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ABSTRACT

Audio thumbnailing, which aims at finding the most representative
audio segment of a music recording, is an important task in music
information retrieval. In this paper, we show how the computational
efficiency of a recently proposed state-of-the-art thumbnailing ap-
proach can be improved significantly. The basic idea of the previous
approach is to compute for each possible segment a fitness value
that expresses repetitiveness and then to define the thumbnail as the
fitness-maximizing segment. As a first acceleration strategy, we pro-
pose an efficient multi-level sampling strategy to reduce the number
of segments the fitness has to be computed for. Second, we obtain
further accelerations by suitably adjusting the resolution used in the
fitness computation depending on the level of the segment. As a third
contribution, we exploit an intrinsic property of the fitness computa-
tion that allows us to estimate the fitness for certain segments without
any further computation. Our experimental results show that com-
bining these three strategies leads to accelerations by a factor of20 to
200 depending on the duration of the song while keeping the overall
accuracy for the thumbnail estimation.

Index Terms— Audio structure analysis, audio thumbnailing,
efficiency

1. INTRODUCTION

The automatic extraction of structural information from audio
recordings is a central research topic in the field of music infor-
mation retrieval [1, 2]. A prominent subproblem is referred to
as audio thumbnailing, where the objective is to automatically
determine the most representative section of a given music record-
ing [3, 4, 5, 6, 7, 8]. Such a representative section may serve as
some kind of “preview” which gives a listener a first impression of
the song or piece of music. Based on such previews, the user should
be enabled to quickly decide if he or she likes to listen to the song
or to move on to the next recording. Thus, audio thumbnails are an
important browsing and navigation aid for finding interesting pieces
in large music collections.

Often sections such as the chorus section or the main theme of a
song are good candidates for being suitable audio thumbnails. Such
parts are typically repeated several times throughout the recording.
Therefore, to determine a thumbnail automatically, most procedures
try to identify a section that has on the one hand side a certain min-
imal duration and on the other side many (approximate) repetitions.
In this paper, we build on such a procedure described in [8], where
a fitness measure that captures repetitiveness as well as coverage
is computed for each possible segment of a given audio recording.

This work has been supported by the German Research Foundation
(DFG MU 2682/5-1). The International Audio Laboratories Erlangen are
a joint institution of the Friedrich-Alexander-Universität Erlangen-N̈urnberg
(FAU) and Fraunhofer Institut für Integrierte Schaltungen IIS.
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Fig. 1. Thumbnailing procedure for Beatles song “Act Naturally”.
(a) Fitness scape plot with thumbnail segment indicated by the circle
point. (b) Ground-truth structure annotation.

Then, similar to [5, 9], the audio thumbnail is defined to be the seg-
ment having maximal fitness. Furthermore, representing each au-
dio segment by means of its center and length, the fitness values
of all segments can be visualized by ascape plot, which reveals the
repetitive structure of the entire music recording in a hierarchical and
compact way [10, 11, 12]. An example is shown in Figure 1, which
shows a scape plot for the song “Act Naturally” by the Beatles. The
fitness maximizing point, indicated by the circle, corresponds to the
verse section, which appears four times in the song.

Even though the procedure described in [8] yields good thumb-
nailing results representing the state-of-the-art, it has the drawback
of being computationally expensive. First, the fitness is computed
for all possible segments, the number of which is quadratic in the
duration of the song. Second, in computing the fitness of a single
segment, the segment is brought into relation to other repeating seg-
ments, a process that again requires a quadratic running time. Al-
together, this yields a complexity that is proportional to the fourth
power in the duration of the song.

As main contribution of this paper, we introduce three different
strategies that lead to significant accelerations of the original proce-
dure. As a first strategy, we introduce a hierarchical multi-level ap-
proach, where the fitness is first computed on a coarse grid of scape
plot points (the points corresponding to audio segments). Then, suit-
able neighborhoods of only those grid points that have the highest fit-
ness are selected and iteratively refined, which significantly reduces
the overall number of fitness computations. The second strategy is
to accelerate the actual fitness computation by adjusting the resolu-
tion used in deriving the mutual repetition relations of the segments,
where the resolution is coupled to the level of the previously de-
scribed grid sampling approach. As the third strategy, we exploit the
mutual relations that are detected in the fitness computation. These



relations express repetitiveness within certain segment families and
allow us to estimate the fitness for all these segments in one step
without any further computation. Our experiments on two different
datasets (Beatles Songs, Chopin Mazurkas) show that each of these
strategies lead to significant accelerations that are independent from
each other. Using a combined approach, we obtain accelerations by
a factor of roughly20 to 200 (depending on the duration of the song)
while keeping the overall accuracy of the thumbnailing procedure.

The remainder of this paper is organized as follows. We de-
scribe the three acceleration strategies in Section 2, Section 3, and
Section 4, respectively. Then, in Section 5, we report on our system-
atic experiments and draw some conclusions.

2. ACCELERATION BY MULTI-LEVEL SAMPLING

Before we describe the first acceleration strategy, we need to intro-
duce some notation. Following [8], we assume that the given music
recording is represented by a feature sequence with a sampled time
axis indexed by[1 : N ] = {1, 2, . . . N}. (In our experiments we
use a feature resolution of2 Hz.) A segment is then understood to
be a subsetα = [s : t] ⊆ [1 : N ] specified by its starting points and
its end pointt with |α| := t − s + 1 denoting its length. In [8], a
fitness measure is used that assigns to each segmentα a fitness value
ϕ(α) ∈ R. At the moment, the definition of the fitness measure is
not important, and we will have a closer look at it in Section 3. All
we need to know at this stage is that the fitness valueϕ(α) expresses
the repetitiveness of a segmentα and that the thumbnail is defined
as the fitness-maximizing segmentα∗ := argmax

α
(ϕ(α)).

The fitness values can be visualized by means of a triangular
scape plot [10, 11, 12]. Each point of the scape plot corresponds to
a segmentα = [s : t], where the horizontal coordinate encodes the
centerc(α) := (s+ t)/2 of the segment and the vertical coordinate
its length |α|. The fitness valueϕ(α) is then visualized in some
color-coded form, see Figure 1. The fitness scape plot represents the
repetitive structure of the music recording in some hierarchical way,
see [8] for details.

The first of our acceleration strategies is rather straightfor-
ward. Instead of computing the fitness for all possible segments (at
the given resolution of the feature sequence indexed by[1 : N ]),
we apply an iterative multi-level approach, see Figure 2 for an
overview. To this end, we consider aregular grid of points in the
two-dimensional scape plot representation, where neighboring grid
points ared samples apart either in horizontal or in vertical direction,
see Figure 2a. The fitness of these grid points are then computed,
see Figure 2b. The parameterd ∈ N determines the density of the
grid with d = 1 yielding the scape plot in full resolution. In the first
step of the multi-level approach, we use a parameterd = d1 > 1
and compute the fitness only for those points that lie on the resulting
scape plot grid.

One crucial observation is that all points that lie in a neighbor-
hood of a scape plot point of high fitness also typically have large
fitness values. Therefore, it is reasonable to assume that the thumb-
nail segment lies in the neighborhood of one of the grid points of
high fitness. This observation justifies the next steps of our proce-
dure. Fixing a parameterM ∈ N, we select among all grid points
theM points that have the largest fitness values (or less points if the
grid contains less thanM points). TheseM points are also referred
to asanchor points. Using a parameterd2 ∈ N with 1 ≤ d2 < d1 (in
our experiments we used2 = d1/2 assuming thatd1 is a power of
two), we consider all points on the refined grid (based ond2) that are
direct neighbors of one of theM anchor points. For all the resulting
additional points, we then compute the fitness, see Figure 2c.
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Fig. 2. Illustration of the multi-level grid sampling approach for the
Beatles song “Act Naturally,” see Figure 1. The used parameters
areI = 4 with (d1, d2, d3, d4) = (8, 4, 2, 1) andM = 100. (a)
Grid of the first step (usingd1 = 8). (b) Fitness computed for the
grid points in (a). (c) Refinement after second step (usingd2 =
4). (d) Refinement after third step (usingd3 = 2). (e) Refinement
after forth step (usingd4 = 1). (f) Scape plot obtained from (e) by
interpolation, compare with Figure 1a.

This last step can be iterated by selecting again theM points of
highest fitness (among all previously considered points in the first
two steps), using a finer grid based on somed3 ∈ N with 1 ≤ d3 <
d2, and again considering the neighbors, see Figure 2d. This process
is repeated until one reaches the finest resolution. Finally, we define
the scape plot pointα∗

1 to be the one of maximal fitness over all grid
points considered in the entire procedure.

We say that our procedure has beensuccessfulif α∗

1 coincides
or, at least, is close to the actual thumbnailα∗. Here, as we will dis-
cuss later, we mean by “close” that the segmentsα∗ andα∗

1 induce
the same repetitive structure. Besides finding the original thumb-
nail, also the visualization of the scape plot may be of interest. To
this end, we generate a visualization on the finest possible resolu-
tion using simple interpolation techniques applied to all grid points
considered in the multi-level approach, see Figure 2f.

To conclude the description of the first acceleration strategy,
note that the parameters should be chosen in such a way that the
procedure is successful, the running time is reduced as much as pos-
sible, and the visual impression of the interpolated scape plot is close
to the original one. In our experiments, as we will present in Sec-
tion 5, the specific setting turned out not to be crucial within a wide
range of parameters leading to similar results. In particular, using



I = 4 with (d1, d2, d3, d4) = (8, 4, 2, 1) andM ∈ [10 : 100] has
turned out to be a reasonable choice.

3. ACCELERATION BY MULTI-RESOLUTION FITNESS
COMPUTATION

In the first strategy, we have reduced the number of segments the
fitness measure has to be evaluated for. We now describe a second
acceleration strategy which speeds up the actual fitness computation.
To this end, we first need to summarize how the fitness measure is
defined, see [8] for details. In the computation of the fitness mea-
sure, an enhanced self-similarity matrix (SSM) is computed on the
basis of chroma features extracted from the music recording, see
Figure 3a. Then for each segmentα, an optimal path familythat
simultaneously reveals the relations betweenα and all other similar
segments is computed. By projecting such an optimal path family to
the vertical axis, one obtains an induced segment family, where each
element of this family defines a segment similar toα. As an illustra-
tion, Figure 3b shows such an optimal path family for the segment
α = [158 : 209] (horizontal axis) as well as the induced segments
α1, α2, α3, andα4 (vertical axis). Note that these four segments are
exactly the four repeating verse sections of the song.

The computation of an optimal path family over a given segment
α can be done using dynamic programming inO(|α|·N) operations,
see [8]. The algorithm is similar to the one used for dynamic time
warping, see, e. g., [13, Chapter 4]. Obviously, the running time
can be reduced when reducing the resolution in the underlying SSM.
For example, in theory, reducing the resolution by a factor of two
yields a speed up of the dynamic programming step by a factor of
four. However, reducing the resolution too much may also lead to
a deterioration of the similarity matrix, where important structural
properties may get lost [14] and may lead to inaccuracies in the fit-
ness computation. As a result, certain relations to be captured by
the optimal path family may be missed as illustrated by Figure 3d.
Therefore, applying this strategy needs to be done with care.

In a pilot experiment, we accelerated the fitness computation by
simply reducing the SSM resolution from2 Hz to 1 Hz. This led to
a substantial reduction in running time with only a small decrease in
the overall accuracy of the thumbnail estimation. Next, we further
reduced the SSM resolution to0.5 Hz. While further speeding up the
computation, this resolution resulted in a severe deterioration of the
thumbnail estimation, in particular in the case of thumbnails of short
duration. In other words,0.5 Hz is too low a resolution to reveal the
desired structures. Therefore, we apply the strategy of reducing the
SSM resolution in a level-dependent way not going beyond a1 Hz
resolution. Using(d1, d2, d3, d4) = (8, 4, 2, 1) as explained in Sec-
tion 2, we use the finest resolution of2 Hz only for the last step
(d4 = 1). For all previous steps we use a reduced SSM resolution of
1 Hz. As for practical computations, as we will discuss in Section 5
in more detail, the resolution reduction becomes particularly impor-
tant for the first step, where the fitness measure is evaluated for all
points on the coarse scape plot grid. Here using a1 Hz instead of
a 2 Hz resolution yields in our experiments a speed up of roughly
a factor of four (or even more) without any significant loss in the
overall accuracy.

4. ACCELERATION BY FITNESS REUSE

We describe a third acceleration strategy, where we exploit the in-
trinsic properties of the fitness computation. Recall that in the com-
putation of the fitness valueϕ(α) of a segmentα, an optimal path
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Fig. 3. Illustration of the fitness computation and possible risks of
the reduction of the SSM resolution.(a) SSM with2 Hz resolution.
(b) Optimal path family for the segmentα = [158 : 209] using the
SSM from (a). (c) SSM with 0.5 Hz resolution. (d) Optimal path
family for the segmentα = [158 : 209] using the SSM from (c).
(e)/(f) Ground-truth segmentation.(g) Fitness scape plot obtained
from (a). The segmentα = [158 : 209] and all induced segments
are indicated by circles.(h) Exploiting path relations for fitness es-
timation of the induced segments.

family overα is determined, and the segments induced by this path
family are the (approximate) repetitions ofα (see Figure 3b). Now,
the crucial observation is that each of the induced segments (being
similar toα) also has more or less the same repetition relations as
the segmentα. As a result, the fitness of each of the induced seg-
ments is also close to the one ofα. For example, in the case of
α = [158 : 209] shown in Figure 3g, we obtainϕ(α) ≈ ϕ(αi),
whereαi, i ∈ [1 : 4], denote the four induced segments as defined
in Section 3.

Based on this observation, we proceed as follows. When com-
puting the fitnessϕ(α) for a segmentα in the overall procedure, we
reuse the valueϕ(α) as estimate for the fitness of all segments in-
duced byα, see Figure 3h. This information is stored in a suitable
data structure. In this way, when we need to compute the fitness of
another segmentβ at a later stage, we first check if there is already a
segmentβ′ in its suitable neighborhood, whose fitness value is avail-
able (either computed or estimated at a previous stage). If yes, we
skip the fitness computation ofβ. Instead ofβ, we then useβ′ and
its known fitness value for the subsequent steps. In our experiments,
the above mentioned neighborhood is chosen to be two seconds.



5. EXPERIMENTS AND CONCLUSIONS

We now describe our systematic experiments and investigate the ef-
fect of our acceleration strategies. Note that it is not in the scope of
this paper to discuss the specific parameter settings of and to eval-
uate the actual thumbnailing procedure—this has been done in [8].
Instead our goal is to illustrate to which extent the original procedure
can be accelerated while obtaining the same thumbnail accuracy and
visual impression of the scape plot as described in [8].

We have conducted our experiments on the basis of two datasets
that have also been used in [8]. The first dataset, denoted by
BEATLES, consists of recordings from the12 studio albums by “The
Beatles” [15]1. The second dataset, denoted byMAZURKA, consists of
the complete recordings of the49 Mazurkas composed by Fréd́eric
Chopin in three different versions2 played by the pianists Rubinstein
(1966), Cohen (1997), and Ezaki (2006), respectively. For both
datasets, we derived thumbnail annotations from existing structure
annotations, where a thumbnail annotation consists of an entire fam-
ily of repeating segments with each segment serving equally well as
a thumbnail.

In the original thumbnail procedure [8], which we denoted by
OR, an SSM resolution of2 Hz is used. As for the multi-level
acceleration procedure (ML) from Section 2, we useI = 4 with
(d1, d2, d3, d4) = (8, 4, 2, 1) andM = 100. In the multi-resolution
fitness approach (MR), we use the setting as described in Section 3.
Finally, for the fitness reuse strategy (FR), we use a neighborhood
of two seconds as described in Section 4. Note that all acceleration
procedures can be used in a combined fashion. As said before,
the specific settings are not crucial at this point and are chosen in
a more conservative way to yield similar thumbnail results as the
original procedure (and a similar visual impression of the interpo-
lated scape plot to the original one, see Figure 3f). To demonstrate
this, we consider three measures. The first two measureEvalSame

andEvalSameTol indicate if the accelerated procedure yields ex-
actly the same or nearly the same (with a tolerance of two seconds)
thumbnail segment as the original approach. Note that these mea-
sure are not really suitable to measure the success since there is an
entire family of valid thumbnail segments. Therefore, as a third
measure, we use the same thumbnail F-measureEvalThumbF as
described in [8] to show if the thumbnail obtained by accelerated
procedures has the same quality as the thumbnail computed by the
original approach.

Table 1 summarizes the experimental results. The algorithms
have been implemented in Matlab R2012 (using C/C++ for the dy-
namic programming component), and tests were run on a computer
with Intel Core i5-3470, 3.20 GHz CPU, 8 GByte RAM, under 64-bit
Windows 7. In the following, we assume that the SSM on the finest
level as used in [8] has been pre-computed and is given to all proce-
dures as input. Then the times shown in Table 1 indicate the average
running times per song given in seconds to derive the scape plot and
the thumbnail from the SSM. For example, in the original proce-
dureOR, it took in average61.67 s to compute the thumbnail for the
songs ofBEATLES resulting in an overall thumbnail F-measure of
EvalThumbF = 0.77. Applying the multi-level procedureML results
in an average running time of2.49 s per song, which is a speed up
of a factor of24.7. The individual running times for the four levels

1Since for five of these songs ‘HappinessIsAWarmGun’, ‘HerMajesty’,
‘Revolution9’, ‘TheEnd’, and ‘YouNeverGiveMeYourMoney’no clear repe-
titions are present in the annotations, these songs are leftout resulting in175
recordings (instead of the original180 songs) used in our experiments.

2The resulting147 files are a subset of the dataset of the Mazurka Project
mazurka.org.uk.

(a)BEATLES

OR ML ML+MR ML+FR ML+MR+FR
TimeOverall 61.67 2.49 0.69 1.41 0.55
SpeedUp - 24.7 88.8 43.6 112.5
TimeLevel1 - 2.01 0.35 0.94 0.21
TimeLevel2 - 0.13 0.06 0.13 0.06
TimeLevel3 - 0.13 0.06 0.12 0.06
TimeLevel4 - 0.13 0.13 0.10 0.11
EvalSame - 0.50 0.31 0.70 0.40
EvalSameTol - 0.95 0.83 0.92 0.82
EvalThumbF 0.77 0.77 0.75 0.76 0.76

(b) MAZURKA

OR ML ML+MR ML+FR ML+MR+FR
TimeOverall 143.67 5.68 1.12 2.88 0.77
SpeedUp - 25.3 128.7 50.0 187.1
TimeLevel1 - 5.10 0.71 2.34 0.38
TimeLevel2 - 0.16 0.06 0.15 0.06
TimeLevel3 - 0.15 0.07 0.14 0.06
TimeLevel4 - 0.15 0.15 0.10 0.12
EvalSame - 0.60 0.37 0.69 0.35
EvalSameTol - 0.88 0.78 0.88 0.73
EvalThumbF 0.71 0.71 0.73 0.71 0.71

Table 1. Experimental results for the running time behavior and the
accuracy of various acceleration strategies for audio thumbnailing,
see text for explanation. The times indicate average running times
per song given in seconds.

are indicated in the next four rows of Table 1a. The full grid compu-
tation at the first level (usingd1 = 8) is TimeLevel1 = 2.01 s and
takes much more time then the subsequent refinement steps. As for
the accuracy, the valueEvalSame = 0.50 shows that the accelera-
tion procedure yields exactly the same thumbnail asOR in only half
of the cases. However, as indicated byEvalSame = 0.95, in most
cases one only has a small shift in the computed segments. In the
other cases, the acceleration procedure may yield a different thumb-
nail segment, which is in the same segment family. This is shown by
the fact the that thumbnail F-measure forML (and also for the other
procedures) is basically the same as forOR. From an application
point of view, such a segment is equally suited as thumbnail.

Now, let us have a look at the other acceleration procedures and
their combinations. UsingMR on top ofML increases the overall run-
ning time by an additional factor of roughly four. In particular, this
speed up mainly results from the usage of a coarser resolution at the
full grid computation at the first level. Similarly,FR on top ofML
increases the overall running time by an additional factor of roughly
two. As a main result of this paper, our experiments show that one
obtains by far the largest speed up when combining all three strate-
gies without a substantial loss in the thumbnail accuracy. For exam-
ple, in case ofBEATLES, the combined approach needs an average
running time of0.55 s per song compared to61.67 s of the original
procedure, which is a speed up of a factor of112.5. As shown in Ta-
ble 1b, similar findings hold for the independent datasetMAZURKA.
The reason for the slightly higher running times is thatMAZURKA

tends to comprise longer recordings thanBEATLES. Altogether, this
also demonstrates that our methods scale well to other types of music
beyond popular music.

In conclusion, we have introduced three conceptually different
acceleration strategies that lead to substantial speed-ups for a recent
state-of-the-art thumbnailing procedure. These accelerations are im-
portant steps towards computing a thumbnail on-the-fly, which paths
the way to applications in real-time services.
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