

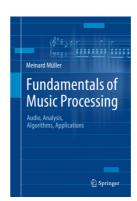
Hochschule für Musik Karlsruhe
Blockvorlesung

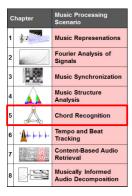
Advanced Audio-Based Music Processing

2. Music Theory Basics

Christof Weiß, Frank Zalkow, Meinard Müller

International Audio Laboratories Erlangen


christof.weiss@audiolabs-erlangen.de frank.zalkow@audiolabs-erlangen.de meinard.mueller@audiolabs-erlangen.de


Book: Fundamentals of Music Processing

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

5.1 Basic Theory of Harmony

Dissertation: Tonality-Based Style Analysis

Christof Weiß

Computational Methods for Tonality-Based Style Analysis of Classical Music Audio Recordings
PhD thesis, Ilmenau University of Technology, 2017
https://www.db-thueringen.de/receive/dbt_mods_00032890

Chapter 2: Musicological Foundations

Music Theory Basics

Overview

Part I:

- Pitches and Intervals
- Tuning and Enharmonic Equivalence
- Scales

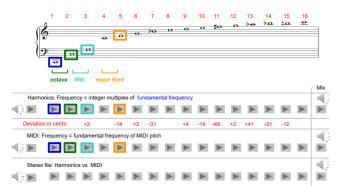
Part II:

- Chords
- · Keys and the Circle of Fifths

Music Theory Basics

Overview

Part I:


- Pitches and Intervals
- Tuning and Enharmonic Equivalence
- Scales

Part II:

- Chords
- · Keys and the Circle of Fifths

Tone and Pitch

Harmonic series | overtone series

Tone and Pitch

Harmonic series | overtone series

$$f_{\text{Part}}(h) := h \cdot f_0$$

- Notation: only approximation
- Mathematical: harmonics (integer multiples)
- Physical: partials/overtones not the same (inharmonicity)
- Counting of fundamental: harmonics/partials vs. overtones

Intervals

Harmonic series | overtone series

$$f_{\text{Part}}(h) := h \cdot f_0$$

Intervals: harmonic frequency ratios $\frac{f^b}{f^a}$

2:1 – Octave

Intervals

Harmonic series | overtone series

$$f_{\mathrm{Part}}(h) := h \cdot f_0$$

Intervals: harmonic frequency ratios $\frac{f^b}{f^a}$

- 2:1 Octave
- 3:2 Fifth

Intervals

Harmonic series | overtone series

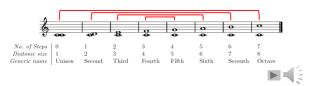
$$f_{\text{Part}}(h) := h \cdot f_0$$

Intervals: harmonic frequency ratios $\frac{f^b}{f^a}$

- 2:1 Octave
- 3:2 Fifth
- 5:4 Major Third

With perfect mathematic ratios: pure intervals

Intervals


Generic Intervals

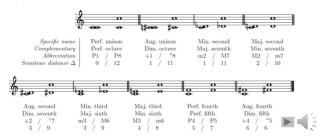
- Generic intervals: only diatonic size (ignoring accidentals)
- Obtained by counting distance in staff lines & spaces
- Simple intervals: Up to the octave
- Compound intervals: Larger than octave
- Compound = Simple + Octave(s)

Intervals

Generic Intervals

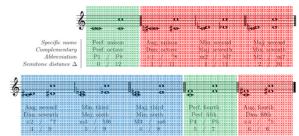
- High similarity of octave-related pitches (same pitch class!)
- $\:\:\:\:\to$ high similarity of intervals with octave mutation (inversion)
- → Complementary intervals
- Interval + Complementary = Octave

Intervals


Specific Intervals

- With accidentals: several "versions" of intervals
- Different "exact size" (semitone distance)
- Notation: Specific interval = Modifier + Generic interval (need both!)
- Complementary: perfect ↔ perfect | major ↔ minor | dimin. ↔ augm.

Intervals


Specific Intervals

- Perfect intervals: 1 4 5 8
- Others: Major and minor
- · All: Diminished and augmented
- In major scale: upward intervals always perfect or major

Intervals

Consonance & Dissonance

- Perfect consonances
- Imperfect consonances
- Dissonances

Intervals

Specific Intervals

Δ	Interval name	Interval	JI ratio	Pyt. ratio
0	(Perfect) unison	C4 – C4	1:1	1:1
1	Minor second	C4 - D14	15:16	35:28
2	Major second	C4 – D4	8:9	23:32
3	Minor third	C4 – E14	5:6	33:25
4	Major third	C4 – E4	4:5	26:34
5	(Perfect) fourth	C4 – F4	3:4	3:22
6	Tritone	C4 – FF4	32:45	29:36 or 36:210
7	(Perfect) fifth	C4 – G4	2:3	2:3
8	Minor sixth	C4 - Al-4	5:8	34:27
9	Major sixth	C4 – A4	3:5	2 ⁴ :3 ³
10	Minor seventh	C4 - B14	5:9	32:24
11	Major seventh	C4 – B4	8:15	27:35
12	(Perfect) octave	C4 – C5	1:2	1:2

Intervals

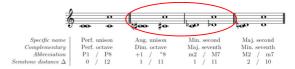
Intervals in context

- Harmonic intervals: describing the relationships of concurrently sounding pitches (no "direction")
- Melodic intervals: describing the relationships of successively sounding pitches (with direction)
- On the pitch class level: An interval progressions corresponds to the complementary interval progression in opposite direction

Music Theory Basics

Overview

Part I:


- Pitches and Intervals
- Tuning and Enharmonic Equivalence
- Scales

Part II:

- Chords
- Keys and the Circle of Fifths

Enharmonic Equivalence

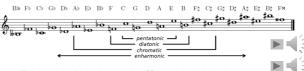
Intervals

- Different specific intervals with same semitone distance
- → Enharmonically equivalent intervals
- Involve enharmonically equivalent pitches

Enharmonic Equivalence

Pitch classes

- Overtone series: Fifths as most important (non-octave) interval
- Construct scales from fifth series



Chromatic

Enharmonic Equivalence

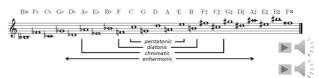
Pitch classes

- Overtone series: Fifths as most important (non-octave) interval
- Scales as excerpts from fifth series

- Enharmonic: More than twelve fifths-related pitch classes
- $\quad \bullet \ \, \text{enharmonically equivalent pitch classes}$
- A spiral, not a circle!

Enharmonic Equivalence

Pitch classes


- Construction of pitch frequencies from pure perfect fifths intervals with ratio 3:2 → Pythagorean tuning
- Problem: 12 fifths are not exactly 7 octaves!
- → "Pythagorean comma":

• Ratio: $\frac{(3/2)^{12}}{2^7} \approx 1.0136$

- Distance in cents: $\log_2(1.0136) \cdot 1200 \approx 23.5 \ \mathbf{Cent}$

Enharmonic Equivalence

Pitch classes

- Consequence: Pure intervals (beating-free) and enharmonic equivalence not possible at the same time
- → Pythagorean comma needs to be "tempered"
- Different kinds of "temperament"
- Twelve-tone equal temperament:
 - Pythagorean comma equally distributed
 - Perfect fifth of size 23.5 / 12 ≈ 2 Cents smaller than pure fifth

Global tuning

Concert pitch

- Global tuning: shift of all frequencies

• Standard: $f_{\mathrm{concert}} \coloneqq 440 \; \mathrm{Hz}$

• Historical tuning: $f_{\mathrm{concert}}^{\mathrm{hist}} \coloneqq 415 \; \mathrm{Hz}$

Compute frequency from MIDI pitch number

$$f_0(p) = 2^{(p-69)/12} \cdot f_{\text{concert}}$$

Further Computations

Equal temperament

• Pitch class numbers: $q \in [0:11]$

$$(0,1,\ldots,11) \widehat{=} (C,C\sharp,\ldots,B)$$

• Pitch class from MIDI pitch: $q(p) = p \mod 12$

• Interval in semitones: $\Delta(p^a, p^b) = p^b - p^a$

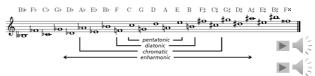
- Simple from compound interval: $\Delta_{simple} = \Delta_{compound} \mod 12$

• Complementary from original: $\Delta_{
m complementary} = 12 - \Delta_{
m original}$

Music Theory Basics

Overview

Part I:


- Pitches and Intervals
- Tuning and Enharmonic Equivalence
- Scales

Part II:

- Chords
- · Keys and the Circle of Fifths

Scale Families

Pitch class content

- Scale family only defines a specific pitch class content
 - Can be transposed (shifted) in different ways
 - Different referential pitch classes (tonic notes)

Scale Transpositions

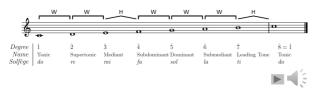
Diatonic Scales

- Transposition corresponds to a shift in the fifth series
- Naming convention: according to the accidentals (key signature)
- Allows for measuring distances between diatonic scales

Specific Scales

Diatonic scales

Different referential pitch classes (tonic notes): (church) modes



Specific Scales

Major scale

- Diatonic scale based on second pitch class in fifth series
- Results in semitones between scale degrees 3-4 and 7-8 (7-1)

Specific Scales

Minor scales

 Natural minor scale: Diatonic scale based on fifth pitch class in fifth series

Specific Scales

Minor scales

- Natural minor scale: Diatonic scale based on fifth pitch class in fifth series
- Results in semitones between scale degrees 2-3 and 5-6 (7-1)

Specific Scales

Non-diatonic scales

 Symmetry in the equal-tempered scale: pitch class activation vectors (templates):

$$\begin{split} \mathbf{T}^{Wholetone} &= (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0)^T \\ \mathbf{T}^{Hexatonic} &= (1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0)^T \\ \mathbf{T}^{Octatonic} &= (1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0)^T \end{split}$$

Music Theory Basics

Overview

Part I:

- Pitches and Intervals
- Tuning and Enharmonic Equivalence
- Scales

Part II:

- Chords
- Keys and the Circle of Fifths

Chord

Definition

- "Sets of pitches that are perceived as an entity"
- Usually three (triads) or more pitches (seventh chords, ...)
- Can be realized in different ways, referring to the same "abstract" chord

Triads

Basic types

- Three notes in tertian structure ("snowman")
- Structure:

 Root note Major third Fifth

 C major (C)

 Minor More Root note Minor third Fifth

 C minor (Cm)
- Stability according to frame interval (fifth)

Triads

Inversions

- Only bass pitch class is important
- Root position is most stable
- Caution: Root pitch class ≠ bass pitch class!

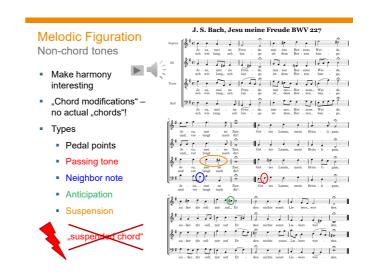
Triads

Pitch class sets

- Pitch class activation vectors (independent of inversion)
 - $\begin{array}{ll} \bullet & \text{Major:} & \mathbf{T}^{CM} = (1,0,0,0,1,0,0,1,0,0,0,0)^T \\ \bullet & \text{Minor:} & \mathbf{T}^{Cm} = (1,0,0,1,0,0,0,1,0,0,0,0)^T \\ \bullet & \text{Diminished:} & \mathbf{T}^{C^\circ} = (1,0,0,1,0,0,1,0,0,0,0,0)^T \\ \end{array}$

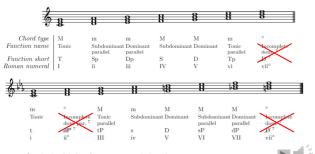
Seventh Chords

Basic types



- Three concatenated thirds
- Basic triad types + seventh (above the root)
- Other extensions as well (6, 9, 11, 13, ...) \rightarrow jazz harmony

Figuration


Types

- Homophonic texture (no figuration): harmonic rhythm = rhythm
- Figuration: rhythm faster than harmonic rhythm
 - Rhythmic figuration: repeated chords / notes
 - Harmonic figuration: different chord notes (arpeggio)
 - Melodic figuration: involving non-chord tones (usually dissonant!)

Functional Harmony

Chord functions & Roman numerals

- Capitals: Major & augmented chords
- Lowercase: Minor & diminished chords
- No "incomplete chords"

Functional Harmony

Chord relationships

- $\begin{array}{cccc} \bullet & \text{Parallel chords (e.g. C major} \text{A minor}): & & & & \underbrace{\frac{\text{down m3}}{\text{up m3}}} \text{ m} \\ \bullet & & \text{Contrast chords (e.g. C major} \text{E minor}): & & & \underbrace{\frac{\text{up m3}}{\text{down m3}}} \text{ m} \\ \end{array}$
- → share each two pitch classes!

Functional Harmony

Chord progressions

Types:

- **Pendulum**: chord change and reverse (e.g. I V I)
- **Sequence**: repetition of same diatonic step (e.g. III VI II V I)
- Cadence: ending formula, often with closing character (e.g. II V I)

Functional Harmony

Chord progressions

- Authentic progressions: "falling", "moving forward", "directional"
- Plagal progressions: "opening", "archaic" ("A-men"), colorful

Interval	Δ	Complem.	Δ	Quality
P1	0	P8 📐	-12	None
m2 /	+1	$M7 \searrow$	-11	Authentic
M2 >	+2	m7 📐	-10	Authentic
m3 /	+3	M6 📐	-9	Plagal
M3 >	+4	m6 📐	-8	Plagal
P4 /	+5	P5 📡	-7	Authentic
+4 /	+6	°5 🔪	-6	None
P5 >	+7	P4 📐	-5	Plagal
m6 /	+8	М3 📐	-4	Authentic
M6 >	+9	m3 📐	-3	Authentic
m7 >	+10	$M2 \searrow$	-2	Plagal
M7 >	+11	$m2 \searrow$	-1	Plagal
P8 >	+12	P1	0	None

Music Theory Basics

Overview

Part I:

- Pitches and Intervals
- Tuning and Enharmonic Equivalence
- Scales

Part II:

- Chords
- Keys and the Circle of Fifths

Key

Definition

- "A set of pitch relationships that establishes a specific major or minor triad as a tonal center"
- Example: "F major" = tonic note F, mode major, tonic chord F major
- With enharmonic equivalence: 24 keys
- Change of key: Modulation
- Types of modulation:
 - Diatonic modulations: pivot chord obtains new function
 - Chromatic modulation: one note or chord chromatically altered
 - Enharmonic modulation: re-spelling of pitch to obtain new function

Key

Key relationships

Special relationships & common modulations:

• Relative keys (same key signature, different tonic):

F major
$$\xrightarrow{\text{down m3}}$$
 D minor

- Parallel keys (same tonic note, different mode): $F \ \mathrm{major} \xrightarrow{P1} F \mathrm{minor}$

F major
$$\xrightarrow{P1}$$
 F minor

• Fifth-related keys (differ in one scale pitch class):

F major
$$\xrightarrow{\text{up P5}}$$
 C major

• Mediant keys (third-related), e.g.:

F major
$$\xrightarrow{\text{down m3}}$$
 D major

Key Circle of fifths

- Actually (without enharmonic equivalence): spiral not circle!
- Use series of fifths instead...