INTERNATIONAL AUDIO LABORATORIES ERLANGEN

Hochschule für Musik Karlsruhe

Blockvorlesung

Advanced Audio-Based Music Processing

2. Music Theory Basics

Christof Weiß, Frank Zalkow, Meinard Müller

International Audio Laboratories Erlangen

christof.weiss@audiolabs-erlangen.de frank.zalkow@audiolabs-erlangen.de meinard.mueller@audiolabs-erlangen.de

Book: Fundamentals of Music Processing

Meinard Müller

Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing

Meinard Müller

Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

5.1 Basic Theory of Harmony

Dissertation: Tonality-Based Style Analysis

Christof Weiß Computational Methods for Tonality-Based Style Analysis of Classical Music Audio Recordings PhD thesis, Ilmenau University of Technology, 2017 <u>https://www.db-thueringen.de/receive/dbt_mods_00032890</u>

Chapter 2: Musicological Foundations

Music Theory Basics Overview

Part I:

- Pitches and Intervals
- Tuning and Enharmonic Equivalence
- Scales

Part II:

- Chords
- Keys and the Circle of Fifths

Music Theory Basics Overview

Part I:

- Pitches and Intervals
- Tuning and Enharmonic Equivalence
- Scales

Part II:

- Chords
- Keys and the Circle of Fifths

Tone and Pitch

Harmonic series | overtone series

Tone and Pitch Harmonic series | overtone series

- Notation: only approximation
- Mathematical: harmonics (integer multiples)
- Physical: partials/overtones not the same (inharmonicity)
- Counting of fundamental: harmonics/partials vs. overtones

 $\frac{f^b}{f^a}$

$$f_{\mathrm{Part}}(h) := h \cdot f_0$$

Intervals: harmonic frequency ratios

• 2:1 – Octave

Intervals Harmonic series | overtone series

 $\frac{f^b}{f^a}$

$$f_{\mathrm{Part}}(h) := h \cdot f_0$$

Intervals: harmonic frequency ratios

- 2:1 Octave
- 3:2 Fifth

Intervals Harmonic series | overtone series

 $\frac{f^b}{f^a}$

$$f_{\mathrm{Part}}(h) := h \cdot f_0$$

Intervals: harmonic frequency ratios

- 2:1 Octave
- 3:2 Fifth
- 5:4 Major Third

With perfect mathematic ratios: pure intervals

Intervals Generic Intervals

- **Generic intervals**: only diatonic size (ignoring accidentals)
- Obtained by counting distance in staff lines & spaces
- Simple intervals: Up to the octave
- **Compound intervals**: Larger than octave
- Compound = Simple + Octave(s)

Intervals Generic Intervals

- High similarity of octave-related pitches (same pitch class!)
- \rightarrow high similarity of intervals with octave mutation (**inversion**)
- → Complementary intervals
- Interval + Complementary = Octave

Intervals Specific Intervals

- With accidentals: several "versions" of intervals
- Different "exact size" (semitone distance)
- Notation: Specific interval = Modifier + Generic interval (need both!)
- Complementary: perfect \leftrightarrow perfect | major \leftrightarrow minor | dimin. \leftrightarrow augm.

Intervals Specific Intervals

- Perfect intervals: 1 4 5 8
- Others: Major and minor
- All: Diminished and augmented
- In major scale: upward intervals always perfect or major

Intervals Consonance & Dissonance

- Perfect consonances
- Imperfect consonances
- Dissonances

Intervals Specific Intervals

Δ	Interval name	Interval	JI ratio	Pyt. ratio
0	(Perfect) unison	C4 – C4	1:1	1:1
1	Minor second	C4 – D [♭] 4	15:16	3 ⁵ :2 ⁸
2	Major second	C4 – D4	8:9	2 ³ : 3 ²
3	Minor third	C4 – E♭4	5:6	3 ³ :2 ⁵
4	Major third	C4 – E4	4:5	2 ⁶ :3 ⁴
5	(Perfect) fourth	C4 – F4	3:4	3:2 ²
6	Tritone	C4 – F [♯] 4	32:45	2 ⁹ :3 ⁶ or 3 ⁶ :2 ¹⁰
7	(Perfect) fifth	C4 – G4	2:3	2:3
8	Minor sixth	C4 – A [♭] 4	5:8	3 ⁴ : 2 ⁷
9	Major sixth	C4 – A4	3:5	2 ⁴ : 3 ³
10	Minor seventh	C4 – B♭4	5:9	3 ² : 2 ⁴
11	Major seventh	C4 – B4	8:15	2 ⁷ :3 ⁵
12	(Perfect) octave	C4 – C5	1:2	1:2

Intervals

Intervals in context

- Harmonic intervals: describing the relationships of concurrently sounding pitches (no "direction")
- Melodic intervals: describing the relationships of successively sounding pitches (with direction)
- On the pitch class level: An interval progressions corresponds to the complementary interval progression in opposite direction

Music Theory Basics Overview

Part I:

- Pitches and Intervals
- Tuning and Enharmonic Equivalence
- Scales

Part II:

- Chords
- Keys and the Circle of Fifths

Intervals

- Different specific intervals with same semitone distance
- → Enharmonically equivalent intervals
- Involve enharmonically equivalent pitches

- Overtone series: Fifths as most important (non-octave) interval
- Construct scales from fifth series

- Overtone series: Fifths as most important (non-octave) interval
- Scales as excerpts from fifth series

- Enharmonic: More than twelve fifths-related pitch classes
- $\hfill \rightarrow$ enharmonically equivalent pitch classes
- A spiral, not a circle!

- Construction of pitch frequencies from pure perfect fifths intervals with ratio 3:2 → Pythagorean tuning
- Problem: 12 fifths are not exactly 7 octaves!
- \rightarrow "Pythagorean comma":
 - Ratio: $\frac{(3/2)^{12}}{2^7} \approx 1.0136$
 - Distance in cents: $\log_2(1.0136) \cdot 1200 \approx 23.5$ Cent

- Consequence: Pure intervals (beating-free) and enharmonic equivalence **not possible** at the same time
- \rightarrow Pythagorean comma needs to be "tempered"
- Different kinds of "temperament"
- Twelve-tone equal temperament:
 - Pythagorean comma equally distributed
 - Perfect fifth of size 23.5 / 12 ≈ 2 Cents smaller than pure fifth

Global tuning Concert pitch

- Global tuning: shift of all frequencies
- Given by concert pitch (frequency of MIDI pitch 69 \triangleq **A4**)
 - Standard: $f_{\text{concert}} \coloneqq 440 \text{ Hz}$ Historical tuning: $f_{\text{concert}}^{\text{hist}} \coloneqq 415 \text{ Hz}$
- Compute frequency from MIDI pitch number

$$f_0(p) = 2^{(p-69)/12} \cdot f_{\text{concert}}$$

Further Computations Equal temperament

• Pitch class numbers: $q \in [0:11]$

$$(0, 1, \ldots, 11) \widehat{=} (C, C \sharp, \ldots, B)$$

- Pitch class from MIDI pitch: $q(p) = p \mod 12$
- Interval in semitones: $\Delta(p^a, p^b) = p^b p^a$
- Simple from compound interval: $\Delta_{\text{simple}} = \Delta_{\text{compound}} \mod 12$
- Complementary from original: Δ_{co}

$$\Delta_{\rm complementary} = 12 - \Delta_{\rm original}$$

Music Theory Basics Overview

Part I:

- Pitches and Intervals
- Tuning and Enharmonic Equivalence
- Scales

Part II:

- Chords
- Keys and the Circle of Fifths

Scale Families

Pitch class content

- Scale family only defines a specific **pitch class content**
 - Can be **transposed** (shifted) in different ways
 - Different referential pitch classes (tonic notes)

Scale Transpositions Diatonic Scales

- Transposition corresponds to a shift in the fifth series
- Naming convention: according to the **accidentals** (key signature)
- Allows for measuring **distances** between diatonic scales

Specific Scales Diatonic scales

Different referential pitch classes (tonic notes): (church) modes

- Diatonic scale based on second pitch class in fifth series
- Results in semitones between scale degrees 3–4 and 7–8 (7–1)

Specific Scales Minor scales

 Natural minor scale: Diatonic scale based on fifth pitch class in fifth series

- Natural minor scale: Diatonic scale based on fifth pitch class in fifth series
- Results in semitones between scale degrees 2–3 and 5–6 (7–1)

Specific Scales Non-diatonic scales

 Symmetry in the equal-tempered scale: pitch class activation vectors (templates):

$$\mathbf{T}^{\text{Wholetone}} = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0)^{\text{T}}$$
$$\mathbf{T}^{\text{Hexatonic}} = (1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0)^{\text{T}}$$
$$\mathbf{T}^{\text{Octatonic}} = (1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0)^{\text{T}}$$

Music Theory Basics Overview

Part I:

- Pitches and Intervals
- Tuning and Enharmonic Equivalence
- Scales

Part II:

- Chords
- Keys and the Circle of Fifths

Chord Definition

- "Sets of pitches that are perceived as an entity"
- Usually three (triads) or more pitches (seventh chords, ...)
- Can be realized in different ways, referring to the same "abstract" chord

Three notes in tertian structure ("snowman")

Stability according to frame interval (fifth)

Triads Inversions

- Only bass pitch class is important
- Root position is most stable
- Caution: **Root pitch class ≠ bass pitch class!**

Triads Pitch class sets

- Pitch class activation vectors (independent of inversion)
 - Major: $\mathbf{T}^{CM} = (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0)^{T}$
 - Minor: $\mathbf{T}^{Cm} = (1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0)^{T}$
 - Diminished: $\mathbf{T}^{C^{\circ}} = (1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0)^{T}$
 - Augmented: $\mathbf{T}^{C+} = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)^{T}$

Seventh Chords

Basic types

- Three concatenated thirds
- Basic triad types + seventh (above the root)
- Other extensions as well (6, 9, 11, 13, ...) \rightarrow jazz harmony

Figuration Types

- Homophonic texture (no figuration): harmonic rhythm = rhythm
- **Figuration**: rhythm faster than harmonic rhythm
 - **Rhythmic** figuration: repeated chords / notes
 - **Harmonic** figuration: different chord notes (arpeggio)
 - Melodic figuration: involving non-chord tones (usually dissonant!)

Melodic Figuration

- Non-chord tones
- Make harmony interesting
- "Chord modifications" no actual "chords"!
- Types
 - Pedal points
 - Passing tone
 - Neighbor note
 - Anticipation
 - Suspension

Chord functions & Roman numerals

- Capitals: Major & augmented chords
- Lowercase: Minor & diminished chords
- No "incomplete chords"

Chord relationships

- Parallel chords (e.g. C major A minor):
- Contrast chords (e.g. C major E minor):

 $M \xleftarrow[]{\text{down m3}}_{\text{up m3}} m$

 $M \xrightarrow[down m3]{up m3} m$

• \rightarrow share each two pitch classes!

Chord progressions

Types:

- **Pendulum**: chord change and reverse (e.g. I V I)
- Sequence: repetition of same diatonic step (e.g. III VI II V I)
- **Cadence**: ending formula, often with closing character (e.g. II V I)

Chord progressions

- Authentic progressions: "falling", "moving forward", "directional"
- Plagal progressions: "opening", "archaic" ("A-men"), colorful

Interval	Δ	Complem.	Δ	Quality
P1	0	$P8 \searrow$	-12	None
$m2 \nearrow$	+1	$M7 \searrow$	-11	Authentic
M2 \nearrow	+2	$m7 \searrow$	-10	Authentic
m $3 \nearrow$	+3	M6 \searrow	-9	Plagal
M3 🗡	+4	m $6 \searrow$	-8	Plagal
P4 🗡	+5	$P5 \searrow$	-7	Authentic
$+4 \nearrow$	+6	°5 🖌	-6	None
P5 🗡	+7	$P4 \searrow$	-5	Plagal
m6 🗡	+8	$M3 \searrow$	-4	Authentic
M6 🗡	+9	$m3 \searrow$	-3	Authentic
m7 \nearrow	+10	M2 \searrow	-2	Plagal
M7 🗡	+11	$m2 \searrow$	-1	Plagal
P8 🗡	+12	$\mathbf{P1}$	0	None

Music Theory Basics Overview

Part I:

- Pitches and Intervals
- Tuning and Enharmonic Equivalence
- Scales

Part II:

Chords

Keys and the Circle of Fifths

Key Definition

- "A set of pitch relationships that establishes a specific major or minor triad as a tonal center"
- Example: "F major" = tonic note F, mode major, tonic chord F major
- With enharmonic equivalence: 24 keys
- Change of key: **Modulation**
- Types of modulation:
 - Diatonic modulations: pivot chord obtains new function
 - Chromatic modulation: one note or chord chromatically altered
 - Enharmonic modulation: re-spelling of pitch to obtain new function

Special relationships & common modulations:

• **Relative** keys (same key signature, different tonic):

F major $\xrightarrow{\text{down m3}}$ D minor

- Parallel keys (same tonic note, different mode): $F \text{ major } \xrightarrow{P1} F \text{ minor}$
- Fifth-related keys (differ in one scale pitch class): $F \text{ major } \xrightarrow{\text{up P5}} C \text{ major}$
- **Mediant** keys (third-related), e.g.:

F major $\xrightarrow{\text{down m3}}$ D major

Key Circle of fifths

- Actually (without enharmonic equivalence): spiral not circle!
- Use series of fifths instead...