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ABSTRACT

The periodic structure of musical events plays a crucial role in the

perception of tempo as well as the sensation of note changes and

onsets. In this paper, we introduce a novel function that reveals the

predominant local periodicity (PLP) in music recordings. Here,

our main idea is to estimate for each time position a periodicity

kernel that best explains the local periodic nature of previously

extracted note onset information and then to accumulate all these

kernels to yield a single function. This function, which is also re-

ferred to as PLP curve, reveals musically meaningful periodicity

information even for non-percussive music with soft and blurred

note onsets. Such information is useful not only for stabilizing

note onset detection but also for beat tracking and tempo estima-

tion in the case of music with changing tempo.

Index Terms— onset detection, novelty curve, periodicity,

phase, tempo, beat, tactus, tatum

1. INTRODUCTION

Many different methods for the detection of note onsets in music

recordings have been proposed [1, 2] and applied to tasks such as

music transcription, beat tracking, tempo and meter estimation, as

well as music synchronization [3, 4, 5, 6]. Most of the proposed

onset detectors rely on the fact that note onsets often go along with

a sudden increase of the signal’s energy, which particularly holds

for instruments such as piano, guitar, or percussive instruments.

This property allows for extracting some kind of novelty curve

from a music signal, the peaks of which yield good indicators for

note onset candidates [1]. Much more challenging is the detection

of onsets in the case of non-percussive music, where one often

has to deal with soft onsets or blurred note transitions. As a con-

sequence, more refined methods have to be used for computing

the novelty curves, e. g., by analyzing the signal’s spectral content,

pitch, or phase [1, 7]. In the case of weak and blurry onsets, the

resulting novelty curves tend to be rather noisy exhibiting many

spurious peaks. Here, the selection of the relevant peaks that cor-

respond to true note onsets becomes a difficult or even infeasible

problem.

For many of the above mentioned applications, the explicit

determination of note onsets is often not required. Here, it may

suffice to have weak onset indicators from which one can directly

derive the desired semantically higher-level information concern-

ing tempo or structure. In this paper, we substantiate this observa-

tion by introducing a novel function that reveals the predominant
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local periodicity (PLP) even for non-percussive music with soft

note onsets and changing tempo. Starting with a novelty curve

that possibly has a noisy and poor peak structure, we estimate for

each time position a periodicity kernel that best explains the local

periodic nature of the novelty curve. Since there may be a number

of outliers among these kernels, one may not obtain reliable infor-

mation when looking at these kernels in a one-by-one fashion. Our

idea is to accumulate all these kernels to obtain a single function,

which we refer to as PLP curve. As it turns out, PLP curves are

robust to outliers and reveal musically meaningful periodicity in-

formation even in the case of poor onset information. The musical

motivation for introducing PLP curves is that the periodic struc-

ture of musical events plays a crucial role in the sensation of note

changes. In particular, weak note onsets may only be perceptible

within a rhythmic context. In this sense, a PLP curve can be re-

garded as a periodicity enhancement of the original novelty curve,

indicating musically meaningful onset positions.

This paper is organized as follows. In Sect. 2, we review the

concept of novelty curves while introducing a variant used in the

subsequent sections. Sect. 3 constitutes the main contribution of

this paper, where we introduce the concept of PLP curves that ex-

hibit the local periodicity of novelty curves in a robust fashion. Our

experiments are described in Sect. 4 and prospects of future work

are sketched in Sect. 5. Related work is discussed in the respective

sections.

2. NOVELTY CURVE

The most characteristic property going along with a note onset is

a sudden increase in the signal’s energy. However, simultaneously

occurring events in polyphonic music may lead to masking effects

that even out the energy ascents and prevent any observation of

an energy increase. To circumvent these masking effects, detec-

tion functions were proposed that analyze the signal in a bandwise

fashion [3] to extract transients occurring in certain frequency re-

gions of the signal. As a side-effect of a sudden energy increase,

there appears an accompanying broadband noise burst in the sig-

nal’s spectrum. This effect is mostly masked by the signal’s en-

ergy in lower frequency regions but well detectable in the higher

frequency regions [8] of the spectrum. A widely used approach

to onset detection in the frequency domain is the spectral flux [1],

where changes of pitch and timbre are detected by analyzing the

signal’s short-time spectra. Recently, pitch-based algorithms have

been proposed [7] that allow for capturing even smooth note tran-

sitions in non-percussive music.

Combining some of these ideas, we now describe an approach

for computing novelty curves that indicate note onset candidates.
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Figure 1: First 12 measures of Beethoven’s Symphony No. 5 (Op. 67).
(a) Score representation (in a piano reduced version). (b) Ground truth
annotation of onsets (for an orchestral audio recording by Bernstein). (c)

Novelty curve ∆ (black curve) based on the compressed spectrogram Y

with local average (red curve). (d) Novelty curve ∆̄. (e) PLP curve Γ.

Given a music recording, a short-time Fourier transform is used

to obtain a spectrogram X = (X(k, t))k,t with k ∈ [1 : K] :=
{1, 2, . . . , K} and t ∈ [1 : T ]. Here, K denotes the number of

Fourier coefficients, T denotes the number of frames, and X(k, t)
denotes the kth Fourier coefficient for time frame t. In our imple-

mentation, each time parameter t corresponds to 23 milliseconds

of the audio. Note that the Fourier coefficients of X are linearly

spaced on the frequency axis. Using suitable binning strategies,

various approaches switch over to a logarithmically spaced fre-

quency axis, e.g., by using mel-frequency bands or pitch bands,

see [5, 3]. Here, we keep the linear frequency axis, since it

puts greater emphasis on the high-frequency regions of the signal,

thus accentuating the afore mentioned noise bursts visible as high-

frequency content. Next, we apply a logarithm to the magnitude

spectrogram |X| of the signal yielding Y := log(1+C · |X|) for a

suitable constant C > 1, see [3]. Such a compression step not only

accounts for the logarithmic sensation of sound intensity but also

allows for adjusting the dynamic range of the signal to enhance

the clarity of weaker transients, especially in the high-frequency

regions. In our experiments, we use the value C = 1000.

To obtain a novelty curve, we basically compute the discrete

derivative of the compressed spectrum Y . More precisely, we sum

up only positive intensity changes to emphasize onsets while dis-

carding offsets to obtain the novelty function ∆ : [1 : T −1] → R:

∆(t) :=
∑K

k=1|Y (k, t + 1) − Y (k, t)|≥0 (1)

for t ∈ [1 : T − 1], where |x|≥0 := x for a non-negative real

number x and |x|≥0 := 0 for a negative real number x. Fig. 1c

shows the resulting curve for a Bernstein recording of Beethoven’s

Fifth Symphony. To obtain our final novelty function ∆̄, we sub-

tract the local average and only keep the positive part (half-wave

rectification), see Fig. 1d. In our actual implementation, we use a

higher-order smoothed differentiator. Furthermore, we process the

spectrum in a bandwise fashion using 5 bands [5]. The resulting

5 novelty curves are weighted and summed up to yield the final

novelty function. For details, we refer to the literature.

The particular design of the novelty curve is not in the focus

of this paper. Our PLP curves as introduced in Sect. 3 are designed

to work even for noisy novelty curves with a poor peak structure.

Of course, the overall result may be improved by employing more

refined novelty curves as suggested in [7].

3. PREDOMINANT LOCAL PERIODICITY CURVE

The peaks of a novelty curve indicate note onset candidates. In

order to determine the significant peaks, one generally refers to

peak-picking strategies based on a combination of fixed and adap-

tive thresholding [1]. For soft and blurred onsets, however, novelty

curves tend to be noisy and the musically meaningful peaks often

become indistinguishable from spurious peaks. Instead of extract-

ing unreliable onsets from a noisy novelty curve, we introduce a

function that takes periodic properties of the novelty curve into ac-

count. This approach is closely related to the extraction of rhyth-

mic structure [3, 5] and tempo [4] from music recordings. Most of

the previous work focused on determining musical pulses on the

tactus (the foot tapping rate or beat [3]) or measure level, but only

few approaches exist for analyzing the signal on the finer tatum

level. Here, a tatum or temporal atom refers to the fastest repeti-

tion rate of musically meaningful accents occurring in the signal.

Thus, all note onsets roughly occur at tatum pulse positions. In [9],

the extraction of a tatum grid is proposed by first detecting note on-

sets and then analyzing inter-onset intervals (IOI) to estimate the

finest repetition rate occurring in the signal. In contrast to these

approaches, our goal is to extract the predominant local periodic-

ity (PLP) of accents in the music signal, which may be a pulse on

the tatum, the tactus, or measure level. Furthermore, our approach

does not assume constant tempo throughout the recording. Actu-

ally, our PLP curve exhibits the predominant pulse for each time

position thus making local tempo information explicit.

Let ∆̄ be the novelty function as described in Sect. 2. To avoid

boundary problems, we assume that ∆̄ is defined on Z by setting

∆̄(t) := 0 for t ∈ Z \ [1 : T − 1]. First, we investigate the local

periodicity of the novelty curve by fitting for each time position t ∈
Z a periodicity kernel into ∆̄. This estimation is obtained basically

by performing a harmonic analysis of ∆̄. More precisely, let Ω ⊂
R>0 be a finite set of frequency parameters. The frequency ω ∈ Ω
corresponds to the period 1/ω. Furthermore, we fix a window

function W : Z → R centered at t = 0 with support [−N : N ].
In our experiments, we use a Hann window of size 2N + 1. The

complex Fourier coefficient F (ω, t) is obtained by

F (ω, t) =
∑

n∈Z
∆̄(n) · W (n − t) · e−2πiωn . (2)

For each t ∈ [1 : T ], we then compute the frequency parameter

ωt ∈ Ω that maximizes the magnitude of F (ω, t):

ωt := argmaxω∈Ω|F (ω, t)|. (3)

The corresponding phase is denoted by ϕt and can be computed

by means of the following formula [6]:

ϕt :=
1

2π
arccos

(

Re(F (ωt, t))

|F (ωt, t)|

)

. (4)

Using ωt and ϕt, the optimal periodicity kernel κt : Z → R for

t ∈ [1 : T ] is defined as the windowed sinusoid

κt(n) := W (n − t) cos(2π(ωtn − ϕt)) (5)

for n ∈ Z. Fig. 2a shows various optimal periodicity kernels for

our Beethoven example. Intuitively, the sinusoid κt best explains
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Figure 2: (a): Optimal periodicity kernels κt for various time parameters
t using a kernel size of 2 seconds for two different parts of the novelty
curve shown in Fig. 1d. (b) Accumulation of all kernels. From this, the
PLP curve Γ (see Fig. 1e) is obtained by half-wave rectification.

the local periodic nature of the novelty curve at time position t with

respect to the set Ω. The period 1/ωt corresponds to the predomi-

nant periodicity of the novelty curve and the phase information ϕt

takes care of accurately aligning the maxima of κt and the peaks

of the novelty curve.

The properties of the kernels κt depend not only on the quality

of the novelty curve, but also on the window size 2N + 1 of W
and the set of frequencies Ω. Increasing the parameter N yields

more robust estimates for ωt at the cost of temporal flexibility. In

our experiments, we chose a window length of 4 to 8 seconds.

In the following, this duration is referred to as kernel size. Fur-

thermore, by restricting Ω to certain frequency ranges one can

influence the desired pulse level to be captured. We use the set

Ω = {k/60 | k ∈ [30 : 600]}, which covers the (integer) musi-

cal tempi between 30 and 600 beats per minute (BPM). Here, the

upper bound of 600 BPM is motivated by the psychoacoustic fact

that only events that show a temporal separation greater than 120
milliseconds (corresponding to 500 BPM) contribute to the per-

ception of rhythm [10]. Thus, our concept covers the tatum grid as

introduced in [9] in a perceptually meaningful pulse range.

The estimation of optimal periodicity kernels in regions with

a strongly corrupted peak structure is still problematic. This par-

ticularly holds in the case of small kernel sizes. To make the pe-

riodicity estimation more robust, our idea is to accumulate these

kernels over all time positions to form a single function instead of

looking at the kernels in a one-by-one fashion. More precisely, we

define a function Γ : [1 : T ] → R≥0 as follows:

Γ(n) =
∑

t∈[1:T ]|κt(n)|≥0 (6)

for n ∈ [1 : T ], see Fig. 2b. The resulting function is referred to

as predominant local periodicity curve or, for short, as PLP curve.

As it turns out, such PLP curves are robust to outliers and reveal

musically meaningful periodicity information even when starting

with relatively poor onset information.

4. DISCUSSION AND EXPERIMENTS

In this section, we discuss various properties of PLP curves based

on representative examples and a more quantitative evaluation on
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Figure 3: Excerpt of Shostakovich’s 2nd Waltz from Jazz Suite No. 2.
(a) Score representation of measures 25 to 36 (in a piano reduced version).
(b) Annotated ground truth onsets (for an orchestral audio recording by
Yablonsky). (c) Novelty curve ∆̄. (d) PLP curve Γ.

two different datasets in the context of onset detection.

We start with the PLP curve for our Beethoven example shown

in Fig. 1e. This orchestral piece constitutes a great challenge. First,

there are many significant local tempo changes (e. g., caused by

fermatas). Second, besides very dominant note onsets in the for-

tissimo part at the beginning of the piece, there are also many soft

and blurred note onsets in the piano part played by strings. Despite

these properties, the maxima of Γ align well with musically rele-

vant peaks of the novelty curve. While the detection of note onsets

in the fortissimo section can be achieved with relatively simple

energy-based methods, the PLP curve Γ also reveals periodically

spaced peaks in the problematic noisy piano section. As it turns

out, these periodically spaced peaks correspond exactly to the mu-

sically meaningful note onsets. In other words, by first estimating

the Γ-encoded local rhythmic grid, one can then identify the weak

onsets that lie on musically meaningful pulse positions. Further-

more, the amplitudes of the periodicity kernels have unity value

and do not depend on the height of the peaks or the signal’s en-

ergy. As a consequence, the PLP curve is invariant under changes

in dynamics and the amplitude of Γ indicates the confidence in the

periodicity estimation. Consistent kernel estimations produce con-

structive interferences in the accumulation resulting in high values

of Γ. Contrary, outliers or inconsistencies in the kernel estima-

tions cause destructive interferences in the accumulation resulting

in lower values of Γ. In Fig. 1e, this effect is visible in the fermata

sections, where no consistent onset information is available (the

noisy peaks are caused by vibrato).

As second example, we consider the second Waltz from the

Jazz Suite No. 2 by Shostakovich. Fig. 3a shows an excerpt (mea-

sures 25 to 36) of the piano reduced score. The audio recording is

an orchestral version conducted by Yablonsky. Here, the first beats

in the 3/4 Waltz are played by non-percussive instruments leading

to relatively soft and blurred onsets, whereas the second and third

beats are played by percussive instruments. This is also reflected

by the novelty curve shown in Fig. 3c, where some of the peaks

corresponding to the soft onsets are hardly visible. However, the

beat period (tactus level) is perfectly disclosed by the PLP curve Γ,

see Fig. 3d. Also the predominant eighth note tatum pulse in mea-

sures 29/30 and measures 33/34 is captured by Γ, which locally
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Dataset PUBLIC PRIVATE

Curve KS P R F P R F

∆̄ 0.783 0.821 0.793 0.694 0.732 0.698

Γ 4 0.591 0.933 0.695 0.588 0.913 0.679

Γ 6 0.599 0.955 0.705 0.599 0.907 0.689

Γ 8 0.597 0.944 0.701 0.588 0.877 0.674

Table 1: Mean precision, recall, and F-measure values using the novelty
curve ∆̄ and PLP curves Γ with different kernel sizes ‘KS’ (in seconds).

switches from the tactus to the tatum level.

In view of a more quantitative evaluation, we describe the be-

havior of our PLP curves by means of precision and recall values

in the context of note onset detection. To this end, we use two dif-

ferent evaluation datasets containing audio recordings along with

manually labeled reference note onsets. First, we use a publicly

available1 dataset [11], which is widely used in onset detection ex-

periments [7]. This dataset, referred to as PUBLIC, consists of 242
seconds of audio (17 music excerpts of different genre) with 671
labeled onsets. Second, we use a dataset that particularly contains

classical music with soft onsets and significant tempo changes.

This dataset, referred to as PRIVATE, consists of 201 seconds of

audio with 569 manually labeled onsets. For determining onsets

from the original novelty curve ∆̄, we use a locally adaptive peak

picking strategy as proposed in [1]. Similarly, we determine on-

sets from the corresponding PLP curve simply by picking the lo-

cal maxima of Γ (for this curve, peak picking becomes a trivial

task). Following the MIREX 2007 Audio Onset Detection evalu-

ation procedure2, each detected onset is considered a true positive

if there is a reference onset within a tolerance bound of 50 mil-

liseconds, otherwise a false positive. Furthermore, each reference

onset not associated to a true positive is referred to as false nega-

tive. From this, we derive the standard precision (P), recall (R),

and the F-measure (F) values, see [7].

Table 1 shows the resulting average P, R, and F values for

the original novelty curve ∆̄ and for PLP curves using periodic-

ity kernels of different sizes. Note that for the PLP curves, all

peak positions of the induced local periodicity grid are taken as

positives. Since musical note onsets are rhythmically correlated,

one may expect that the onsets lie on PLP-defined peak positions.

This expectation is confirmed by our experiments, where the PLP

curves achieved higher recall rates than the original novelty curves.

For example, using PLP curve Γ of a kernel size 4, the mean re-

call R increased from 0.821 to 0.933 for the PUBLIC set and from

0.732 to 0.913 for the PRIVATE set. This result shows that a vast

majority of the relevant note onsets indeed lie on the PLP-defined

pulse grid, which also indicates the robustness and accuracy of our

method. Especially for the PRIVATE set, the PLP curve is still

capable of capturing the local periodicity, despite of soft onsets

and tempo changes. On the other side, the precision values for Γ
are lower than for ∆̄. This is not surprising, since we consider

all peak positions of Γ in the evaluation. Even though most note

onsets are captured by the grid, not all grid positions necessarily

correspond to note onsets. For example, the mean precision of Γ
roughly amounts to 0.6 for both datasets, which shows that 40% of

the Γ-encoded pulses do not correspond to note onsets. This is also

illustrated by the Beethoven example shown in Fig. 1e, where the

fermata sections are filled with periodically spaced Γ-pulses. Even

though such positions are counted as false positives in our evalua-

1http://old.lam.jussieu.fr/src/Membres/Leveau/SOL/SOL
2http://www.music-ir.org/mirex/2007/index.php/Audio_

Onset_Detection

tion, they generally correspond to rhythmically meaningful pulses.

Finally, we look at the influence of the kernel size on the PR val-

ues. Here, note that most of the excerpts in the PUBLIC dataset

have a constant tempo. Therefore, using a kernel size of 6 seconds

instead of 4 seconds, the kernel estimation is more robust leading

to a slight increase of recall (from R = 0.933 to R = 0.955).

Contrary, the PRIVATE dataset contains music with many tempo

changes. Here, kernels of smaller sizes are better suited for adjust-

ing the local periodicities according to the tempo.

5. CONCLUSIONS

In this paper, we have introduced a novel concept for determining

the predominant local periodicity (PLP) in music recordings with

possibly poor onset information and changing tempo. The PLP

curves not only align to the dominant pulse level but also adapt

to the local tempo. Based on the PLP-encoded local periodicity

grid, one can identify even weak onsets on musically meaningful

pulse positions. In this sense, PLP curves facilitate a periodicity-

adaptive peak picking. First experiments show that PLP curves are

also a powerful tool for beat tracking applications and local tempo

estimation in particular for classical music that reveals significant

variations in tempo, dynamics, and timbre. Furthermore, we plan

to use PLP curves for improving the temporal accuracy of align-

ments in the context of music synchronization applications. Such

improvements are essential for tasks such as performance analy-

sis, where one objective is to extract expressive tempo information

from music recordings.
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