

Hochschule für Musik Karlsruhe

Blockvorlesung

Advanced Audio-Based Music Processing

7. Style Classification

Christof Weiß, Frank Zalkow, Meinard Müller

International Audio Laboratories Erlangen

christof.weiss@audiolabs-erlangen.de frank.zalkow@audiolabs-erlangen.de meinard.mueller@audiolabs-erlangen.de

Dissertation: Tonality-Based Style Analysis

Christof Weiß
Computational Methods for Tonality-Based Style Analysis of
Classical Music Audio Recordings
PhD thesis, Ilmenau University of Technology, 2017
https://www.db-thueringen.de/receive/dbt_mods_00032890

Chapter 8: Subgenre Classification for Western Classical Music

Style Classification

Overview

Machine Learning pipeline:

- Feature extraction
- Classification

Style Classification

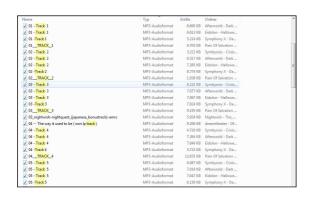
Overview

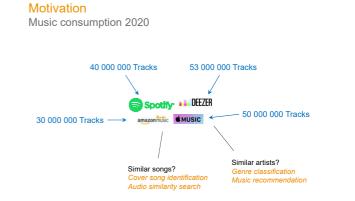
Machine Learning pipeline:

- Feature extraction
- Classification

Motivation

Music consumption 2000





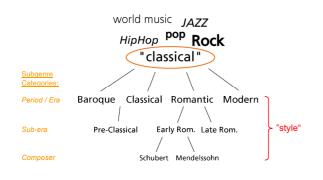
Music Genre Classification

world music JAZZ

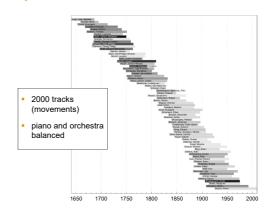
HipHop pop Rock
"classical"

Music Genre Classification

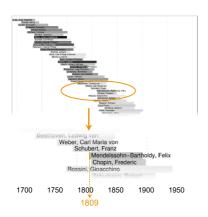
Music Genre Classification



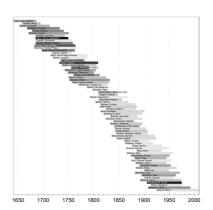
Style Classification: Dataset



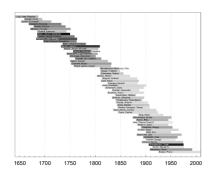
Style Classification: Dataset



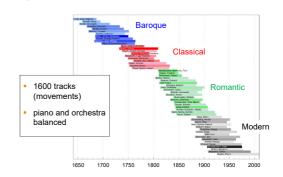
Style Classification: Dataset



Style Classification: Eras



Style Classification: Eras

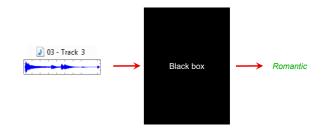


Style Classification: Eras

- Balanced: 800 piano tracks (p), 800 orchestra tracks (o)
- Each 200 tracks → 1600 in total

Classification problem 4-class problem

Style Classification: Machine Learning

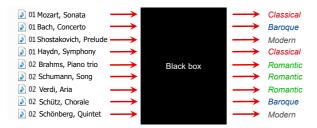


Style Classification: Machine Learning

Style Classification: Machine Learning



Style Classification: Machine Learning



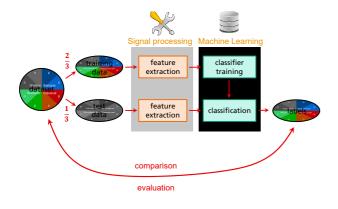
Style Classification: Machine Learning

- Experimental design: Evaluation with Cross Validation (CV)
- Separate data into different parts (folds)

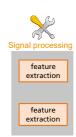
	Fold 1	Fold 2	Fold 3
Round 1	Training fold	Training fold	Test fold
Round 2	Training fold	Test fold	Training fold
Round 3	Test fold	Training fold	Training fold

Distribution of classes balanced for all folds

Style Classification: Machine Learning



Style Classification: Feature extraction



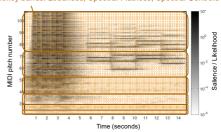
Style Classification: Feature extraction

- Standard approach (content-based)
 - Supervised machine learning
 - Based on spectral / timbral features

Recall: Spectral Features

- \rightarrow independent of exact pitches
- → describe **timbral** properties (sound color)
- "standard features" for genre classification

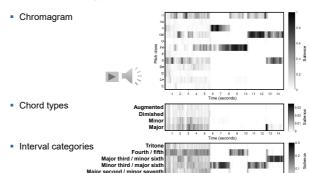
Frequency bands: Loudness, Spectral Flatness, Spectral Centroid



Style Classification: Feature extraction

- Standard approach (content-based)
 - Supervised machine learning
 - Based on spectral / timbral features
- In classical music → Instrumentation
- Better categories?
 - Musical style
 - Independent from instrumentation
 - → Tonality / Harmony

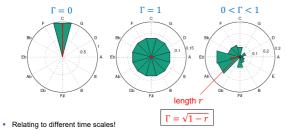
Recall: Chord Type and Interval Features



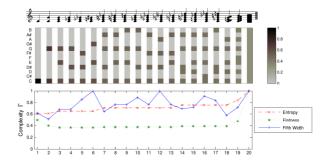
→ transposition-invariant features!

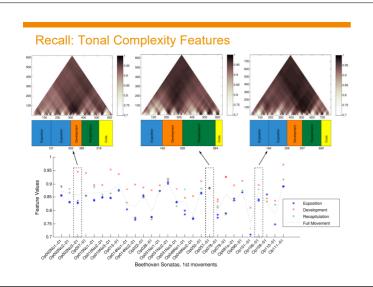
Recall: Tonal Complexity Features

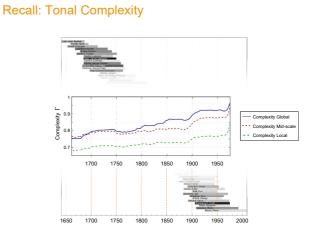
- $\qquad \qquad \textbf{Realization of complexity measure } \Gamma$
 - Entropy / Flatness measures
 - Distribution over Circle of Fifths



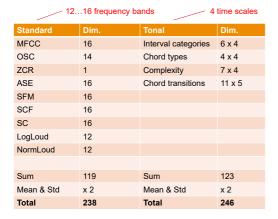
Recall: Tonal Complexity Features

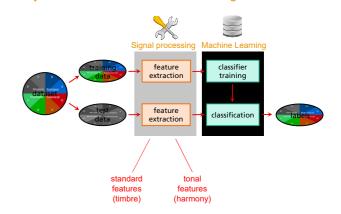






Style Classification: Feature extraction





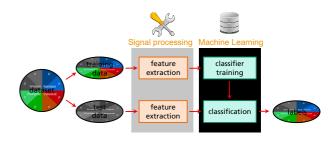
Style Classification

Overview

Machine Learning pipeline:

- Feature extraction
- Classification

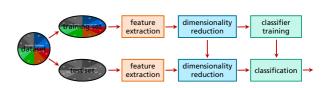
Style Classification: Machine Learning



Style Classification: Machine Learning

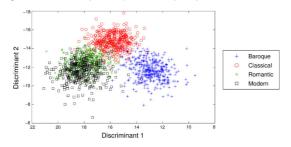
Style Classification: Machine Learning

Supervised machine learning



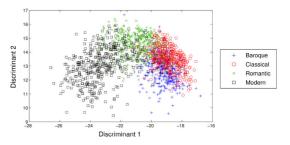
Dimensionality Reduction

- Reduce feature space to few dimensions (prevent curse of dimensionality)
- Maximize separation of classes with Linear Discriminant Analysis (LDA)
- Using standard features (MFCC, spectral envelope, ...)



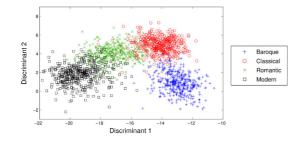
Dimensionality Reduction

- Reduce feature space to few dimensions
- Maximize separation of classes with Linear Discriminant Analysis (LDA)
- Using tonal features (interval, triad types, tonal complexity, ... 4 time scales)



Dimensionality Reduction

- Reduce feature space to few dimensions
- Maximize separation of classes with Linear Discriminant Analysis (LDA)
- Using tonal & standard features

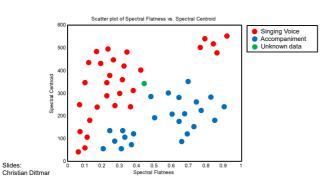


Dimensionality Reduction

- Reduce feature space to few dimensions
- Other methods (supervised):
 - (DNN-based) Autoencoder
 - Feature selection
- Other methods (unsupervised):
 - Principal component analysis (PCA)
 - Nonnegative matrix factorization (NMF)

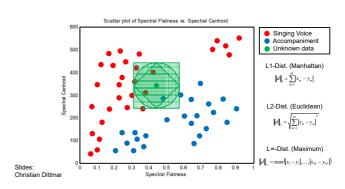
Classification Methods

k Nearest Neighbours (kNN)



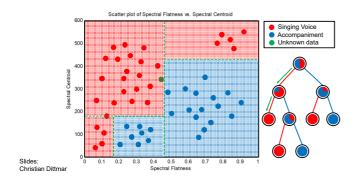
Classification Methods

k Nearest Neighbours (kNN)



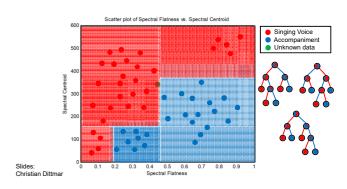
Classification Methods

Decision Trees (DT)



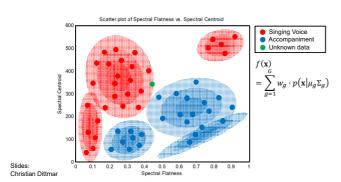
Classification Methods

Random Forests (RF)



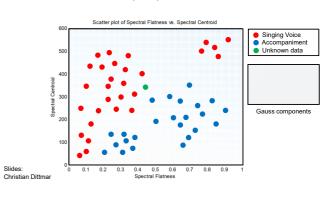
Classification Methods

Gaussian Mixture Models (GMM)



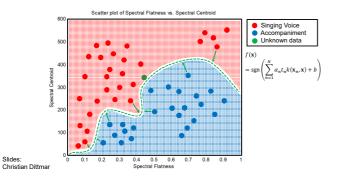
Classification Methods

Gaussian Mixture Models (GMM)



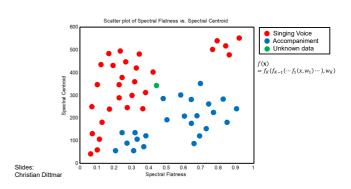
Classification Methods

Support Vector Machines (SVM)



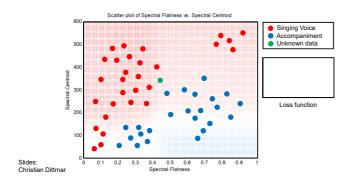
Classification Methods

Deep Neural Networks (DNN)



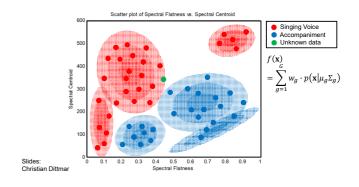
Classification Methods

Deep Neural Networks (DNN)



Classification Methods

Gaussian Mixture Models (GMM)



Classification Results

 Gaussian Mixture Model (GMM) classifier, LDA reduction, 3-fold cross validation

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Classification Results

 Gaussian Mixture Model (GMM) classifier, LDA reduction, 3-fold cross validation

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Overfitting???

Classification Results: Album Effect

 Gaussian Mixture Model (GMM) classifier, LDA reduction, 3-fold cross validation

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Classification Results: Album Effect

- GMM classifier, LDA reduction, 3-fold cross validation
- No composer filter

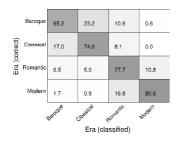
	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Using composer filter

	Full Dataset	Piano	Orchestra
Standard features	54 %	36 %	70 %
Tonal features	73 %	70 %	78 %
Combined	68 %	44 %	68 %

Classification Results: Confusion Matrix

- 80 tonal features, GMM with 1 Gaussian, LDA, composer filtering
- Full dataset
- Mean accuracy: 75 %
- Inter-class standard deviation: 6.7 %



Classification Results: Unseen Data

- Training on piano, evaluating on orchestra → mean acurracy 65 %
- Training on orchestra, evaluating on piano → mean acurracy 64 %
- Evaluation on **completely unseen data** (composer dataset)
 - Ignoring Beethoven & Schubert
 - Mean accuracy 62.3 %

$Classified\ Era$	Baroque	Classical	Romantic	Modern
Bach	68	5	9	18
Handel	56	23	15	6
Rameau	69	22	6	3
Haydn	25	51	19	3
Mozart	28	. 51	7	14
Beethoven	16	37	38	9
Schubert	7	16	24	53
Mendelssohn	15	19	5.5	11
Brahms	6	13	(35)	12
Dvořak	14	17	GT.	4
Shostakovich	15	2	8	

Classification Results: Error Examples

Look at consistently and persistently misclassified items

Class	Composer	Piece	Classified	
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in E minor BWV 853	Romantic	
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in F major BWV 856	Romantic	
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in Aminor BWV 865	Romantic	
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in B major BWV 866	Romantic	
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in B minor BWV 867	Romantic	
Baroque	Bach, J. S.	English Suite No. 3 in G minor BWV 808, Sarabande	Romantic	
Baroque	Bach, J. S.	Brandenburg Conc. No. 1 in F major BWV 1046, Adagio	Romantic	
Baroque	Bach, J. S.	Overture No. 2 in B minor BWV 1067, Badinerie	Romantic	
Baroque	Bach, J. S.	Overture No. 3 in D major BWV 1068, Gigue	Romantic	
Baroque	Couperin, F.	27 Ordres, Huitième ordre, IX. Rondeau passacaille	Romantic	
Baroque	Corelli, A.	Concerto grosso op. 6 No. 2, III. Grave - Andante largo	Romantic	
Baroque	Lully, JB.	Ballet de Xerces LWV 12, Gavotte en rondeau	Romantic	▶
Baroque	Purcell, H.	Opera "Dido and Aeneas" Z. 626, Overture	Romantic	▶
Baroque	Vivaldi, A.	"The Four Seasons," RV 293 "Autumn," Adagio molto	Romantic	
Romantic	Schumann, R.	Kinderszenen op. 15, "Haschemann"	Baroque	
Romantic	Grieg, E.	Holberg suite op. 40, Gavotte	Baroque	
Romantic	Mendelssohn, F.	Symphony No. 4 in A major, IV. Saltarello, presto	Baroque	
Modern	Shostakovich, D.	Preludes & Fugues op. 87 Fugue No. 1 in C major	Baroque	
Modern	Shostakovich, D.	Preludes & Fugues op. 87 Fugue No. 5 in D major	Baroque	

Classification Results

- What is actually learned?
- Pay attention to:
 - Overfitting
 - "Curse of dimensionality" use dimensionality reduction
 - Album effect
- Evaluation: "Figures of merit":
 - Confusion matrix
 - Error examples: Consistently misclassified items
 - Listening tests
- Evaluation on unseen data (no cross validation)