY23sxeBv7NzA4G3gUcKeldSV6vmtl7CYHbNcApwHuA7wBIOprwmqlDgQOAgyQdARwDLDCz/c1sHHB3Zs8mYA6wf1cqynEcp6v4r1DHcXoKfzSz9ZJmEl7leHeWPhMYTQjcxlF67VlfYGFOPjsAs1sp52UzeyT5fKqkzxPuhzsA+wBPZfviu8RnAoPMbAWwQtJaSUMI754+GngiO24QISB8EJgs6VLgTjN7MClvMbAjWZDqOI5TDzwAdBynp7AOwiiZpPVWekB5E+FeJWBWNiLXGmuAAa3sXxU3shfFnwccYmZvSbqm7Nx1iQ3rkvTUpu+Z2c/KC5F0EDAJ+J6ke8zsO9muAZmNjuM4dcOngB3H6S08BwyT9F4ASZtJ2jfnuNnAmHbmuRUhIFwuaQRwbAdt+hPwGUmDMpt2kjRc0o7AajP7FTAZODA5Zw9gVgfLcRzHqSo+Aug4Tq/AzN6RdArwI0lbE+5fV9AymPoj8Mt25vmkpCeyPOYCD3fQpnsk7Q38LZuWXgl8nBCAXiZpE7Ae+CJAFmSuMbO8qWvHcZxuw2VgHMdpOCTdBnzdzF6oty0pkr4CvG1mP6+3LY7jFBufAnYcpxG5gLCgo6exDLi23kY4juP4CKDjOI7jOE7B8BFAx3Ecx3GcguEBoOM4juM4TsHwANBxHMdxHKdgeADoOI7jOI5TMDwAdBzHcRzHKRj/H1h0AZD1IvXaAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAGoCAYAAADW2lTlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB9r0lEQVR4nO29ebgdVZm2fz9JCAkEEiDMU5gFQZkdUEgcECIgKPKBqDigrZ98NtooatsN7a9FVFDaEWm0ARURRRRwAG0IAg6QQCCEQUMMEoIJISQkIYQM7++PqjpnnX1qnyl7n33Orue+rnOdvVdVrfW+a62qevdatZ5SRGCMMcYYY6rDiFYbYIwxxhhjBhcHgMYYY4wxFcMBoDHGGGNMxXAAaIwxxhhTMRwAGmOMMcZUDAeAxhhjjDEVwwGgGbZIOl/SD1ptRzshaYWk3XvYPk/SGxpc5mckXT7AYydLmt9Ie/pR9oDtrhKSjpb081bb0RckXSHpP/uw392SXjoYNhnTLBwAmiGNpHdImp4HJk9J+rWk17TarnYlIsZFxFzo+82wAWVeEBFnNrucRjOU7Ja0saTvSXpO0j8kfbyHfadImiVpqaRnJF0vacdk++z8fCv+1kq6Md+2t6RfSHpa0hJJN0vapxfzLgAubIynQ4aLgM+12ghjNgQHgGbIkt/ELiG7gWwL7AJ8C3jLAPIa1VDjGshQts0MG84H9gJ2BaYAn5R0TJ19HwLeFBETgB2AvwLfLjZGxEvzHwLjgM2AvwM/yTdPAG4A9iE7J+8GflHPKEmHAeMj4k8DdWyIcgMwRdL2rTbEmIHiANAMSSSNJ/uF/ZGI+FlErIyINRFxY0R8Itl1tKSrJC3PRy4OTfKYJ+lcSQ8AKyWNknRCvt9SSdMk7Vuz/yckPSBppaTvSto2H3VcLul3krZI9v9JPtqyTNLv0ykhSVtJujEfkblH0n9KujPZHpI+IumvZDdgJP2XpCfyY2ZIem2y//l5eT/IbZmVj8Z8WtKi/Lij69Tle4sRnPz7HEnXJt+fkHRgYteekj4InE4WSKxIjwcOzOtomaQfSxpTp9zHJR2Sf35nnvd++fczi2lBJVP5kibl+50h6e+SFkv61yTPsfnI5LOSHgIOqylz37xdl+btfEKevlueNiL/frmkRclxP5B0dh0/zpX0ZF7vj0p6fYnd31D3UbPz8207SLpO2ajZ3yR9tKycDeTdwP8XEc9GxMPAfwPvKdsxIhZGxIIkaR2wZ518jwS2Aa7Lj707Ir4bEUsiYg3wVWAfSVvVOf5Y4PbiizK+mvfZZXk/2j/ftrGki/J2XyjpUkljk2PfImlmfn48pjzAzev3BmUjknMkfSA55nxJ16r+NeIgSffm234MjEm2TZR0U95vlki6o+g/EfECMAMoPeeMGQ44ADRDlVeRXYyv72W/E4Br6ByZ+EbN9tOAN+fbdwd+BJwNbA38CrhR0uhk/7cBbwT2Bo4Hfg18BphIdr6kN+9fk426bAPcC/ww2fZNYCWwHXBG/lfLicArgP3y7/cABwJbAlcDP6kJro4Hvg9sAdwH3JzbtCNZsPydkjIguwG/VtIIZSMWGwFHACh73m8c8EB6QERclvvzpXw06Phk8ynAMcBuwMuoE2jk5U7OPx8JzAWOSr7fXnJMwWvIRpleD/y7OgP184A98r83kdSrpI2AG4FbyNrk/wE/lLRPRPwNeA44KN/9tcCKJN9Se5RNb54FHBYRm+VlzqvdLyLOSkbNXgM8C/wiDxhuBO4na6fXA2dLelOZ05I+lQccpX91jtmCbCTv/iT5fqDuM2qSdsnzWwWcA3ypzq5nAD+NiJV1th8J/CMinqmz/QDg0eT70fkxe5Odk/8HKI79Yp5+IFlAuiPw77m9hwNXAZ/IjzuSznb4ETCfrA5OBi4ogvSc0mtEft7/nOyc2pJslPNtyXH/kue7Ndlo52eA9N2pDwMvr+O3MUMeB4BmqLIVsDgi1vay350R8auIWEd2Ia+9IH8tIp6IiFVkN5tfRsRv89GLi4CxwKuT/b+ej5A8CdwB/Dki7ouI1WTBaBFAEBHfi4jl+bbzgZdLGi9pJNmN5LyIeD4iHgKuLLH9C/lIyqo8vx9ExDMRsTYiLgY2JguCCu6IiJvzOvkJ2Y3pwtyXa4BJkibUFpI/07ec7MZ6FFng+KSkl+Tf74iI9T3UcS1fi4gFEbGELLg5sM5+t9MZ8L0W+ELy/Sh6DgD/IyJWRcT9ZMFM0a6nAJ/P6+0J4GvJMa8kC2YvjIgXI+JW4CayHwEd9kjaLv/+0/z7bsDmdA2gCtaRtcN+kjaKiHkR8Vg9oyVtTRZU/L+IuI9shHLriPhcbtNcstG5U8uOj4gLI2JCvb86xY7L/y9L0paRTd+WEhF/z/ObCHwWeKTEl03IAqor6vi6E9kPnbrPG5IFXcuT72tyu14CKCIejoinJAn4APCxvG2Xkz36UdTT+4Hv5efu+oh4MiIekbQzWcB9bkS8EBEzgcuBdyVl1rtGvJLsx9Al+ezCT8l+hKW2bg/smm+/IyLSAHB57p8xwxIHgGao8gwwUb0/H/eP5PPzwJiaY55IPu8APF58yYOeJ8hGGgoWJp9XlXwfByBppKQL86mo5+gcjZhIFpiNqik7/VyaJulfJD2cT40tBcbn+dWzbXF+Uyu+Q2cwUEsxGleMdE0jC8J6C8TKqK3znsp8bR5wjQR+DBwhaRKZbzMHUMYOdK23x5PPOwBP1ASzj9PZvmkd/J6udVAaBEfEHLIR4/OBRZKukbRDmcH5CORPgasj4po8eVdgh5pRvM+QjSg1ihX5/82TtM3pGniVkgfxV5KNVtaea28FllA+Mro12UjrtyLiRz0U8SxJIJoH5d8gCxwXSrpM0uZk58wmwIyknn6TpwPsDJQF3jsARcBYkLY51L9G7AA8WRPUpf3py8Ac4BZJcyV9qqbszYCl9Rw3ZqjjANAMVf4IvEA2TbohpBf3BWQ3ZCB7HonsxvLkAPJ9B9lilDeQBTOTimyBp4G1wE7J/jv3ZJuy5/3OJRvh2iIfnVmW59cIiuDntfnnYnSupwAw6qT3iTx4ep5s2vz3+U36H8AHyUZl+jPqWPAUXetyl+TzAmDn4jmtZHvRvreT+T85/3wn2VR4j0FwRFwdEa8h6ztBNlVZxtfJgq7PJmlPAH+rGcnbLCKmlmWgTFpmRb2/OvY9S1Yv6ej3y4HZ9XyqYRTZlPnmNelnAFfVBEjFlPMtwA0R8fle8n6AbFo3tfdrEXEI2RT13mTTuovJfsS8NKmn8fmUOmT1uEdJ/guALSWlo51pm/fEU8CO+XUgPbawc3lE/EtE7E72+MXHa6aW96V81NiYYYEDQDMkiYhlZM//fFPSiZI2kbSRpGMl1XteqTeuBd4s6fX5aM2/AKuBPwwgr83yY58hG7m4ILF9HfAz4Pzc7peQPaTfW35ryYLHUZL+ne435A3hdrLVoWMjYj7Z9PYxZFPt99U5ZiHZc5MbWu5ZdAZY02q+95drgU9L2iKfgvx/ybY/kz13+cm8r0wmu3FfAxARfyULMt5JFpA+R+bj2+rZI2kfSa+TtDHZD5JVZNPCtfv9E1kg+Y6awPZu4DllC0nG5iPH+ytbHduNyKRlxtX766FergI+m9fLS8imU6+o49Nbc79G5CN5XwHuy0cDi312IusvV9YcuznZIwR3RUTtiFgZv6Jz2h9Jh0l6RX7+rSSr03V5nf038FVJ2+T77pg8K/ld4L35uTsi3/aS/DGAPwBfkDRG0svIpovT53Hr8Ueyc+6jyhaIvRU4PLH1OGULokT2/Oi6/I+8PxwC/LYP5RgzJHEAaIYsEfEVsueLPksWGD1BFjz8fID5PUp28/862YjD8cDxEfHiALK7imy66EkyWY1amYuzyEYG/0H23NGPyALGetxMtqjkL3m+L1A+bTwgIuIvZFOFd+TfnyNblHFXMo1cy3fJnn1bqoEL+d5OFtz+vs73/vIfZPXzN7JRqO8XG/J2PIFs5eliMsmgd0dE+nzb7cAzEfH35LuoHwRvTKZht5isLbchm8Kt5TSyYHlBMmL3mbxujyd7TvJveT6Xk/WNRnIe2RTp42Q+fTkiflNszO0pVpXvSDa9uhyYBawHTqrJ713AH0uedzyJ7LnG99aMTu5CCRFxL7BM0ivypM3JAr1nc1ufIXsWF7IR8DnAn/LHKn5H/gxsRNwNvJds1fGy3MdiNP80shH4BWTP6Z4XEb0GZnl/eSvZIqZnyZ4R/lmyy165DSvIgsVvRcS0fNsJwLToupramGGFakb3jTFNQNIXge0iomw1sDFtizJ5ov8bESe22pZGIenPwPsj4sFW22LMQHEAaEwTyKfhRpONsBxGNhV2ZkT8vJV2GWOMMeApYGOaxWZk00kryZ5bu5ge3phgjDGm2ih7neMiSaUjy8r4mjLB8wckHZxsO0aZUP2ckhXr5eV5BNAYY4wxprVIOpLsmdOrImL/ku1TyRa+TSV7icB/RcQrlGnP/oXsJQbzyfQsT4tMg7YuHgE0xhhjjGkxEfF7Mu3NeryFXJopsvdrT1D2dqfDgTkRMTdf3HRNvm+PtO1L6CdMmBDbb789rF/TIaSWDnZ2jnyWjYB2ykJpRPZ5RCotpto8YP26zoWU64v0stHVLpJTRXadaSNGjqhbXsr6dZ1KE+tL5NR6Eo/rIntVYs/69Vl+ZaPDI5TWTaeNKimxUMNYvz6StO55FvZ0NUtd/tfuUJSX+h4ldnd+7HmkW1HUe1JGHV/LtveF6NoBi0zK7ZG67lePkuN7GtUfyIh/l3roodwNLadORt3K68mG/tRxsW+X8zjvQ6tHJudUfnjZOdklbQBEWb8sktKuX3wpSeuSRx+rves5kn3uei4VdZeUp+7Xwv6eA73alThQdk0puy508aU4ProfU9Yny8obnTT9uvy6vr5Ofy7qorhPdLGtyyFFX0tS8vpOdyurzVTWsrg/pPsVtkXZdbaX5um43qXtWPSH9Ul/KLFxRHr9LzkPyvpV+fWse9/uauOIbuUV7Rbr0/tg9/tuaauVnF9z5j6+OCK2Ltu9m7XShlzcZpMpPBRcFtlrN/vKjnRVh5ifp5Wlv4JeGBYBoKR1ZA/Ti0yH6ayI6FG7bfvtt+eqq66C5Qs6Tsh1SZD24ouZ8kdpkJN0tNGjs9fEjhkzptv2tWs731L23HPPdXxevXp1t/I6Lp4lgcSoUZ3NsOmmmwIwdmzHO9A7jkkvQs+v7Hw15wsvvNDNl7JyCjbaaKPSsjvyfv55oLOOUjbeeOOOz2mdlOVT1ENhH8CaNWvq2jNy5MhuafVsLfZdtWpVR1pRTlpG0QalAUlyARj9Qvd2Tssu+kEaCI7KbejrTXBN0l+KHwzpsWmbFf71FkgVx6T7rS36XcmxaZ8sPne5sJYcs9Hozlclj8z3Te0ubE1vGGk5BT3+MEooC05GJH2jsKGsj6fn5LqSOk4/F/0k7S9Ff3psi85+VZRT1hdHp3VT0mZlgUpZwJlSbC/rG+k5UtiQ+lyWX0qxPW2fwv/0PC3O/dSGwtf0GpD6X2t/PXvKroXFMb1dMwuf02tBWZ8uuxaW9c90vyLPHVd0+vzc8uy6/sKq9J7dSXGdTuuk6CdpecXntK3K7kFFgJey0ajOfjdu3LguPqX5pO1XlNPbtamwO+1XRd2seqHzHEgHHAobx47pvEd1XB+T8srs6ggGSwL0erYW1+RNNtmkm41p3mX33bJzruOaktTh1P9zZvoGmF4Z6A+fyF5XeOiADs6LLsu2h/QeGRYBILAqIg4EyIVB03eKGmOMMcYMCmnA3B/SHwADZD5d34S0E5n+5eg66T0yXALAlM3JRDuNMcYYYwYNSa0MAG8AzpJ0DdkU77KIeErS08BeknYjeznBqWSvK+2R4RIAjpU0ExgDbA+8rmwnSR8ke88o22233aAZZ4wxxpj2Z0MCwD7k/SOyd5VPlDSf7A0/GwFExKVkerJTyd6Y8zzZ23GIiLWSziJ7o9RI4HsR0eu7wIdLAJhOAb8KuErS/rUvKc8fprwMYN9997W+jTHGGGMaSrMCwIg4rZftAXykzrZfkQWIfWa4BIAdRMQfJU0EtgYWtdoeY4wxxlSDZo4ADjbDLgDMX7E1kuwl4nUZNWoUEydOhI1fLF3xVTRg2erVlLKVhsWKrnSVV7F6FzpX0aarC4t8ylbNpfkU9qSrysps3DRZEVW2WrfwL33moLCnbCVr2qG32HKLbD+6r2AsW4WYktZxUd7zyUrdtSWrgDvyKZH6qFcPxediVRx0ruBM66Owt2zFYbrf+mXru+2XriZbma+6LltxmeZTrEQra9OyVaSpT2UrCZcvX96RVnwu8y/Np2wFdU+rSNP90u1FPa1OVtoVdZLWTbESr+j30FlPZStG0zLS+i5bDV5bRvq5bKVn2UrxNL/0/CvKK7Nx++0ndCsvrfcRJSuRi3zqSZQUdZZeF8r654iSldaFX6kvZatku6y4zPtgekyZjbXlpsemPhf2l9Vn2oe6yIeUSIoUn8tWkvd15XPZam7o9D/tn2X1Wbst/TxhVGd548eP72Z/WZ9NZWDKpIGK86HLNaekHspWQ5f1sbL7SHHtSY8vu+6l9VW2Wrj4PGHChM60LpJfdLOhTI2g4/qR+Fxc/8v8S8/dspXfaR8rbEx9LrsulF1LylbZ9xcHgA1G0klkr87aNyIeqdm8iaSHgPHAWuCMiOiuM2GMMcYY0yTaaQRwKL0J5DTgTrLVK7XcHRH7AXcDr46IXw6qZcYYY4ypPEUAOJC/ocaQCAAljQOOAN5PEgBK+mE+8rdPvgr4aOCXks5siaHGGGOMqTTtEgAOlSngE4HfRMRfJC2RdHBE3BsRp0s6hUzg8DrgyxHx9nqZpDIwO+yww2DYbYwxxpiK4CngxnMa2cuLyf+nS6EPAmYCB+T/6xIRl0XEoRFx6JZbbtkEM40xxhhTZTwC2CAkbUUm7Lx//pLlkUBImgZ8HtgNOI5M9mWlpDdExJRW2WuMMcaYatJOI4AtDwCBk4GrIuKfigRJtwPPAYcAv4+IIyT9L3BSRDzXIjuNMcYYU2EcADaW04ALa9KuI3uP3Srgfkmjge2AZZLKZGK6ISnTDdpoow69n1QfqNAWKtNJSjWfCp2kVLco3d5RXqIDVWgCpuUVNnTRfCIvb113jaxUq6n4nNpappc1YmSq7zeqm11lukdl9VDoO6XHxvruL1ZJ/euop/WJOk++eaNUo65EO3DURqO67J/mndqc5h1r8rqL7np7ZdpeZRpnXXQMS0SFUl27Qm8q1fEqdAfLtPpSvcAxY8YAMHbs2G5p6YWkTCfwuec6f+8UeafaV2V6gmX6dkV5qXZXYU+XOk76eYeOV1Je0RfTtMKu1NZiv7S8wp56Phef02MKe5YuXdqRtmLFCmopjikrLy0jbYPic5l24IsvdtZJWb2X9aGivDStTBetTFOuTN8v9aXs2KJuyuxKj0nbtEwfruy6UOyXngNlOmtF3dbTcCtIr2eFjWX6dmUakWla2Y23TAewTAuuTO+y7LxJ6WiDpIpSfdSi7tLrUNn9ofClOA9TyrQi0zYra5+0vEJ3MO0vZfqSRZ7ptSktp/bYMt29LjYkfq4p0fcrjim7/pddj+vRoTHY5QbR1VYo10Ysq4dG4ACwQUTE5JK0ryVfpwNImg0sIVslfP5g2GaMMcYYU+ARwEEmkYmZAtyAA0BjjDHGtAAHgIPLiZTIxNTulMrA7LjjjoNsojHGGGPamXYaARwqMjC90ZNMTAeWgTHGGGNMs2j2m0AkHSPpUUlzJH2qZPsnJM3M/x6UtE7Slvm2eZJm5dum91bWkB8B7EEm5pORPj1rjDHGGNNkmjUCKGkk8E3gjcB84B5JN0TEQ8U+EfFl4Mv5/scDH4uIJUk2UyJicV/KGw4jgIVMzK4RMSkidgb+BrymxXYZY4wxpkI0eQTwcGBORMyNiBfJZjzf0sP+pwE/GqgvLR8BlLQt8FXglcCzwIvAlyLi+nyX04AtJY0hk4u5hk6ZmDvq5fvCCy8we/ZsWLGgY8l4upR9s802A7ouHS+Wo6fL0guJhVR6opD/SCmT+OhNdqAglTFYuXJlh/0FxdL61K6Rozo708ajMwmFTTbZpCOtTP6ksCEdOE3LrrU/lREp6i6VhXj22Wc7PhdSGakMQFEnqfRBUSepXWV1UvifSlyUyV1sNLq7xMfYMZ1tUeSd1l2Z7MC6pd0lEsrkQ9I6KeR+ir4EnTIxaRnFMb3JNKT9szg+rbvNN9+8W96Ff2V9rSy/MmmiMimIdHvatwtf02PGjx8PdO1LRT2WSayUpdWjKKeo67Sc1L+ibnsrr4sMU8kEQnHMxht3tsv2222fHTuie32mEkDFNSI9R8psTNuq6BtlshhpPsU1J63jIu+0T6afy/pB2fleJuVS9Lu0bxc2pudhIc9TJgGU2lAmt9KbvEtxDUill4q0snqFcumfIu8yCZ20Hxd5P7Osc7+yfpVeI4r2T+8PRf2k/avIJ22fMhmmMvmrlJ7kVtJ6KNqvTOYspaiTsmtAWodl/bO4V0Fn+6dtVdRZ2b2x7Jwsax/orO+03gtfyu4tZW1f5vuGSMNswAjgxJqp2csi4rLk+47AE8n3+cAryjKStAlwDHBWkhzALfls6Xdq8u5GSwNAZS3/c+DKiHhHnrYrcEKy27HATRHxgqTDgE9ExJ8G3VhjjDHGVJoNXASyOCIO7Sn7krR6j7odD9xVM/17REQskLQN8FtJj0TE7+sV1uop4NcBL0bEpUVCRDweEV8HkHQbMIvs+b9ZZO8DvkfS1JZYa4wxxpjK0uQp4PnAzsn3nYAFdfY9lZrp34hYkP9fBFxPNqVcl1ZPAb8U6CbnUhARUyR9EngMeAZ4c0R8YrCMM8YYY4xJaaIMzD3AXpJ2A54kC/LeUbuTpPHAUcA7k7RNgRERsTz/fDTwuZ4Ka3UA2AVJ3yRb3PFiRByWJx9E9szfVGBmL8d36ABus802zTPUGGOMMZWjmTqAEbFW0lnAzWSKJ9+LiNmSPpRvL2ZLTwJuiYiVyeHbAtfnz1SOAq6OiN/0VF6rA8DZwNuKLxHxEUkTgemSziR7uHFPYF9gF2ChpKkRcXpZZvkDj5cB7L333paIMcYYY0xDaaYQdET8CvhVTdqlNd+vAK6oSZsLvLw/ZTXsGUBJr5R0j6QVkl7MxQmf6+WwW4Exkj6cpG0CEBGXkw1h3hoRB5Itjd63XvBnjDHGGNNMJDFixIgB/Q01GjkC+A2y+eqfAIcC7yYbvatLRISkE4Gv5s/6PQ2sBM7NdzkSuFPSzsDj/THmxRdf5O9//zssX9CxBDyN2gvpis0275Q5KORU0iX4Tz/9NECWV06x9D9t0K222qpb3umy/GLZe5nkSbp0/sknnwRgyZLOhT3F0v/02FSeofi8+fjNO9JGb5SVnS6TL+xJJWYKqYl0iX1xzLjNxnWkFdIqRX2ktkKnDEC6fH+LLbYAIH0rSyEJkLZFUd+RLHZa+uxSoGs9pLIDhb2pf0V548Z12l0maVMmj7F6WSbdkNZN2r5lMjBlUg3FMb1JnZTJUKRSBWWyDGnZtXmX1WfapqXSN3kZqc+phEdZvyv6UJksRFkZqU/F57L9UrvL6qSsH5dJCaVtUnbBLZOaKJN9eu657jI+af0Xdbtw4cKOtKeeegroKgmSSlIU52kqaVN8TvMufE5llorPqQRV0eZpfmV9P70OFfWT1lOn9E33vp0eW3xOJV8efzy7LC9btqwjrexakkqBlEm1pJ8LinLKrgFp26bXwgkTJvSpvLJzt0NiZknnOdAhLZXkl16vizZPbSzaKC2jqIfi3pB+LpNbSc/n9Jwsyknlh4q+n7Z90SfS86bYL22fDqmdNZ0+xfqs/5VJXqV+LVq0qCOt6J9lMjBp+xRSZanPRb9Kz8P0HCr6VtrviryL9oZOmayNx3TaPWbjzP9Uwkl079v9oZ1eBdfQKeCImCNpZESsA/5H0h/6cMxTZIFj2bafQodW4BpJcynXCjTGGGOMaToOALvzvKTRwExJXwKeAjbt5Zhe6aNWoDHGGGNMU/EIYDnvIlu1chbwMTItm7f1eETfKNUKBL7egLyNMcYYY/qMA8Aa8qAMYBXwH43Kl160AlNSGZj0uTNjjDHGmA2lnUYAG7kK+DhJ90laIuk5Scv7sAp4IOV8U9L9ku6p3RYRl0XEoRFxaPrgqTHGGGPMhtLkN4EMKo2cAr4EeCswK8revDxw6moFNrAMY4wxxpheGYrB3EBoZAD4BPBgg4M/yLQCL5D04Yj4dp62SW8HjR8/nqlTp8LyBR1L09et75SXKJaCp9IjxfL3VIaiWGa+ww47dKQVy+hTKYJ0uX2xxD3tJMW+ZdIcaZXttNNOQKccRbo9LS9dol8moVDWDMXy/VHJ/iPzPMtkIcokM4ql9gA77rhjx+dCqiDNp1hmn9rXIcGS+LIur5O0bnbYfoduNqRyCIV/ZXmn9d7TidqlfbboPhje167cZb/c/xFJPZTJnxRpqWxCKvFRJsFS1q+KflAmL5RKKRT9Ka3DMtK8iz6d5l0mZ1Qck9ZDkZbuV/TfdL/U50KSKK2Tot+VSSqVyYik/a84tsgXukreFOWkdVIc81R0lwIpkxJKz4fic2pD6n+ZBEtRdupzkVYmF5P2ocLnsmtP6kua99qSc62ok1R2pignrfeinLSPbL/99l3+1/pXHF8mu1LW31P/imtvWsdFPmWyQNBZ36nPRd8vu6aWtdVmm3XmXciW1JN/KqSn0vrsKe/Sa2FJ3dS79hT3ofQeVeRddr9J8ynKSe8jZTYUbVBPUqnwdeLEiR1pRR9K7Sry7qscWj0ZrKJvlEl0lcnclNVnSnHsQHX52mkKuJEB4CeBX0m6Heg40yLiK305WNI6YFaSdGJEzEu0Au+XdC4whuwdeeeWZGOMMcYY0zQcAHbn88AKsgBtIAqLq/I3fpSxlGxq+fWS7gImR0TPQxnGGGOMMQ3EI4DlbBkRRzcwPwAk3UYmKbOZpFnArsA9kj6TvzPPGGOMMabptFMA2MiX0/1O0oYEgGMlzcz/Ot7wERFTgMuA/wv8P+A7EXFgWfAn6YOSpkua/swzz2yAKcYYY4wx3WnmKmBJx0h6VNIcSZ8q2T5Z0rIkXvr3vh5bSyNHAD8CfFLSi0AxPRsRsXkPx6T0NAV8EHAdMBWYWS+DiLiMLFjk5S9/eaMXoxhjjDGmwjRzBFDSSOCbwBuB+WSznTdExEM1u94REccN8NgOGikE3XDhPUlnkr1ZZE9gX2AXYKGkqRFxeqPLM8YYY4zpiSZOAR8OzImIuQCSrgHeAtQN4jbk2EaOACLpBODI/Ou0iLhpQ/KLiMsl3QBcHhEnSLo7Ig7fYEONMcYYY/rJBo4ATpSUahhfls9cFuxIJqlXMB94RUk+r5J0P7AAOCciZvfj2A4aFgBKuhA4DPhhnvTPkl4TEb3OQ/fCkcCduUzMckkz8/QTI2JevYPWr1+f6UytWtWhW5RqTC1durTLf+jUjirTWCr0oKBTk6tM4wzKdd+KvFeuXNmRVqYnWKafVuga1dOGKspJdZIK7bMyfao07zKttzLdpcL+tOMX+mhpPmVaVGW2rku014o6SXW6ClLdrLJ6Sssr08krtPDSei/aN63PESu725pqTBWfy3S8uviZ51nWUqn2ISVt9txznS/OKTTS0rwLPa2yNki1topj0vyKz2kdl9VDWX2menRFOWl5ZXqPZX11RKEXmJwXabsU52LZOVKmh5i+7aesfQpSHcBU666o4/R8L8611Zt3llf4X6a9mdZDsb2sj0D5daHwOdXEK/pEWodFOWk9lNV7WRuk/i9fvhzoqn1Ydn0sa+ei7LQeinov02Or53NZvyt8Ts+Hoi3K6ji1Id1epklZ9P2yfpXu19GvXuisw2XLlnWxpfZzcV9Ir4VFWtm1sOyekJ6TZTqNpedSiSZsWb2XaUCm9NRny/pkms+ojTrLGztmbDcbynT5irYv0/lL01LK9DPLrr3F59TnsvtgUU5vmqj12MAAcHFEHNpT9iVptR3gXmDXiFghaSrwc2CvPh7bhUaOAE4FDoyI9QCSrgTuA/oUAEbEuDrpP83z+/eImNAYU40xxhhj+k8Tp4Dnk6meFOxENsrXQUQ8l3z+laRv5W9H6/XYWho6BQxMAJbkn8c3OG9jjDHGmJbRZBmYe4C9JO1G9sKLU4F31JS/HbAwf0nG4WRqLs+Q6SX3eGwtjQwALwDuy3X7RDZ1++kG5j82mf79W0ScVLuDpA8CH4Sur24zxhhjjGkEzQoAI2KtpLOAm4GRwPciYrakD+XbLwVOBj4saS2wCjg1fwVv6bE9ldeQAFDSCGA98Eqy5wAFnBsR/2hE/jk9ycQAXWVgDjjgAMvAGGOMMaZhNFsIOtc4/lVN2qXJ528A3+jrsT3RkAAwItZLOisirgVuaESexhhjjDFDiXZ6E0gjp4B/K+kc4MdAx3KriFhS/xBjjDHGmOGDA8DuvC///5EkLYDdG5T/pskzgADXRMSF9XZes2YNCxYsgOULOpaAp8vM586dC8CSJZ3xadl+hcTAhAkTOtI23zx7uUkqj5HKxBTL39NOUkgRpOUVS+vT5e2FnEAqK1As0U+X2KcyCEX64sWLO9IKuYt0SXzZsvei7HQ5fSFVUCZPkMo9FPUAMG7cuG7bizpJbS3KSSUGCltTuYrCrjFjEymWjTs/F+1SJkWTyiY8vfhpAJYtXdaRVtRDKskQz3V/YiCVlyjyLisv9a9MnqBMsqb4nOaX5lMm2dCXbWnZW2yxRUfa+PHZmqy0DxT9PO0jaZ0UbVAmEZH22TK7is9pHyrra2l/mThxIgBbbbVVt2PKZIpSG4rtad5lMiLpeVr4n+ZTHL/5Tt3ld9L9yiSViropk6JJj0ltLK4raT8o2qNM9mKjUUlbjOreFmn7rV+XfS7OTej0uUvf70FmpExeKGXkiFy2KpEESfcrk3wp6mz0Rp15F5I+aR8qk8QqkxZJ84712ecy2a70ul74XyaHM2FJ5/lQXK+fX/l8t2OhU1omLa9MqqawNy2vuCek18Kye1CZjWneZfejYr9U+qYoJ7W/aKuycylti7JrROpz0X5l0llp+9Xal9qYlpGiEfl1Q4n0zZjM/y7X4/z+UEh/QaeMT3odKuozvd/0B48AlhARuzUqrzqs7O0ZQGOMMcaYZuIAsARJrwYmpflGxFWNLMMYY4wxphV4BLAESd8H9gBmAsX4dQCNCgDH1kwBfyEiflxjQ4cMzLbbbtugYo0xxhhjHADW41Bgv6j3vrINp18yMC95yUssA2OMMcaYhuIAsDsPAtsBTzUwT2OMMcaYIYFHABMk3Ug21bsZ8JCku4GOJTcRccKGlmGMMcYY02ocAHblBmBb4I6a9KPI3kfXI5LWAbOAjYC1wJXAJRGxvmbXTSXdD+wAPAv8LCI+VS/fUaNGZbISG7/YuaQ+WepeyGKkS/CLZeipjEGx3D5dYl9II/SnExTL5FM5mWJp+vrE1Y1Hd1/eXiYDk5a9Pp91TyUbtt566y4+Qefy/fTYwr9UuqJMHqRYtp/KBaQyAMXn1IZi3zLJhjTvQsYgTSuT2UhtLMopq5NU5qDYb+JWE3v0ZfTqbL9UXiGVDli+fDnQVZKhKCeVNCiOT/Mu8ik7NiXtd8XnMp/TvlhICaW2FrIKXfxL2qXWhnRbWl5Rt6mURCGxkD7pURxTJoVU2Aed7ZtKXKT5FD6n/bPM7kJeIu0vZVISZZInZZIvab0Xdr/4Yme/Wrp0abe8y86lwq7U5jLZnTIJljLZoDL5k7R9irzTti87h9Jjyq4lPVFINKXllEm6pOdN+rnwuTfpojJJnp7kr9J67U3qqkzSpqDsWrjFhM7za7Nx3eVpyiiTyylrv7TuCrmj3q4LZedxWX2n5RXnQyqJ0nG/Scoou/4Xn9P9erOx7Hpc5KMS+aD1yTWgaL/e5KjSOi7zudivuNcCbLnllt3sb8RTag4AO3kL8JmIeCBNlLQSOA/4bi/HdzzbJ2kb4GpgfH5skddY4NaIeL2ku4DJEdH9TDfGGGOMaRLtNALYPTTvP5Nqgz+AiJhOJgnTZyJiEdkq3rOUh/OSbiMbIdxf0izgAOAeSVM31HBjjDHGmP4wcuTIAf0NNRoxAjimh21je9hWSkTMlTQC2AZYGBFTJH0SeAx4BnhzRHyi7NhUBmb77bfvb9HGGGOMMXXxCGBX7pH0gdpESe8HZgwwz9r3TB1Epi94QP6/lIi4LCIOjYhDi7l/Y4wxxphGMWLEiAH99QVJx0h6VNIcSd3WOUg6XdID+d8fJL082TZP0ixJMyVN762sRowAng1cL+l0OgO+Q4HRwEn9zUzS7mRC0osknQmcBewJ7AvsAiyUNDUiTm+A7cYYY4wxfaKZI4CSRgLfBN4IzCcbYLshIh5KdvsbcFREPCvpWDLt41ck26dExOK+lLfBAWBELAReLWkKsH+e/MuIuLW/eUnaGrgU+EYuKH25pBuAyyPiBEl3R8ThG2qzMcYYY0x/afIU8OHAnIiYm5d1DdlC244AMCL+kOz/J2CngRbWMCHoiLgNuG0AhxaveCtkYL4PfCXZ/hTZqN+jwLaSPk65TEytPZm0wLp1Hcu+03nlsSWyJYUUQRdZiHwp+4hkKX6xRD1dtp5KMRSUyVmMGzeuI61M0qCwtUwqI5WsSZfJl8kOlMkFFMeULdXvspw+z29dIn1QyCCk5ab+FTaUSVKULekvk3ZI08okC9K8i89l8gxpPoU0R/G/Ns+CjdS9HlIJheeff77L/7TsescUFBIyqSRKcWyZDAp0tl8qB1T0nTTtueee61ZuT3JG6bFF+5VJQKQsW7asm39lUiCpPE2RdyohU3yuJ6lRJnVS1EPafkU5ad5FPfQmCZLmU9RJmYTHknHdJTV6a/sO2YvkWpGex0WfTdNqj4XONkpldQpb0zYt2iKthzIZmNTnIs80rUzCo/Ahzbvox2USQGWSJ9DZBmmb9yTVkvbPwuey60xhC3S9LhZ5l8nJpPVZJuVVfN7ixc5rZnFMald6/SjqO/Wv2J7WU5ncT2FX2hZlpL4UdZvaXVxX0n5VJp1SJpNVll9Zf0h9KXxN+1pRXll/L7v+l8lNpfWQ1meZfFLR5mXXz7L7YJkEUF+nZMvYgABwYs3U7GX5G8wKdgSeSL7Pp+voXi3vB36dfA/gFkkBfKcm72408k0gAyIieqvJVRGxA9SXiTHGGGOMaTYbOAK4OCIO7Sn7krRS4cJ81vX9wGuS5CMiYkEeK/1W0iMR8ft6hTViEcigUSYTY4wxxhgzWDRRBmY+sHPyfSdgQe1Okl4GXA68JSKeKdIjYkH+fxFwPdmUcl2GVQAImUwMmd3btNoWY4wxxlSHYgSwSQHgPcBeknaTNBo4lexta2n5uwA/A94VEX9J0jeVtFnxGTgaeLCnwlo+BTxASkf/rANojDHGmGbRzEUgEbFW0lnAzcBI4HsRMVvSh/LtlwL/DmwFfCufCF2bTytvS6bIAllsd3VE/Kan8oZdAJjKxNRuyx94vAzgpS996Ya/8M8YY4wxJqGZQtAR8SvgVzVplyafzwTOLDluLvDy2vSeGFYBYIlMjDHGGGPMoNBObwIZDgFgbzIxxhhjjDGDggPABiJpO+AS4DBgNTAPODsi/hIRIyX9CPg0cCLwj940ACHTCXrwwQdh+YJSXaPNNtsM6KpdVqaBFrn2kJJjC/2gVKso1aUq04Yq06IqdI/KdM9GJWnFA4+pDl6he5aWly6MLvJOfS46bWpXmTZZsV+qIVj43EW/Kflc6CSmWk1l+mnr1mfljBrZXQewTOstLS/VbSp8SDXqivJSTbzi+FTHq6iTtL5eXNldszBlwoQJXf7Xo+zCsPnmmwNd9c+Kcsr0t9L0Mp259JjCr9SuIu8yfb96uoMFaT8o8pk4cWJH2rbbbtvtmFqb08+p9mHhf5mGIHT2g7I2T9uqyDvVf9tiiy2Aco3BtF7LNP/K7N50p866Kfpvb3qWZZpqaZuXaVcWNqR29aatV1DUbVoPZRqDZX2oi9Zpvr2sjLRfFXaXaeylbVamk1fW98uuTWW2ptehgrRf9aaBWeSdppX1/cKujZd219Mr0z6EzutUWd2l7VJ8LtOOLdPvS/tQl/MhT0/tKe49q15IdGLXda/j4vqa+l5mQ5F3mVZfenyZ3h5J31iZt0taD0V5ZdeA9Bpdds6m5RV5Pvvss93yLvM57UNlfa0/eASwgeRyLtcDV0bEqXnagWQPNBYrXHaLiHmSjiJ7NZwxxhhjzKDiALCxTAHW1DzkOBNA0g+Bg4Dt82ngvYBfSvpGRFzeAluNMcYYU2EcADaO/YEZZRsi4nRJp5AJI14HfDki3l4vo1QGJp22MsYYY4zZUDwCOLgcBPwOOACY2dOOqQzM7rvv7lXCxhhjjGkoDgAbx2zg5NpESVOBC4DdgOOArYGVkt4QEVMG10RjjDHGVJ12GgEcCq+CuxXYWNIHigRJhwErgUOAByPiALJA8SAHf8YYY4xpBU1+Fdyg0vIRwIgISScBl0j6FPACuQwM2fTv/fk78TYBLsuDwy5SMWX5rl69msceewyWL+io+HTpebHkvJCPABg3bhzQdXhXI7Jl7WPHdJcRSeVNFi5c2PG5kCVIl/wXS+cL+RnolAdJpWHGjx/fxb702ELmBGDRos4XoRQyAKk8wyabbtItn41Hb9zNrmLpfLpUv5B7SJfOd0h0jO6UBkjrpFiqn8o9FDamUi0vrM7kG0R3yZqiPqCzXYo2SfeDTtmCJUuWdKQtXrwY6NouRVul+RT1PWqjzu6/dsnaLvlCufRI2jeKvFPJgjJJjTLpjUJyIk1LyyuT8ygok6RI7SryTvMryknzLfpBmUxDuj21sfC1TKYi7S9l/hXtl9qf2lh8TvtQsW9vsh6FHEeZjE1aRkqxb3pMZ7/qLtWSymKUSUkU59eIkZ12lZ1DvflXuw0g1mefi+sRdJ7b6XnRRR8//1hIL0G5LEvR5ql8S099qMv1sU7dFpTJxJRJnRSUyZGUSTOl51x63Sj8So8p8knzLvZL+34hLbNuUSKrs777eTh6o86yi2tJmYRTmWxXeg0v7Erroegj9SSAijZP/Suugel1triGp/eW4hxJ04p6SG0tk2opk6sau0nn9b+4F6S2FvelVKqlqO+0LcqkkNLrdWF3KtlW5J3ed4u6LbvmpOdhUU56nvaXoRjMDYSWB4AAEbEAOKXO5unqvMpM60EqxhhjjDGmabTTFPCQCAD7QF2pGGOMMcaYwaCdAsCh8AxgX6grFZMi6YOSpkuang61G2OMMcY0gmY+AyjpGEmPSpqTPxZXu12SvpZvf0DSwX09tpbhMgLYJ1IZmB133NEyMMYYY4xpGM0cAZQ0Evgm8EZgPnCPpBsi4qFkt2PJXoqxF/AK4NvAK/p4bBeGSwBYKhVjjDHGGDOYNHEK+HBgTkTMBZB0DfAWIA3i3gJcFdkqnT9JmiBpe2BSH47twnCZAi6VisnfDWyMMcYY03SaLAOzI/BE8n1+ntaXffpybBeGxQhgL1IxpSxYsGDxv/3bv60EFg+KkUOTiVTX/yr7DtX2v8q+g/2vsv9V9h0G7v+ufd1xxowZN48YMWKg75odI2l68v2y/NG1gjJdpdrH2ert05djuzAsAkDoVSqmbP+tJU2PiEObaNaQpsr+V9l3qLb/VfYd7H+V/a+y7zA4/kfEMU3Mfj6wc/J9J2BBH/cZ3YdjuzBcpoCNMcYYY9qZe4C9JO2WvwDjVOCGmn1uAN6drwZ+JbAsIp7q47FdGDYjgMYYY4wx7UpErJV0FnAzMBL4XkTMlvShfPulwK+AqcAc4HngvT0d21N57R4AXtb7Lm1Nlf2vsu9Qbf+r7DvY/yr7X2XfoQ38j4hfkQV5aVr6EowAPtLXY3tCXd4daYwxxhhj2h4/A2iMMcYYUzHaNgDs7ytRhjOSdpZ0m6SHJc2W9M95+vmSnpQ0M/+b2mpbm4WkeZJm5X5Oz9O2lPRbSX/N/2/RajsbjaR9kvadKek5SWe3c9tL+p6kRZIeTNLqtrWkT+fXgUclvak1VjeOOv5/WdIj+auhrpc0IU+fJGlV0g8urZvxMKCO73X7ekXa/seJ7/MkzczT263t693nKnPuN5q2nAJW9kqUv5C8EgU4radXogxnlKmAbx8R90rajOy9ySeSyeasiIiLWmnfYCBpHnBoRCxO0r4ELImIC/MfAVtExLmtsrHZ5P3+SbLXA72XNm17SUcCK8jU8PfP00rbWtJ+wI/IFPZ3AH4H7B0R61pk/gZTx/+jgVvzB8G/CJD7Pwm4qdhvuFPH9/Mp6etVafua7ReTrQr9XBu2fb373HuoyLnfaNp1BLDjdSoR8SJQvBKlLYmIpyLi3vzzcuBhelEArwhvAa7MP19JdrFoZ14PPBYRj7fakGYSEb8HltQk12vrtwDXRMTqiPgb2cq5wwfDzmZR5n9E3BIRa/OvfyLTAGs76rR9PSrR9gWSRPaj/0eDatQg0cN9rjLnfqNp1wCw369EaRfyX30HAX/Ok87Kp4W+145ToAkB3CJphqQP5mnb5vpI5P+3aZl1g8OpdL34V6XtoX5bV/Fa8D7g18n33STdJ+l2Sa9tlVFNpqyvV63tXwssjIi/Jmlt2fY19zmf+wOkXQPAfr8SpR2QNA64Djg7Ip4Dvg3sARwIPAVc3Drrms4REXEwcCzwkXyqpDIoE/48AfhJnlSltu+JSl0LJP0rsBb4YZ70FLBLRBwEfBy4WtLmrbKvSdTr65Vqe+A0uv4AbMu2L7nP1d21JK2d27/ftGsA2JfXqbQVkjYiOyl+GBE/A4iIhRGxLiLWA/9NGw9/568KJCIWAdeT+bowf26keH5kUessbDrHAvdGxEKoVtvn1GvrylwLJJ0BHAecnmuFkU9/PZN/ngE8BuzdOisbTw99vUptPwp4K/DjIq0d277sPofP/QHTrgFgv1+JMpzJn/34LvBwRHwlSd8+2e0k4MHaY9sBSZvmDwUjaVPgaDJfbwDOyHc7A/hFaywcFLr8+q9K2yfUa+sbgFMlbSxpN2Av4O4W2NdUJB0DnAucEBHPJ+lb54uDkLQ7mf9zW2Nlc+ihr1ei7XPeADwSEfOLhHZr+3r3OSp+7m8IbfkmkIG8EmWYcwTwLmBWIQEAfAY4TdKBZMPe84B/aoVxg8C2wPXZ9YFRwNUR8RtJ9wDXSno/8Hfg7S20sWlI2oRsxXvavl9q17aX9CNgMjBR0nzgPOBCSto6f43StcBDZFOjHxnuqwDr+P9pYGPgt/l58KeI+BBwJPA5SWuBdcCHIqKviyiGHHV8n1zW16vS9hHxXbo//wtt1vbUv89V5txvNG0pA2OMMcYYY+rTrlPAxhhjjDGmDg4AjTHGGGMqhgNAY4wxxpiK4QDQGGOMMaZiOAA0xhhjjKkYDgCNMcYYYyqGA0BjjDHGmIrhANAYY4wxpmI4ADTGGGOMqRgOAI0xxhhjKoYDQGOMMcaYiuEA0BhjjDGmYjgANIOKpGmSzmxS3p+RdHkz8h4MJE2WNL+fx2ws6SFJ2zXLLmPM0CI/7x+RtE2rbTHDFweAphRJ8yStkrQi+ftGq+0qKAuWIuKCiGhKcNkK8jZ4Qy+7fRD4fUT8Iz/mCkkh6fAknz0lxQDKv0jSXyUtz282767ZfqCkGZKez/8fWLN9d0k35ccvlvSlPpR5etLfVklan/bBfJ+0by6U9D+SxvXTt1Mk/SG3fVrJ9pGS/lPSgtz++yRNyLddWnNerJa0vI/lTq71SdKN+bbzJa3J05bm9r2qn35NkTQrP/4ZSddL2jHZvqOkX0haImm+pA/1I+/UvuLvk/m2aZJekLRzsv8bJM3rj/35cT+Q9JSk5yT9pfYHY952D+ft8pCkE/uRd0hamdi/dAD2vT4/H56XdJukXXvYd5KkX0l6VtI/JH1D0qh822hJP837c0iaXHPs2ZLm5vWwQNJXi2MjYjXwPeDc/tpvTIEDQNMTx0fEuOTvrFYbNBQoLsJDhH8Cvl+TtgT4zwbkvRI4HhgPnAH8l6RXQ3bzAn4B/ADYArgS+EWeXmz/LXArsB2wU75vj0TED4v+BhwLLEj7YLLr8fn3g4HDgM/207clwCXAhXW2/wfwauBVwObAu4AXchs/VGPTj4Cf9KPsBTXn1fHJth/neW4N3An8TJL6kfdDwJsiYgKwA/BX4NvJ9h8AfwO2Bd4MXCBpSj/y/3GN7WlQvxL4t37kVY8vAJMiYnPgBOA/JR0CWQCb+/Bxsnb5BHC1+jcS9vLE/gn9MUzSROBnZH5uCUwHftzDId8CFgHbAwcCRwH/N9l+J/BO4B8lx94IHJzXw/7Ay4GPJtuvBs6QtHF/fDCmwAGg6RfKph6WSto/Sds6H5HZRtIWykZ9ns5/9d4kaac6eZ0v6QfJ90n5L+HiF/J7k1/6cyX9U56+KfBrYIfkl/wOJfmdIGl2bu80Sfsm2+ZJOkfSA5KWSfqxpDF17HyPpLvyX+BLgPPzerhI0t+VjUJdKmlsvv/E3O+l+UjLHZJG5NtC0p5J3ldI6hasSfo+sAtwYzrSUrPPLsAewJ9rNl0JvEzSUWX+9JWIOC8iHomI9RHxZ+AOsoAIYDIwCrgkIlZHxNcAAa/Lt7+HLND5SkSsjIgXIuKBDbGnjo1PkvWF/Xvbt+a430XEtcCC2m2StgDOBj4QEY9HxoMR8ULJvpsCbyOr84YREWvyPLcDturHcQsjIvVpHbAngLJR0snA5yNiTUTcD/wUeF+DzP4acFravwdCRMzOR7gAIv/bI/++E7A0In6dt8svyQLPPUqyagZvBWZHxE/y/nA+8HJJL6mz/27AtXn//wfwG+ClABHxYkRcEhF3krVTFyLisYhYmn8VsJ68LfPt84FngVc2xDNTORwAmn6RX5h/BpyWJJ8C3B4Ri8j61P8Au5IFMKuAgU4dLwKOI/ul/17gq5IOjoiVdB8d6nIjl7Q32cjM2WSjKb8iC6ZG19h9DNlF+mVkQUs9XgHMBbYBPg98Edib7Ff9nsCOwL/n+/4LMD8vd1vgM2Q3sT4TEe8C/k7nKGzZ9OkBwNyIWFuT/jxwQW5nNyR9Kw9Oy/5Kg7Q8uD0MmJ0nvRR4ICJSvx7I0yG7Kc2T9Gtl07/TJB3QB9f7hbIpx6nAfQP1rYQDgLXAyfm03V8kfaTOvm8DngZ+v6G+pOSjOu8B5kfEYkmv6cGvpZJekxy7i7KpzVXAOUDRd1Tzv/jcr+C5B54E/pssKCrz6aYe7L+pZt9vSXoeeAR4iuz8hWzE7eH8x91IZdO/q8n63oAp6qyHv3fku74UuL84Lr8WPUZnv6/lv4BTJW2ibPTyWLIgsK92vUPSc8BishHA79Ts8nCebky/cQBoeuLnNRfBD+TpV9M1AHxHnkZEPBMR10XE8xGxnCwIGdBIVET8Mv8VHBFxO3AL8No+Hv5/gF9GxG/z0ZSLgLFk03oFX4uIBRGxhGy65cAe8lsQEV/Pg60XgA8AH4uIJbmfFwCn5vuuIZvy2TUfabmjJlBqFBOAes+efQfYRdKxtRsi4v9GxIQ6fy+rk9+lZDe+m/Pv44BlNfssAzbLP+9EVh9fI5uK/CXJFHED+Hke5NwJ3E5W/wP1rZadyKa99yb7cXAy2ajvG0v2PQO4qp/tu0PNeXVKsu2U3K8ngEOAE3O/7uzBrwn5KBL5vn/PpzYnkk2NP5KnLwfuAv5N0hhJB5MFsJv0w/ZTamzfoWb7F4DjJXULiCLiuB7sP65m3/9L1pdeS/aDc3Wevg64iux6szr//095INZX7k3s/1qe7997qd+r82N76/e13E4WHD5H9qNwOvDzvhoaEVdHNgW8N9k5uLBml+Vk1wFj+o0DQNMTJ9ZcBP87T78VGCvpFcoegD4QuB4g/6X7HUmP579cfw9MkDSyv4VLOlbSn/Jp1KVkIz0T+3j4DsDjxZeIWE92U90x2Sd97uZ5sot7PZ5IPm9NdtOcUdxIyH7Vb51v/zIwB7hF2dT1p/poc395ljo3nnyk9v/L//rzDFk3JH2ZbJTolCTQWUE2MpuyOZ0B6Srgznyq7kWyAHwrYF8aQ9E3d82DvlUNyhcy2wE+FxGrIpu6voas/3WQjz4eRRaQ9IcFNefVtcm2a/O0bSLidRExY6BO5D9simczi+dWTycLap8gezbwh2SBSV+5tsb2LiPvEfE02Yj/5wZqd5LXujyw3Qn4MGQLS8hGNCcDo8nq/3LVLEDqhYMT+z/a++5d6K3fd5A/9nEzWQC7Kdm1awuy2YN+ERF/JRt9/1bNps2Apf3NzxhwAGgGQB5MXUs2CvgO4KZ8dAGy6c99gFfkv1yPzNPLgpCVdB196JAyyafAriMLHLbNRzR+leTT24jLArJp6CI/ATuTTVMNhLS8xWRBwkuTG8n4yBcpRMTyiPiXiNidbBHFxyW9Pj/2eer43EuZZTwA7K76i1L+h2wk66Q0Ud1XsaZ/s2v2/Q+yaaujI+K5ZNNssucM03Z9GZ1TxA/0wf6G0x/feqCYTuzN/ncDf4iIuQO3uG9Iem0Pfq2QVG9kfBTZYwubA0T2TONxEbF1RLyCLCi/u8HmfhmYQjaCmfrw6x7s/3UP+Y2i8xm/A8lWvU+P7NnUe8iege1ttXyP5FPAPdXv6fmus0mmXJU9A7oHnf0+ZUuya843IntO9hmyc3Jqyb59Ia2Hgn1JpqSN6Q8OAM1AuZpsmvX0/HPBZmTB0VJJWwLn9ZDHTODI/OI7Hvh0sm00sDHZ81Vr86nMo5PtC4Gt8uPKuBZ4szLJho3IAtPVwB/66F9d8gD4v8meSdwGOuQ13pR/Pk6Z9IrIpn7W0fmQ90zgHfnzS8fQ8/T4QmD3HuyYT7bK8/A629eSPY91bk16l1WsNX8dU3eSPk0W4L8xv3mlTMt9+qiyBTHFCvFb8/8/AF6pTApkJNmzmIvJnlkqFr9c0YPvA6Ifvo1UtuhnFDAinxLdKM/jMbIFL/+a+7YvWV+/qaa4dwPdfGiGb5E9RlDPr3ERcUde9lsl7SNphKStga8A9+WjgUjaV9JmyiRI3kl2Tn0lsX2epPdsoK1LgYuBT9akH9uD/cfm5W8j6VRJ4/I2ehPZD82iX90DvLYY8ZN0ENk08QP59/doANIz+RRwT/X7w3zX64H9Jb0t7z//TvYs7CMleS4mW3H9YUmjlMkInUESsOX9q1h8Njrvh8q3nZlcX/Yjuz7+b3LsjmRB5p/6668x4ADQ9EyxArX4u77YENmq0JVkU63pr/dLyJ61W0x2Yar7wHNE/JZMQuEBYAbJDTYfUfwoWSD3LFkgckOy/RGyRR5zVfIsUkQ8Siav8PXcluPJFlS82M86qMe5ZNO8f1I21f07spFPgL3y7yuAPwLfiohp+bZ/zm1ZShY8/7yHMr4AfDb375w6+3yHTKKkHj8ie4h+IFxAtpDnr0kf+AxkKxjJnk97N5kv7yObln0x317U/6Vk7fcW4ISk/ncmex6tVbyL7IfKt8kCiFVkQX3BaWQjyM+QPb/4bxGR3nxfRTY1WSb/0krfdiQ755YDs8hWjqYjwG8iW8z0LPAh4Jh82hZlz2duRWMCiv+iZGVrHwiy6d5ihetFwNkR8QuAyJ4FPh/4qTLtxeuACyLilvz4ptZ9XldvI3u2+VmyxWHFs78oE6NPr4dvJVto9jTZ9WIt8LFk+6NkfW9HsuniVXTOXBwBzJK0kmz241dkC8oK3gFcGZ0rpo3pF4qmPJtujBkMlE2V3we8PiIGGugNKnmgcT/wssgW6LQNw9k3ZSuJPxIRp/W68xBF0i3AP0fEw622pZnk5/39wJGRqS8Y028cABpjjDHGVAxPARtjjDHGVAwHgMYYY4wxFcMBoDHGGGNMxRhKL7VvKBMnToytt96aTTfdtNWmtIyVK1dW1v8q+w7V9r8hvs+Z0z1tzw16xe2gMWD/y3xOaXf/24Aq+w4D93/GjBmLI2Lr3vfM3ufe7wI6uTkijtmA4xtKSwNASevIpApEJhlwVkRssE4bwKRJk7jooouYPHlyI7IblkybNq2y/lfZd6i2/w3x/fjju6fdeOOG5TlIDNj/Mp9T2t3/NqDKvsPA/Zf0eO97NYS+vslqUGj1COCqiDgQIBf8/AIDfG+sMcYYY4zpG0PpGcDNyYQ1kTRZ0u2SrpX0F0kXSjpd0t2SZkmqfR2OMcYYY4zpIy3VAUymgMcA2wOvi4gZkiaTvSFhX2AJmXL95RFxnqR/BnaLiLNL8vsg8EGAbbfd9pDLL7+ccePGDYInQ5MVK1ZU1v8q+w7V9r8hvg/jZwAH7H+bPAPovl9N32Hg/k+ZMmVGRBzal3038BnAPpczGAylKeBXAVdJ2j/fdk/xZgNJjwHFq35mkb1ovBsRcRlwGcChhx4a48aN8/MQFfW/yr5Dtf1viO8XX9w9rd2fgSvzOaXd/W8Dquw72P/+MmSmgCPij2QPSBYrcdL3G65Pvq+n9YGrMcYYY8ywZcgEUpJeAowke/m6Mca0jmEy2tVQquizMRWm6SOAkk6SFHmAV8smkh6S9CRwM3BGRKxrtk3GGGOMMVVmMKaATwPuBE4t2XZ3ROwH3A28OiJ+CRAR0yLiuGKniJgcEdPLthljjDHGmP7R1ABQ0jjgCOD9JAGgpB9KegjYR9JM4Gjgl5LOzLfPk3SBpD9Kmi7pYEk3S3pM0oeaabMxxhhjTLvTVBkYSe8EpkTE+yX9gexNH/fm204BdgauA74cEW9PjpsHfDEivi3pq8DryQLJMcDsiNimTnmWgUmosiRAlX2HavtfZd/B/lfZ/yr7DpaB6S/NXgRyGnBJ/vma/Pu9+feDgN8BBwAzS469If8/CxgXEcuB5ZJekDQhIpbWHmAZmK5UeUl8lX2HavtfZd/B/lfZ/yr7Dva/vzQtAJS0FfA6YP88Yh4JhKRpwOeB3YDjyGRfVkp6Q0Sk+n6p7EutJMyQWb1sjDHGGDPcaOYzgCcDV0XErhExKSJ2Bv4GPAccAjwYEQcAs4GDaoI/Y4Ynxx+f/RljjDFDmGYGgKcB19ekXQe8g2z6935Jo4GNgNf3IBVjjDHGGGMaSNOmUiNickna15Kv0/P/R0q6lk6pmPMjYlJyzBXAFcn3jm3GGGOMMab/tPxVcGVSMZImS7pd0rWS/iLpQkmnS7pb0ixJe7TUaGOMMcaYYUxTZWD6ZECJVAywOfBzYF9gCTAXuDwizpP0z8BuEXF2SV6WgUmosiRAy3yfMyf7v+eeg192gtu+mr6D/a+y/1X2HSwD01+GwmraMqmYXwL3RMRTAJIeA27J95kFlC4YsQxMV6q8JL5lvl98cfa/xe9VddtPbrUZLcP+V9f/KvsOw9v/XDnlf/Ov2wHrgKfz7y8H7ieL2R4me23u8xtaZksDwHpSMcCv6C79ksrCDIXA1RhjjDFmg4mIZ4ADASSdD6yIiIvy7ysiotj2Q+BDwFc2tMxWPwNYTyrmNS22yxhjjDFmqHEH0JBnjJo6kiZpW+CrwCuBZ4EXgS9FRCEPcxqwpaQxwIVkU8DXAR8GHmumbcY0hRZP/RpjjBmyTJQ0Pfl+Wf7oWp+QNAo4FvhNI4xp5ptARLaQ48qIeEeetitwQrLbscBNEfGCpMOAT0TEn4BULqaLpExETAOmNctuY4wxxpgmsHiAi0DGSpqZf74D+G4jjGnmFPDrgBcj4tIiISIej4ivA0i6jWxBx/6SZpG9E/geSVPz7SskfVHSDEm/k3S4pGmS5ko6oaQ8Y4wxxph2Y1VEHJj//b+IeLERmTZzCvilwL31NkbEFEmfJJvqfQZ4c0R8ItllU2BaRJwr6XrgP4E3AvsBVwI3NM1yY4wxxpg2ZtBW00r6Jtnijhcj4rA8+SCyZ/6mAjNrDnmRznnuWcDqiFiTjxZOqlNGqgPIihUrmDZtWgO9GF5U2f8q+w7V9r/KvoP9r7L/VfYd7H9/aWYAOBt4W/ElIj4iaSIwXdKZZILPe5KJPe8CLJQ0NSJOzw9ZE50q1R0yMBGxPn8QshvWAezKcNZE2lCq7DtU2/8q+w72v8r+V9l3aB//I+L8mu9NUfdu5jOAtwJjJH04SdsEICIuB44Gbs21beZExL5J8GeMMcYYY5pE00YAIyIknQh8NX/W72lgJXBuvsuRwJ2SdgYeb5YdxjSN44/vnmYZGDNUKPqn+6QxpoSmPgOYv8rt1DrbfproBB4iaQaJTmA65DlYw6HGGGOMMVWgZW8CSXQCfx8Ru0fEIWTB4k6tsskYY4wxpgq08p26pTqBwNclvQc4kezdwPsDFwOjgXeRLQaZGhFLBttgY4wxxph2QJ0LbQe5YOmjwG4R8bGSbe8BPksmEzMGmAOcGxGXSvoq8HhEXFJyXCoDc8jll1/OuHHVnS1esWJFZf0fFN/nzOmetmdDXtG4wbjtq+k7JP4X/XOI9MnBosrtX2XfYeD+T5kyZUZf39AhaUOCpj6XMxi0cgSwC6lOIPBN4LaIWA4sl7QMKJ5kngW8rCwPy8B0pV2WxA+EQfH94ou7pw2RB+7d9pNbbUbL6PC/6J9DpE8OFlVu/yr7Dva/v7TsGUAyncCDiy8R8RHg9cDWedLqZN/1yff1DKHA1RhjjDFmuNHKQOpW4AJJH46Ib+dpm7TQHmP6R8VGVswww/3TGNMDTQ8AJa0jm7YtODEi5iU6gfdLOpfsWb8nyXQCxzbbLmOMMcaYqjIYI4Cr8rd9lLEUmBURr5d0FzA5Itbk264odoqIScnnK9JtxhhjjDGmf7RSB/A2spHB/SXNAg4A7pE0Nd++QtIXJc2Q9DtJh0uaJmmupBNaZbcxxhhjzHCn6TIwNVPAf4uIk5JtnwQeA54B3hwRn0i2BZne368lXQ9sCrwZ2A+4smxU0TIwXamyJECVfYdq+19l38H+V9n/KvsOloHpL62eAj4IuA6YCsys2fYi8Jv88yxgdUSsyUcLJ5VlZhmYrlR5SXyVfYdq+19l38H+V9n/KvsO9r+/tGQVsKQzgbOAPYF9gV2AhZKmRsTp+W5ronN4skMGJiLWS7IMjDHGGGPMAGlJIBURl0u6Abg8Ik6QdHdEHN4KW4ypPMcfX55uGRFTJYrzwP3eVIRWjqQdCdwpaWfgMEkzk20ntsQiY4wxxpg6HLLnnkz/6lcHdKzq/dhuEU0PACOi9InMiPhp8VnSypLnBMcl+57flzyNMcYYY0zvDNln6SS9h2wkcCSwP3AxMBp4F9nzgFMjYkmr7DPGGGOMGa40XQamT0aUSMXkAeBnyVYKjwHmAOdGxKWSvgo8HhGX1ORjGZiEKksCVNl36Kf/c+aUp++5Z+MMGkTc9vZ/QP4X58Ew7ffgth8MGZhD99orNmAKuHIyMH2hnlTMbRGxHFguaRlQPJ07C3hZ7c6WgelKlZfEV9l36Kf/F19cnj5MH4Z329v/AflfnAfDtN+D277q/veXlr0JpI+sTj6vT76vZ+gEr8YYY4wxwwoHUcZUnWE84mFMw/B5YCpGy0cA8+f/xkqamf99qtU2GWOMMca0M0NhBHBVmaxLRFwBXJF8n1RvmzHGGGOM6TstHwGsh6R5ki6Q9EdJ0yUdLOlmSY9J+lCr7TPGGGOMGa60XAamRgIG4AsR8WNJ84AvRsS3c9mX1wNHkEnCzI6IbUrysgxMQpUlAarsO1Tb/yr7Dva/yv5X2XewDEx/GSpTwAfW2XZD/n8WMC6RhHlB0oSIWJrubBmYrlR5SXyVfYdq+19l38H+V9n/KvsO9r+/DNkp4JxU9qVWEmYoBK/GGGOMMcOOoR4AGmOMMcaYBtO0AFDSulzWZbak+yV9XFJZeZvm25+W9BdJFzbLJmOMMcYY09xp1I5n+yRtA1wNjAfOK3aQNBa4NSJeL+kuYHJErIGeZV/SbcYYY4wxpn8MyhRwRCwiW517liQBSLqNbHHH/pJmAQcA90iamm9fIemLkmZI+p2kwyVNkzRX0gmDYbcxxhhjTDvSNBkYSStqBZ4lPQu8JCIW5t8/CTwGPAO8OSI+kewbwNSI+LWk64FNgTcD+wFXlq0ctgxMV6osCVBl36Ha/lfZd7D/Vfa/yr6DZWD6y2CvpFXN94OA64CpwMyabS8Cv8k/zwJWR8SafLRwUlnmloHpSpWXxFfZd6i2/1X2Hex/lf2vsu8w/P0v0UU+kSzeuQ04ISJuzPe7CbgoIqZtSHmDFgBK2h1YByySdCZwFrAnsC+wC7BQ0tSIOD0/ZE10Dk92yMBExHpJloAxxhhjTDvRTRdZ0iRgPvCvwI2NLGxQngGUtDVwKfCNyLgcOJpsAciBwJyI2DcJ/owxxhhjDNwPLJP0xkZm2syRtLGSZgIbAWuB7wNfSbYfCRwnaTawk6T7gSuBSyJifRPtMqY7Nzb0hxU6ofs6pbjhhj7t1wguuugipkyZ0qd9y+yqR7PsbST98b0eg/6KzOOP757WqD5ZlncZDT4H+kXV/TdVYaKk6cn3y/JH1wqKuAngbxFxUrLtP/O/3zbKmKYFgBExspftP5X0fES8FLpLxaQLSCLi/Jpjq/uUqzHGGGOGI4t7WQRS99W4EXGHJCS9tlHGDJln6SJiUb6K9x5J5wNnkD0AORLYH7gYGA28i+x5wKkRsaQ11hpjjDHGDCqfJ3sWcG0jMhtSr4KLiLlkNm2TJ+0PvAM4nMzx5yPiIOCPwLtbYqQxxhhjzCATEbcAWwAvb0R+TdMB7FPh5VqBS4F9gGOBIyLiA3n634FXRcSTkt4HvCwizq451jqACVXWhOq378uWNbT8GXPmdEs7ZM89+7RfI9hpp52YP39+n/Yts6sezbK3kfTH93occsghDbKmj5TVaz/aJaVb3+9rmw2wvIZQdf8bRJWv+TD8dQDrxESTgXMi4rj8+wnAL4Apw0YGpi+kUjF50upk8/rk+3pKbLcOYFeGuybShtBv3xv8APiUc87plla22KJsv0Zw0UUXcU4f8+7PIpBm2dtI+uN7PQb9h/HFF3dPG2Cf7Nb3y/Iuo5WLIKruf4Oo8jUfhr//Zesb8iBvWvL9BrprKg+IITMFXCsV02p7jDHGGGPalVaPAPYmFWPM4NBXqYg+0tffMM36rTNt2rSm5D0cfps1y/em0szRp+EwslV1/41pAU0fAZS0naRrJD0m6SFJv5K0N3RIxTxM9o7f/wHmFxqAEXFFRJxV5BMRkyJicdk2Y4wxxhjTd5oaAEoScD0wLSL2iIj9gM8A2ya77RYR84CjgDuaaY8xxhhjjOllCljSjUDduZSI6O21AFPI3ul7aXLMzDzvHwIHAdvn08B7Ab+U9I2IuFzSPDJh6ClkU8QfBL5A9v7gL6d5GmOMMcaYvtPbM4AX5f/fCmwH/CD/fhowrw/57w/MKNsQEadLOgXYGbiOLKh7e81uT0TEqyR9FbgCOAIYA8wmWzDShRoZGFasWMG0adP6YGZ7UmX/q+w7VNv/KvsO9r/K/lfZd7D//aXHADAibgeQ9P9FxJHJphsl/b4B5R8E/A44AJhZsr3Qp5gFjIuI5cBySS9ImhARS2vstQxMwnBfEr8hVNl3qLb/VfYd7H+V/a+y72D/+0tfVwFvLWn3/E0dSNoN2LoPx80GTq5NlDQVuADYDTguz2ulpDdERPoW91T3r1YTsNUrmI0xxhhjhiV9XQRyNjBN0jRJ04DbgH/uw3G3AhtL+kCRIOkwYCVwCPBgRBxAFigeVBP8GWOMMcaYJtDrKJqkEcB4skUaL8mTH4mI1fWPyoiIkHQScImkTwEvkD07eDbZ9O/9knYmmwK+T9LqZLsxxhhjjGkCvQaAEbFe0lkRcS1wf38LiIgFwCll2yTNAP4A/HuxqlfSgcC2ETEpyeMKskUgxfdJGGOMMcaYAdHXKeDfSjpH0s6Stiz+GlB+PZmYkZJul3StpL9IulDS6ZLuljRL0h4NKNsYY4wxppKoL69MkvS3kuSIiN03qHDpo2RC0B+rSZ8M/BzYF1gCzAUuj4jzJP1zfszZJfmlMjCHXH755Ywb1+3dypVhxYoVlfW/yr5Dtf2vsu9g/6vsf5V9h4H7P2XKlBkRcWhf9j10r71i+le/2u8yAHT88X0uZzDo00raiNit2YaUcE9EPAUg6THgljx9FtnIYTcsA9OVKi+Jr7LvUG3/q+w72P8q+19l38H+95c+BYCSNgI+DBRagNOA70TEmg0sv1QmJqdW9iWVhLEEjDHGGGPMAOnrM4DfJpNt+Vb+d0ietqHUk4k5qgF5G2OMMcaYEvo6knZYRLw8+X6rpH6vCK6lB5mYn9fsehTwQ0kvAGOBpze0bGOMMcaYfvH003DZZa22oiH0NQBcJ2mPiHgMQNLuwLpGGNCDTMx/J59XRsQ+edlvAj7TiLKNMcYYY6pIXwPATwC3SZoLCNgVeG/TrOqZzYFnW1S2McYYY8ywp08yMACSNgb2IQsA+/QmkEYhaR3Z6t8xwPbA6yJiRsl+loFJqLIkQJV9h2r7X2Xfwf5X2f8q+w6DJAMzYUJMP/LI3ncsQTfeOPxkYHIOASblx7xcEhFxVVOs6s6qiDgQQNKrgKsk7R810atlYLpS5SXxVfYdqu1/lX0H+19l/6vsO9j//tJXGZjvA3sAM+l89i+AwQoAO4iIP0qaCGwNLBrs8o0xxhhjhjt9HQE8FNivdsStFUh6CTASeKbVthhjjDHGDEf6qgP4ILBdMw2RdJKkyAO8WjaR9JCkJ4GbgTMioiGrkI0xxhhjqkaPI4CSbiSb6t0MeEjS3SRv6IiIExpoy2nAncCpwPk12+6OiFdKuh44KyKebGC5xhhjjDGVorcp4BuAbYE7atKPAhoWhEkaBxxB9o7fG8gDQEk/BA4Ctpc0E9gL+KWkb0TE5Y0q3xhjjDGmSvQoAyPpJuAzEfFATfqhwHkRcXxDjJDeCUyJiPdL+gPZKN+9+bZTgJ2B64AvR8Tbe8jHMjAJVZYEqLLvUG3/q+w72P8q+19l38EyMP2ltxHASbXBH0BETJc0qYF2nAZckn++Jv9+b/79IOB3wAFkq5DrYhmYrlR5SXyVfYdq+19l38H+V9n/KvsO9r+/9BYAjulh29hGGCBpK+B1wP6SgmyFb0iaBnwe2A04jkz2ZaWkN0TElEaUbYwxxhhTRXpbBXyPpA/UJkp6P9DtTRwD5GTgqojYNSImRcTOwN+A58jEpx+MiAOA2cBBDv6MMcYYYzaM3kYAzwaul3Q6nQHfocBo4KQG2XAacGFN2nXAO4BVwP2SRpPJ0CyTtG9EPNKgso0xxhhjKkePAWBELAReLWkKsH+e/MuIuLVRBkTE5JK0ryVfpwNImg0soVwmxhhjjDHG9JE+vQkkIm4DbmuyLXWpJxNjjDHGGGP6T1/fBNJqTgR+ExF/AZZIOrjF9hhjjDHGDFt61AEcKkj6JXBJRPxW0keBnSPiEyX7WQcwocqaUFX2Hartf5V9B/tfZf+r7DsMfx1ASeuAWUnSicAk4BfAXDJllmsi4j8GZEANfZoCbiU9yMR8MmqiV+sAdqXKmkhV9h2q7X+VfQf7X2X/q+w7tIX/qyLiwDQh11y+IyKOk7QpMFPSTRGxwUosw2EKuJ5MzGtabJcxxhhjzKAQESvJFFn2aER+wyEAPA24viatkIkxxhhjjBkOTJQ0Pfn7YM32sZJm5n+1cU8xI/pKMl3kDablU8CStgW+SubUs8CLwJci4nrIZGIkTcvfDHIh2fz31+rlZ4wxxhgzBFncy7OG3aaAc14r6T5gPXBhRAz/AFCSgJ8DV0bEO/K0XYETkn3GAusi4gVJhwHdFn8YY4wxxrQpd0TEcY3OtNVTwK8DXoyIS4uEiHg8Ir4OIOk2shUx+0uaBRxA9nq6qS2x1hhjjDGmDWj1FPBLgXvrbYyIKZI+CTwGPAO8uUz+paBGBoYVK1Ywbdq0xlo8jKiy/1X2Hartf5V9B/tfZf+r7DvY//7S6gCwC5K+Sba698WIOCxPPohs0cdUYGZPx1sGpittsCR+wFTZd6i2/1X2Hex/lf2vsu8w/P2PiG4ihhExDZjWjPJaHQDOBt5WfImIj0iaCEyXdCZwFrAnsC+wC7BQ0tSIOL0l1hpjjDHGtAGtDgBvBS6Q9OGI+HaetglARFwu6Qbg8og4QdLdEXF4yyw1xlSHG2/s9yE64YTed6pD3HBDw/K76KKLmDJlSmmejWZDfE5phv895d0jxx8/oHKNGW60dBFI/iaPE4GjJP1N0t3AlcC5+S5HAndKOgjYTtJcSTMk/VHSSa2x2hhjjDFmeNPqEUAi4ing1DrbfppLxfwBuKBYLVwrFWOMMcYYY/pOywPAPlAqFQN8vXUmGWOMMcYMX5TNwg5dJH0U2C0iPtaHfVMZmEMuv/xyxo3rtqimMqxYsaKy/lfZd6i2/w3xfdmyfh8yY86cARd3yJ57Niy/nXbaifnz55fm2Wg2xOeUZvjfU949Mn78gModClT5vIeB+z9lypQZvbyho4NDJ0yI6Uce2e8yAHTjjX0uZzAYDiOAXagjFQNYBqaW4b4kfkOosu9Qbf8b4vsAFoFMOeecARdXtlBhoPlddNFFnHPOOYOyCGRDfE5phv895d0jw/i8qfJ5D/a/v7T6TSB9YTZwcPElIj4CvB7YumUWGWOMMcYMY4ZDAHgrMEbSh5O0TVpljDHGGGPMcGfITAFLWkf23t+CEyNiXkSEpBOB+yWdC4wBnqRTKsYYYxrLALTgGv089UDzmzZtWsNtqUczyxkO/hsznBkyASCwKiIOrLNtKTArIl4v6S5gckSsGTTLjDHGGGPaiCE/BSzpNrKRwf0lzQIOAO6RNLW1lhljjDHGDE+GjAxMzRTw3yLipGTbJ4HHgGeAN0fEJ+rkYRmYhCpLAlTZd6i2/1X2Hex/lf2vsu9gGZj+MlymgA8CrgOmAjPrZWAZmK5UeUl8lX2HavtfZd/B/lfZ/yr7Dva/vwylALAbks4EzgL2BPYFdgEWSpoaEae31DhjjDHGmGHKkH4GMCIuB44Gbs1HB+dExL4O/owxxhhjBs6QHgHMORK4M39GcLmkmXn6iRExr2VWGWOMMaZa7LknDPQtO1JjbdlAhkwAGBGlT25GxE8BJP17REwYVKOMMcYYY9qQIT0FbIwxxhhjGs+QkYHpjZ5kYpJ9LAOTUGVJgCr7DtX2v8q+g/2vsv9V9h0GSQbm0ENj+vTp/S4DQJJlYAZITzIxgGVgaqnykvgq+w7V9r/KvoP9r7L/VfYd7H9/8RSwMcYYY0zFcABojDHGGFMxhtMU8KaJBAzANRFxYauMMcYYY4wZrgynAHBlb88AGmOMMcaY3vEUsDHGGGNMxRiuMjAAX4iIH9fsYxmYhCpLAlTZd6i2/1X2Hex/lf2vsu9gGZj+MpymgC0D00+qvCS+yr5Dtf2vsu9g/6vsf5V9B/vfXzwFbIwxxhhTMRwAGmOMMcZUjJYHgJLWSZopabak+yV9XFKZXZvm25+W9BdJloAxxhhjjBkAQ+EZwI5n+yRtA1wNjAfOK3aQNBa4NSJeL+kuYHJErGmFscYYY4wxw52WjwCmRMQislW8Z0kSgKTbyFb/7i9pFnAAcI+kqa2z1BhjjDFm+DIURgC7EBFz8yngbYCFETFF0ieBx4BngDdHxCdaaqQxxhhjzDCm5TqAklZExLiatKXAPhGxMP/+I+CzwFRgSUT8sE5e1gFMqLImVJV9h2r7X2Xfwf5X2f8q+w7DWwdQ0lbA/+ZftwPWAU/n318OfCUi/iXf9xxgXEScPyBDcobcCKCk3ckcXyTpTOAsYE9gX2AXYKGkqRFxeu2x1gHsSpU1karsO1Tb/yr7Dva/yv5X2XcY3v5HxDPAgQCSzgdWRMRF+fcXgLdK+kJELG5UmUPqGUBJWwOXAt+IjMuBo8kWgBwIzImIfcuCP2OMMcaYNmQt2eDWxxqZ6VAYARwraSawEZmT3we+kmw/ErhT0s7A44NvnjEN4vjju6fdeOPg22EGRln7pbR7W7r/GrOhTJSUzh9fls9c9oVvAg9I+lKjjGl5ABgRI3vZ5cdkq4DPANZK+jhwSUSsb7pxxhhjjDGNYfFA3wUcEc9Jugr4KLCqEca0PADsA73qBBpjjDHGtDmXAPcC/9OIzIbUM4C9UaYTaIwxxhjT7kTEEuBa4P2NyK/lMjC9UUcm5lngJYVMTJJuGZiEKksCDEnf58zpnrbnnk0pakj6P0g0zfey9ktpUlv2l0H1f4j4nOK+X03fYXjLwNTsdz5dVwF3xEGStgX+Bnyp7WRg+kjp6J9lYLoynJfEbyhD0veLL+6e1qSH6Iek/4NE03wva7+UIbIgYlD9HyI+p7jvT261GS2jXfyvDezSQbB84GuTRpQzrKaAoatOYKttMcYYY4wZjgyrALBWJ7DV9hhjjDHGDEeGxBSwpO3IVrccBqwG5gFnR8RfyHQCnyV7JcqmwG3Af7TGUmM2gCE4XWb6QdXbr+r+G9NmtHwEMF/Nez0wLSL2iIj9gM8A20KHTuCjEbE3cDdwrjUAjTHGGGMGTssDQGAKsCYiLi0SImJmRNwh6YeSHgL2yd8WcjTwy/wdwcYYY4wxZgC0XAZG0keB3SKi9B13kk4BdgauA74cEW/vIS/LwCRUWRKgyr5Dtf2vsu9g/6vsf5V9h/aRgRkshsQzgL1wEPA74ABgZk87WgamK+2yJH4gVNl3qLb/VfYd7H+V/a+y72D/+8tQCABnAyfXJkqaClwA7AYcB2wNrJT0hoiYMrgmGmOMMca0D0PhGcBbgY0lfaBIkHQYsBI4BHgwIg4gCxQPcvBnjDHGGLNhtHwEMCJC0knAJZI+BbxALgNDNv17v6TRZMrXl+XBYa1UTHfmzMn+Lr4Y3XRT0/0Yilx00UVMmVLNeLm/vsdxx/W/kHaXxTj++O5p7e6zqTzD+TXzVb7mg/3vLy0PAAEiYgFwSp3N09V5Rk6LiFMBJB1IJhVTHgAaY4wxxphShkQA2AdKpWJaZ44xxhhjzPCl5TIwfaE3qZhkv04ZmC22OOTyyy5j3NKlzFi2bDDMHHLstNNOzJ8/v9VmtIT++n7I+PH9L2TPPft/zCDREDmIOXO6pw1hnwsshWH/N8T/GTNmNNCawaXK13wYuP/nnHOOZWCGO11kYCZMiHFLlzL5F79gSoWfATznnHNabUZL6K/v7fYMYEPkEC6+uHvaEPa5oOpSEPZ/w/wfzs+QVfmaD/a/vwyFVcB9YTbZimBjjDHGGLOBDJcAsFQqRtJRLbTJGGOMMWZYMiyeAQSQtANwCdlIYIdUTET8tc7+T5NpCS4eJBOHIhOprv9V9h2q7X+VfQf7X2X/q+w7DNz/XSNi677sKOk3eTkDYXFEHDPAYxvOsAkAB4Kk6UPpgcvBpsr+V9l3qLb/VfYd7H+V/a+y72D/+8twmQI2xhhjjDENwgGgMcYYY0zFaPcA8LJWG9Biqux/lX2HavtfZd/B/lfZ/yr7Dva/X7T1M4DGGGOMMaY77T4CaIwxxhhjanAAaIwxxhhTMdo2AJR0jKRHJc2R9KlW29NMJO0s6TZJD0uaLemf8/TzJT0paWb+N7XVtjYLSfMkzcr9nJ6nbSnpt5L+mv/fotV2NhpJ+yTtO1PSc5LObue2l/Q9SYskPZik1W1rSZ/OrwOPSnpTa6xuHHX8/7KkRyQ9IOl6SRPy9EmSViX94NKWGd4A6vhet69XpO1/nPg+T9LMPL3d2r7efa4y536jactnACWNBP4CvBGYD9wDnBYRD7XUsCYhaXtg+4i4V9JmwAzgROAUYEVEXNRK+wYDSfOAQyNicZL2JWBJRFyY/wjYIiLObZWNzSbv908CrwDeS5u2vaQjgRXAVRGxf55W2taS9gN+BBwO7AD8Dtg7Ita1yPwNpo7/RwO3RsRaSV8EyP2fBNxU7DfcqeP7+ZT09aq0fc32i4FlEfG5Nmz7eve591CRc7/RtOsI4OHAnIiYGxEvAtcAb2mxTU0jIp6KiHvzz8uBh4EdW2vVkOAtwJX55yvJLhbtzOuBxyLi8VYb0kwi4vfAkprkem39FuCaiFgdEX8D5pBdH4YtZf5HxC0RsTb/+idgp0E3bBCo0/b1qETbF0gS2Y/+Hw2qUYNED/e5ypz7jaZdA8AdgSeS7/OpSECU/+o7CPhznnRWPi30vXacAk0I4BZJMyR9ME/bNiKeguziAWzTMusGh1PpevGvSttD/bau4rXgfcCvk++7SbpP0u2SXtsqo5pMWV+vWtu/FlhY83rUtmz7mvucz/0B0q4BoErS2m+uuwZJ44DryN6R/BzwbWAP4EDgKeDi1lnXdI6IiIOBY4GP5FMllUHSaOAE4Cd5UpXavicqdS2Q9K/AWuCHedJTwC4RcRDwceBqSZu3yr4mUa+vV6rtgdPo+gOwLdu+5D5Xd9eStHZu/37TrgHgfGDn5PtOwIIW2TIoSNqI7KT4YUT8DCAiFkbEuohYD/w3bTz8HREL8v+LgOvJfF2YPzdSPD+yqHUWNp1jgXsjYiFUq+1z6rV1Za4Fks4AjgNOj/zh7nz665n88wzgMWDv1lnZeHro61Vq+1HAW4EfF2nt2PZl9zl87g+Ydg0A7wH2krRbPjJyKnBDi21qGvmzH98FHo6IryTp2ye7nQQ8WHtsOyBp0/yhYCRtChxN5usNwBn5bmcAv2iNhYNCl1//VWn7hHptfQNwqqSNJe0G7AXc3QL7moqkY4BzgRMi4vkkfet8cRCSdifzf25rrGwOPfT1SrR9zhuARyJifpHQbm1f7z5Hxc/9DWFUqw1oBvlKuLOAm4GRwPciYnaLzWomRwDvAmYVEgDAZ4DTJB1INuw9D/inVhg3CGwLXJ9dHxgFXB0Rv5F0D3CtpPcDfwfe3kIbm4akTchWvKft+6V2bXtJPwImAxMlzQfOAy6kpK0jYraka4GHyKZGPzLcVwHW8f/TwMbAb/Pz4E8R8SHgSOBzktYC64APRURfF1EMOer4Prmsr1el7SPiu3R//hfarO2pf5+rzLnfaNpSBsYYY4wxxtSnXaeAjTHGGGNMHRwAGmOMMcZUDAeAxhhjjDEVwwGgMcYYY0zFcABojDHGGFMxHAAaY5qKpK0kzcz//iHpyfzzCknfalKZZ0t6d/75JXl590naoxnl9cOuayTt1UobjDEGLANjjBlEJJ0PrIiIi5pYxijgXuDgXBP0U8DYiDivZj+RXQPXN8uWEtuOAt4ZER8YrDKNMaYMjwAaY1qCpMmSbso/ny/pSkm3SJon6a2SviRplqTf5K+AQtIh+YvtZ0i6ueYtEAWvI3st3lpJU4GzgTMl3SZpkqSH85HHe4GdJX1b0nRJsyX9R2LfPEkXSPpjvv3gvMzHJH0o2e8Tku6R9EBxfP52ml9Kul/Sg5L+T777HcAb8iDVGGNahgNAY8xQYQ/gzcBbgB8At0XEAcAq4M15EPh14OSIOAT4HvD5knyOAGYARMSvgEuBr0bElHz7PsBVEXFQRDwO/GtEHAq8DDhK0suSvJ6IiFeRBW5XACcDrwQ+ByDpaLJXTB0OHAgcIulI4BhgQUS8PCL2B36T27MemAO8fEMqyhhjNhT/CjXGDBV+HRFrJM0ie4Xjb/L0WcAkssBtfzpfdzYSeKokn+2Bh3so5/GI+FPy/RRJHyS7Hm4P7Ac8kG8r3iE+CxgXEcuB5ZJekDSB7L3TRwP35fuNIwsI7wAukvRF4KaIuCMpbxGwA3mQaowxrcABoDFmqLAaslEySWui8wHl9WTXKgGz8xG5nlgFjOlh+8riQ/6S+HOAwyLiWUlX1By7OrFhdZKe2vSFiPhObSGSDgGmAl+QdEtEfC7fNCa30RhjWoangI0xw4VHga0lvQpA0kaSXlqy38PAnn3Mc3OygHCZpG2BY/tp083A+ySNy23aUdI2knYAno+IHwAXAQcnx+wNzO5nOcYY01A8AmiMGRZExIuSTga+Jmk82fXrEroHU78Gvt/HPO+XdF+ex1zgrn7adIukfYE/5tPSK4B3kgWgX5a0HlgDfBggDzJXRUTZ1LUxxgwaloExxrQdkq4HPhkRf221LSmSPgY8FxHfbbUtxphq4ylgY0w78imyBR1DjaXAla02whhjPAJojDHGGFMxPAJojDHGGFMxHAAaY4wxxlQMB4DGGGOMMRXDAaAxxhhjTMVwAGiMMcYYUzEcABpjjDHGVAwHgMYYY4wxFcMBoDHGGGNMxXAAaIwxxhhTMRwAGmOMMcZUDAeAxhhjjDEVY1SrDWgW48ePj2222YYXnl/JmI03arU5ZojzwqrVjBm9cavNMEOElWtXs9Em7g9VZO3zq9lkY7d9u6ORG7H5+AkAzJgxY3FEbN1aiwaftg0At9lmG/7617/yn+d+mM++b2qrzTFDnP+88Go++9Z3tNoMM0T48O1XM/Ui94cqcvu5V3PR+9z27c6N0+dz/OkfBkDS4y02pyV4CtgYY4wxpmK01QigpHnArsBTu+++OwBPLVyMXnICAPHIDS2zbShw170PceFl1/GH+x5h5aoX2HHbrZh65CFcfO77GD3a0+TtzKQzz+TxRYuQxCYbb8zEzTfn8L324l9OPJFX7LNPq80zQ4BH//wo133xOh6+62FWPruSzbbajF3234VjP3wsr37rq1ttnmkCvidUm3YdAdx+2bJlrbZhSHHNL3/PUe/6DDdNu4edt5/Iu94yhd133pZLf/wbnn9hdavNM4PEmw89lFOOOIKNN9qIn9x1F6/51Kf4yZ13ttos02Lu/MmdnHvEufzp+j+x2ZabMfldk9nvtfux4C8L+P3Vv2+1eaYJ+J5g2moEMCGWLl2q559/vtV2DAmeX7Waj3zuO6xbt553njCZKy88mxEjstj/sb8/xSZj/MBzVXj/G9/Iia98JWvXreNdX/kK19xxBx/69rd582GHsenb3w7AF884g2//+tc8u3Ilnzn5ZF71kpdw5je+wcKlS3n3lCl87YMfbLEXppGsfn413/7Qt1m/bj2vPfW1fPz7H2fkqJEArFu3jicffbLFFppG43uCgfYdAfzJunXr+OY3v9lqO4YEd937EEuWLQfgsx86peNEB9hjl+091F9BRo0cyXmnnQbAkuXLueuhhzq2Xfzzn/Oql7yEZStX8qmrruLkCy/klXvvzeo1a/j6TTfxu5kzW2S1aQYP3fUQy5dk14fTzjutI/gDGDlyJLvst0urTDNNwvcEA+0bAP549OjRfPnLX+bFNWtabUvLWbSkczp81x23aaElZiix69adqgeLkkcmLn7f+7j6nHPYdZttiAjOeN3ruPJjH2PqIYcAcN/cuYNuq2keyxZ1tv02k7Lrw5WfupITdELHn2kvfE8w0L4B4PotttiCp59+mj/d+2CrbWk522w5vuPz408uaqElZijx+NNPd3zeZnxnH9l3550BmLDppgDss+OOAGw2diwAK194YbBMNIPA+G06237xE4sB2O81+3HUO45qlUmmyfieYKB9A0DGjRvHAQccwOxHHmu1KS3n1QftyxbjxwHwn5dey/r16zu2Pf7kItasWdsq00yLWLtuHf/xox8BsOVmm3HEfvt1bBs5outlYeTIkZj2Zb8j9mOzLTcD4Cdf+AkRwWHHHcZJnzipxZaZZuF7goH2XQSCJM477zxOPvnkVpvScjbdZAxf/+wHefe5l/CDG6Yx6y+Pc/gBe7Fg0RJ++4eZLLzrKiZsNK7VZppB4Lu//S03/PnP3PXII/zlyScZNXIkl374w37zQYXZeJON+adv/hNfOf0r/O///C9z753L3q/Ym6f//nTvB5thie8JBto4AAR461vfynbbbMU/Fj3TalNazunHT2bn7Sbyxct/xh9nPsLDjz3BTttN5ANvP9orvirEL6dPZ+zo0Ww9fjynvOY1/MuJJ3L43nu32izTYo489Ugm7jSR6754HY/84RGeeOgJxm8znoPedBBHnHxEq80zTcD3BNNWAWBETCo+77XXXkjiI+95u18Fl3PkYftz5GH7t9oM0wLmXX55r/vEDV2F0mf+1391+X7F2WdzxdlnN9IsM4TY7zX7sd9r9ut9R9M2+J5Qbdr2GUBjjDHGGFOOA0BjjDHGmIrhANAYY4wxpmI4ADTGGGOMqRiKiFbb0BQkLQcebbUdLWQisLjVRrSIKvsO1fa/yr5Dtf2vsu9Qbf831PddI2Lr3ndrL9pqFXANj0bEoa02olVIml5V/6vsO1Tb/yr7DtX2v8q+Q7X9r7LvG4KngI0xxhhjKoYDQGOMMcaYitHOAeBlrTagxVTZ/yr7DtX2v8q+Q7X9r7LvUG3/q+z7gGnbRSDGGGOMMaacdh4BNMYYY4wxJTgANMYYY4ypGG0XAEo6RtKjkuZI+lSr7Wk2knaWdJukhyXNlvTPefr5kp6UNDP/m9pqW5uFpHmSZuV+Ts/TtpT0W0l/zf9v0Wo7G42kfZL2nSnpOUlnt3PbS/qepEWSHkzS6ra1pE/n14JHJb2pNVY3hjq+f1nSI5IekHS9pAl5+iRJq5I+cGnLDG8Qdfyv29cr0PY/TvyeJ2lmnt6ObV/vPleJc79ZtNUzgJJGAn8B3gjMB+4BTouIh1pqWBORtD2wfUTcK2kzYAZwInAKsCIiLmqlfYOBpHnAoRGxOEn7ErAkIi7MfwhsERHntsrGZpP3/SeBVwDvpU3bXtKRwArgqojYP08rbWtJ+wE/Ag4HdgB+B+wdEetaZP4GUcf3o4FbI2KtpC8C5L5PAm4q9msH6vh/PiV9vQptX7P9YmBZRHyuTdu+3n3uPVTg3G8W7TYCeDgwJyLmRsSLwDXAW1psU1OJiKci4t7883LgYWDH1lo1JHgLcGX++Uqyi0U783rgsYh4vNWGNJOI+D2wpCa5Xlu/BbgmIlZHxN+AOWTXiGFJme8RcUtErM2//gnYadANGyTqtH092r7tCySJ7Af/jwbVqEGkh/tcJc79ZtFuAeCOwBPJ9/lUKBjKf/kdBPw5Tzornxr6XjtOgSYEcIukGZI+mKdtGxFPQXbxALZpmXWDw6l0vQFUpe2hfltX7XrwPuDXyffdJN0n6XZJr22VUYNAWV+vUtu/FlgYEX9N0tq27Wvucz73N4B2CwBVktY+c9w9IGkccB1wdkQ8B3wb2AM4EHgKuLh11jWdIyLiYOBY4CP5dEllkDQaOAH4SZ5UpbbvicpcDyT9K7AW+GGe9BSwS0QcBHwcuFrS5q2yr4nU6+uVaXvgNLr++Gvbti+5z9XdtSStXdt/wLRbADgf2Dn5vhOwoEW2DBqSNiI7KX4YET8DiIiFEbEuItYD/00bD39HxIL8/yLgejJfF+bPjRTPjyxqnYVN51jg3ohYCNVq+5x6bV2J64GkM4DjgNMjf6g7n/p6Jv88A3gM2Lt1VjaHHvp6Vdp+FPBW4MdFWru2fdl9joqf+xtKuwWA9wB7SdotHxU5FbihxTY1lfz5j+8CD0fEV5L07ZPdTgIerD22HZC0af5QMJI2BY4m8/UG4Ix8tzOAX7TGwkGhywhAVdo+oV5b3wCcKmljSbsBewF3t8C+piHpGOBc4ISIeD5J3zpfGISk3cl8n9saK5tHD3297ds+5w3AIxExv0hox7avd5+jwud+IxjVagMaSb4S7izgZmAk8L2ImN1is5rNEcC7gFmFDADwGeA0SQeSDXvPA/6pFcYNAtsC12fXB0YBV0fEbyTdA1wr6f3A34G3t9DGpiFpE7JV72n7fqld217Sj4DJwERJ84HzgAspaeuImC3pWuAhsunRjwznVYB1fP80sDHw2/wc+FNEfAg4EvicpLXAOuBDEdHXBRRDkjr+Ty7r61Vo+4j4Lt2f/YU2bHvq3+cqce43i7aSgTHGGGOMMb3TblPAxhhjjDGmFxwAGmOMMcZUDAeAxhhjjDEVwwGgMcYYY0zFcABojDHGGFMxHAAaY5qKpK0kzcz//iHpyfzzCknfalKZZ0t6d/75JXl590naoxnl9cOuayTt1UobjDEGLANjjBlEJJ0PrIiIi5pYxijgXuDgXBv0U8DYiDivZj+RXQPXN8uWEtuOAt4ZER8YrDKNMaYMjwAaY1qCpMmSbso/ny/pSkm3SJon6a2SviRplqTf5K+BQtIh+QvuZ0i6ueZNEAWvI3s13lpJU4GzgTMl3SZpkqSH85HHe4GdJX1b0nRJsyX9R2LfPEkXSPpjvv3gvMzHJH0o2e8Tku6R9EBxfP6Gml9Kul/Sg5L+T777HcAb8iDVGGNahgNAY8xQYQ/gzcBbgB8At0XEAcAq4M15EPh14OSIOAT4HvD5knyOAGYARMSvgEuBr0bElHz7PsBVEXFQRDwO/GtEHAq8DDhK0suSvJ6IiFeRBW5XACcDrwQ+ByDpaLLXTB0OHAgcIulI4BhgQUS8PCL2B36T27MemAO8fEMqyhhjNhT/CjXGDBV+HRFrJM0ie5Xjb/L0WcAkssBtfzpfezYSeKokn+2Bh3so5/GI+FPy/RRJHyS7Hm4P7Ac8kG8r3iU+CxgXEcuB5ZJekDSB7N3TRwP35fuNIwsI7wAukvRF4KaIuCMpbxGwA3mQaowxrcABoDFmqLAaslEySWui8wHl9WTXKgGz8xG5nlgFjOlh+8riQ/6i+HOAwyLiWUlX1By7OrFhdZKe2vSFiPhObSGSDgGmAl+QdEtEfC7fNCa30RhjWoangI0xw4VHga0lvQpA0kaSXlqy38PAnn3Mc3OygHCZpG2BY/tp083A+ySNy23aUdI2knYAno+IHwAXAQcnx+wNzO5nOcYY01A8AmiMGRZExIuSTga+Jmk82fXrEroHU78Gvt/HPO+XdF+ex1zgrn7adIukfYE/5tPSK4B3kgWgX5a0HlgDfBggDzJXRUTZ1LUxxgwaloExxrQdkq4HPhkRf221LSmSPgY8FxHfbbUtxphq4ylgY0w78imyBR1DjaXAla02whhjPAJojDHGGFMxPAJojDHGGFMxHAAaY4wxxlQMB4DGGGOMMRXDAaAxxhhjTMVwAGiMMcYYUzH+fxaTtKYZkt0XAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAGoCAYAAADW2lTlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABuHElEQVR4nO3debgcVbn2/+9NmAlzSJgJ8yAoQ8ABgUQUIcyKHAYVB0R84VVUEPT4CvpTRAnCcURO5ADKqIgyyeCBMClCAoEQJkMIEoIJEIYkBMjw/P6o6qR2p3rc3bv37ro/17Wv3b1qWk9Xd/XqtaqeUkRgZmZmZsWxXKcrYGZmZmZ9yw1AMzMzs4JxA9DMzMysYNwANDMzMysYNwDNzMzMCsYNQDMzM7OCcQPQBixJZ0n6Xafr0U0kzZW0RZXp0yR9uMXb/JaksU0uO1LS9FbWp4FtN13vIpG0n6Q/dboe9ZB0iaTv1zHfA5Le1Rd1MmsXNwCtX5N0jKTxacPkRUl/kfTBTterW0XE4IiYCvV/GbZgm2dHxPHt3k6r9ad6SzpS0t8kvSlpXAPL/Y+kkLRVpmwdSVdLejn9u1zSGpnpgyR9X9IMSXMkPSxprSqbORs4p5m4+rExwPc6XQmz3nAD0PotSV8DLiD5AhkGbAr8Eji0iXUt39LKtVB/rpsNGLNJPit1N7TSH1Jb5kz6PrA2sEU6fRhwVmb6d4EPAO8H1gA+BbxVYRu7A2tGxP311muAuB4YJWmDTlfErFluAFq/JGlNkl/YJ0XEHyNiXkQsiIgbIuK0zKwrSros7YmYLGlEZh3TJJ0u6VFgnqTlJR2SzveapHGSti+b/zRJj0qaJ+k3koalvY5zJP1V0tqZ+X8v6d+SXpd0d3ZISNK6km6Q9IakB9Mek3sz00PSSZL+CfwzLfsvSc+ny0yQtFdm/rPS7f0urcskSdtI+qakWely+1V4LT8r6YbM8ymSrsk8f17Szpl6bSXpBOBY4Btp7+sNmVXunL5Gr6c9RStX2O5zknZLH38yXfcO6fPjS8OCygzlSxqeznecpH+lPVD/mVnnKmnP5KuSHgd2L9vm9ul+fS3dz4ek5ZunZculz8dKmpVZ7neSTqkQx+mSXkhf96ck7ZtT75+nr1Ppb6Gks9JpG0q6VtJLkp6V9OW87fRGRPw1Iq4BZtQzv5IfHT8DTs6ZvDnwp4h4IyJeB64D3pUutzZwCvCFiHguEo9FRG4DEDgAuCuzXUk6P33Pvp6+j3ZMp60kaUy632dKulDSKpllD5U0Mf18PCNp/7R8Q0nXS5qdvre/kFnmLEnXqPIxYhdJD6XTrgZWzkwbIunG9H0zW9I9pfdPGu8EIPczZzYQuAFo/dX7SQ7G19WY7xDgKmAtkl/lPy+bfjRwYDp9C+BKki+w9YCbgRskrZiZ/+PAR4BtgIOBvwDfAoaQfF6yX95/AbYGhgIPAZdnpv0CmAesDxyX/pU7DHgvsEP6/EFgZ2Ad4Arg92WNq4OB35L0zjwM3JrWaSOSxvKvc7YByRfwXpKWU9JjsQKwJ4CS8/0GA49mF4iIi9J4fpwOCx+cmXwksD9JQ+HdwGeqbHdk+nhvYCqwT+b5XTnLlHwQ2BbYF/iOljbUzyTpldoS+CiZ11XSCsANwG0k++T/ApdL2jYingXeAHZJZ98LmJtZb259JG1L0kjaPSJWT7c5rXy+iDg5fZ0Gp3V/Ffhz2mC4AXiEZD/tC5wi6aN5QUs6I21w5P5Veb0a9VXg7oh4NGfaL4CDJK2dNvg+TvJeB9gJWAgcoeTHz9OSTqqynZ2ApzLP9yN5rbch+Uz+B/BKOu1HafnOwFYkr9d3ACTtAVwGnJYutzdL98OVwHRgQ+AI4OxSIz2Ve4xIP/d/IvlMrQP8Po215Ovpetcj6QX9FpC9d+oTwHuqxG7Wr7kBaP3VusDLEbGwxnz3RsTNEbGI5EBefkD+aUQ8HxHzSb5sboqI2yNiAcl5PKuQDGeV/CwiZkbEC8A9wD8i4uGIeJukMVpqQBARF0fEnHTaWcB7JK0paRDJF8mZEfFmRDwOXJpT9x9GxOy0bkTE7yLilYhYGBHnASuRNIJK7omIW9PX5PckX0znpLFcBQxXzrlY6Tl9c0i+WPchaTi+IGm79Pk9EbG4ymtc7qcRMSMiZpM0bnauMN9dLG3w7QX8MPN8H6o3AL8bEfMj4hGSxlNpvx4J/CB93Z4HfppZ5n0kjdlzIuKdiLgDuJHkR8CS+khaP33+h/T55iRDmY/k1GMRyX7YQdIKETEtIp6pVGlJ65E0Kv5vRDxM0kO5XkR8L63TVOC/gaPylo+IcyJirUp/VV6vuknaBPgiaeMqx0PAiiQNs1dIXoNfptM2BtYkaahtTtLgOkvSRyqsay2S917JAmB1YDtAEfFERLwoScAXgK+m+3YOyakfpdfp88DF6Wd3cUS8EBFPprF8EDg9It6KiInAWJJh6ZJKx4j3kfwYuiAdXfgDyY+wbF03ADZLp98TEdkG4Jw0PrMByQ1A669eAYao9vlx/848fhNYuWyZ5zOPNwSeKz1JGz3Pk/Q0lMzMPJ6f83wwLDkR/px0KOoNlvZGDCFpmC1ftu3s49wySV+X9EQ6NPYayRftkCp1ezn9Uis9p1S/HKXeuFJP1ziSRlithlie8te82jb3Shtcg4CrgT0lDSeJbWIT29iQnq/bc5nHGwLPlzVmn2Pp/s2+BnfT8zXIbQRHxBSSHuOzgFmSrpK0YV6F0x7IPwBXRMRVafFmwIZlvXjfIulR6pQLgO+lw7t5fg88TdJQWwN4BihdbV96n30vbaA/SvLjY3SFdb2argeAtFH+c5JexpmSLlJygcl6wKrAhMzrdEtaDrBJWo9yGwKlBmNJdp9D5WPEhsALZY267PvpXGAKcJukqZLOKNv26sBrFeI26/fcALT+6u8kJ5Yf1sv1ZA/uM0i+kIHkfCSSL5YXmljvMSQXo3yYpDEzvLRa4CWSYbKNM/NvUq1uSs73O52kh2vttLfn9XR9rVBq/OyVPi71zlVrAEaF8rqkjac3SYbN706/pP8NnEDSK9NIr2PJi/R8LTfNPJ4BbFI6TyszvbR/7yKJf2T6+F6SofCqjeCIuCIiPkjy3gmSoco8PyPpFfp2pux54NmynrzVIyK3waQktczcSn+V6tigfYFz0yHcUuPo75KOSR+/B/h1et7tXOBCljbwSkPG9b43HiXpLVwiIn4aEbuRnFe4Dcmw7sskjct3ZV6nNdMhdUhex7wLVmYA60haPVOW3efVvAhslB4HssuW6jknIr4eEVuQnH7xtbKh5e3J7zU2GxDcALR+Ke2d+A7wC0mHSVpV0gqSDpD04yZXew1woKR9096arwNvA39rYl2rp8u+QtJzcXam7ouAP5IMja2aDrV+uo71LSRpPC4v6TskvS+tchcwClglIqaTDG/vTzLU/nCFZWaSnDfZ2+2ezNIG1riy5426Bvhmen7axiTn+ZX8g+S8y2+k75WRJF/cVwFExD9JGhmfJGmQvkES48cr1UfStpI+JGklkh8k80mGRMvn+yJJQ/KYsobtA8AbSi4kWSXtOd5RydWxy4gktczgSn+VXpR0vSuT9DwvJ2nl9D2eZxuSRt7OLB2+P5il59s+CByf1ncVkgb7I2n9niF57/ynkos2tic5teLGCtu6maXD/kjaXdJ707rNI3lNF6Wv2X8D50sams67UeZcyd8An00/u8ul07ZLTwP4G/DDNOZ3kwwXZ8/HreTvJJ+5Lyu5QOxjwB6Zuh6k5IIokZw/uij9I30/7AbcXsd2zPolNwCt34qInwBfI+lReYmkF+BkknOsmlnfUyRf/j8j6XE4GDg4It5pYnWXkQwXvQA8DpSnuTiZpGfw3yTnHV1J0mCs5FaSE+2fTtf7FvnDxk2JiKeBuSRf3qSNn6nAfZlh5HK/ITn37TU1n8j3LpLG7d0VnjfquySvz7MkF3v8tjQh3Y+HkFx5+jLJeWufjogny+rzSkT8K/NcVG4Er0SSWuVlkn05lGQIt9zRJI3lGZkeu2+lr+3BJA2tZ9P1jCV5b7TSp0gap78i6eWcT9KgApYk+N4LICJmRcS/S3/pLC+XzkUFPkfSoz2d5P29BT0v9DmapDf0FeAm4P9FxP/mVSoiHgJel/TetGiNtF6vkuzHV0jOxYWkB3wKcH96WsVfSc+BjYgHgM8C55P0jN/F0t78o9P6ziBpxJ4ZETUbZun75WNpbK+SNGT/mJll67QOc0kai7+MiHHptEOAcRFR11XXZv2Rep7+YGbtIOlHwPoRkXc1sFnXUpKe6P9ExGGdrkurSPoH8PmIeKzTdTFrlhuAZm2QDvuuCEwiuRL0ZuD4iPhTJ+tlZmYGHgI2a5fVSYaT5pGct3Ye8OeO1sjMzPotSRcrSZKe27OsxE+VJDx/VNKumWn7K0lUPyXnivX87bkH0MzMzKyzJO1Ncs7pZRGxY8700SQXvo0muYnAf0XEe5Xknn2a5CYG00ku5Do6khy0FbkH0MzMzKzDIuJukvt6V3IoSeMwIrm/9lpK7u60BzAlIqamFzddlc5bVdfehH6ttdaK9ddfHxY1foFnzT7RejtN68zgVnu2ZlLBVa5kf+jz7W1yu97EkLvtxdVrtGSqlp2vR0nO9Ebn62Eg9dDnxdTL+je8dGZ7vdnygkoJVPqhqBTpAHrr5Mp5O6nGkWPJa1Fn7Hmv3YqLstNzF6qrsJmXPz+6eo+WrXnvt6YGjRzjS3NWr3XdMdW/05b459TnXo6I9arOlJLUm5d3MkmGh5KLIrntZr02omd2iOlpWV75e6lhQDQAJS0iOZleJHmYTo6Iqrnb1l9/fS666CKY0/hV+tlh8bwh8nqHzZXXWKizrJHpearVsVZ8zWi0js3ElNWbeufug7lJ2XLLLZc7X+lx3vR6y/LWV8tAOkUjL6be1r/a5y/vfdzbz25p+ozce30s1Y5YqymtO7vdvJhr1afaMn11LOjNcbHWuht9b+TFvGHmniK13lfV1rN4ceN5zrPHjZJmjhXNbLuavHrlyW633mVK8dV6/9UbU+57O68BmCna/xOfe27ZGSpr9vsrktsVjmhq4XTTeautUl7VgGgAAvMjYmeANDFo9p6iZmZmZn1i0KBBTS23cGGtW9vXNJ2ed0LamCT/5YoVyqsaKA3ArDVIknaamZmZ9RlJnWwAXg+cLOkqkiHe1yPiRUkvAVtL2pwkeftRJLcrrWqgNABXkTQRWBnYAPhQ3kySTiC5bRHDhnXyXutmZmbWbXrTAKxj3VeS3Kt8iKTpwJnACgARcSFJPtnRJHfMeZPk7jhExEJJJ5PcUWoQcHFETK61vYHSAMwOAb8fuEzSjlE22J+eTHkRwHbbbTdwTp4yMzOzAaFdDcCIOLrG9ABOqjDtZpIGYt0GSgNwiYj4u6QhwHrArE7Xx8zMzIqhnT2AfW3ANQDTW2wNIrmJeEUrrLACG264YZJSsZQZINNhuGjRomWWqfsKsrwNZjsj67xCqNpcvb1Ktl7Vrrxq5krH+i/Vb7yDtpkr+0pXjmWvIMsri+Vi2bIaV0rWe6V1temV5uvNVXylq+9qXXVcq6zRq0hrafXV7s3ElPc4ryyi+nzV6tNXn91mVKtbq/ZPb7IktGOZasvmla01qMZ8rdq/db5O9V51XO989WrV+7hTmSaaXaYebgC2mKTDSW6dtX1EPFk2eVVJjwNrAguB4yJi2RacmZmZWZt0Uw9gf7oTyNHAvSRXr5R7ICJ2AB4APhARN/VpzczMzKzwSg3AZv76m37RAJQ0GNgT+DyZBqCky9Oev23Tq4D3A26SdHxHKmpmZmaF1i0NwP4yBHwYcEtEPC1ptqRdI+KhiDhW0pEkCQ6vBc6NiE9UWkk2DcyGG9ZI5W9mZmbWAA8Bt97RJDcvJv2fvRR6F2AisFP6v6KIuCgiRkTEiHXWWacN1TQzM7Micw9gi0halySx847pTZYHASFpHPADYHPgIJK0L/MkfTgiRnWqvmZmZlZM3dQD2PEGIHAEcFlEfLFUIOku4A1gN+DuiNhT0v8Ch0fEGx2qp5mZmRWYG4CtdTRwTlnZtST3sZsPPCJpRWB94HVJeWlicg0aNAiWG7Q0p1omJdDySkKvldetWj62SvmN6s171Nc5mvo6P1mj8TUy/5I8V9myKjn/skpl2fsyLnpn0TJleTkBa+YTrDNPV2/y/GXl5fwrqTfnXSXV8iq2KpZ68yXmqTevW6WDdem1K/3PPn5ttaVl9b52tfIvVqtvvZ/NduZma6as3mXytOo9W+8y9Za9886y+z7vPdJjPdmyKnUtq3j16Tka/Tw0o5nvpZq5causu9b2Wv7ZaMHr5AZgi0TEyJyyn2aejgeQNBmYTXKV8Fl9UTczMzOzEvcA9rFMmphRwPW4AWhmZmYd4AZg3zqMnDQx5TM5DYyZmZm1Szf1APaXNDC1VEsTs4TTwJiZmVm7tPtOIJL2l/SUpCmSzsiZfpqkienfY5IWSVonnTZN0qR02vha2+r3PYBV0sR8I1p1l2kzMzOzOrSrB1DSIOAXwEeA6cCDkq6PiMdL80TEucC56fwHA1+NiNmZ1YyKiJfr2d5A6AEspYnZLCKGR8QmwLPABztcLzMzMyuQNvcA7gFMiYipEfEOyYjnoVXmPxq4stlYOt4DKGkYcD7wPuBV4B3gxxFxXTrL0cA6klYmSRdzFUvTxNxTab3vvPMO//rXv2DOjNzUFXlpPeqVTQNQUms9S9OWZDotc/ov677MP+dKdlE9XUJv5F6+nxtA8+trRLU0DnlpGvL2WXbZ0oezr8/tyNahrzu0+zotUL1anR6pkThL235j1frSnzSSJqVaSqLeyHu/lz9utCzv+FjtmFkrNUxv1Jt+Jzu9kXRHJUv2/Rv1f0/05rheKqtVv3pT31RKVVOtLvXu0x7lpQAb/P7Kyo25wstQ+l7LLpOXcqlWGqa66lCnXnxPDCkbmr0oIi7KPN8IeD7zfDrw3rwVSVoV2B84OVMcwG3paOmvy9a9jI42AJXsgT8Bl0bEMWnZZsAhmdkOAG6MiLck7Q6cFhH393llzczMrNB6eRHIyxExotrqc8oqtaoPBu4rG/7dMyJmSBoK3C7pyYi4u9LGOj0E/CHgnYi4sFQQEc9FxM8AJN0JTCI5/28Syf2AH5Q0uiO1NTMzs8Jq8xDwdGCTzPONgRkV5j2KsuHfiJiR/p8FXEcypFxRp4eA3wUsk86lJCJGSfoG8AzwCnBgRJzWV5UzMzMzy2rjqUIPAltL2hx4gaSRd0z5TJLWBPYBPpkpWw1YLiLmpI/3A75XbWOdbgD2IOkXJBd3vBMRu6fFu5Cc8zcamFhj+SV5AIcNG9a+ipqZmVnhtDMPYEQslHQycCtJxpOLI2KypBPT6aXR0sOB2yJiXmbxYcB16bmNywNXRMQt1bbX6QbgZODjpScRcZKkIcB4SceTnNy4FbA9sCkwU9LoiDg2b2XpCY8XAWy77bZOEWNmZmYt1c6LBSPiZuDmsrILy55fAlxSVjYVeE8j22rZOYCS3ifpQUlzJb2TJid8o8ZidwArS/pSpmxVgIgYS9KFeUdE7ExyafT2lRp/ZmZmZu0kieWWW66pv/6mlT2APycZr/49MAL4NEnvXUUREZIOA85Pz/V7CZgHnJ7Osjdwr6RNgOcaqczChQuZOXMmzJlZNQ1MLdUuFa94mXzOpfWlx3lpFepNL1Hp8va81AelN1v2l8qSy+SXyyybc4l9eV2g+qX/tepdK75qZVn1pj5YblCmTMu+DqXH2ddh0LxBy6wvu0y1dDK15qs33UAzaQl6k3Kj1r5qVDP1r5XWI2++3qQyWbRo0ZLHCxcu7PE/+3j2SguWWSbv89zIe7aaVr3u9aZFysrrzSjFnJfGpt7jVSXV5q21nrxjXdaSY0DecaHOz+TKry19j1Q7lmen13qdyufPqvdYnkxIy1Q9vnpVS/eTe/xPniwzvXzZRtT8PKv0r740MFl58+W9ho3Wt1tuBdfSIeCImCJpUEQsAv5H0t/qWOZFkoZj3rQ/wJJcgQskTSU/V6CZmZlZ27kBuKw3Ja0ITJT0Y+BFYLXerrTOXIFmZmZmbeUewHyfIrlq5WTgqyS5bD5edYn65OYKBH7WgnWbmZmZ1c0NwDJpowxgPvDdVq2XGrkCs7JpYIYMGdLCKpiZmVnRdVMPYCuvAj5I0sOSZkt6Q9KcOq4CbmY7v5D0iKQHy6dFxEURMSIiRqyxxhqt3rSZmZkVWJvvBNKnWjkEfAHwMWBStPZu4BVzBbZwG2ZmZmY19cfGXDNa2QB8HnisxY0/SHIFni3pSxHxq7Rs1VoLrbzyyrzrXe+COWuzuHRZe400DiXNpDKptXy98zWTnqZaSoNaKQZapZnXsdq0etNB1CrLm5a77Nz6Xptm0tdUm1Zr2UamN1qWp973Rl5KjVr7pFYdqtU7L81GrWXzpmUfl2JYfvnllylbbbUVq66nN+mh6tVM2qpa26t3PSussMIyZdX2b73Ho1aptY1a0/PSg5Qer5PNulJnfHmfh1qfkXpfz0amV1t3NY0ce1qdPqoZ9R7/m3mN69m2G4DL+gZws6S7gLdLhRHxk3oWlrQImJQpOiwipmVyBT4i6XRgZZJ75J2esxozMzOztnEDcFk/AOaSNNCW/flc2/z0jh95XiMZWt5X0n3AyIhYUGFeMzMzs5ZzD2C+dSJivxauDwBJd5KklFld0iRgM+BBSd9K75lnZmZm1nbd1ABs5c3p/iqpNw3AVSRNTP+W3OEjIkYBFwH/B/i/wK8jYue8xp+kEySNlzT+1Vdf7UVVzMzMzJbVzquAJe0v6SlJUySdkTN9pKTXM+2l79S7bLlW9gCeBHxD0jtAaXg2IqLefCzVhoB3Aa4FRgMTK60gIi4iaSzyrne9q2/PSjUzM7Ou1s4eQEmDgF8AHwGmk4x2Xh8Rj5fNek9EHNTksku0MhH06q1aV4mk40nuLLIVsD2wKTBT0uiIOLbV2zMzMzOrpo1DwHsAUyJiKoCkq4BDgYqNuN4s28oeQCQdAuydPh0XETf2Zn0RMVbS9cDYiDhE0gMRsUevK2pmZmbWoF72AA6RlM1hfFE6clmyEUlKvZLpwHtz1vN+SY8AM4BTI2JyA8su0bIGoKRzgN2By9Oir0j6YETUHIeuYW/g3jRNzBxJE9PywyJiWqWFFixYwIwZM2DOjNzpeXmgquWGyqo3B1Nv8qI1kxMub95m8tbl1b/Wa1Pv69QXORLr1aN+b+aUNVGfRssq7Yu8PJXVcuJlc+PVu708tXKclR43k+Msr36tyg2Ypzef02yqwVKs2YN+3uchT737r9Iyy9arvv1cqw61VNuntXLeZdX7Oi1atGiZsmqxZOfPe016k69ztTmZJyr9W/ZYCPnxL4l5ucwyWvb1Kb2f8tbXiHbl/Wwkt2Nv8kE2cwzozXzNzl/SywbgyxExotrqc8rKK/oQsFlEzJU0GvgTsHWdy/bQyh7A0cDOEbEYQNKlwMNAXQ3AiBhcofwP6fq+ExFrtaaqZmZmZo1r4xDwdJKsJyUbk/TyLRERb2Qe3yzpl0rujlZz2XItHQIG1gJmp4/XbPG6zczMzDqmzWlgHgS2lrQ5yQ0vjgKOKdv++sDM9CYZe5Bkc3mFJF9y1WXLtbIBeDbwcJq3TyRDt99s4fpXyQz/PhsRh5fPIOkE4ASAoUOHtnDTZmZmZu3rAYyIhZJOBm4FBgEXR8RkSSem0y8EjgC+JGkhMB84KpLx7Nxlq22vJQ1AScsBi4H3kZwHKOD0iPh3K9afqpYmBuiZBmabbbZxGhgzMzNrmXYngk5zHN9cVnZh5vHPgZ/Xu2w1LWkARsRiSSdHxDXA9a1Yp5mZmVl/0k13AmnlEPDtkk4FrgbmlQojYnblRczMzMwGDjcAl/W59P9JmbIAtmjR+lfLnAMIcFVEnFNp5rfeeounnnoK5szITeNQepyX2qFWuodal7zXe0l8o6kkKqWAKJUvWrw0NUIsXnaZaqlFsqqlNqiUsqDW9PL5ekzLSbWQJ6pf0d476XVVjezTajHnpcXIe1/Ver1qvYdanZ6mXs2kR+rNelq1vVp1KD1+c6369n0zaS+a0ar914p93o59UW+6nyXHukwamLyUMHllecfCvO2t9E7142Pe8TO7vYULFy47X+nYlVldtdQ3lY711V6TWvPlqTfdDz0O142lA+rRWMp5m+Qd93sc63NCyHudyqdlpzfz2lTiHsAcEbF5q9ZVwbxa5wCamZmZtZMbgDkkfQAYnl1vRFzWym2YmZmZdYJ7AHNI+i2wJTARKPVtB9CqBmA2DQzADyPi6rI6LEkDs/baa7dos2ZmZmZuAFYyAtghWn2/rqUaSgOz6aabOg2MmZmZtZQbgMt6DFgfeLGF6zQzMzPrF9wDmCHpBpKh3tWBxyU9ALxdmh4Rh/R2G2ZmZmad5gZgT9cDw4B7ysr3IbkfXVWSFgGTgBWAhcClwAURUX5992qSHgE2BF4F/hgRZ1Ra72qrrcZuu+0Gczaotf3cxyV9nWaj3mVqpXKpd9lq6RuaSW2TLau3Xr1JIVHr8v6690vOJ6Gd+z4vfUFWtde23terfWdjVE5TUc+2a8WelZdWol6NbKfcG2/Ungeae43r3X+1UgQ1U5/evCYlzeyTerebt+5Gjjmlx3kpv+o1eHH922tUOz+TvdlOMymoar0O7UyLVNKb793e7As3AJc6FPhWRDyaLZQ0DzgT+E2N5Zec2ydpKHAFsGa6bGldqwB3RMS+ku4DRkbEghbU3czMzKwu3dQD2PzP66WGlzf+ACJiPElKmLpFxCySq3hPVvrzQdKdJD2EO0qaBOwEPChpdG8rbmZmZtaIQYMGNfXX37SiB3DlKtNWaXRlETFV0nLAUGBmRIyS9A3gGeAV4MCIOC1v2WwamGHDhjW6aTMzM7OK3APY04OSvlBeKOnzwIQm11l+8sAuJPkFd0r/54qIiyJiRESMcB5AMzMza7Xllluuqb96SNpf0lOSpkha5joHScdKejT9+5uk92SmTZM0SdJESeNrbasVPYCnANdJOpalDb4RwIrA4Y2uTNIWJImkZ0k6HjgZ2ArYHtgUmClpdEQc24K6m5mZmdWlnT2AkgYBvwA+Akwn6WC7PiIez8z2LLBPRLwq6QCS3MfvzUwfFREv17O9XjcAI2Im8AFJo4Ad0+KbIuKORtclaT3gQuDnaULpsZKuB8ZGxCGSHoiIPXpbZzMzM7NGtXkIeA9gSkRMTbd1FcmFtksagBHxt8z89wMbN7uxliWCjog7gTubWLR0i7dSGpjfAj/JTH+RpNfvKWCYpK+RnyamB0msssoqsHCVJSkI8tKDNJMWoVa6mGqXl7cjhUy9KUPqTeWSp9461koP0uj6GqlXtf1cqY5L5ntr2RQy2fkWLVq0TFnpcWladvm816G3KThKQwi9Tc/Q6Hx5an2W8lLyNLLOcrXq2qqUQ6Xpr6xUfRvV4qtVl1qfybz58vZ9M+pN+5Sn2hBWpfd2b4539b42WXlfzPUeC0vxzZ27bFn2pCSx7HryUvbklTWz/+o9htf7vupNCrFamkrBlaPefd5M+pp6ptXSiwbgkLKh2YvSO5iVbAQ8n3k+nZ69e+U+D/wl8zyA2yQF8OuydS+jlXcCaUpE1Hol50fEhlA5TYyZmZlZu/WyB/DliBhRbfU5Zbmt5nTU9fPABzPFe0bEjLStdLukJyPi7koba8VFIH0mL02MmZmZWV9pYxqY6cAmmecbAzPKZ5L0bmAscGhEvFIqj4gZ6f9ZwHUkQ8oVDagGICRpYkjqPbTTdTEzM7PiKPUAtqkB+CCwtaTNJa0IHEVyt7Xs9jcF/gh8KiKezpSvJmn10mNgP+Cxahvr+BBwk3J7/7J5ADfYoPot4MzMzMwa0c6LQCJioaSTgVuBQcDFETFZ0onp9AuB7wDrAr9MB0IXpsPKw0gyskDStrsiIm6ptr0B1wDMpokpn5ae8HgRwA477NA3N100MzOzwmhnIuiIuBm4uazswszj44Hjc5abCrynvLyaAdUAzEkTY2ZmZtYnuulOIAOhAVgrTYyZmZlZn3ADsIUkrQ9cAOwOvA1MA06JiKcjYpCkK4FvAocB/66VAxCSvFRvvvkmvPnmknw/9eYuy2qmo7HaBcr15oZqx0XOjebkqpX3rJl8Uq3OW5eXxyur3nrFStXn601Ow950Vteb26uZ9VUrq6VWTK3Oy9cO1fKnLb9Ra3Jl5m2v3nrVmtaqQZBWvK8qaUUdmzkuN7MvSmXrrNj643G9x496j7P15lvN00we2Fpa9d1Z7/qayTPaKu4BbKE0nct1wKURcVRatjPJCY2lK1w2j4hpkvYhuTWcmZmZWZ9yA7C1RgELyk5ynAgg6XJgF2CDdBh4a+AmST+PiLEdqKuZmZkVmBuArbMjMCFvQkQcK+lIksSI1wLnRsQnKq0omwZm2LBhbaiqmZmZFZV7APvWLsBfgZ2AidVmzKaB2W677XyVsJmZmbWUG4CtMxk4orxQ0mjgbGBz4CBgPWCepA9HxKi+raKZmZkVXTf1APaHW8HdAawk6QulAkm7A/OA3YDHImInkobiLm78mZmZWSe0+VZwfarjPYAREZIOBy6QdAbwFmkaGJLh30fSe+KtClyUNg57pIrJW+8777zDtGnTYM4MtFxyqftyqi9NSBDZJxXnq3gJvUr/lr3cPpuqJC9tyZI3SWbVpfU0kjKj7pQvSwJcdr5sqoHS40bSwFRLtVBvepO81ygrW8dG9UjJM7f6tkuPsx/iUlleLNn5So9rpV9oVXqGaikS8soaeQ3rTSNT7bVpZn19bbnlGk+/0+oUR7U0mtapVlne+6C39a831VXe9LzjUF5d8x7XOnblzVfy+huZ41qV42P2cTOpoJpZttprkrd8vfsvLz1ZrRQrzRx7G0071mN6je/lRlPt9EZ/bMw1o+MNQICImAEcWWHyeC19F4+rkirGzMzMrG26aQi4XzQA61AxVYyZmZlZX+imBmB/OAewHhVTxWRJOkHSeEnj58yZ0wfVMjMzsyJp5zmAkvaX9JSkKelpceXTJemn6fRHJe1a77LlBkoDsC4RcVFEjIiIEauvvnqnq2NmZmZdpJ0XgUgaBPwCOADYATha0g5lsx1AclOMrUnyHv+qgWV7GChDwLmpYszMzMz6UhuHgPcApkTEVABJVwGHAo9n5jkUuCySq1nul7SWpA2A4XUs28NA6QHMTRWT3hvYzMzMrO3anAZmI+D5zPPpaVk989SzbA8DogewRqqYXM8+++zLxx577Dzg5T6pZP80hOLGX+TYodjxFzl2cPxFjr/IsUPz8W9W74wTJky4dbnllhvSxDYAVpY0PvP8ovQOZiV5eXvK89ZUmqeeZXsYEA1AqJkqJm/+9SSNj4gRbaxWv1bk+IscOxQ7/iLHDo6/yPEXOXbom/gjYv82rn46sEnm+cbAjDrnWbGOZXsYKEPAZmZmZt3sQWBrSZunN8A4Cri+bJ7rgU+nVwO/D3g9Il6sc9keBkwPoJmZmVm3ioiFkk4GbgUGARdHxGRJJ6bTLwRuBkYDU4A3gc9WW7ba9rq9AXhR7Vm6WpHjL3LsUOz4ixw7OP4ix1/k2KEL4o+Im0kaedmy7E0wAjip3mWrUSvui2dmZmZmA4fPATQzMzMrmK5tADZ6S5SBTNImku6U9ISkyZK+kpafJekFSRPTv9Gdrmu7SJomaVIa5/i0bB1Jt0v6Z/p/7U7Xs9UkbZvZvxMlvSHplG7e95IuljRL0mOZsor7WtI30+PAU5I+2plat06F+M+V9GR6a6jrJK2Vlg+XND/zPriw4ooHgAqxV3yvF2TfX52JfZqkiWl5t+37St9zhfnst1pXDgEruSXK08BHSC6ZfhA4OiIqZsQeyJRkAd8gIh6StDrJfZMPI0mbMzcixnSyfn1B0jRgRES8nCn7MTA7Is5JfwSsHRGnd6qO7Za+718A3ktyYnBX7ntJewNzSbLh75iW5e5rJbdCupIkw/6GwF+BbSJiUYeq32sV4t8PuCM9EfxHAGn8w4EbS/MNdBViP4uc93pR9n3Z9PNIrgr9Xhfu+0rfc5+hIJ/9VuvWHsAlt1OJiHeA0i1RulJEvBgRD6WP5wBPUCMDeEEcClyaPr6U5GDRzfYFnomI5zpdkXaKiLuB2WXFlfb1ocBVEfF2RDxLcuXcHn1Rz3bJiz8ibouIhenT+0lygHWdCvu+kkLs+xJJIvnRf2WfVqqPVPmeK8xnv9W6tQHY8C1RukX6q28X4B9p0cnpsNDF3TgEmhHAbZImSDohLRuW5kci/T+0Y7XrG0fR8+BflH0Plfd1EY8FnwP+knm+uaSHJd0laa9OVarN8t7rRdv3ewEzI+KfmbKu3Pdl33P+7DepWxuADd8SpRtIGgxcC5wSEW8AvwK2BHYGXgTO61zt2m7PiNgVOAA4KR0qKQwliT8PAX6fFhVp31dTqGOBpP8EFgKXp0UvAptGxC7A14ArJK3Rqfq1SaX3eqH2PXA0PX8AduW+z/meqzhrTlk37/+GdWsDsJ7bqXQVSSuQfCguj4g/AkTEzIhYFBGLgf+mi7u/01sFEhGzgOtIYp2ZnjdSOn9kVudq2HYHAA9FxEwo1r5PVdrXhTkWSDoOOAg4Ns0VRjr89Ur6eALwDLBN52rZelXe60Xa98sDHwOuLpV1477P+57Dn/2mdWsDsOFbogxk6bkfvwGeiIifZMo3yMx2OPBY+bLdQNJq6UnBSFoN2I8k1uuB49LZjgP+3Jka9okev/6Lsu8zKu3r64GjJK0kaXNga+CBDtSvrSTtD5wOHBIRb2bK10svDkLSFiTxT+1MLdujynu9EPs+9WHgyYiYXirotn1f6XuOgn/2e6Mr7wTSzC1RBrg9gU8Bk0opAIBvAUdL2pmk23sa8MVOVK4PDAOuS44PLA9cERG3SHoQuEbS54F/AZ/oYB3bRtKqJFe8Z/fvj7t130u6EhgJDJE0HTgTOIecfZ3eRuka4HGSodGTBvpVgBXi/yawEnB7+jm4PyJOBPYGvidpIbAIODEi6r2Iot+pEPvIvPd6UfZ9RPyGZc//hS7b91T+nivMZ7/VujINjJmZmZlV1q1DwGZmZmZWgRuAZmZmZgXjBqCZmZlZwbgBaGZmZlYwbgCamZmZFYwbgGZmZmYF4wagmZmZWcG4AWhmZmZWMG4AmpmZmRWMG4BmZmZmBeMGoJmZmVnBuAFoZmZmVjBuAFqfkjRO0vFtWve3JI1tx7r7gqSRkqY3uMxKkh6XtH676mVm/Uv6uX9S0tBO18UGLjcALZekaZLmS5qb+ft5p+tVktdYioizI6ItjctOSPfBh2vMdgJwd0T8O13mEkkhaY/MeraSFE1sf4ykf0qak37ZfLps+s6SJkh6M/2/c9n0LSTdmC7/sqQf17HNYzPvt/mSFmffg+k82ffmTEn/I2lwg7EdKelvad3H5Uw/WNJj6Tb+JmmHzLTPSFpU9tkYWed2R5bHJOmGdNpZkhakZa+l231/g3FtIOl6STPS98HwRuKuse5s/Up/30injZP0lqRNMvN/WNK0RraRLneypPGS3pZ0Sc70fdP345uS7pS0WQPrDknzMvV/rYn61b19SdtLukPS65KmSDq8wnxnpnX7cKZsLUmXSpqV/p1VmhYRbwMXA6c3Wn+zEjcArZqDI2Jw5u/kTleoP5C0fKfrkPFF4LdlZbOB77dg3fOAg4E1geOA/5L0AQBJKwJ/Bn4HrA1cCvw5LS9Nvx24A1gf2Didt6qIuLz0fgMOAGZk34OZWQ9On+8K7A58u8HYZgMXAOeUT5C0NXA5cCKwFnADcH3Zfv972WdjXAPbnlG27MGZaVenca0H3Av8UZIaWPdi4Bbg4xWmV4y7TleX1T3bqJ8H/L8m15s1g+T9e3H5BElDgD+m21kHGA9c3eD635Op/1qNLNjI9tP3y5+BG9N5TwB+J2mbsvm2BI4AXixbxfnAqsBwYA/gU5I+m5l+BXCcpJUaicGsxA1Aa4iSoYfXJO2YKVsv7ZEZKmnttNfnJUmvpo83rrCusyT9LvN8ePorePn0+WclPaGkB2mqpC+m5asBfwE2zPyS3zBnfYdImpzWd5yk7TPTpkk6VdKj6a/zqyWtXKGen5F0n6TzJc0GzkpfhzGS/qWkF+pCSauk8w9J435N0mxJ90haLp0WkrbKrPsSScs01iT9FtgUuCHb01I2z6bAlsA/yiZdCrxb0j558dQrIs6MiCcjYnFE/AO4Byj1SI0ElgcuiIi3I+KngIAPpdM/Q9LQ+UlEzIuItyLi0d7Up0IdXyB5L+xYa96y5f4aEdeQNDbKfRS4JyLujYiFwI+AjYBevZ4N1m8ByX5cH1i3geVmRsQvgQcrTK8Wd2/9FDg6+/5uRkT8MSL+BLySM/ljwOSI+H1EvAWcBbxH0na92WYDGtn+dsCGwPkRsSgi7gDuAz5VNt/PSXry3ikrPxj4cUS8GRHTgN8AnytNjIjpwKvA+3odlRWSG4DWkHTo4Y/A0ZniI4G7ImIWyXvqf4DNSBow80kOcM2YBRwErAF8Fjhf0q4RMY9le4d6fKGlv7KvBE4h6U25maQxtWJZvfcHNgfeTdJoqeS9wFRgKPADkkbBNsDOwFYkDYTvpPN+HZiebncY8C2goSHYiPgU8C+W9sLmDZ/uBExNGylZbwJnp/VchqRfpo3TvL/cRlrauN0dmJwWvQt4NCKycT2alkPypTRN0l+UDP+Ok7RTHaE3RMmQ42jg4WZjy1tt+lf+PNvI3CWN62lJ/6/VvcJpr85ngOkR8bKkD1aJ6zVJH2zl9pv0AvDfJI2iZWR+FOX93VjnNt4FPFJ6kh4LnmHp+64pkjat8foe08T283pue7yPJH0CeCcibq5UtUrLpp4A3lM1OLMK3AC0av5UdhD8Qlp+BT0bgMekZUTEKxFxbfqrdQ5JI6SpnpOIuCkinonEXcBtwF51Lv4fwE0RcXvamzIGWAX4QGaen0bEjIiYTTLMt3OV9c2IiJ+lja23gC8AX42I2WmcZwNHpfMuADYANouIBRFxT1lDqVXWAuZUmPZrYFNJB5RPiIj/ExFrVfh7d4X1XUjyxXdr+nww8HrZPK8Dq6ePNyZ5PX5K0gtyE5kh4hb4k5Lzt+4F7iJ5/ZuNrdztwD5KztdbkaQBvyLJcBzA3SRfxENJhlqPBk5roO4bln2ujsxMOzKN63lgN+CwNK57q8S1VkTc28D2e+PIsrpvWDb9h8DBkpZpEEXEQVXqf1Cd26/1vqvHQ5n6/zSt279qvL5XNLH9J0l+xJ4maQVJ+5EcC1cFUHLe6tkkP1Lz3AKcIWn1tFf1cyx9D5bMITkOmDXMDUCr5rCyg+B/p+V3AKtIeq+SE6B3Bq4DkLSqpF9Lek7SGyRflmtJGtToxiUdIOn+dBj1NZKeniF1Lr4h8FzpSUQsJvlS3Sgzz78zj98kObhX8nzm8XokB+IJpS8SkoP1eun0c4EpwG1Khq7PqLPOjXqVCl98aU/t/5f+NXIO2TIknUvS4Dky05CdS9Izm7UGSxuk84F7I+IvEfEOSQN8XWB7WqP03twsbfTNb9F6iYgnSc55/DnJeVlDgMdJenWJiKkR8WwkQ+OTgO+RnMNVrxlln6trMtOuScuGRsSHImJCa6JqmWvK6t6j5z0iXiJ53b7Xpu3Xet/VY9dM/b/cru2nPzwPAw4kOdZ8HbiG9H0EfBf4bUQ8W2FbXyb5HP2T5FzCKzPLlqwOvNZgDGaAG4DWhLQxdQ1Jz8cxwI1pLxgkB7ltgfdGxBrA3ml5XiNkHj1/0S5JZZIOgV1L0nAYFsnJ2jdn1lOrR20GyTB0aX0CNiEZpmpGdnsvkxyY35X5Ilkz0osUImJORHw9IrYgOY/na5L2TZd9kwox19hmnkeBLaoMP/4PyQUcPa48TM9XnFvhb3LZvN8lGW7fLyLeyEyaTHKeYXa/vpulQ8SP1lH/lmsktmoi4g8RsWNErAucSfJeyj2vjiTOXjWya5G0V5W45kqqt2e8L5wLjCLpwVwiPR2gUv3/Uue6J5MZ8lRyPvCWLH3fNSUdAq72+h7bzPYj4tGI2Cci1o2IjwJbAA+kk/cFvizp35L+TXJ8ukbS6emysyPi2IhYPyLeRfJ9/UDZJrYnMyRt1gg3AK1ZV5AMsx6bPi5ZnaRx9JqkdUi+PCuZCOydHnzXBL6ZmbYisBLwErAwHcrcLzN9JrBuulyea4ADlaRsWIGkYfo28Lc646sobQD/N8k5iUMBJG0k6aPp44OUpF4R8AawKP0rxXyMpEGS9qf68PhMki+MSvWYTtI7sEeF6QtJzsc6vaz8xOh5JWf2b8nQnaRvkjTwPxIR5Sfkj0tj+rKSC2JKV4jfkf7/HfA+JalABpEMc71Mcs5S6eKXS6rE3pQGYhuk5KKf5YHlJK2cvk9K03dL51mPZDj9hrRnsNQzPSx9vB3JFaF/zizb8tgiOY2gUlyDI+KezPZXJvnsAKykzMVNdcQ9TdJnelnX14DzgG+UlR9Qpf5LTlWQtHxax0HAoLSOpR851wE7Svp4Os93SM5FLe2bz6iJ1DPpEHC11/fyerZfTtK70/qvKulUklNDLkkn70vSs75z+jeD5Kr+X6TLbilp3XSfHUByFfH3M+veiOTq4vsbjdcM3AC06kpXoJb+ritNiOSq0HkkQ63ZX+8XkJxr9zLJgemWSiuPiNtJUig8CkwgSZdQmjaHZAjkGpKhzmOA6zPTnyQZEpmqnHORIuIp4JPAz9K6HExyQUX5lXbNOp1kmPd+JUPdfyXp+QTYOn0+F/g78MtYmibkK2ldXiNpPP+pyjZ+CHw7je/UCvP8mmWvKsy6kmXTS9TrbJILef6ZeQ98CyB9HQ8DPk0Sy+dIhmXfSaeXXv8LSfbfocAhmdd/E5IrIjvlUyQ/VH5Fcl7pfJJGfcl/kcT1VPr/C5lp+wKPSppH0iv9R9JzEFOdjm0+yXsPkvPQssPjFeNWcr7jurSmQfFfLP3R06hvp/U6g+Q9ND8tKw0xf5zk3OJXSS7OOiqzbFtf+1rbV5KMPns8/BTJ528WyfvmI+npGaXzpf9d+iN5vV6NiNK+2w2YRDK8/EPg2IjI9jQeA1xaWp9ZoxRtOTfdzPqCkqHyh4F9I6LZhl6fShsajwDvTs+T6hoDOTYlVxKfFBFH15y5n5J0G/CViHii03Vpp/Rz/wiwdyTZF8wa5gagmZmZWcF4CNjMzMysYNwANDMzMysYNwDNzMzMCqY/3dS+pYYMGRLrrbceq622Wqer0jHz5s0rbPxFjh2KHX+RYwfHX+T4ixw7NB//hAkTXo6I9WrPmdzPveENLHVrROzfi+VbqqMNQEmLSC5zF8kl8CdHRK/ztAEMHz6cMWPGMHLkyFasbkAaN25cYeMvcuxQ7PiLHDs4/iLHX+TYofn4JT1Xe66WqPdOVn2i0z2A8yNiZ4A0ie4PafK+sWZmZmZWn/50DuAaJIk1UXIT9rskXSPpaUnnSDpW0gOSJknassN1NTMzMxuwOpoHMDMEvDLJLXI+FBETJI0kuUPC9sBsYCowNiLOlPQVYPOIOCVnfSeQ3C6HYcOG7TZ27FgGDx7cB5H0T3Pnzi1s/EWOHYodf5FjB8df5PiLHDs0H/+oUaMmRMSIeubt5TmAdW+nL/SnIeD3A5dJ2jGd9mDpzgaSngFuS8snkdxofBkRcRFwEcCIESNi8ODBPh+ioPEXOXYodvxFjh0cf5HjL3Ls4Pgb1W+GgCPi7yQnSJauxMne33Bx5vliOt9wNTMzMxuw+k0DUNJ2wCDglU7XxczMzKybtb0BKOlwSZE28MqtKulxSS8AtwLHRcSidtfJzMzMrMj6ogfwaOBe4KicaQ9ExA7AA8AHIuImgIgYFxEHlWaKiJERMT5vmpmZmZk1pq0NQEmDgT2Bz5NpAEq6XNLjwLaSJgL7ATdJOj6dPk3S2ZL+Lmm8pF0l3SrpGUkntrPOZmZmZt2urWlgJH0SGBURn5f0N5I7fTyUTjsS2AS4Fjg3Ij6RWW4a8KOI+JWk84F9SRqSKwOTI2Johe05DUxGkVMCFDl2KHb8RY4dHH+R4y9y7OA0MI1q99W0RwMXpI+vSp8/lD7fBfgrsBMwMWfZ69P/k4DBETEHmCPpLUlrRcRr5Qs4DUxPRb4kvsixQ7HjL3Ls4PiLHH+RYwfH36i2NQAlrQt8CNgxbTEPAkLSOOAHwObAQSRpX+ZJ+nBEZPP7ZdO+lKeEcRoYMzMzsya1syF1BHBZRHyxVCDpLuANYDfg7ojYU9L/AodHxBttrItZ7xx8cOVpN9zQd/UwMzNrgXZeBHI0cF1Z2bXAMSTDv49IWhFYAdi3SqoYMzMzM2uhtvUARsTInLKfZp6OT//vLekalqaKOSsihmeWuQS4JPN8yTQzMzMza1zH7wSSlypG0khJd0m6RtLTks6RdKykByRNkrRlRyttZmZmNoC1NQ1MXRXISRUDrAH8CdgemA1MBcZGxJmSvgJsHhGn5KzLaWAyipwSoOWxT5lSedpWW7VuOy3ifV/M2MHxFzn+IscOTgPTqP5wNW1eqpibgAcj4kUASc8At6XzTAJGkcNpYHoq8iXxLY/9vPMqT+uHF4F434/sdDU6xvEXN/4ixw4DO/40c8r/pk/XBxYBL6XP3wM8QtJme4Lktrlv9nabHW0AVkoVA9zMsqlfsmlh+kPD1czMzKzXIuIVYGcASWcBcyNiTPp8bkSUpl0OnAj8pLfb7PQ5gKVUMZtFxPCI2AR4Fvhgh+tlZmZm1t/cA7TkvKO29qRJGgacD7wPeBV4B/hxRJTSwxwNrCNpZeAckiHga4EvAc+0s25mDemHw7xmZjagDJE0PvP8ovTUtbpIWh44ALilFZVp551ARHIhx6URcUxathlwSGa2A4AbI+ItSbsDp0XE/UA2XUyPlDIRMQ4Y1656m5mZmbXBy01eBLKKpInp43uA37SiMu0cAv4Q8E5EXFgqiIjnIuJnAJLuJLmgY0dJk0juCfygpNHp9LmSfiRpgqS/StpD0jhJUyUdkrM9MzMzs24zPyJ2Tv/+b0S804qVtnMI+F3AQ5UmRsQoSd8gGep9BTgwIk7LzLIaMC4iTpd0HfB94CPADsClwPVtq7mZmZlZF+uzq2kl/YLk4o53ImL3tHgXknP+RgMTyxZ5h6Xj3JOAtyNiQdpbOLzCNrJ5AJk7dy7jxo1rYRQDS5HjL3LsUOz4ixw7OP4ix1/k2MHxN6qdDcDJwMdLTyLiJElDgPGSjidJ+LwVSbLnTYGZkkZHxLHpIgtiaZbqJWlgImJxeiLkMpwHsKeBnBOpt4ocOxQ7/iLHDo6/yPEXOXbonvgj4qyy523J7t3OcwDvAFaW9KVM2aoAETEW2A+4I81tMyUits80/szMzMysTdrWAEx77w4D9pH0rKQHSM7dOz2dZW/gXkmbAM+1qx5mZmZm1lNbzwFMb+V2VIVpf8jkCdxN0gQyeQKzXZ591R1qZmZmVgQduxNIJk/g3RGxRUTsRtJY3LhTdTIzMzMrgk7eUzc3TyDwM0mfIRk+HgTsCJwHrAh8iuRikNERMbuvK2xmZmbWDbT0Qts+3rD0ZWDziPhqzrTPAN8mSROzMjAFOD0iLpR0PvBcRFyQs1w2DcxuY8eOZfDg4o4Wz507t7DxFzl2KHb8RY4dHH+R4y9y7NB8/KNGjZpQ7x06JPWm0VT3dvpCJ3sAe8jmCQR+AdwZEXOAOZJeB0o3Y50EvDtvHU4D01O3XBLfjCLHDsWOv8ixg+MvcvxFjh0cf6M6dg4gSZ7AXUtPIuIkYF9gvbTo7cy8izPPF9OPGq5mZmZmA00nG4AV8wSamZmZWfu0vSdN0iKSYduSwyJiWkSEpMOARySdTnKu3wskeQJXaXe9zMzMzIqqL4ZS56d3+8jzGjApIvaVdB8wMiIWpNMuKc0UEcMzjy/JTjMzMzOzxnQyD+CdJD2DO0qaBOwEPChpdDp9rqQfSZog6a+S9pA0TtJUSYd0qt5mZmZmA13b08CUDQE/GxGHZ6Z9A3gGeAU4MCJOy0wLknx/f5F0HbAacCCwA3BpXq+i08D0VOSUAEWOHYodf5FjB8df5PiLHDs4DUyjOj0EvAtwLTAamFg27R3glvTxJODtiFiQ9hYOz1uZ08D0VORL4oscOxQ7/iLHDo6/yPEXOXZw/I3qSDoVSccDJwNbAdsDmwIzJY2OiGPT2RbE0u7JJWlgImKxJKeBMTMzM2tSR84BjIixwH7AHWnv4JSI2D7T+DMzMzOzNulkT9rewL2SNgF2lzQxM+2wjtTIzMzMrILdttqK8eef39SyOvjgFtemd9reAIyI3DMyI+IPpceS5uWcJzg4M+9Z9azTzMzMzGrrt+fSSfoMSU/gIGBH4DxgReBTJOcDjo6I2Z2qn5mZmdlA1V8agKtkhoCzqWJ2JLlSeGVgCnB6ROwi6Xzg08AF2ZWUpYFh7ty5jBs3rv2176eKHH+RY4dix1/k2MHxFzn+IscOjr9R/aUBWClVzJ0RMQeYI+l14Ia0fBLw7vKZnQampyJfEl/k2KHY8Rc5dnD8RY6/yLGD429Ux+4EUqe3M48XZ54vpv80Xs3MzMwGlP7eADQzMzOzFut4AzC9Vdwqkiamf2d0uk5mZmZm3aw/DKPOz0vrEhGXAJdkng+vNM3MzMzM6tfxHsBKJE2TdLakv0saL2lXSbdKekbSiZ2un5mZmdlApaW32+1QBZIh4EmZoh9GxNWSpgE/iohfpWlf9gX2JEkJMzkihuasK5sGZrexY8cyeHBxc0bPnTu3sPEXOXYodvxFjh0cf5HjL3Ls0Hz8o0aNmhARI+qZd8TWW0cv7gRS93b6Qn8ZAt65wrTr0/+TgMGZlDBvSVorIl7Lzuw0MD0V+ZL4IscOxY6/yLGD4y9y/EWOHRx/o/rtEHAqm/alPCVMf2i8mpmZmQ04/b0BaGZmZmYt1rYGoKRFaVqXyZIekfQ1SXnbWy2d/pKkpyWd0646mZmZmVl7h1GXnNsnaShwBbAmcGZpBkmrAHdExL6S7gNGRsQCqJ72JTvNzMzMzBrTJ0PAETGL5OrckyUJQNKdJBd37ChpErAT8KCk0en0uZJ+JGmCpL9K2kPSOElTJR3SF/U2MzMz60ZtSwMjaW55gmdJrwLbRcTM9Pk3gGeAV4ADI+K0zLwBjI6Iv0i6DlgNOBDYAbg078php4HpqcgpAYocOxQ7/iLHDo6/yPEXOXZwGphG9fWVtCp7vgtwLTAamFg27R3glvTxJODtiFiQ9hYOz1u508D0VORL4oscOxQ7/iLHDo6/yPEXOXYY+PHn5EU+jKS9cydwSETckM53IzAmIsb1Znt91gCUtAWwCJgl6XjgZGArYHtgU2CmpNERcWy6yIJY2j25JA1MRCyW5BQwZmZm1k2WyYssaTgwHfhP4IZWbqxPzgGUtB5wIfDzSIwF9iO5AGRnYEpEbJ9p/JmZmZkZPAK8LukjrVxpO3vSVpE0EVgBWAj8FvhJZvrewEGSJgMbS3oEuBS4ICIWt7FeZsu6ofkfVjqk/12TNGbMGEaNGtXpanREK2KPgw5a+qQX7w0zs4whksZnnl+UnrpWUmo3ATwbEYdnpn0//bu9VZVpWwMwIgbVmP4HSW9GxLtg2VQx2QtIIuKssmWLe5armZmZDUQv17gIpOKtcSPiHklI2qtVlek359JFxKz0Kt4HJZ0FHEdyAuQgYEfgPGBF4FMk5wOOjojZnamtmZmZWZ/6Acm5gAtbsbJ+dSu4iJhKUqehadGOwDHAHiSBvxkRuwB/Bz7dkUqamZmZ9bGIuA1YG3hPK9bXb3oAM7KpYu6MiDnAHEmvs/QKmEnAu5dZsGceQObOncu4cePaXN3+q8jxNxz74uZPOx0zZkzTy7bLxhtv3C/r1RdaEfu4NdfMPBnXuwr1sSJ/7qHY8Rc5dihM/D8A/tyKFfWrBmA2VUxa9HZm8uLM88Xk1N15AHsa6DmReqPh2Htxov+oU09tetl2GTNmDKf2w3r1hVbEPpAvAiny5x6KHX+RY4eBH3/e9Q1prr9xmefXs2xO5ab0myHg8lQxna6PmZmZWbfqdA9grVQxZn3j4IObXrQ//l4ZN25cv6xXXyhy7GZm9Wp7D6Ck9SVdJekZSY9LulnSNrAkVcwTJPf4/R9geikHYERcEhEnl9YTEcMj4uW8aWZmZmZWv7Y2ACUJuA4YFxFbRsQOwLeAYZnZNo+IacA+wD3trI+ZmZmZ1RgClnQDUHEsJSJq3QJhFMk9fS/MLDMxXfflwC7ABukw8NbATZJ+HhFjJU0jSQw9imSI+ATghyT3Dz43u04zMzMzq1+tcwBLuRQ+BqwP/C59fjQwrY717whMyJsQEcdKOhLYBLiWpFH3ibLZno+I90s6H7gE2BNYGZhMcsFID04D01OR4y9y7FDs+IscOzj+Isdf5NjB8TeqagMwIu4CkPT/RcTemUk3SLq7BdvfBfgrsBMwMWf69en/ScDgTE7AtyStFRGvldXXaWAyBvol8b1R5Nih2PEXOXZw/EWOv8ixg+NvVL1XAa8naYv0Th1I2hxYr47lJgNHlBdKGg2cDWwOHJSua56kD0dE9i7u2bx/5TkBO30Fs5mZmdmAVO9FIKcA4ySNkzQOuBP4Sh3L3QGsJOkLpQJJuwPzgN2AxyJiJ5KG4i5ljT8zMzMza4OavWiSlgPWJLlIY7u0+MmIeLvyUomICEmHAxdIOgN4i+TcwVNIhn8fkbQJyRDww5Lezkw3MzMzszao2QCMiMWSTo6Ia4BHGt1ARMwAjsybJmkC8DfgO6WreiXtDAyLiOGZdVxCchFI6flwzMzMzKwp9Q4B3y7pVEmbSFqn9NeC7VdKEzNI0l2SrpH0tKRzJB0r6QFJkyRt2YJtm5mZmRWS6rllkqRnc4ojIrbo1calL5Mkgv5qWflI4E/A9sBsYCowNiLOlPSVdJlTctaXTQOz29ixYxk8eJl7KxfG3LlzCxt/kWOHYsdf5NjB8Rc5/iLHDs3HP2rUqAkRMaKeeUdsvXWMP//8hrcBoIMPrns7faGuK2kjYvN2VyTHgxHxIoCkZ4Db0vJJJD2Hy3AamJ6KfEl8kWOHYsdf5NjB8Rc5/iLHDo6/UXU1ACWtAHwJKOUCHAf8OiIW9HL7uWliUuVpX7IpYZwCxszMzKxJ9Z4D+CuStC2/TP92S8t6q1KamH1asG4zMzMzy1FvT9ruEfGezPM7JDV8RXC5Kmli/lQ26z7A5ZLeAlYBXurtts3MzMwa8tJLcNFFna5FS9TbAFwkacuIeAZA0hbAolZUoEqamP/OPJ4XEdum2/4o8K1WbNvMzMysiOptAJ4G3ClpKiBgM+CzbatVdWsAr3Zo22ZmZmYDXl1pYAAkrQRsS9IArOtOIK0iaRHJ1b8rAxsAH4qICTnzOQ1MRpFTAhQ5dih2/EWOHRx/keMvcuzQR2lg1lorxu+9d+0Zc+iGGwZeGpjUbsDwdJn3SCIiLmtLrZY1PyJ2BpD0fuAySTtGWevVaWB6KvIl8UWOHYodf5FjB8df5PiLHDs4/kbVmwbmt8CWwESWnvsXQF81AJeIiL9LGgKsB8zq6+2bmZmZDXT19gCOAHYo73HrBEnbAYOAVzpdFzMzM7OBqN48gI8B67ezIpIOlxRpA6/cqpIel/QCcCtwXES05CpkMzMzs6Kp2gMo6QaSod7VgcclPUDmDh0RcUgL63I0cC9wFHBW2bQHIuJ9kq4DTo6IF1q4XTMzM7NCqTUEfD0wDLinrHwfoGWNMEmDgT1J7vF7PWkDUNLlwC7ABpImAlsDN0n6eUSMbdX2zczMzIqkahoYSTcC34qIR8vKRwBnRsTBLamE9ElgVER8XtLfSHr5HkqnHQlsAlwLnBsRn6iyHqeByShySoAixw7Fjr/IsYPjL3L8RY4dnAamUbV6AIeXN/4AImK8pOEtrMfRwAXp46vS5w+lz3cB/grsRHIVckVOA9NTkS+JL3LsUOz4ixw7OP4ix1/k2MHxN6pWA3DlKtNWaUUFJK0LfAjYUVKQXOEbksYBPwA2Bw4iSfsyT9KHI2JUK7ZtZmZmVkS1rgJ+UNIXygslfR5Y5k4cTToCuCwiNouI4RGxCfAs8AZJ8unHImInYDKwixt/ZmZmZr1TqwfwFOA6SceytME3AlgROLxFdTgaOKes7FrgGGA+8IikFUnS0LwuafuIeLJF2zYzMzMrnKoNwIiYCXxA0ihgx7T4poi4o1UViIiROWU/zTwdDyBpMjCb/DQxZmZmZlanuu4EEhF3Ane2uS4VVUoTY2ZmZmaNq/dOIJ12GHBLRDwNzJa0a4frY2ZmZjZgVc0D2F9Iugm4ICJul/RlYJOIOC1nPucBzChyTqgixw7Fjr/IsYPjL3L8RY4dBn4eQEmLgEmZosOA4cCfgakkmVmuiojvNlWBMnUNAXdSlTQx34iy1qvzAPZU5JxIRY4dih1/kWMHx1/k+IscO3RF/PMjYudsQZpz+Z6IOEjSasBESTdGRK8zsQyEIeBKaWI+2OF6mZmZmfWJiJhHkpFly1asbyA0AI8GrisrK6WJMTMzMxsIhkgan/k7oWz6KpImpn/l7Z7SiOj7SPIi91rHh4AlDQPOJwnqVeAd4McRcR0kaWIkjUvvDHIOyfj3Tyutz8zMzKwfernGuYbLDAGn9pL0MLAYOCciBn4DUJKAPwGXRsQxadlmwCGZeVYBFkXEW5J2B5a5+MPMzMysS90TEQe1eqWdHgL+EPBORFxYKoiI5yLiZwCS7iS5ImZHSZOAnUhuTze6I7U1MzMz6wKdHgJ+F/BQpYkRMUrSN4BngFeAA/PSv5SUpYFh7ty5jBs3rrU1HkCKHH+RY4dix1/k2MHxFzn+IscOjr9RnW4A9iDpFyRX974TEbunxbuQXPQxGphYbXmngempCy6Jb1qRY4dix1/k2MHxFzn+IscOAz/+iFgmiWFEjAPGtWN7nW4ATgY+XnoSESdJGgKMl3Q8cDKwFbA9sCkwU9LoiDi2I7U1MzMz6wKdbgDeAZwt6UsR8au0bFWAiBgr6XpgbEQcIumBiNijYzU1s+K44YZlinTIITkz9j9jxoxh1KhRna5GxzQSf1x//bKFBx/c4hqZ9U8dvQgkvZPHYcA+kp6V9ABwKXB6OsvewL2SdgHWlzRV0gRJf5d0eGdqbWZmZjawdboHkIh4ETiqwrQ/pKli/gacXbpauDxVjJmZmZnVr+MNwDrkpooBfta5KpmZmZkNXEpGYfsvSV8GNo+Ir9YxbzYNzG5jx45l8OBlLqopjLlz5xY2/iLHDsWOvyWxv/76MkUTpkzp3Tr7yMYbb8z06dM7XY2OaST+3bbaatnCNddscY36TpE/99B8/KNGjZpQ4w4dS4xYa60Yv/feDW8DQDfcUPd2+sJA6AHsoUKqGMBpYMoN9Evie6PIsUOx429J7DkXgYw69dTerbOPjBkzhlMHSF3boZH4cy8CGcCfmyJ/7sHxN6rTdwKpx2Rg19KTiDgJ2BdYr2M1MjMzMxvABkID8A5gZUlfypSt2qnKmJmZmQ10/WYIWNIikvv+lhwWEdMiIiQdBjwi6XRgZeAFlqaKMTNrrZxccP39fOmScePGDZi6tkPR4zerV79pAALzI2LnCtNeAyZFxL6S7gNGRsSCPquZmZmZWRfp90PAku4k6RncUdIkYCfgQUmjO1szMzMzs4Gp36SBKRsCfjYiDs9M+wbwDPAKcGBEnFZhHU4Dk1HklABFjh2KHX+RYwfHX+T4ixw7OA1MowbKEPAuwLXAaGBipRU4DUxPRb4kvsixQ7HjL3Ls4PiLHH+RYwfH36j+1ABchqTjgZOBrYDtgU2BmZJGR8SxHa2cmZmZ2QDVr88BjIixwH7AHWnv4JSI2N6NPzMzM7Pm9esewNTewL3pOYJzJE1Myw+LiGkdq5WZmZkVy1ZbQd4dZOohtbYuvdRvGoARkXvmZkT8AUDSdyJirT6tlJmZmVkX6tdDwGZmZmbWev0mDUwt1dLEZOZxGpiMIqcEKHLsUOz4ixw7OP4ix1/k2KGP0sCMGBHjx49veBsAkpwGpknV0sQATgNTrsiXxBc5dih2/EWOHRx/keMvcuzg+BvlIWAzMzOzgnED0MzMzKxgBtIQ8GqZFDAAV0XEOZ2qjJmZmdlANZAagPNqnQNoZmZmZrV5CNjMzMysYAZqGhiAH0bE1WXzOA1MRpFTAhQ5dih2/EWOHRx/keMvcuzgNDCNGkhDwE4D06AiXxJf5Nih2PEXOXZw/EWOv8ixg+NvlIeAzczMzArGDUAzMzOzgul4A1DSIkkTJU2W9Iikr0nKq9dq6fSXJD0tySlgzMzMzJrQH84BXHJun6ShwBXAmsCZpRkkrQLcERH7SroPGBkRCzpRWTMzM7OBruM9gFkRMYvkKt6TJQlA0p0kV//uKGkSsBPwoKTRnaupmZmZ2cDVH3oAe4iIqekQ8FBgZkSMkvQN4BngFeDAiDito5U0MzMzG8A6ngdQ0tyIGFxW9hqwbUTMTJ9fCXwbGA3MjojLK6zLeQAzipwTqsixQ7HjL3Ls4PiLHH+RY4eBnQdQ0rrA/6ZP1wcWAS+lz98D/CQivp7OeyowOCLOaqoiqX7XAyhpC5LAZ0k6HjgZ2ArYHtgUmClpdEQcW76s8wD2VOScSEWOHYodf5FjB8df5PiLHDsM7Pgj4hVgZwBJZwFzI2JM+vwt4GOSfhgRL7dqm/3qHEBJ6wEXAj+PxFhgP5ILQHYGpkTE9nmNPzMzM7MutJCkc+urrVxpf+gBXEXSRGAFkiB/C/wkM31v4F5JmwDP9X31zKzQDj44+X/DDZ2th5kNdEMkZcePL0pHLuvxC+BRST9uVWU63gCMiEE1Zrma5Crg44CFkr4GXBARi9teOTMzM7PWeLnZewFHxBuSLgO+DMxvRWU63gCsQ808gWZmZmZd7gLgIeB/WrGyfnUOYC15eQLNzMzMul1EzAauAT7fivV1PA1MLRXSxLwKbFdKE5MpdxqYjCKnBChy7FDs+Fse+5Qpyf+ttmrdOtuoyPseih1/kWOHgZ0Gpmy+s+h5FfCSdpCkYcCzwI+7Lg1MnXJ7/5wGpqeBfEl8bxU5dih2/C2P/bzzkv8D5CKQIu97KHb8RY4duif+8oZdthMs7fhatRXbGVBDwNAzT2Cn62JmZmY2EA2oBmB5nsBO18fMzMxsIOoXQ8CS1ie5umV34G1gGnBKRDxNkifwVZJboqwG3Al8tzM1NbPCGSBDv2Zmjeh4D2B6Ne91wLiI2DIidgC+BQyDJXkCn4qIbYAHgNOdA9DMzMyseR1vAAKjgAURcWGpICImRsQ9ki6X9DiwbXq3kP2Am9J7BJuZmZlZEzqeBkbSl4HNIyL3HneSjgQ2Aa4Fzo2IT1RZl9PAZBQ5JUCRY4dix1/k2MHxFzn+IscO3ZMGpq/0i3MAa9gF+CuwEzCx2oxOA9NTt1wS34wixw7Fjr/IsYPjL3L8RY4dHH+j+kMDcDJwRHmhpNHA2cDmwEHAesA8SR+OiFF9W0UzMzOz7tEfzgG8A1hJ0hdKBZJ2B+YBuwGPRcROJA3FXdz4MzMzM+udjvcARkRIOhy4QNIZwFukaWBIhn8fkbQiSebri9LGYXmqmGVNmZL8nXceuvHGtsfRH40ZM4ZRo4rZXm409jjooOozOBWIWfc5+OBligby90WRj/ng+BvV8QYgQETMAI6sMHl8mioGklQxRwFI2pkkVUx+A9DMzMzMcvWLBmAdclPFdK46ZmZmZgNXx9PA1KNWqpjMfEvTwKy99m5jL7qIwa+9xoTXX++LavY7G2+8MdOnT+90NTqi0dh3W3PN6jNstVUva9S3ipwOosixg+NvKP4pU5YpGsjfF0U+5kPz8Z966qlOAzPQ9UgDs9ZaMfi11xj55z8zagCf09EbY8aM4dRTT+10NTqi0di77RzAIqdDKHLs4Pgbiv+885YpGsjfF0U+5oPjb1R/uAq4HpNJrgg2MzMzs14aKA3A3FQxkvbpYJ3MzMzMBqQBcQ4ggKQNgQtIegKXpIqJiH9WmP8lklyCL/dRFfujIRQ3/iLHDsWOv8ixg+MvcvxFjh2aj3+ziFivnhkl3ZJupxkvR8T+TS7bcgOmAdgMSeP70wmXfa3I8Rc5dih2/EWOHRx/keMvcuzg+Bs1UIaAzczMzKxF3AA0MzMzK5hubwBe1OkKdFiR4y9y7FDs+IscOzj+Isdf5NjB8Tekq88BNDMzM7NldXsPoJmZmZmVcQPQzMzMrGC6tgEoaX9JT0maIumMTtennSRtIulOSU9ImizpK2n5WZJekDQx/Rvd6bq2i6RpkialcY5Py9aRdLukf6b/1+50PVtN0raZ/TtR0huSTunmfS/pYkmzJD2WKau4ryV9Mz0OPCXpo52pdetUiP9cSU9KelTSdZLWSsuHS5qfeR9c2LGKt0CF2Cu+1wuy76/OxD5N0sS0vNv2faXvucJ89lutK88BlDQIeBr4CDAdeBA4OiIe72jF2kTSBsAGEfGQpNWBCcBhwJHA3IgY08n69QVJ04AREfFypuzHwOyIOCf9EbB2RJzeqTq2W/q+fwF4L/BZunTfS9obmAtcFhE7pmW5+1rSDsCVwB7AhsBfgW0iYlGHqt9rFeLfD7gjIhZK+hFAGv9w4MbSfANdhdjPIue9XpR9Xzb9POD1iPheF+77St9zn6Egn/1W69YewD2AKRExNSLeAa4CDu1wndomIl6MiIfSx3OAJ4CNOlurfuFQ4NL08aUkB4tuti/wTEQ81+mKtFNE3A3MLiuutK8PBa6KiLcj4llgCsnxYcDKiz8ibouIhenT+4GN+7xifaDCvq+kEPu+RJJIfvRf2aeV6iNVvucK89lvtW5tAG4EPJ95Pp2CNIjSX327AP9Ii05Oh4Uu7sYh0IwAbpM0QdIJadmwiHgRkoMHMLRjtesbR9Hz4F+UfQ+V93URjwWfA/6Seb65pIcl3SVpr05Vqs3y3utF2/d7ATPLbo/alfu+7HvOn/0mdWsDUDll3TfWXUbSYOBaknskvwH8CtgS2Bl4ETivc7Vruz0jYlfgAOCkdKikMCStCBwC/D4tKtK+r6ZQxwJJ/wksBC5Pi14ENo2IXYCvAVdIWqNT9WuTSu/1Qu174Gh6/gDsyn2f8z1Xcdacsm7e/w3r1gbgdGCTzPONgRkdqkufkLQCyYfi8oj4I0BEzIyIRRGxGPhvurj7OyJmpP9nAdeRxDozPW+kdP7IrM7VsO0OAB6KiJlQrH2fqrSvC3MskHQccBBwbKQnd6fDX6+kjycAzwDbdK6WrVflvV6kfb888DHg6lJZN+77vO85/NlvWrc2AB8Etpa0edozchRwfYfr1DbpuR+/AZ6IiJ9kyjfIzHY48Fj5st1A0mrpScFIWg3YjyTW64Hj0tmOA/7cmRr2iR6//ouy7zMq7evrgaMkrSRpc2Br4IEO1K+tJO0PnA4cEhFvZsrXSy8OQtIWJPFP7Uwt26PKe70Q+z71YeDJiJheKui2fV/pe46Cf/Z7Y/lOV6Ad0ivhTgZuBQYBF0fE5A5Xq532BD4FTCqlAAC+BRwtaWeSbu9pwBc7Ubk+MAy4Ljk+sDxwRUTcIulB4BpJnwf+BXyig3VsG0mrklzxnt2/P+7WfS/pSmAkMETSdOBM4Bxy9nVETJZ0DfA4ydDoSQP9KsAK8X8TWAm4Pf0c3B8RJwJ7A9+TtBBYBJwYEfVeRNHvVIh9ZN57vSj7PiJ+w7Ln/0KX7Xsqf88V5rPfal2ZBsbMzMzMKuvWIWAzMzMzq8ANQDMzM7OCcQPQzMzMrGDcADQzMzMrGDcAzczMzArGDUAzaytJ60qamP79W9IL6eO5kn7Zpm2eIunT6ePt0u09LGnLdmyvgXpdJWnrTtbBzAycBsbM+pCks4C5ETGmjdtYHngI2DXNCXoGsEpEnFk2n0iOgYvbVZecuu0DfDIivtBX2zQzy+MeQDPrCEkjJd2YPj5L0qWSbpM0TdLHJP1Y0iRJt6S3gELSbumN7SdIurXsLhAlHyK5Ld5CSaOBU4DjJd0pabikJ9Kex4eATST9StJ4SZMlfTdTv2mSzpb093T6ruk2n5F0Yma+0yQ9KOnR0vLp3WlukvSIpMck/Uc6+z3Ah9NGqplZx7gBaGb9xZbAgcChwO+AOyNiJ2A+cGDaCPwZcERE7AZcDPwgZz17AhMAIuJm4ELg/IgYlU7fFrgsInaJiOeA/4yIEcC7gX0kvTuzrucj4v0kDbdLgCOA9wHfA5C0H8ktpvYAdgZ2k7Q3sD8wIyLeExE7Arek9VkMTAHe05sXysyst/wr1Mz6i79ExAJJk0hu4XhLWj4JGE7ScNuRpbc7GwS8mLOeDYAnqmznuYi4P/P8SEknkBwPNwB2AB5Np5XuIT4JGBwRc4A5kt6StBbJfaf3Ax5O5xtM0iC8Bxgj6UfAjRFxT2Z7s4ANSRupZmad4AagmfUXb0PSSyZpQSw9QXkxybFKwOS0R66a+cDKVabPKz1IbxJ/KrB7RLwq6ZKyZd/O1OHtTHm2Tj+MiF+Xb0TSbsBo4IeSbouI76WTVk7raGbWMR4CNrOB4ilgPUnvB5C0gqR35cz3BLBVnetcg6RB+LqkYcABDdbpVuBzkganddpI0lBJGwJvRsTvgDHArplltgEmN7gdM7OWcg+gmQ0IEfGOpCOAn0pak+T4dQHLNqb+Avy2znU+IunhdB1TgfsarNNtkrYH/p4OS88FPknSAD1X0mJgAfAlgLSROT8i8oauzcz6jNPAmFnXkXQd8I2I+Gen65Il6avAGxHxm07XxcyKzUPAZtaNziC5oKO/eQ24tNOVMDNzD6CZmZlZwbgH0MzMzKxg3AA0MzMzKxg3AM3MzMwKxg1AMzMzs4JxA9DMzMysYNwANDMzMysYNwDNzMzMCsYNQDMzM7OCcQPQzMzMrGDcADQzMzMrGDcAzczMzApm+U5XoF3WXHPNGDp0KG+9OY+VV1qh09Wxfu6t+W+z8oordboa1k/MW/g2K6zq90MRLXzzbVZdyfu+22nQCqyx5loATJgw4eWIWK+zNep7XdsAHDp0KP/85z/5/ulf4tufG93p6lg/9/1zruDbHzum09WwfuJLd13B6DF+PxTRXadfwZjPed93uxvGT+fgY78EgKTnOlydjvAQsJmZmVnBdFUPoKRpwGbAi1tssQUAL858GW13CADx5PUdq1t/cN9Dj3PORdfyt4efZN78t9ho2LqM3ns3zjv9c6y4oofJu9nw44/nuVmzkMSqK63EkDXWYI+tt+brhx3Ge7fdttPVs37gqX88xbU/upYn7nuCea/OY/V1V2fTHTflgC8dwAc+9oFOV8/awN8JxdatPYAbvP76652uQ79y1U13s8+nvsWN4x5kkw2G8KlDR7HFJsO48OpbePOttztdPesjB44YwZF77slKK6zA7++7jw+ecQa/v/feTlfLOuze39/L6Xuezv3X3c/q66zOyE+NZIe9dmDG0zO4+4q7O109awN/J1hX9QBmxGuvvaY333yz0/XoF96c/zYnfe/XLFq0mE8eMpJLzzmF5ZZL2v7P/OtFVl3ZJzwXxec/8hEOe9/7WLhoEZ/6yU+46p57OPFXv+LA3XdntU98AoAfHXccv/rLX3h13jy+dcQRvH+77Tj+5z9n5muv8elRo/jpCSd0OAprpbfffJtfnfgrFi9azF5H7cXXfvs1Bi0/CIBFixbxwlMvdLiG1mr+TjDo3h7A3y9atIhf/OIXna5Hv3DfQ48z+/U5AHz7xCOXfNABttx0A3f1F9DygwZx5tFHAzB7zhzue/zxJdPO+9OfeP922/H6vHmccdllHHHOObxvm214e8ECfnbjjfx14sQO1dra4fH7HmfO7OT4cPSZRy9p/AEMGjSITXfYtFNVszbxd4JB9zYAr15xxRU599xzeWfBgk7XpeNmzV46HL7ZRkM7WBPrTzZbb2nWg1mZUybO+9znuOLUU9ls6FAiguM+9CEu/epXGb3bbgA8PHVqn9fV2uf1WUv3/dDhyfHh0jMu5RAdsuTPuou/Ewy6twG4eO211+all17i/oce63RdOm7oOmsuefzcC7M6WBPrT5576aUlj4euufQ9sv0mmwCw1mqrAbDtRhsBsPoqqwAw7623+qqK1gfWHLp037/8/MsA7PDBHdjnmH06VSVrM38nGHRvA5DBgwez0047MfnJZzpdlY77wC7bs/aagwH4/oXXsHjx4iXTnnthFgsWLOxU1axDFi5axHevvBKAdVZfnT132GHJtEHL9TwsDBo0COteO+y5A6uvszoAv//h74kIdj9odw4/7fAO18zaxd8JBt17EQiSOPPMMzniiCM6XZWOW23VlfnZt0/g06dfwO+uH8ekp59jj522Zsas2dz+t4nMvO8y1lphcKeraX3gN7ffzvX/+Af3PfkkT7/wAssPGsSFX/qS73xQYCutuhJf/MUX+cmxP+F//+d/mfrQVLZ57za89K+Xai9sA5K/Ewy6uAEI8LGPfYz1h67Lv2e90umqdNyxB49kk/WH8KOxf+TvE5/kiWeeZ+P1h/CFT+znK74K5Kbx41llxRVZb801OfKDH+Trhx3GHtts0+lqWYftfdTeDNl4CNf+6Fqe/NuTPP/486w5dE12+egu7HnEnp2unrWBvxOsqxqAETG89HjrrbdGEid95hO+FVxq7913ZO/dd+x0NawDpo0dW3OeuL5novSJ//VfPZ5fcsopXHLKKa2slvUjO3xwB3b44A61Z7Su4e+EYuvacwDNzMzMLJ8bgGZmZmYF4wagmZmZWcG4AWhmZmZWMIqITtehLSTNAZ7qdD06aAjwcqcr0SFFjh2KHX+RY4dix1/k2KHY8fc29s0iYr3as3WXrroKuMxTETGi05XoFEnjixp/kWOHYsdf5Nih2PEXOXYodvxFjr03PARsZmZmVjBuAJqZmZkVTDc3AC/qdAU6rMjxFzl2KHb8RY4dih1/kWOHYsdf5Nib1rUXgZiZmZlZvm7uATQzMzOzHG4AmpmZmRVM1zUAJe0v6SlJUySd0en6tJukTSTdKekJSZMlfSUtP0vSC5Impn+jO13XdpE0TdKkNM7xadk6km6X9M/0/9qdrmerSdo2s38nSnpD0indvO8lXSxplqTHMmUV97Wkb6bHgqckfbQztW6NCrGfK+lJSY9Kuk7SWmn5cEnzM++BCztW8RapEH/F93oB9v3VmbinSZqYlnfjvq/0PVeIz367dNU5gJIGAU8DHwGmAw8CR0fE4x2tWBtJ2gDYICIekrQ6MAE4DDgSmBsRYzpZv74gaRowIiJezpT9GJgdEeekPwTWjojTO1XHdkvf+y8A7wU+S5fue0l7A3OByyJix7Qsd19L2gG4EtgD2BD4K7BNRCzqUPV7pULs+wF3RMRCST8CSGMfDtxYmq8bVIj/LHLe60XY92XTzwNej4jvdem+r/Q99xkK8Nlvl27rAdwDmBIRUyPiHeAq4NAO16mtIuLFiHgofTwHeALYqLO16hcOBS5NH19KcrDoZvsCz0TEc52uSDtFxN3A7LLiSvv6UOCqiHg7Ip4FppAcIwakvNgj4raIWJg+vR/YuM8r1kcq7PtKun7fl0gSyQ/+K/u0Un2oyvdcIT777dJtDcCNgOczz6dToMZQ+stvF+AfadHJ6dDQxd04BJoRwG2SJkg6IS0bFhEvQnLwAIZ2rHZ94yh6fgEUZd9D5X1dtOPB54C/ZJ5vLulhSXdJ2qtTleoDee/1Iu37vYCZEfHPTFnX7vuy7zl/9nuh2xqAyinrnjHuKiQNBq4FTomIN4BfAVsCOwMvAud1rnZtt2dE7AocAJyUDpcUhqQVgUOA36dFRdr31RTmeCDpP4GFwOVp0YvAphGxC/A14ApJa3Sqfm1U6b1emH0PHE3PH39du+9zvucqzppT1q37v2nd1gCcDmySeb4xMKNDdekzklYg+VBcHhF/BIiImRGxKCIWA/9NF3d/R8SM9P8s4DqSWGem542Uzh+Z1bkatt0BwEMRMROKte9TlfZ1IY4Hko4DDgKOjfSk7nTo65X08QTgGWCbztWyPaq814uy75cHPgZcXSrr1n2f9z1HwT/7vdVtDcAHga0lbZ72ihwFXN/hOrVVev7Hb4AnIuInmfINMrMdDjxWvmw3kLRaelIwklYD9iOJ9XrguHS244A/d6aGfaJHD0BR9n1GpX19PXCUpJUkbQ5sDTzQgfq1jaT9gdOBQyLizUz5eumFQUjagiT2qZ2pZftUea93/b5PfRh4MiKmlwq6cd9X+p6jwJ/9Vli+0xVopfRKuJOBW4FBwMURMbnD1Wq3PYFPAZNKaQCAbwFHS9qZpNt7GvDFTlSuDwwDrkuODywPXBERt0h6ELhG0ueBfwGf6GAd20bSqiRXvWf374+7dd9LuhIYCQyRNB04EziHnH0dEZMlXQM8TjI8etJAvgqwQuzfBFYCbk8/A/dHxInA3sD3JC0EFgEnRkS9F1D0SxXiH5n3Xi/Cvo+I37Dsub/Qhfueyt9zhfjst0tXpYExMzMzs9q6bQjYzMzMzGpwA9DMzMysYNwANDMzMysYNwDNzMzMCsYNQDMzM7OCcQPQzNpK0rqSJqZ//5b0Qvp4rqRftmmbp0j6dPp4u3R7D0vash3ba6BeV0naupN1MDMDp4Exsz4k6SxgbkSMaeM2lgceAnZNc4OeAawSEWeWzSeSY+DidtUlp277AJ+MiC/01TbNzPK4B9DMOkLSSEk3po/PknSppNskTZP0MUk/ljRJ0i3pbaCQtFt6g/sJkm4tuxNEyYdIbo23UNJo4BTgeEl3Shou6Ym05/EhYBNJv5I0XtJkSd/N1G+apLMl/T2dvmu6zWcknZiZ7zRJD0p6tLR8eoeamyQ9IukxSf+Rzn4P8OG0kWpm1jFuAJpZf7ElcCBwKPA74M6I2AmYDxyYNgJ/BhwREbsBFwM/yFnPnsAEgIi4GbgQOD8iRqXTtwUui4hdIuI54D8jYgTwbmAfSe/OrOv5iHg/ScPtEuAI4H3A9wAk7Udym6k9gJ2B3STtDewPzIiI90TEjsAtaX0WA1OA9/TmhTIz6y3/CjWz/uIvEbFA0iSSWznekpZPAoaTNNx2ZOltzwYBL+asZwPgiSrbeS4i7s88P1LSCSTHww2AHYBH02mle4lPAgZHxBxgjqS3JK1Fcu/p/YCH0/kGkzQI7wHGSPoRcGNE3JPZ3ixgQ9JGqplZJ7gBaGb9xduQ9JJJWhBLT1BeTHKsEjA57ZGrZj6wcpXp80oP0hvFnwrsHhGvSrqkbNm3M3V4O1OerdMPI+LX5RuRtBswGvihpNsi4nvppJXTOpqZdYyHgM1soHgKWE/S+wEkrSDpXTnzPQFsVec61yBpEL4uaRhwQIN1uhX4nKTBaZ02kjRU0obAmxHxO2AMsGtmmW2AyQ1ux8yspdwDaGYDQkS8I+kI4KeS1iQ5fl3Aso2pvwC/rXOdj0h6OF3HVOC+But0m6Ttgb+nw9JzgU+SNEDPlbQYWAB8CSBtZM6PiLyhazOzPuM0MGbWdSRdB3wjIv7Z6bpkSfoq8EZE/KbTdTGzYvMQsJl1ozNILujob14DLu10JczM3ANoZmZmVjDuATQzMzMrGDcAzczMzArGDUAzMzOzgnED0MzMzKxg3AA0MzMzK5j/H5orenL1ZfCEAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "def experiment_chord_recognition_feature(fn_wav, fn_ann, color_ann, N_chroma, H_chroma, gamma=1,\n", " version='STFT'):\n", " # Compute chromagram\n", " X, Fs_X, x, Fs, x_dur = libfmp.c5.compute_chromagram_from_filename(fn_wav, N=N_chroma, H=H_chroma, \n", " gamma=gamma, version=version)\n", " N_X = X.shape[1]\n", "\n", " # Chord recogntion\n", " chord_sim, chord_max = libfmp.c5.chord_recognition_template(X, norm_sim='max')\n", " chord_labels = libfmp.c5.get_chord_labels(nonchord=False)\n", "\n", " # Annotations\n", " chord_labels = libfmp.c5.get_chord_labels(ext_minor='m', nonchord=False)\n", " ann_matrix, ann_frame, ann_seg_frame, ann_seg_ind, ann_seg_sec = \\\n", " convert_chord_ann_matrix(fn_ann, chord_labels, Fs=Fs_X, N=N_X, last=True)\n", "\n", " P, R, F, TP, FP, FN = compute_eval_measures(ann_matrix, chord_max)\n", "\n", " fig, ax = plt.subplots(3, 2, gridspec_kw={'width_ratios': [1, 0.03], \n", " 'height_ratios': [1, 2, 0.2]}, figsize=(9, 6))\n", "\n", " title = title='Chromagram with window size = %.3f (seconds)' % (N_chroma / Fs)\n", " libfmp.b.plot_chromagram(X, ax=[ax[0, 0], ax[0, 1]], Fs=1, clim=[0, 1], xlabel='', title=title)\n", " libfmp.b.plot_segments_overlay(ann_seg_frame, ax=ax[0, 0], \n", " print_labels=False, colors=color_ann, alpha=0.1)\n", "\n", " title = 'Evaluation result (N=%d, TP=%d, FP=%d, FN=%d, F=%.3f)' % (N_X, TP, FP, FN, F)\n", " plot_matrix_chord_eval(ann_matrix, chord_max, ax=[ax[1, 0], ax[1, 1]], Fs=1, \n", " title=title, ylabel='Chord', xlabel='Time (frames)', chord_labels=chord_labels)\n", "\n", " libfmp.b.plot_segments(ann_seg_ind, ax=ax[2, 0], time_label='Time (frames)', time_max=N_X,\n", " colors=color_ann, alpha=0.3)\n", " ax[2, 1].axis('off')\n", " plt.tight_layout()\n", " plt.show()\n", "\n", "fn_wav = os.path.join('..', 'data', 'C5', 'FMP_C5_F20_Bach_BWV846-mm1-4_Fischer.wav')\n", "fn_ann = os.path.join('..', 'data', 'C5', 'FMP_C5_F20_Bach_BWV846-mm1-4_Fischer_ChordAnnotations.csv')\n", "color_ann = {'C': [1, 0.5, 0, 1], 'G': [0, 1, 0, 1], 'Dm': [1, 0, 0, 1], 'N': [1, 1, 1, 1]}\n", "\n", "experiment_chord_recognition_feature(fn_wav, fn_ann, color_ann, N_chroma=2048, H_chroma=1024)\n", "experiment_chord_recognition_feature(fn_wav, fn_ann, color_ann, N_chroma=2048*4, H_chroma=1024)\n", "experiment_chord_recognition_feature(fn_wav, fn_ann, color_ann, N_chroma=2048*16, H_chroma=1024)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\"FMP_C5_20a\"\n", "\n", "
\n", "\n", "In the Bach recording, a sixteenth note has a duration of roughly $150~\\mathrm{msec}$. Therefore, using an analysis window with a duration of roughly $90~\\mathrm{msec}$, each chroma frame contains the onsets of at most one note. Even though the sound of each note may last much longer than the notated duration, the harmonic content of each frame is dominated by only one or two notes (including their harmonic partials). This explains the misclassifications and many chord label changes in the recognition result of the first setting (small window size). An obvious strategy for improving the chord recognition result in our Bach example is to use larger window sizes that better correspond to the half-measure or measure level of the annotations. This is demonstrated by the second (medium window size, $372~\\mathrm{msec}$) and third setting (large window size, $1486~\\mathrm{msec}$). As a downside, however, the larger analysis windows smooth out the originally sharp transitions between different chords, which may introduce problems at chord changes." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Further Notes\n", "\n", "\n", "The evaluation for music processing tasks is itself a topic of central importance. First of all, one requires references annotations, which are often generated by human experts in a manual process. Such annotations are typically based on an expert's **subjective decisions**. Furthermore, the specification of such annotations may require simplifications (e.g., the choice of chord types allowed). Finally, one may need to convert the reference annotations to fit an algorithm's output format. For example, the physical time axis (given in seconds) may be converted into a sampled time axis (given in frames). Besides musical ambiguities and annotator-dependent choices, such technical conversion may introduce additional uncertainties into the evaluation process. To give a concrete example, assume that, in our chord recognition scenario, we deal with music recordings where one has a chord change roughly every $500~\\mathrm{msec}$. Furthermore, assume that our feature resolution is roughly $50~\\mathrm{msec}$ ($20$ chroma features per second). Then, when evaluating on the quantized time axis, one may have quantization ambiguities for nearly $10\\,\\%$ of the frames, which may impact the evaluation measure by roughly $5\\,\\%$. In summary, one should keep the following points in mind:\n", "\n", "* Never trust your reference annotations!\n", "* Explicitly specify the underlying model assumptions and understand their influence. \n", "* Understand the conversion steps (e.g., time sampling) and the ambiguities introduced.\n", "\n", "Next, one requires evaluation metrics to compare reference annotations with estimations obtained from automated approaches. Expressing the behavior of an algorithm using a simple quantity is convenient and allows for optimizing the approach. In this notebook, we discussed simple precision, recall, and F-measures applied on a frame-wise level. When using such quantitative metrics, one needs to keep in mind that they only provide a glimpse on an algorithm's performance and the nature of the problem at hand. Visual comparisons (e.g., using time–chord plots) of estimation and reference annotation are a powerful way to deepen the investigations.\n", "\n", "* In the [FMP notebook on evaluation](../C4/C4S5_Evaluation.html), we introduce general evaluation metrics in the context of [music structure analysis](../C4/C4.html).\n", "* In the [FMP notebook on evaluation measures ](../C7/C7S3_Evaluation.html), we discuss basic metrics to evaluated approaches for document-level retrieval.\n", "* In the [FMP notebook on the Beatles collection](../C5/C5S3_ChordRec_Beatles.html), we present a case study that indicates the relevance of various chord recognition components. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "Acknowledgment: This notebook was created by Meinard Müller and Christof Weiß.\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "
\"C0\"\"C1\"\"C2\"\"C3\"\"C4\"\"C5\"\"C6\"\"C7\"\"C8\"
" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.16" } }, "nbformat": 4, "nbformat_minor": 1 }