INTERNATIONAL AUDIO LABORATORIES ERLANGEN

Hochschule für Musik Karlsruhe

Blockvorlesung

Advanced Audio-Based Music Processing

7. Style Classification

Christof Weiß, Frank Zalkow, Meinard Müller

International Audio Laboratories Erlangen

christof.weiss@audiolabs-erlangen.de frank.zalkow@audiolabs-erlangen.de meinard.mueller@audiolabs-erlangen.de

Dissertation: Tonality-Based Style Analysis

Christof Weiß Computational Methods for Tonality-Based Style Analysis of Classical Music Audio Recordings PhD thesis, Ilmenau University of Technology, 2017 <u>https://www.db-thueringen.de/receive/dbt_mods_00032890</u>

Chapter 8: Subgenre Classification for Western Classical Music

Style Classification Overview

Machine Learning pipeline:

- Feature extraction
- Classification

Style Classification Overview

Machine Learning pipeline:

- Feature extraction
- Classification

Name	Тур	Größe	Ordner	*
01 - Track 1	MP3-Audioformat	6.600 KB	Afterworld - Dark	
01 - Track 1	MP3-Audioformat	6.613 KB	Eidolon - Hallowe	
01 +Track1	MP3-Audioformat	5.214 KB	Symphony X - Da	
01TRACK1	MP3-Audioformat	8.705 KB	Pain Of Salvation	
02 - Track 2	MP3-Audioformat	3.222 KB	Symbyosis - Crisis	
02 - Track 2	MP3-Audioformat	6.517 KB	Afterworld - Dark	
02 - Track 2	MP3-Audioformat	7.285 KB	Eidolon - Hallowe	E
02 -Track 2	MP3-Audioformat	8.774 KB	Symphony X - Da	
02TRACK2	MP3-Audioformat	1.938 KB	Pain Of Salvation	
🔊 03 - <mark>Track</mark> 3	MP3-Audioformat	8.221 KB	Symbyosis - Crisis	
03 - Track 3	MP3-Audioformat	7.077 KB	Afterworld - Dark	
🔊 03 - <mark>Track</mark> 3	MP3-Audioformat	7.067 KB	Eidolon - Hallowe	
03 -Track3	MP3-Audioformat	7.924 KB	Symphony X - Da	
03TRACK3	MP3-Audioformat	9.195 KB	Pain Of Salvation	
03_nightwish-nightquest_(japanese_bonustrack)-amrc	MP3-Audioformat	5.934 KB	Nightwish - The	
04 The way it used to be (non lp track)	MP3-Audioformat	9.206 KB	dreamtheater - 19	
04 - Track 4	MP3-Audioformat	4.716 KB	Symbyosis - Crisis	
🔊 04 - Track 4	MP3-Audioformat	7.264 KB	Afterworld - Dark	
04 - Track 4	MP3-Audioformat	7.849 KB	Eidolon - Hallowe	
04 -Track 4	MP3-Audioformat	5.722 KB	Symphony X - Da	
04TRACK4	MP3-Audioformat	12.835 KB	Pain Of Salvation	
🔊 05 - <mark>Track</mark> 5	MP3-Audioformat	6.687 KB	Symbyosis - Crisis	
🔊 05 - <mark>Track</mark> 5	MP3-Audioformat	7.019 KB	Afterworld - Dark	
05 - Track 5	MP3-Audioformat	7.647 KB	Eidolon - Hallowe	
05 -Track 5	MP3-Audioformat	6.150 KB	Symphony X - Da	

Music Genre Classification

world music JAZZ HipHop ^{pop} Rock "classical"

Music Genre Classification

Music Genre Classification

Style Classification: Dataset

Style Classification: Dataset

Style Classification: Dataset

Style Classification: Eras

Style Classification: Eras

Style Classification: Eras

- Balanced: 800 piano tracks (p), 800 orchestra tracks (o)
- Each 200 tracks \rightarrow 1600 in total

Classification problem 4-class problem

- Experimental design: Evaluation with Cross Validation (CV)
- Separate data into different parts (*folds*)

Distribution of classes balanced for all folds

Style Classification: Feature extraction

Style Classification: Feature extraction

- Standard approach (*content-based*)
 - Supervised machine learning
 - Based on spectral / timbral features

Recall: Spectral Features

 \rightarrow independent of exact pitches

 \rightarrow describe **timbral** properties (sound color)

"standard features" for genre classification

Style Classification: Feature extraction

- Standard approach (content-based)
 - Supervised machine learning
 - Based on spectral / timbral features
- In classical music \rightarrow Instrumentation
- Better categories?
 - Musical style
 - Independent from instrumentation
 - \rightarrow Tonality / Harmony

Recall: Chord Type and Interval Features

 \rightarrow transposition-invariant features!

Recall: Tonal Complexity Features

- Realization of complexity measure Γ
 - Entropy / Flatness measures
 - Distribution over Circle of Fifths

Relating to different time scales!

Recall: Tonal Complexity Features

Recall: Tonal Complexity Features

Recall: Tonal Complexity

Style Classification: Feature extraction

1216 frequency bands 4 time scales				
Standard	Dim.	Tonal	Dim.	
MFCC	16	Interval categories	6 x 4	
OSC	14	Chord types	4 x 4	
ZCR	1	Complexity	7 x 4	
ASE	16	Chord transitions	11 x 5	
SFM	16			
SCF	16			
SC	16			
LogLoud	12			
NormLoud	12			
Sum	119	Sum	123	
Mean & Std	x 2	Mean & Std	x 2	
Total	238	Total	246	

Style Classification Overview

Machine Learning pipeline:

- Feature extraction
- Classification

Supervised machine learning

- Reduce feature space to few dimensions (prevent curse of dimensionality)
- Maximize separation of classes with Linear Discriminant Analysis (LDA)
- Using standard features (MFCC, spectral envelope, ...)

- Reduce feature space to few dimensions
- Maximize separation of classes with Linear Discriminant Analysis (LDA)
- Using tonal features (interval, triad types, tonal complexity, ... 4 time scales)

- Reduce feature space to few dimensions
- Maximize separation of classes with Linear Discriminant Analysis (LDA)
- Using tonal & standard features

- Reduce feature space to few dimensions
- Other methods (supervised):
 - (DNN-based) Autoencoder
 - Feature selection
- Other methods (unsupervised):
 - Principal component analysis (PCA)
 - Nonnegative matrix factorization (NMF)

k Nearest Neighbours (kNN)

k Nearest Neighbours (kNN)

Decision Trees (DT)

Slides: Christian Dittmar

Random Forests (RF)

Gaussian Mixture Models (GMM)

Gaussian Mixture Models (GMM)

Support Vector Machines (SVM)

Deep Neural Networks (DNN)

Deep Neural Networks (DNN)

Gaussian Mixture Models (GMM)

Classification Results

Gaussian Mixture Model (GMM) classifier, LDA reduction, 3-fold cross validation

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Classification Results

 Gaussian Mixture Model (GMM) classifier, LDA reduction, 3-fold cross validation

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Overfitting???

Classification Results: Album Effect

 Gaussian Mixture Model (GMM) classifier, LDA reduction, 3-fold cross validation

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

training	test
Baroque	
Classical	
Romantic	
Modern	

Classification Results: Album Effect

- GMM classifier, LDA reduction, 3-fold cross validation
- No composer filter

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Using composer filter

	Full Dataset	Piano	Orchestra
Standard features	54 %	36 %	70 %
Tonal features	73 %	70 %	78 %
Combined	68 %	44 %	68 %

Classification Results: Confusion Matrix

- 80 tonal features, GMM with 1 Gaussian, LDA, composer filtering
- Full dataset
- Mean accuracy: 75 %
- Inter-class standard deviation: 6.7 %

Classification Results: Unseen Data

- Training on **piano**, evaluating on **orchestra** \rightarrow mean acurracy **65** %
- Training on **orchestra**, evaluating on **piano** \rightarrow mean acurracy **64** %
- Evaluation on completely unseen data (composer dataset)
 - Ignoring Beethoven & Schubert
 - Mean accuracy 62.3 %

Classified Era	Baroque	Classical	Romantic	Modern
Bach	68	5	9	18
Handel	56	23	15	6
Rameau	69	22	6	3
Haydn	25	53	19	3
Mozart	28	51	7	14
Beethoven	16	37	38	9
Schubert	7	16	24	53
Mendelssohn	15	19	55	11
Brahms	6	13	69	12
Dvořak	14	17	65	4
Shostakovich	15	2	8	75

Classification Results: Error Examples

Look at consistently and persistently misclassified items

Class	Composer	Piece	Classified	
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in Eb minor BWV 853	Romantic	
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in F major BWV 856	Romantic	
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in A minor BWV 865	Romantic	
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in B^{\flat} major BWV 866	Romantic	
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in B^{\flat} minor BWV 867	Romantic	
Baroque	Bach, J. S.	English Suite No. 3 in G minor BWV 808, Sarabande	Romantic	
Baroque	Bach, J. S.	Brandenburg Conc. No. 1 in F major BWV 1046, Adagio	Romantic	
Baroque	Bach, J. S.	Overture No. 2 in B minor BWV 1067, Badinerie	Romantic	
Baroque	Bach, J. S.	Overture No. 3 in D major BWV 1068, Gigue	Romantic	
Baroque	Couperin, F.	27 Ordres, Huitième ordre, IX. Rondeau passacaille	Romantic	
Baroque	Corelli, A.	Concerto grosso op. 6 No. 2, III. Grave – Andante largo	Romantic	
Baroque	Lully, JB.	Ballet de Xerces LWV 12, Gavotte en rondeau	Romantic	
Baroque	Purcell, H.	Opera "Dido and Aeneas" Z. 626, Overture	Romantic	
Baroque	Vivaldi, A.	"The Four Seasons," RV 293 "Autumn," Adagio molto	Romantic	
Romantic	Schumann, R.	Kinderszenen op. 15, "Haschemann"	Baroque	
Romantic	Grieg, E.	Holberg suite op. 40, Gavotte	Baroque	
Romantic	Mendelssohn, F.	Symphony No. 4 in A major, IV. Saltarello, presto	Baroque	
Modern	Shostakovich, D.	Preludes & Fugues op. 87 Fugue No. 1 in C major	Baroque	
Modern	Shostakovich, D.	Preludes & Fugues op. 87 Fugue No. 5 in D major	Baroque	

Classification Results

- What is actually learned?
- Pay attention to:
 - Overfitting
 - "Curse of dimensionality" use dimensionality reduction
 - Album effect
- Evaluation: "Figures of merit":
 - Confusion matrix
 - Error examples: Consistently misclassified items
 - Listening tests
- Evaluation on unseen data (no cross validation)