

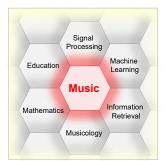
FMP Notebooks

Teaching and Learning Fundamentals of Music Processing

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Music Processing

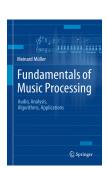


@ AudioLabs, 2021, Meinard Müller

FMP Notebooks

Music Processing: A Multifaceted Research Area

- Music is a ubiquitous and vital part of our lives
- Digital music services: Spotify, Pandora, iTunes, ...
- Music yields intuitive entry point to support and motivate education in technical disciplines
- Music bridges the gap between engineering, computer science, mathematics, and the humanities


O AudioLabs, 2021, Meinard Müller

FMP Notebooks

LABS

Fundamentals of Music Processing (FMP)

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de

@ AudioLabs, 2021, Meinard Müller

FMP Notebooks

Fundamentals of Music Processing (FMP)

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

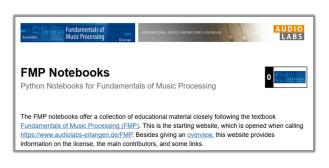
Accompanying website: www.music-processing.de

2nd edition Meinard Müller Fundamentals of Music Processing Using Python and Jupyter Notebooks Springer, 2021

Fundamentals of Music Processing (FMP)

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de


2nd edition Meinard Müller Fundamentals of Music Processing Using Python and Jupyter Notebooks Springer, 2021

© AudioLabs, 2021, Meinard Mülle

FMP Notebooks

FMP Notebooks: Education & Research

https://www.audiolabs-erlangen.de/FMP

© AudioLabs, 2021, Meinard Müller

MP Notebooks

FMP Notebooks: Education & Research

- ... provide educational material for teaching and learning fundamentals of music processing.
- ... combine textbook-like explanations, technical concepts, mathematical details, Python code examples, illustrations, and sound examples.
- ... bridge the gap between theory and practice being based on interactive Jupyter notebook framework.
- ... are freely accessible under a Creative Commons license.

https://www.audiolabs-erlangen.de/FMP

© AudioLabs, 2021, Meinard Müller

FMP Notebooks

FMP Notebooks

O AudioLabs, 2021, Meinard Müller

MP Notebook

LABS

FMP Notebooks

Structured in 10 parts

@ AudioLabs, 2021, Meinard Müller

FMP Notebooks

FMP Notebooks

Structured in 10 parts

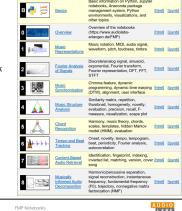
- Part B: Basic introductions to
 - Jupyter notebook framework
 - Python programming
 - Other technical concepts underlying these notebooks

FMP Notebooks

Structured in 10 parts

- Part B: Basic introductions to
 - Jupyter notebook framework
 - Python programming
 - Other technical concepts underlying these notebooks
- Part 0: Starting notebook

AudioLabs, 2021, Meinard Mülle


FMP Notebooks

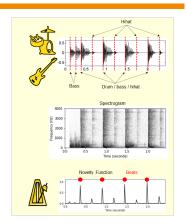
Structured in 10 parts

- Part B: Basic introductions to
 - Jupyter notebook framework
 - Python programming
 - Other technical concepts underlying these notebooks
- Part 0: Starting notebook
- Part 1 to Part 8: Different music processing scenarios

© AudioLabs, 2021, Meinard Müller

LABS

FMP Notebooks Structured in 10 parts Part B: Basic introductions to Jupyter notebook framework Python programming Other technical concepts underlying these notebooks Part 6: Tempo and **Beat Tracking** Part 0: Starting notebook Part 1 to Part 8: Different music processing scenarios


© AudioLabs, 2021, Meinard Müller

LABS

Part 6: Tempo and **Beat Tracking**

- When listening to a piece of music, we as humans are often able to tap along with the musical beat
- Automated beat tracking: Simulate this cognitive process by a computer

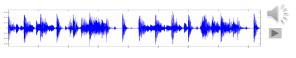
© AudioLabs, 2021, Meinard Müller

LABS

LABS

Tempo and Beat Tracking

Basic task: "Tapping the foot when listening to music"

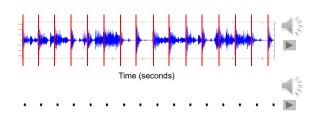

© AudioLabs, 2021, Meinard Müller

LABS

Tempo and Beat Tracking

Basic task: "Tapping the foot when listening to music"

Queen - Another One Bites The Dust Example:

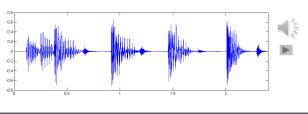


Time (seconds)

Tempo and Beat Tracking

Basic task: "Tapping the foot when listening to music"

Queen - Another One Bites The Dust Example:

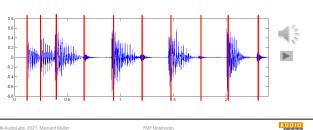

@ AudioLabs, 2021, Meinard Mülle

LABS

Tempo and Beat Tracking

Tasks

- Onset detection
- Beat tracking
- Tempo estimation

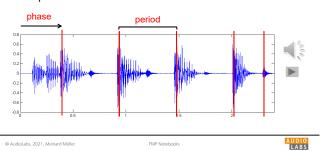


© AudioLabs, 2021, Meinard Müller

Tempo and Beat Tracking

Tasks

- Onset detection
- Beat tracking
- Tempo estimation


© AudioLabs, 2021, Meinard Müller

AUDIO LABS

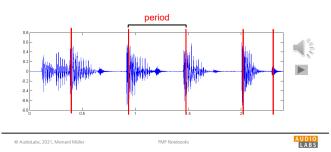
Tempo and Beat Tracking

Tasks

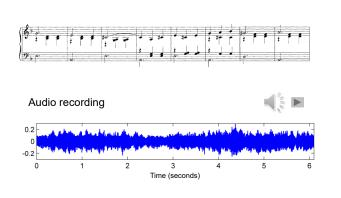
- Onset detection
- Beat tracking
- Tempo estimation

Tempo and Beat Tracking

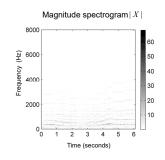
Tasks


LABS

AUDIO LABS


- Onset detection
- Beat tracking
- Tempo estimation

Tempo := 60 / period

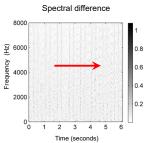

Beats per minute (BPM)

Onset Detection (Spectral Flux)

Onset Detection (Spectral Flux)

Steps:

1. Spectrogram

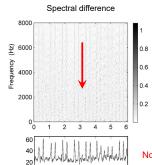

AUDIO LABS

Onset Detection (Spectral Flux)

- Spectrogram
- Logarithmic compression

Onset Detection (Spectral Flux)

- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification


© AudioLabs, 2021, Meinard Müller

© AudioLabs, 2021, Meinard Müller

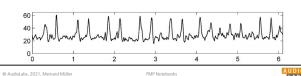
Onset Detection (Spectral Flux)

Steps:

- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification
- Accumulation

Novelty curve

© AudioLabs, 2021, Meinard Müller

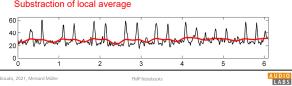


Onset Detection (Spectral Flux)

Steps:

- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification
- Accumulation

Novelty function

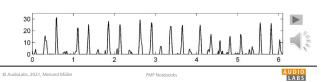


Onset Detection (Spectral Flux)

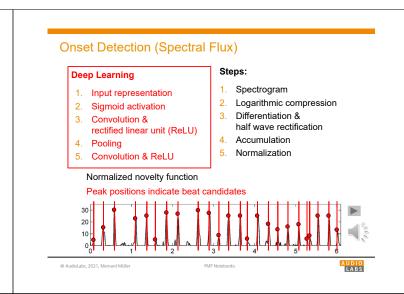
Steps:

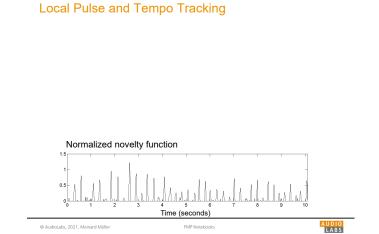
- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification
- Accumulation
- Normalization

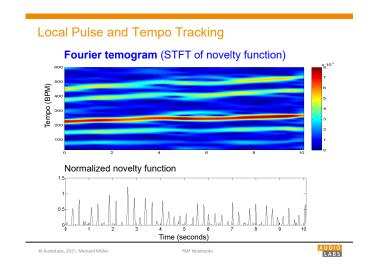
Novelty function Substraction of local average

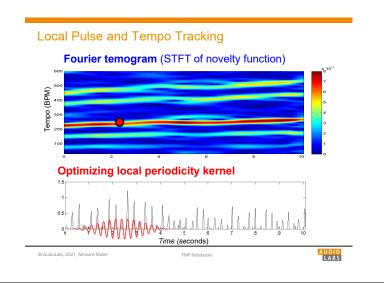


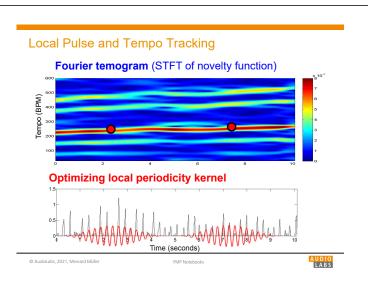
Onset Detection (Spectral Flux)

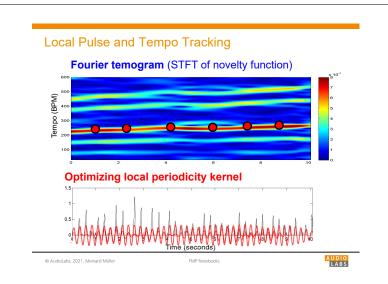

Steps:

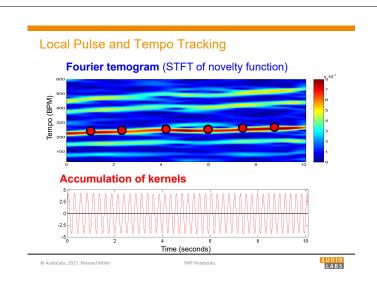

- Spectrogram
- Logarithmic compression
- Differentiation &
- half wave rectification
- Accumulation
- Normalization

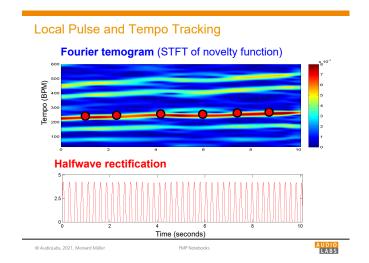

Normalized novelty function

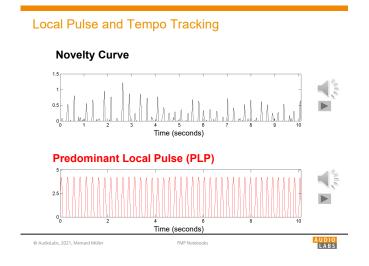


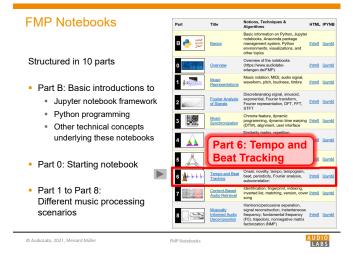

Steps: 1. Spectrogram 2. Logarithmic compression 3. Differentiation & half wave rectification 4. Accumulation 5. Normalization Normalized novelty function Peak positions indicate beat candidates

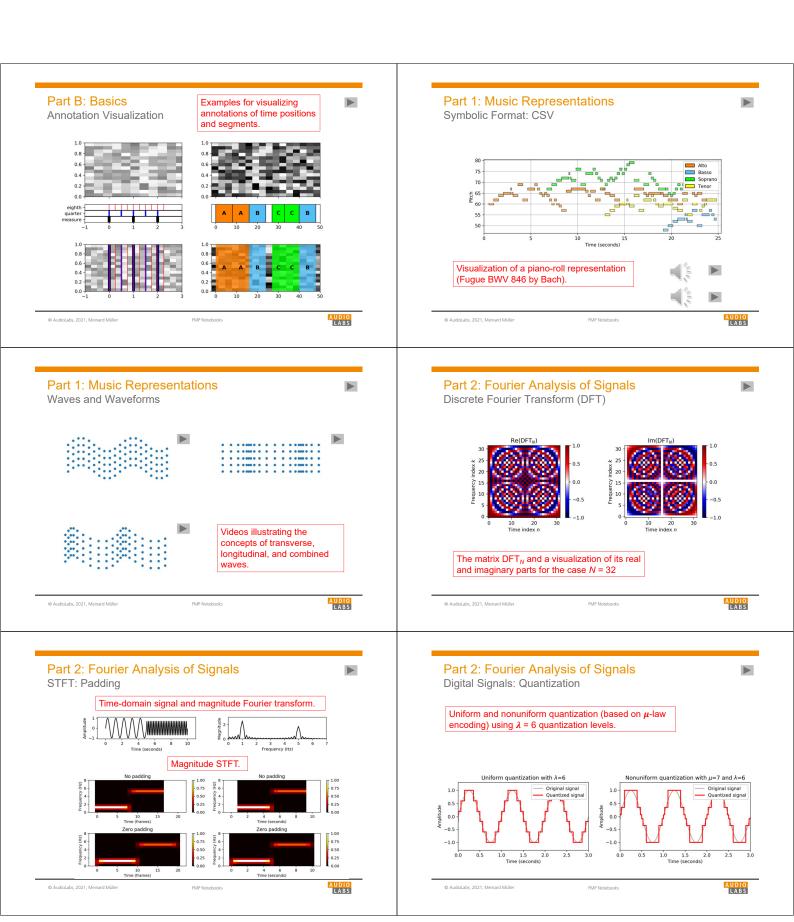


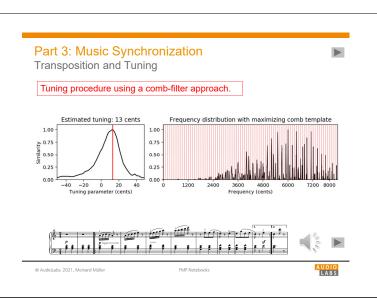


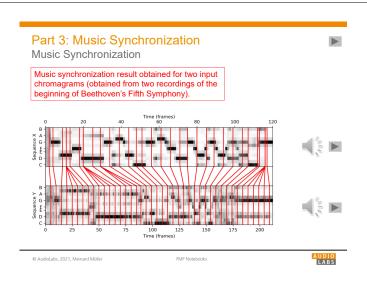


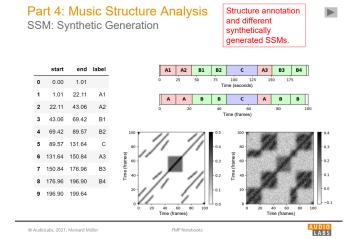


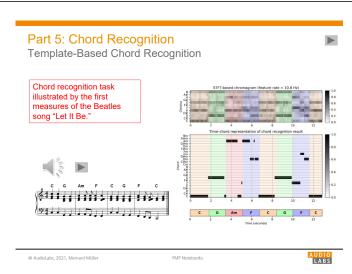


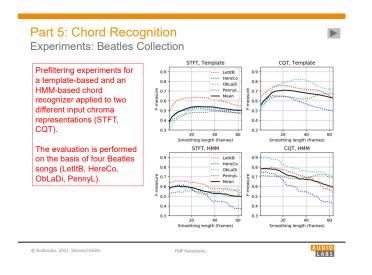


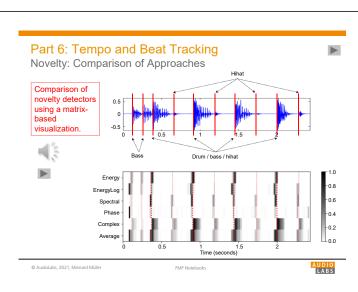


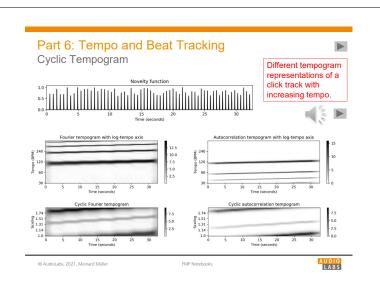


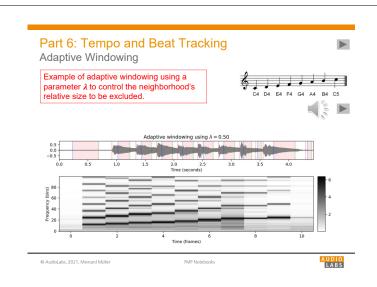


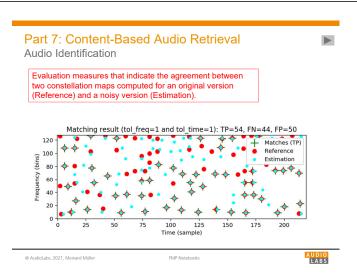

Topic	Description	
Get Started	Explanation on how to install and use the FMP notebooks	
<u>Installation</u>	Installation of Python using Conda	
Jupyter Notebook	Usage of Jupyter notebook framework	
Python Basics	Introduction of data types, control structures, and functions	
Python Style Guide	Recommendations for programming style	
<u>Multimedia</u>	Integration of multimedia objects into notebooks	
Python Visualization	Generation of figures and images	
Python Audio	Reading and writing audio files	
<u>Numba</u>	Acceleration of Python functions via JIT compilation	
Annotation Visualization	Visualization of annotations (single value, segments)	
Sonification	Sonification methods (onsets, F0 trajectories, pitch, chroma)	
<u>libfmp</u>	Library of FMP-specific Python functions	
MIR Resources	Links to resources that are useful for MIR	

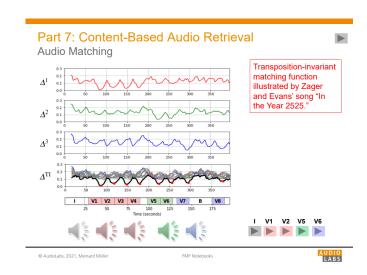


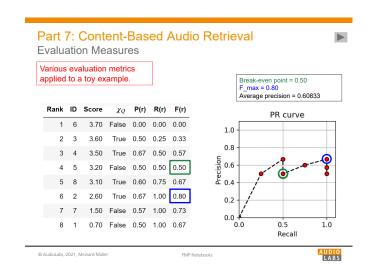


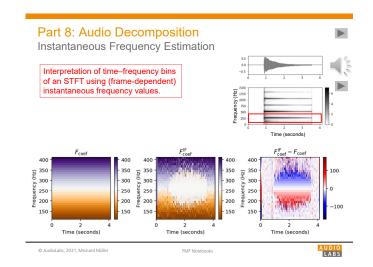


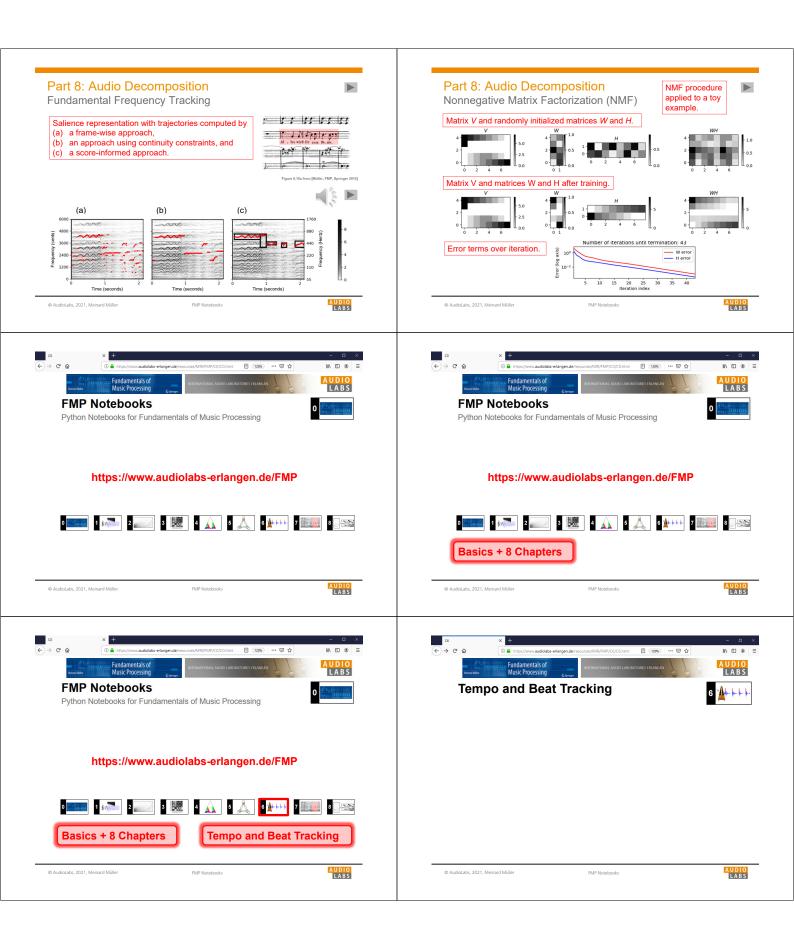


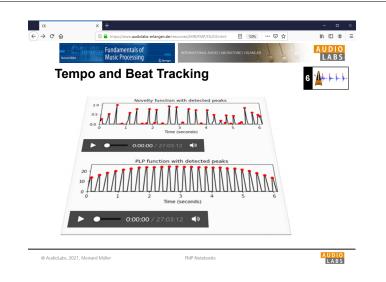


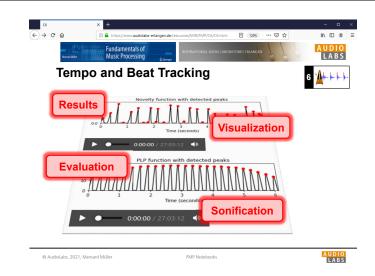


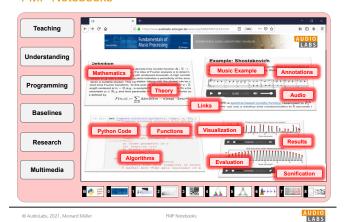












FMP Notebooks

References

- Meinard Müller: Fundamentals of Music Processing Using Python and Jupyter Notebooks 2nd Edition, Springer, 2021.
 https://www.springer.com/ga/book/9783030698072
- Meinard Müller and Frank Zalkow: libfmp: A Python Package for Fundamentals of Music Processing. Journal of Open Source Software (JOSS), 6(63): 1–5, 2021.
 https://docs.bead.org/sorg/10/2105/jsse/03/36
- Meinard Müller: An Educational Guide Through the FMP Notebooks for Teaching and Learning Fundamentals of Music Processing. Signals, 2(2): 245–285, 2021. https://www.mdpi.com/2624-6120/2/2/18
- Meinard Müller and Frank Zalkow: FMP Notebooks: Educational Material for Teaching and Learning Fundamentals of Music Processing. Proc. International Society for Music Information Retrieval Conference (ISMIR): 573–580, 2019.
- Meinard Müller, Brian McFee, and Katherine Kinnaird: Interactive Learning of Signal Processing Through Music: Making Fourier Analysis Concrete for Students. IEEE Signal Processing Magazine, 38(3): 73–84, 2021.
 https://ieeexplore.ieee.org/document/9418542

© AudioLabs, 2021, Meinard Müller

1P Notebooks

Resources (Group Meinard Müller)

FMP Notebooks:

https://www.audiolabs-erlangen.de/FMP

libfmp:

https://github.com/meinardmueller/libfmp

synctoolbox:

 $\underline{\text{https://github.com/meinardmueller/synctoolbox}}$

libtsm

 $\underline{https://github.com/meinardmueller/libtsm}$

Preparation Course Python (PCP) Notebooks:
 https://github.com/meinardmueller/PCP

Resources

librosa:

https://librosa.org/

Essentia Python tutorial:

madmom:

https://github.com/CPJKU/madmom

https://essentia.upf.edu/essentia_python_tutorial.html

mirdata:

https://github.com/mir-dataset-loaders/mirdata

open-unmix:

https://github.com/sigsep/open-unmix-pytorch

Open Source Tools & Data for Music Source Separation:

 $\underline{https://source-separation.github.io/tutorial/landing.html}$

Slibrosa

ESSENTIA

© AudioLabs, 2021, Meinard Müller

FMP Notebooks

LABS