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Chapter 2: Fourier Analysis of Signals

2.1 The Fourier Transform in a Nutshell

2.2 Signals and Signal Spaces

2.3 Fourier Transform

2.4 Discrete Fourier Transform (DFT)

2.5 Short-Time Fourier Transform (STFT)

2.6 Further Notes

Important technical terminology is covered in Chapter 2. In particular, we

approach the Fourier transform—which is perhaps the most fundamental tool

in signal processing—from various perspectives. For the reader who is more

interested in the musical aspects of the book, Section 2.1 provides a summary

of the most important facts on the Fourier transform. In particular, the notion of

a spectrogram, which yields a time–frequency representation of an audio

signal, is introduced. The remainder of the chapter treats the Fourier transform

in greater mathematical depth and also includes the fast Fourier transform

(FFT)—an algorithm of great beauty and high practical relevance.

Chapter 3: Music Synchronization

3.1 Audio Features

3.2 Dynamic Time Warping

3.3 Applications

3.4 Further Notes

As a first music processing task, we study in Chapter 3 the problem of music

synchronization. The objective is to temporally align compatible

representations of the same piece of music. Considering this scenario, we

explain the need for musically informed audio features. In particular, we

introduce the concept of chroma-based music features, which capture

properties that are related to harmony and melody. Furthermore, we study an

alignment technique known as dynamic time warping (DTW), a concept that is

applicable for the analysis of general time series. For its efficient computation,

we discuss an algorithm based on dynamic programming—a widely used

method for solving a complex problem by breaking it down into a collection of

simpler subproblems.
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Fourier Transform

Sinusoids

Time (seconds)
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Idea: Decompose a given signal into a superposition

of sinusoids (elementary signals). 

Signal

Each sinusoid has a physical meaning

and can be described by three parameters:

Fourier Transform
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Fourier Transform
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Example: Superposition of two sinusoids

Fourier Transform
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Example: C4 played by trumpet
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Example: C4 played by violin

Fourier Transform
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Example: C4 played by flute
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Example: Speech “Bonn”
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Fourier Transform
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Example: Speech “Zürich”
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Fourier Transform

Frequency (Hz)

Example: C-major scale (piano)
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Example: Chirp signal

Fourier Transform

Example: Piano tone (C4, 261.6 Hz)

Time (seconds)

Time (seconds)

Fourier Transform

Example: Piano tone (C4, 261.6 Hz)

Time (seconds)
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Analysis using sinusoid with 262 Hz

→ high correlation

→ large Fourier coefficient
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Example: Piano tone (C4, 261.6 Hz)

Time (seconds)
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Analysis using sinusoid with 400 Hz

→ low correlation

→ small Fourier coefficient



Fourier Transform

Example: Piano tone (C4, 261.6 Hz)

Analysis using sinusoid with 523 Hz

→ high correlation

→ large Fourier coefficient
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Each sinusoid has a physical meaning

and can be described by three parameters:

Fourier Transform

Complex formulation of sinusoids:

Polar coordinates:

Re

Im

frequency

amplitude

phase

amplitude =

phase =

frequency

Fourier Transform

Signal

Fourier representation

Fourier transform

Fourier Transform

 Tells which frequencies occur, but does not 

tell when the frequencies occur.

 Frequency information is averaged over the entire

time interval.

 Time information is hidden in the phase

Signal

Fourier representation

Fourier transform
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Fourier Transform

Frequency (Hz)
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Frequency (Hz)

Idea (Dennis Gabor, 1946):

 Consider only a small section of the signal

for the spectral analysis

→  recovery of time information

 Short-Time Fourier Transform (STFT)

 Section is determined by pointwise multiplication

of the signal with a localizing window function

Short-Time Fourier Transform
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Short-Time Fourier Transform
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Short-Time Fourier Transform
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Window functions

Rectangular window

Triangular window

Hann window

Short-Time Fourier Transform
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Window functions

→  Trade off between smoothing and “ringing” 

Short-Time Fourier Transform
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 is “musical note” of frequency ω centered at time t

 Inner product measures the correlation

between the musical note and the signal

Short-Time Fourier Transform



Fourier coefficient for frequency 

index and time frame  

Short-Time Fourier Transform

DT-signal

Window function of length

Discrete STFT

Hop size

Index corresponding to Nyquist frequency

Short-Time Fourier Transform

Discrete STFT

= Hop size

Physical time position associated with :

Physical frequency associated with :

= Sampling rate
(seconds)

(Hertz)
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Time–Frequency Representation
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Time–Frequency Representation

Chirp signal and STFT with Hann window of length 50 ms
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Chirp signal and STFT with box window of length 50 ms
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Time–Frequency Representation

 Size of window constitutes a trade-off between time 

resolution and frequency resolution:

Large window : poor time resolution

good frequency resolution

Small window : good time resolution

poor frequency resolution

 Heisenberg Uncertainty Principle: there is no

window function that localizes in time and

frequency with arbitrary precision.

Time–Frequency Localization

Time–Frequency Representation

Signal and STFT with Hann window of length 20 ms
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Signal and STFT with Hann window of length 100 ms
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Example: C-major scale (piano)
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Example: Chromatic scale

F
re

q
u

e
n

c
y
 (

H
z
)

In
te

n
s
it
y
 (

d
B

)

In
te

n
s
it
y

(d
B

) 
 

F
re

q
u

e
n

c
y

(H
z
)

Time (seconds)

C1

24

C2

36

C3

48

C4

60

C5

72

C6

84

C7

96

C8

108

Spectrogram

Audio Features

C1

24

C2

36

C3

48

C4

60

C5

72

C6

84

C7

96

C8

108

Example: Chromatic scale

F
re

q
u

e
n

c
y
 (

H
z
)

In
te

n
s
it
y
 (

d
B

)

In
te

n
s
it
y

(d
B

) 
 

F
re

q
u

e
n

c
y

(H
z
)

Time (seconds)

Spectrogram

C3

48

Audio Features

Audio Features

Model assumption:    Equal-tempered scale

 MIDI pitches: 

 Piano notes: p = 21 (A0)    to p = 108 (C8)

 Concert pitch:         p = 69 (A4)   ≙ 440 Hz

 Center frequency: 

→ Logarithmic frequency distribution

Octave: doubling of frequency

Hz

Audio Features

Idea: Binning of Fourier coefficients

Divide up the frequency axis into

logarithmically spaced “pitch regions”

and combine spectral coefficients

of each region to a single pitch coefficient.

Audio Features

Time-frequency representation

Windowing in the time domain 
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Log-Frequency Spectrogram

Pooling procedure for discrete STFT = 2048

= 44100 Hz

= 4096

Parameters

p = 67

p = 68

p = 69

p = 70

Frames

Fpitch (69.5) = 452.9

Fpitch (68.5) = 427.5

Fpitch (67.5) = 403.5

Fcoef (42) = 452.2

Fcoef (41) = 441.4

Fcoef (43) = 463.0

Fcoef (40) = 430.7

Fcoef (39) = 419.9

Fcoef (38) = 409.1

Fcoef (37) = 398.4

Frames
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Audio Features

Example: Chromatic scale

C4: 262 Hz
C5: 523 Hz

C6: 1046 Hz

C7: 2093 Hz

C8: 4186 Hz

C3: 131 Hz
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Example: Chromatic scale
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Audio Features

Note MIDI 

pitch

Center [Hz] 

frequency

Left [Hz] 

boundary

Right [Hz] 

boundary

Width [Hz] 

A3 57 220.0 213.7 226.4 12.7

A#3 58 233.1 226.4 239.9 13.5

B3 59 246.9 239.9 254.2 14.3

C4 60 261.6 254.2 269.3 15.1

C#4 61 277.2 269.3 285.3 16.0

D4 62 293.7 285.3 302.3 17.0

D#4 63 311.1 302.3 320.2 18.0

E4 64 329.6 320.2 339.3 19.0

F4 65 349.2 339.3 359.5 20.2

F#4 66 370.0 359.5 380.8 21.4

G4 67 392.0 380.8 403.5 22.6

G#4 68 415.3 403.5 427.5 24.0

A4 69 440.0 427.5 452.9 25.4

Frequency ranges for pitch-based log-frequency spectrogram

Audio Features

Chroma features

Chromatic circle Shepard’s helix of pitch

Audio Features

Chroma features

 Human perception of pitch is periodic in the sense 

that two pitches are perceived as similar in color if

they differ by an octave (same pitch class).

 Separation of pitch into two components: 

tone height (octave number) and chroma / pitch class.

 Chroma : 12 pitch classes of the equal-tempered

scale. For example:

Chroma C

 Computation: pitch features  chroma features

Add up all pitches belonging to the same pitch class

 Result: 12-dimensional chroma vector.
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Chroma features
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Chroma features
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Chroma  C
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Chroma features
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Chroma  C#
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Chroma features

D2 D3 D4

Chroma  D
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Example: Chromatic scale
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Example: Chromatic scale
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Example: Chromatic scale
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Chroma features
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 Sequence of chroma vectors correlates to the

harmonic progression

 Normalization →            makes features invariant

to changes in dynamics

 Further denoising and smoothing

 Taking logarithm before adding up pitch coefficients

accounts for logarithmic sensation of intensity

Audio Features

Chroma features



Audio Features

For a positive constant

the logarithmic compression

is defined by

A value is replaced

by a compressed value

Logarithmic compression

Audio Features
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For a positive constant

the logarithmic compression

is defined by

A value is replaced

by a compressed value

The higher

the stronger the compression

Logarithmic compression
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chromagram

Logarithmic compression

Audio Features

Normalization

Replace a vector

by the normalized vector

using a suitable norm

Chroma vector

Example:

Euclidean norm

Example: C4 played by piano

Chromagram

Normalized chromagram

Audio Features

Normalization

Replace a vector

by the normalized vector

using a suitable norm

Chroma vector

Example:

Euclidean norm

Example: C4 played by piano

Log-chromagram

Normalized log-chromagram

Karajan

Audio Features

Chroma features (normalized)

Scherbakov



Audio Features

Chroma features

Time (seconds)

Chromagram

Chromagram after logarithmic 

compression and normalization

Chromagram based on a piano 

tuned 40 cents upwards

Chromagram after applying a 

cyclic shift of four semitones 

upwards


