

Hochschule für Musik Karlsruhe Blockvorlesung

Advanced Audio-Based Music Processing

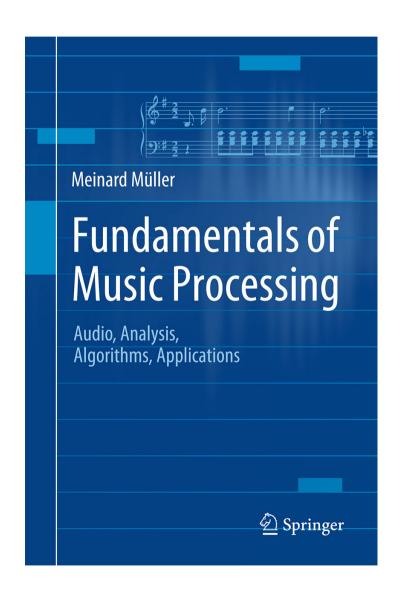
3. Audio Processing Basics

Christof Weiß, Frank Zalkow, Meinard Müller

International Audio Laboratories Erlangen

christof.weiss@audiolabs-erlangen.de frank.zalkow@audiolabs-erlangen.de meinard.mueller@audiolabs-erlangen.de

Book: Fundamentals of Music Processing



Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

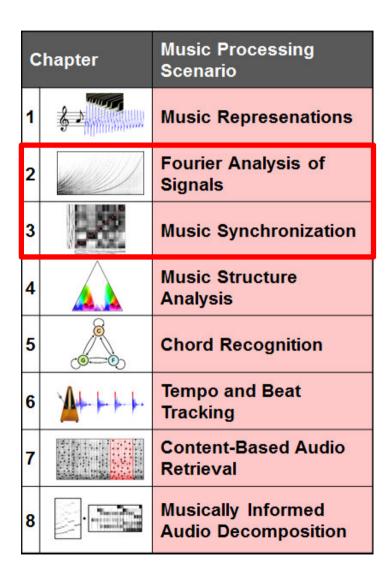
Book: Fundamentals of Music Processing

Chapter		Music Processing Scenario
1		Music Represenations
2		Fourier Analysis of Signals
3		Music Synchronization
4		Music Structure Analysis
5		Chord Recognition
6	A++++	Tempo and Beat Tracking
7		Content-Based Audio Retrieval
8		Musically Informed Audio Decomposition

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing

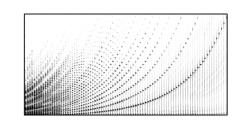


Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Chapter 2: Fourier Analysis of Signals

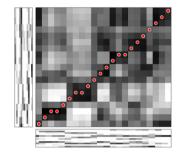
- 2.1 The Fourier Transform in a Nutshell
- 2.2 Signals and Signal Spaces
- 2.3 Fourier Transform
- 2.4 Discrete Fourier Transform (DFT)
- 2.5 Short-Time Fourier Transform (STFT)
- 2.6 Further Notes



Important technical terminology is covered in Chapter 2. In particular, we approach the Fourier transform—which is perhaps the most fundamental tool in signal processing—from various perspectives. For the reader who is more interested in the musical aspects of the book, Section 2.1 provides a summary of the most important facts on the Fourier transform. In particular, the notion of a spectrogram, which yields a time—frequency representation of an audio signal, is introduced. The remainder of the chapter treats the Fourier transform in greater mathematical depth and also includes the fast Fourier transform (FFT)—an algorithm of great beauty and high practical relevance.

Chapter 3: Music Synchronization

- 3.1 Audio Features
- 3.2 Dynamic Time Warping
- 3.3 Applications
- 3.4 Further Notes



As a first music processing task, we study in Chapter 3 the problem of music synchronization. The objective is to temporally align compatible representations of the same piece of music. Considering this scenario, we explain the need for musically informed audio features. In particular, we introduce the concept of chroma-based music features, which capture properties that are related to harmony and melody. Furthermore, we study an alignment technique known as dynamic time warping (DTW), a concept that is applicable for the analysis of general time series. For its efficient computation, we discuss an algorithm based on dynamic programming—a widely used method for solving a complex problem by breaking it down into a collection of simpler subproblems.

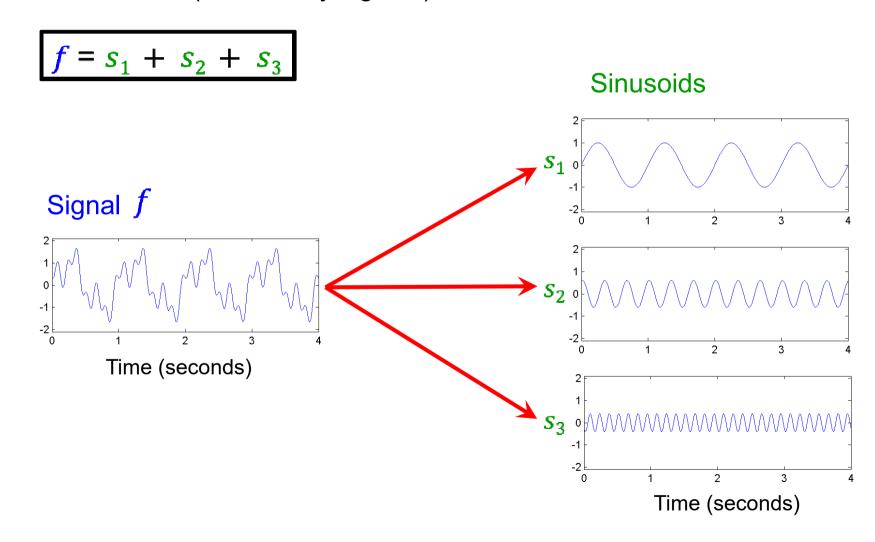
Audio Processing Basics Overview

- Fourier Transform: Motivation & Definition
- Short-Time Fourier Transform and Spectrograms
- Audio Features and Chromagrams

Audio Processing Basics Overview

- Fourier Transform: Motivation & Definition
- Short-Time Fourier Transform and Spectrograms
- Audio Features and Chromagrams

Idea: Decompose a given signal into a superposition of sinusoids (elementary signals).



Each sinusoid has a physical meaning and can be described by three parameters:

$$s_{(A,\omega,\varphi)}(t) = A \cdot \sin(2\pi(\omega t - \varphi))$$

 $\omega = \text{frequency}$

A = amplitude

 $\varphi = \text{phase}$

Interpretation:

The amplitude A reflects the intensity at which the sinusoidal of frequency ω appears in f.

The phase φ reflects how the sinusoidal has to be shifted to best correlate with f.

Sinusoids

$$A_1 = 1$$

$$\omega_1 = 1$$

$$\varphi_1 = 0$$

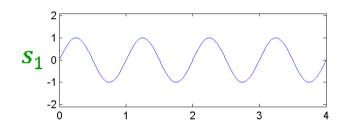
$$A_2 = 0.6$$

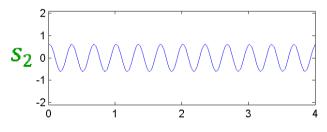
$$\omega_2 = 3$$

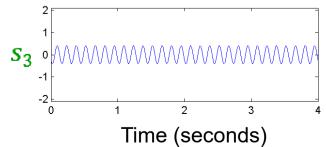
$$\varphi_2 = -0.2$$

$$A_3 = 0.4$$

 $\omega_3 = 7$
 $\varphi_3 = 0.4$

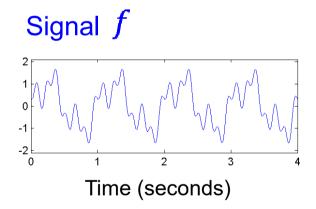




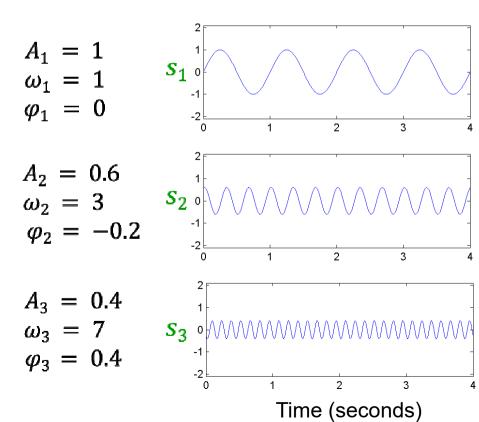


Each sinusoid has a physical meaning and can be described by three parameters:

$$f = s_1 + s_2 + s_3$$

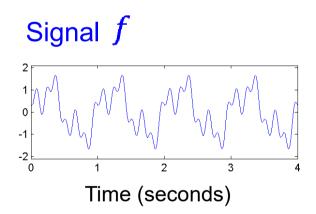


Sinusoids



Each sinusoid has a physical meaning and can be described by three parameters:

$$f = s_1 + s_2 + s_3$$

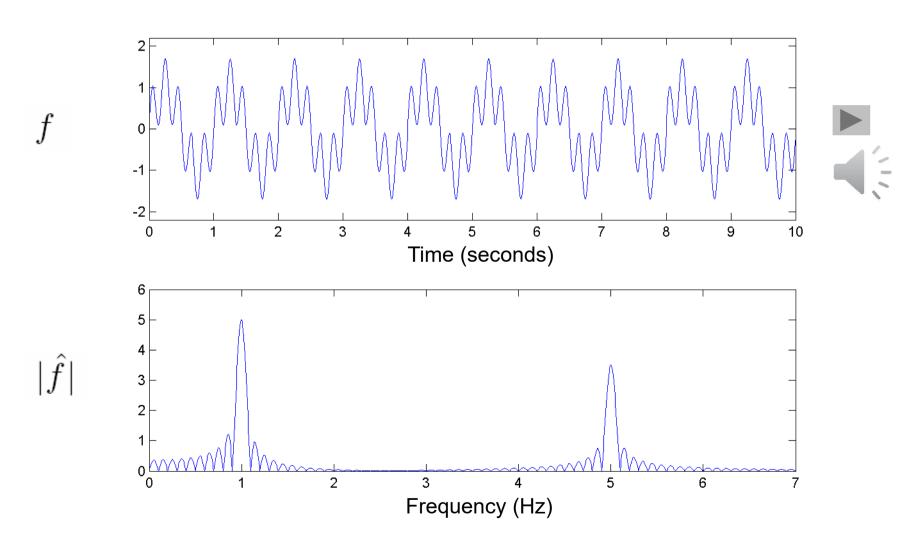


$$A_1 = 1$$
 $\omega_1 = 1$
 $\varphi_1 = 0$

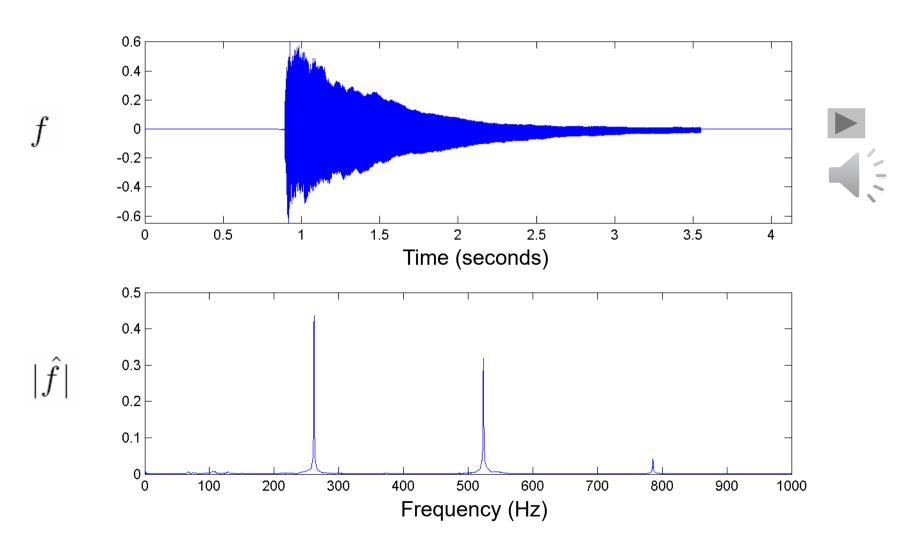
Fourier transform f
 $A_2 = 0.6$
 $\omega_2 = 3$
 $\varphi_2 = -0.2$
 $A_3 = 0.4$
 $A_3 = 0.4$
 $\omega_3 = 7$
 $\omega_3 = 0.4$

Frequency (Hz)

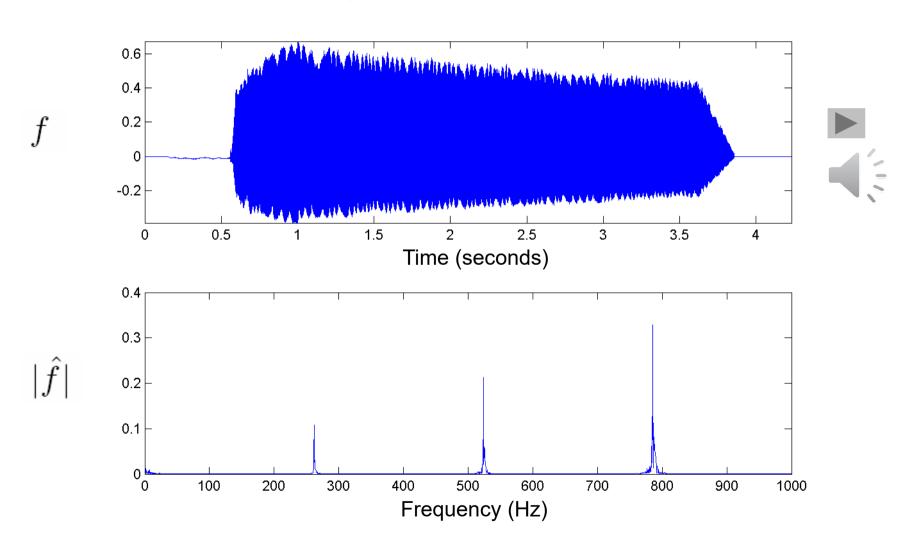
Example: Superposition of two sinusoids



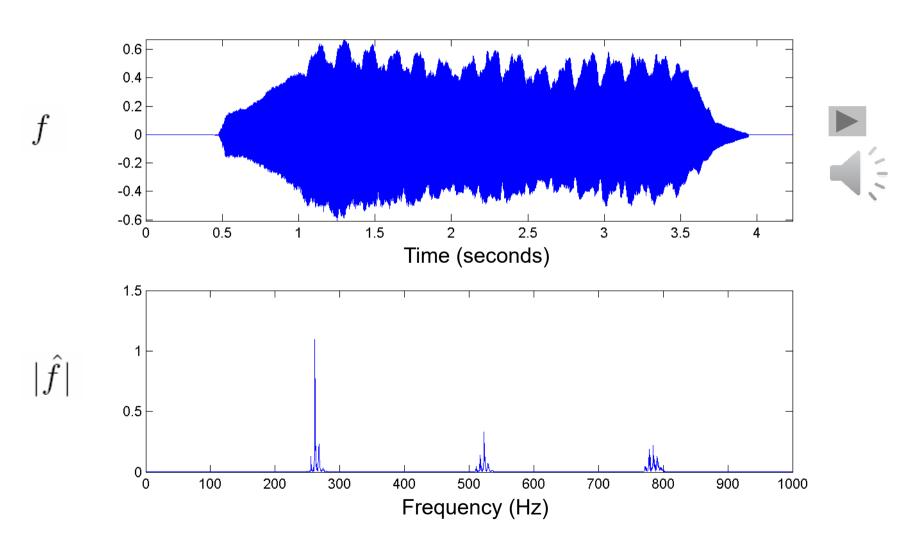
Example: C4 played by piano



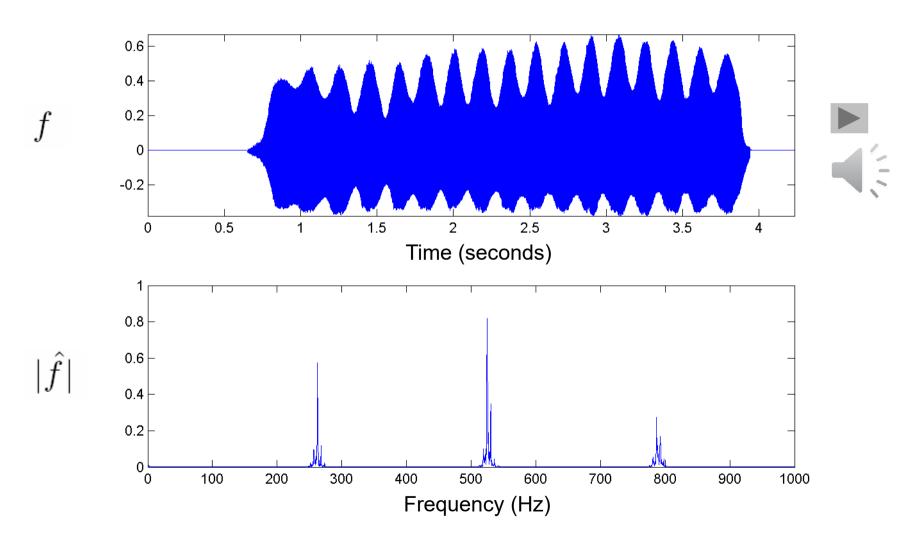
Example: C4 played by trumpet



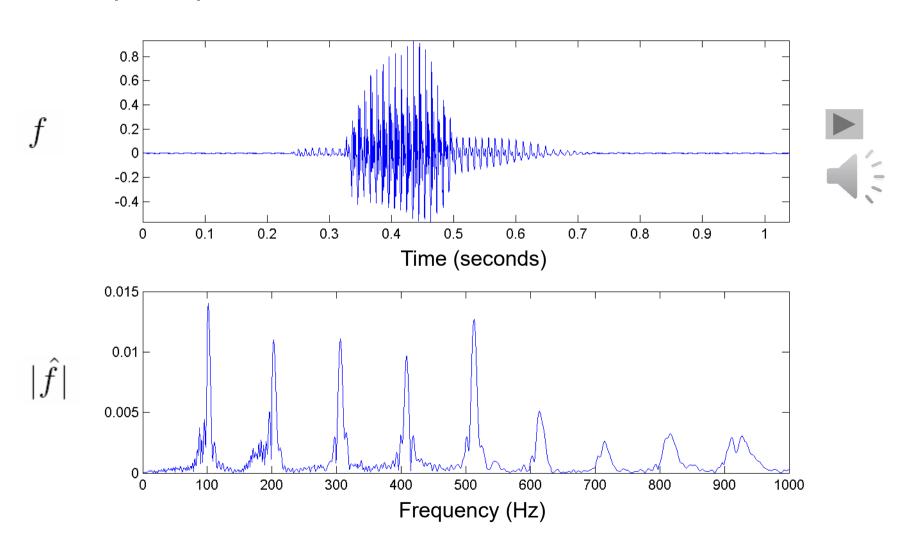
Example: C4 played by violin



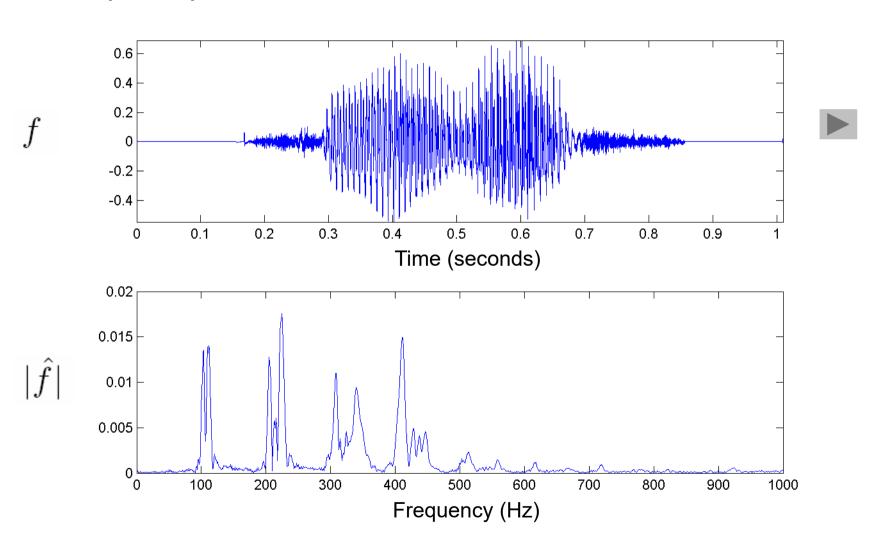
Example: C4 played by flute



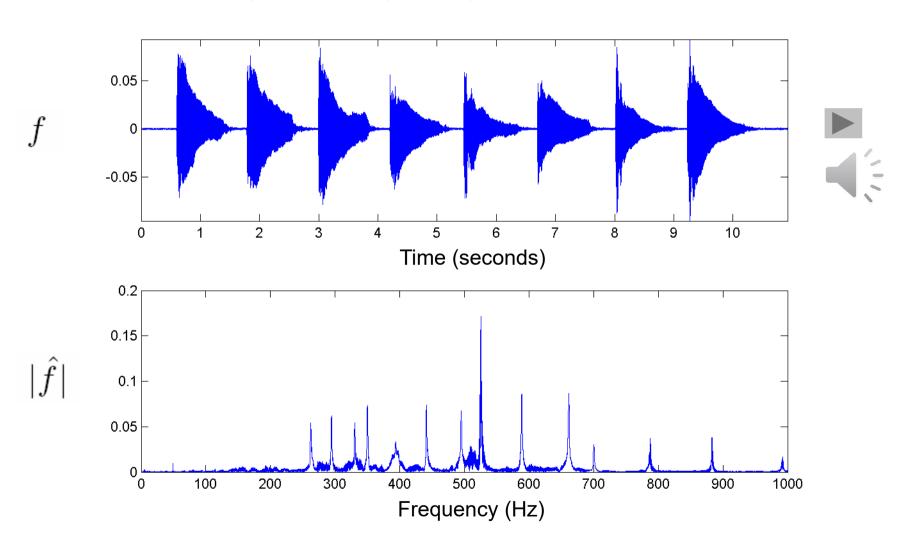
Example: Speech "Bonn"



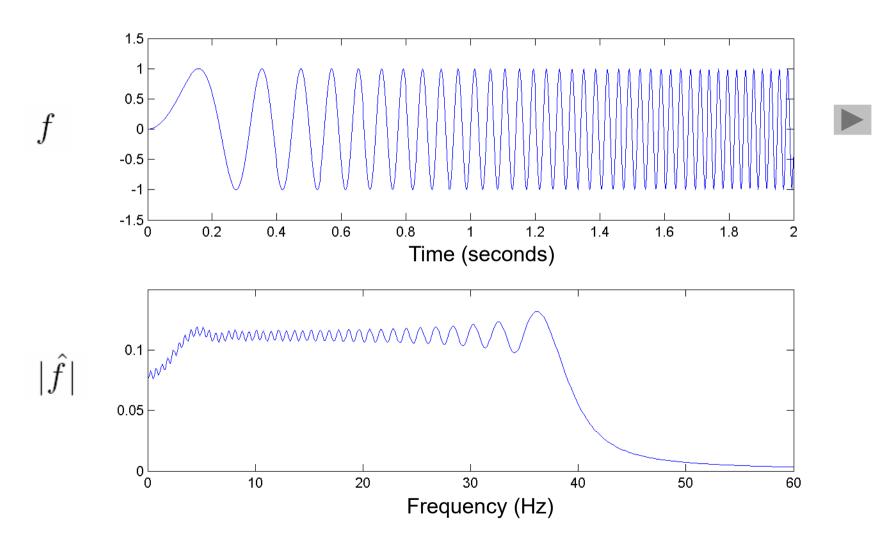
Example: Speech "Zürich"



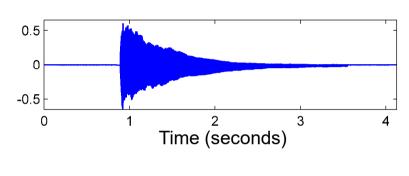
Example: C-major scale (piano)

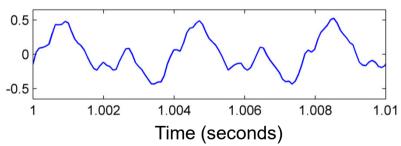


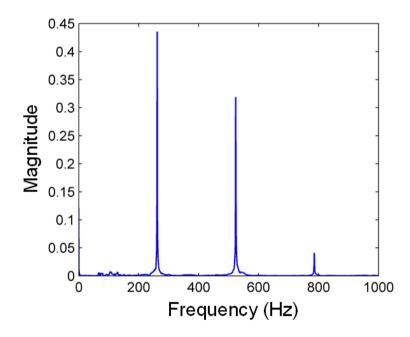
Example: Chirp signal



Example: Piano tone (C4, 261.6 Hz)

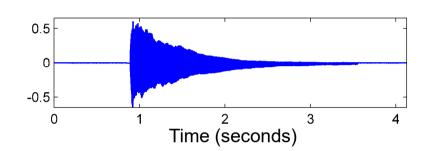


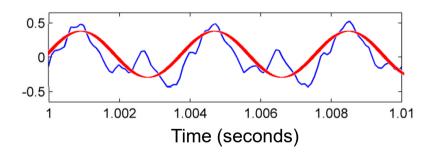


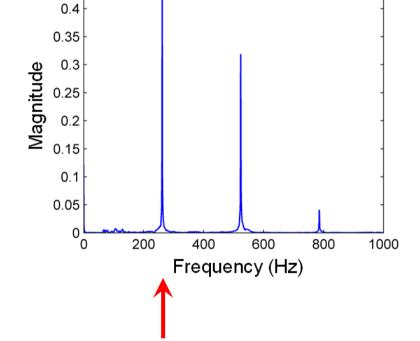


Example: Piano tone (C4, 261.6 Hz)

0.45



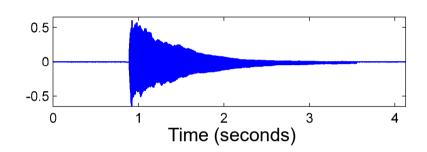


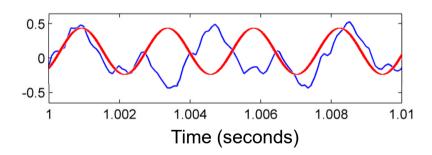


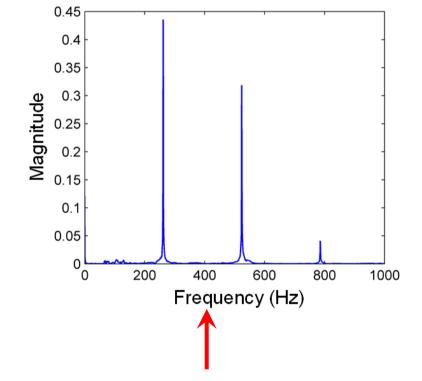
Analysis using sinusoid with 262 Hz

- → high correlation
- → large Fourier coefficient

Example: Piano tone (C4, 261.6 Hz)



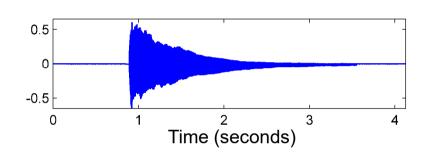


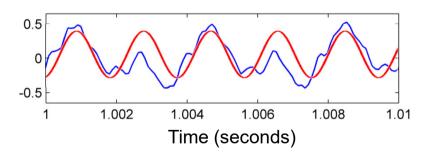


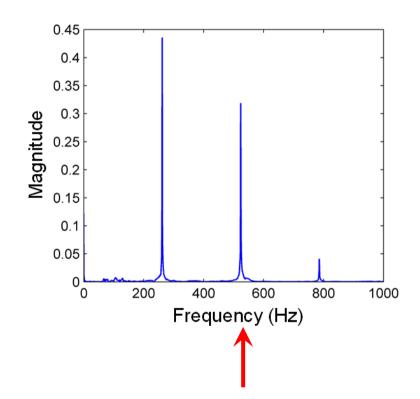
Analysis using sinusoid with 400 Hz

- → low correlation
- → small Fourier coefficient

Example: Piano tone (C4, 261.6 Hz)



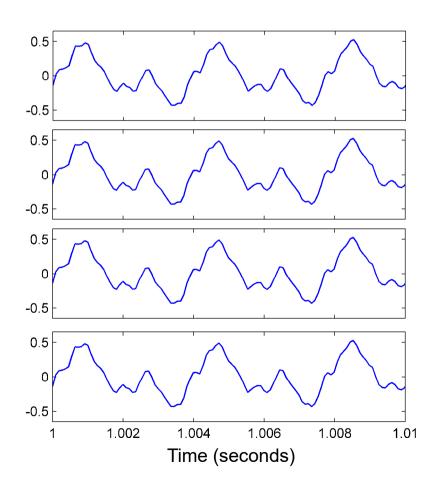


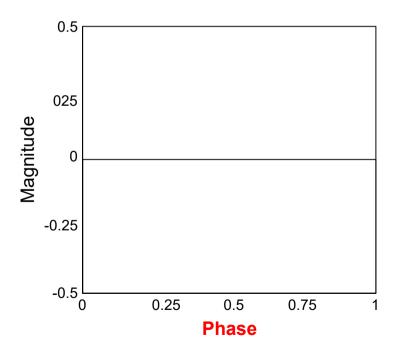


Analysis using sinusoid with 523 Hz

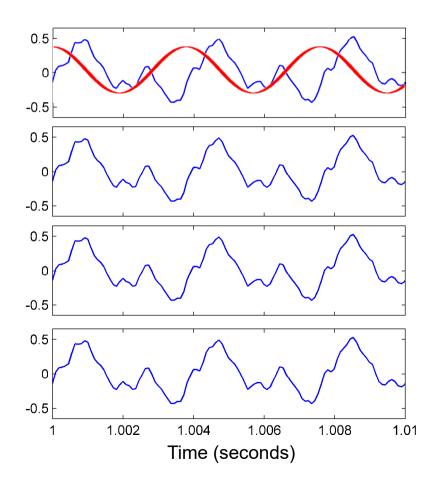
- → high correlation
- → large Fourier coefficient

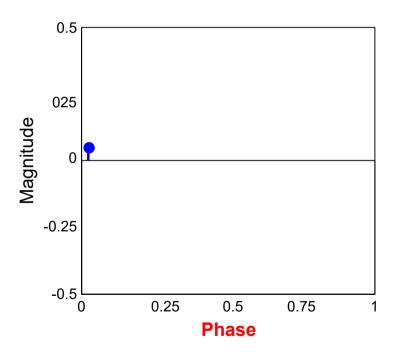
Role of phase



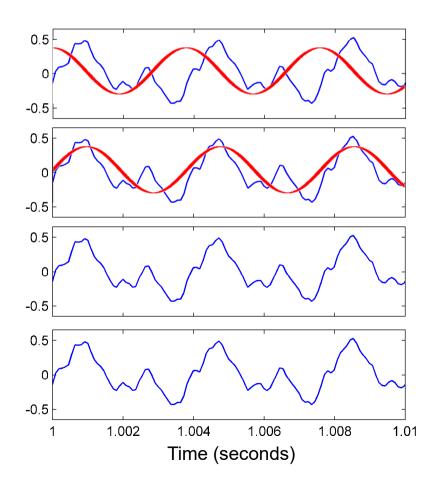


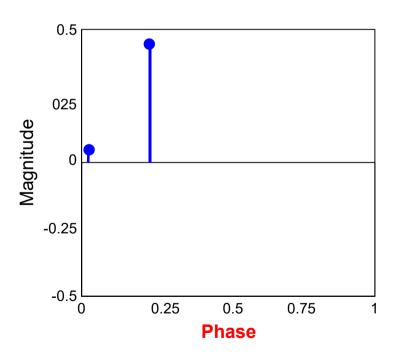
Role of phase



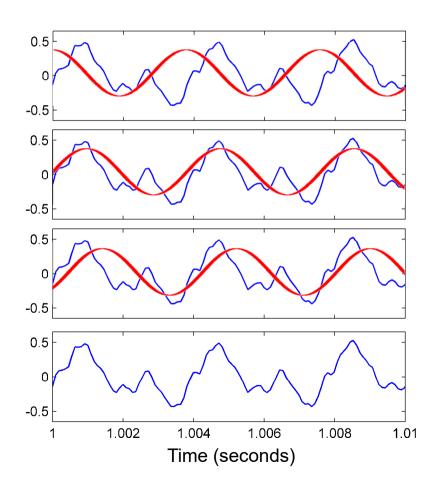


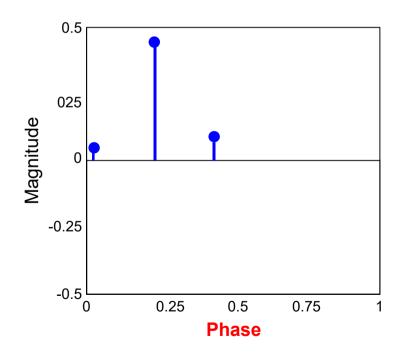
Role of phase



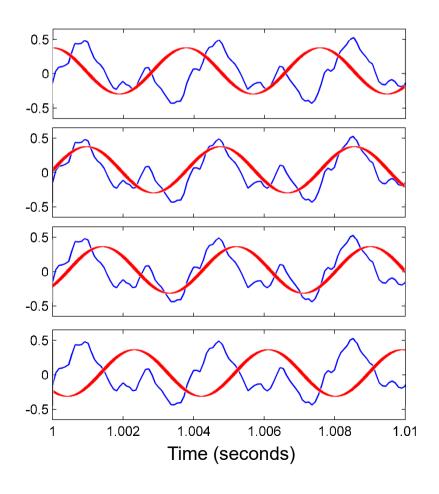


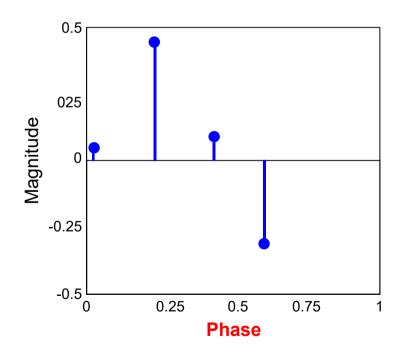
Role of phase





Role of phase





Each sinusoid has a physical meaning and can be described by three parameters:

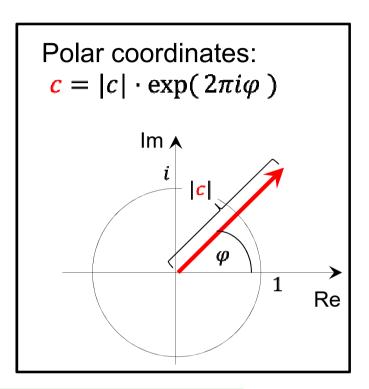
$$s_{(A,\omega,\varphi)}(t) = A \cdot \sin(2\pi(\omega t - \varphi))$$

 $\omega = \text{frequency}$

A = amplitude

 $\varphi = \text{phase}$

Complex formulation of sinusoids:



$$e_{(C,\omega)}(t) = \mathbf{c} \cdot \exp(2\pi i\omega t) = \mathbf{c} \cdot (\cos(2\pi\omega t) + i \cdot \sin(2\pi\omega t))$$

```
\omega = \text{frequency}
A = \text{amplitude} = |c|
\varphi = \text{phase} = \arg(c)
```

Signal
$$f: \mathbb{R} \to \mathbb{R}$$

Fourier representation
$$f(t) = \int_{\omega \in \mathbb{R}} c_{\omega} \exp(2\pi i \omega t) d\omega$$

Fourier transform
$$c_{\omega} = \hat{f}(\omega) = \int_{t \in \mathbb{R}} f(t) \exp(-2\pi i \omega t) dt$$

Signal
$$f: \mathbb{R} \to \mathbb{R}$$

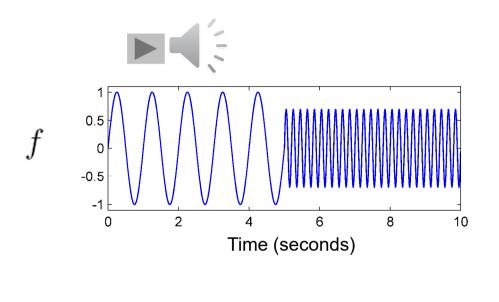
Fourier representation
$$f(t) = \int_{\omega \in \mathbb{R}} c_{\omega} \exp(2\pi i \omega t) d\omega$$

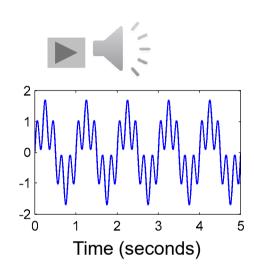
Fourier transform
$$c_{\omega} = \hat{f}(\omega) = \int_{t \in \mathbb{R}} f(t) \exp(-2\pi i \omega t) dt$$

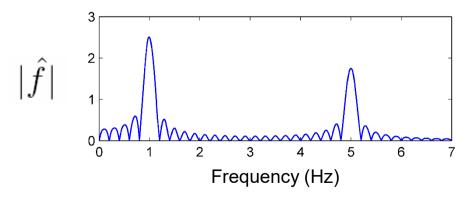
- Tells which frequencies occur, but does not tell when the frequencies occur.
- Frequency information is averaged over the entire time interval.
- Time information is hidden in the phase

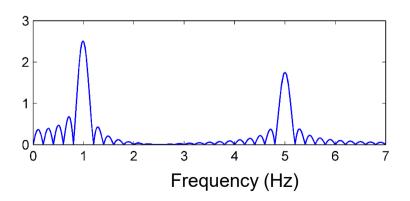
Audio Processing Basics Overview

- Fourier Transform: Motivation & Definition
- Short-Time Fourier Transform and Spectrograms
- Audio Features and Chromagrams





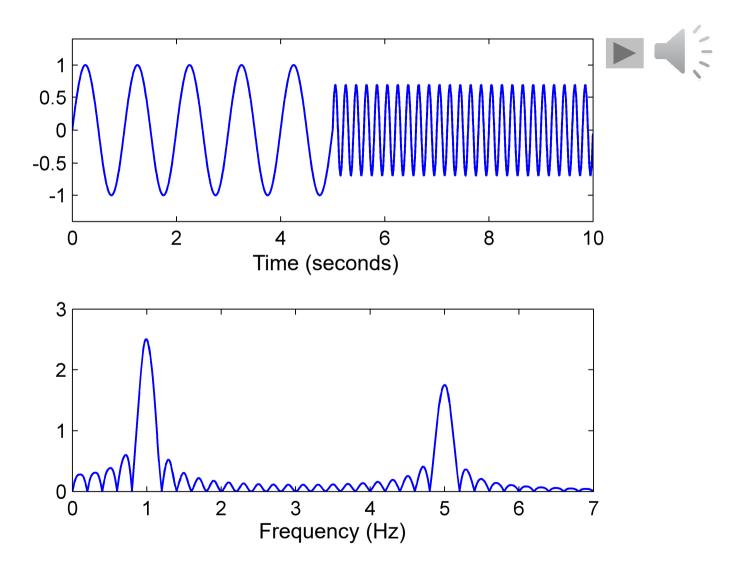


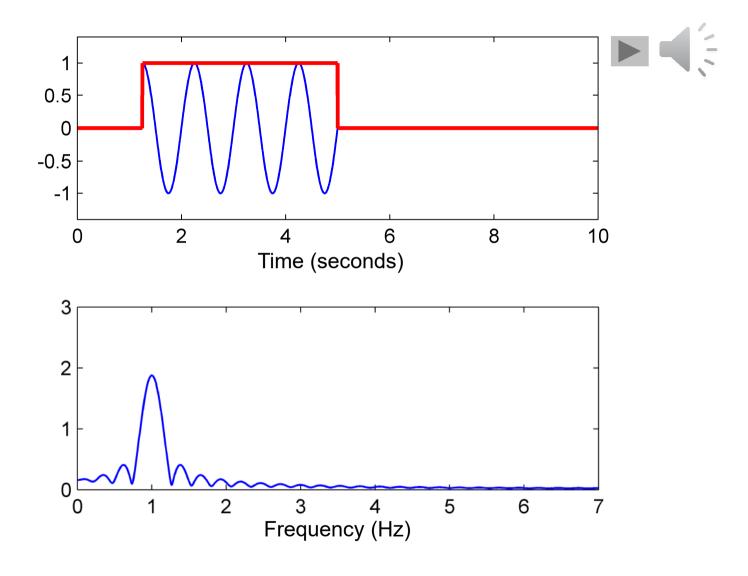


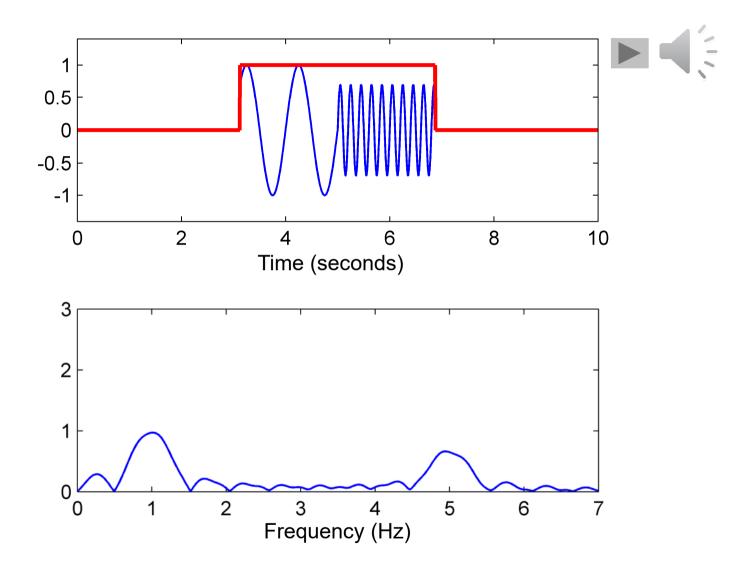
Short-Time Fourier Transform

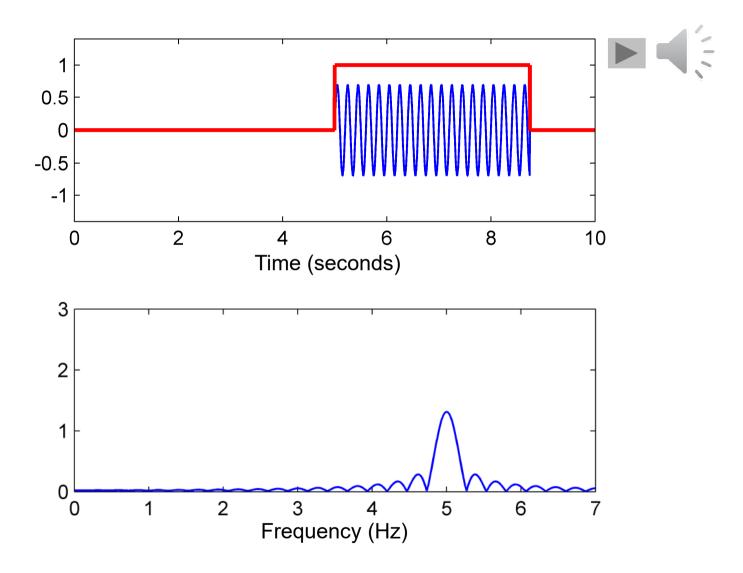
Idea (Dennis Gabor, 1946):

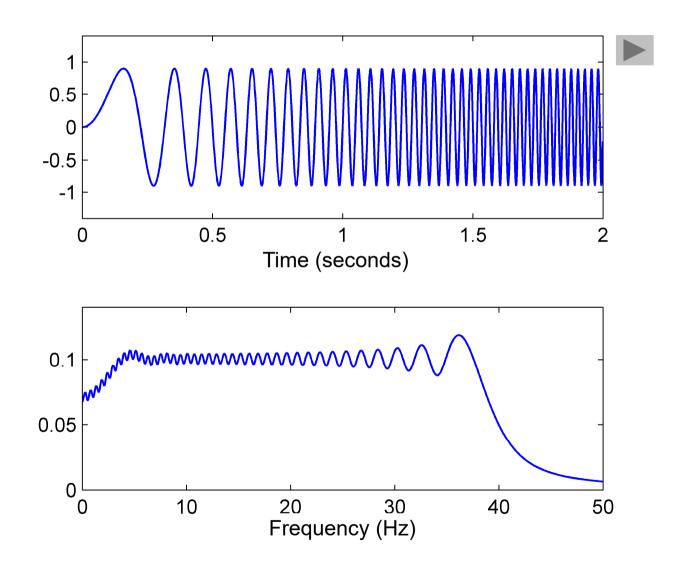
- Consider only a small section of the signal for the spectral analysis
 - → recovery of time information
- Short-Time Fourier Transform (STFT)
- Section is determined by pointwise multiplication of the signal with a localizing window function

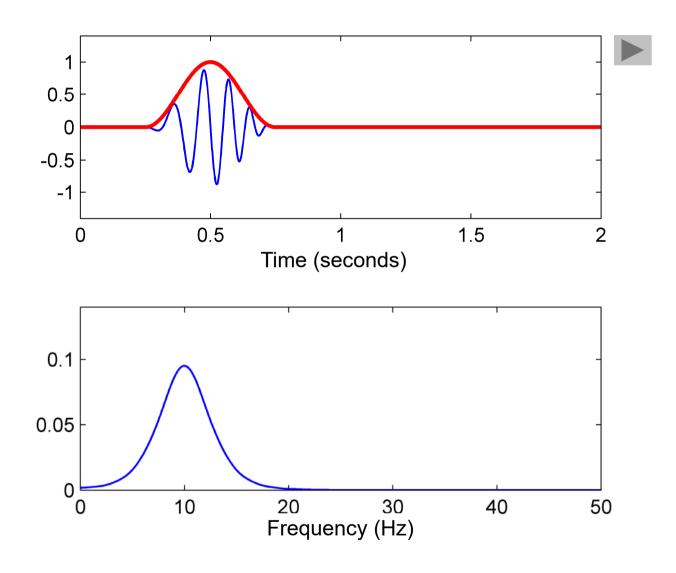


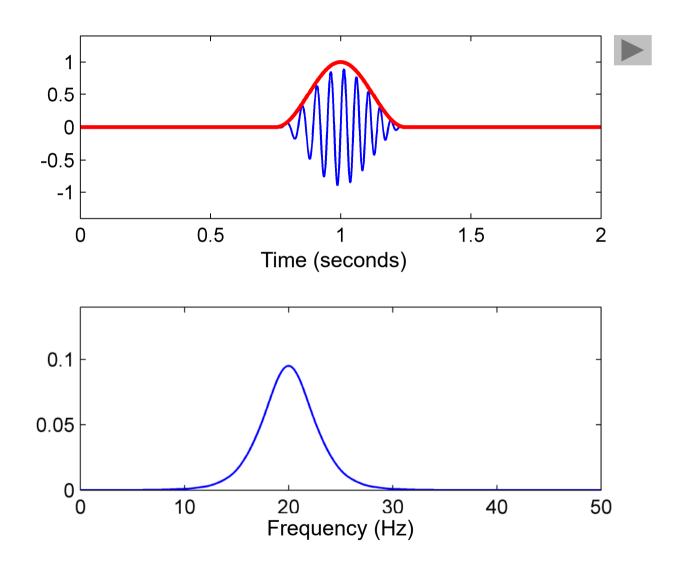


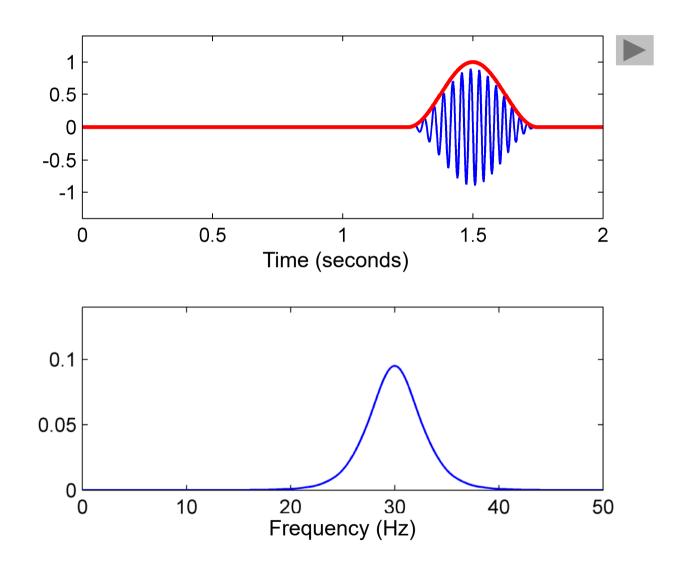










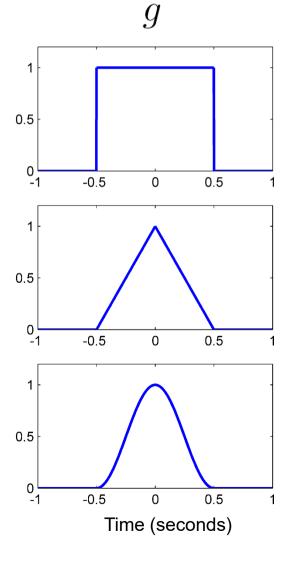


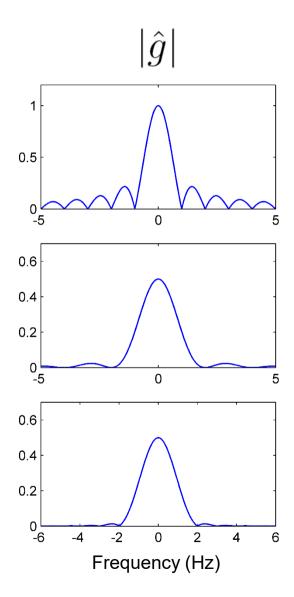
Window functions

Rectangular window

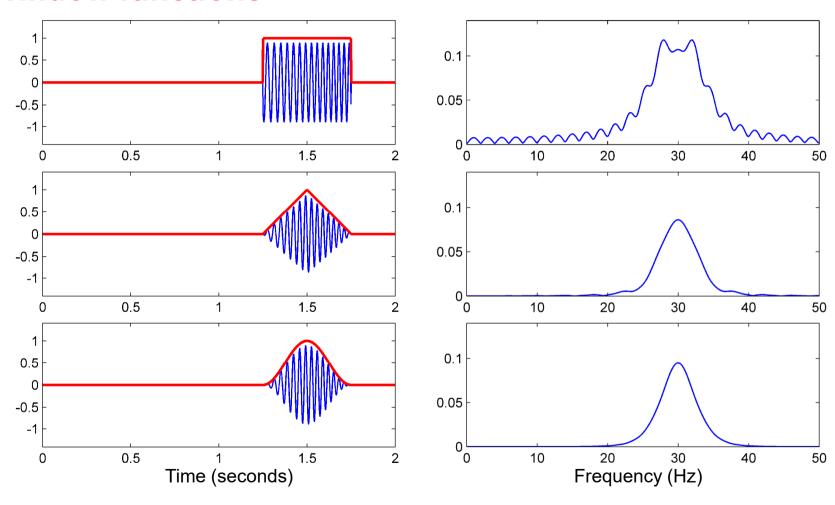
Triangular window

Hann window





Window functions



→ Trade off between smoothing and "ringing"

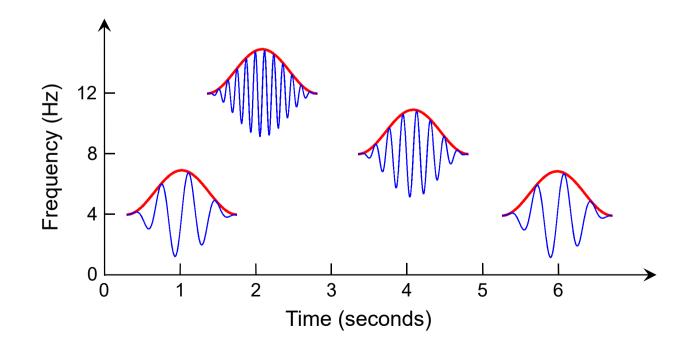
Definition

- Signal $f: \mathbb{R} \to \mathbb{R}$
- Window function $g:\mathbb{R}\to\mathbb{R}$ ($g\in L^2(\mathbb{R}), \|g\|_2\neq 0$)
- STFT $\widetilde{f}_g(t, \boldsymbol{\omega}) = \int_{u \in \mathbb{R}} f(u)\overline{g}(u-t) \exp(-2\pi i \boldsymbol{\omega} u) du = \langle f|g_{t,\boldsymbol{\omega}}\rangle$

with
$$g_{t,\omega}(u) = \exp(2\pi i\omega(u-t))g(u-t)$$
 for $u \in \mathbb{R}$

Intuition:

- $g_{t,\omega}$ is "musical note" of frequency ω centered at time t
- Inner product $\langle f|g_{t,\omega}\rangle$ measures the correlation between the musical note $g_{t,\omega}$ and the signal f



Discrete STFT

$$\mathcal{X}(m,k) := \sum_{n=0}^{N-1} x(n+mH)w(n) \exp(-2\pi i k n/N)$$

$$x: \mathbb{Z} \to \mathbb{R}$$

 $w:[0:N-1]\to\mathbb{R}$

 $H \in \mathbb{N}$

K = N/2

 $\mathcal{X}(m,k)$

DT-signal

Window function of length $N \in \mathbb{N}$

Hop size

Index corresponding to Nyquist frequency

Fourier coefficient for frequency index $k \in [0:K]$ and time frame $m \in \mathbb{Z}$

Discrete STFT

$$\mathcal{X}(m,k) := \sum_{n=0}^{N-1} x(n+mH)w(n) \exp(-2\pi i k n/N)$$

Physical time position associated with $\mathcal{X}(m,k)$:

$$T_{ ext{coef}}(m) := rac{m \cdot H}{F_{ ext{S}}}$$
 (seconds) $H = ext{Hop size}$ $F_{ ext{S}} = ext{Sampling rate}$

Physical frequency associated with $\mathcal{X}(m,k)$:

$$F_{\operatorname{coef}}(k) := \frac{k \cdot F_{\operatorname{s}}}{N}$$
 (Hertz)

Discrete STFT

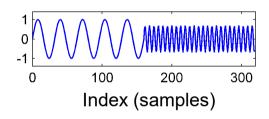
Parameters

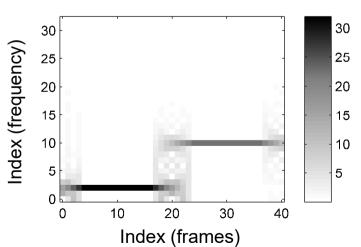
$$N = 64$$

$$H = 8$$

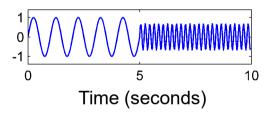
$$F_{\rm s}$$
 = 32 Hz

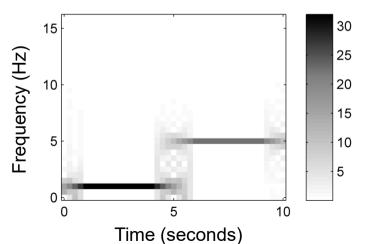
Computational world

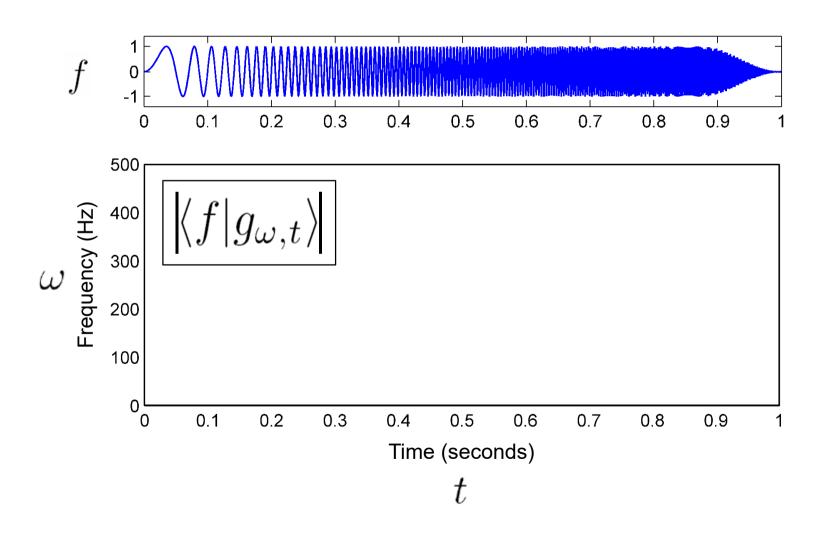


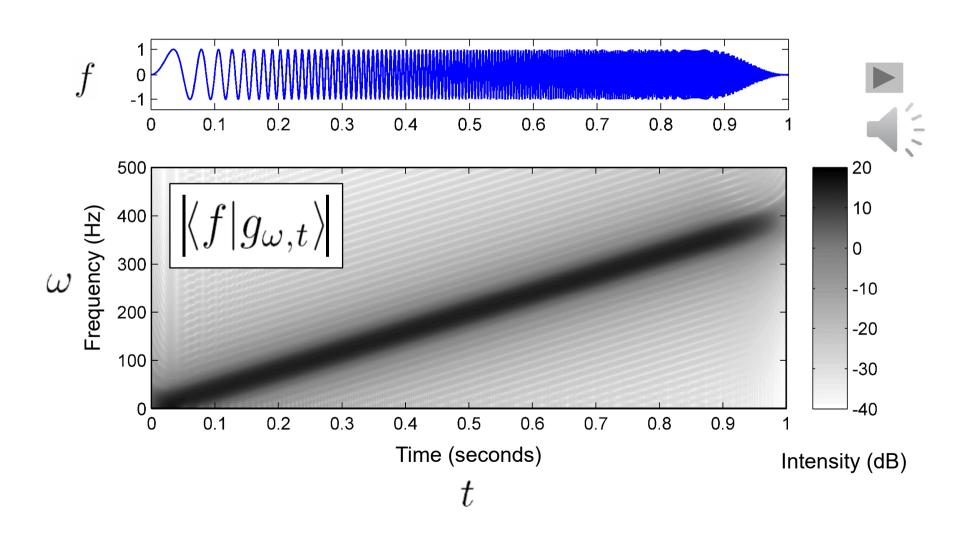


Physical world

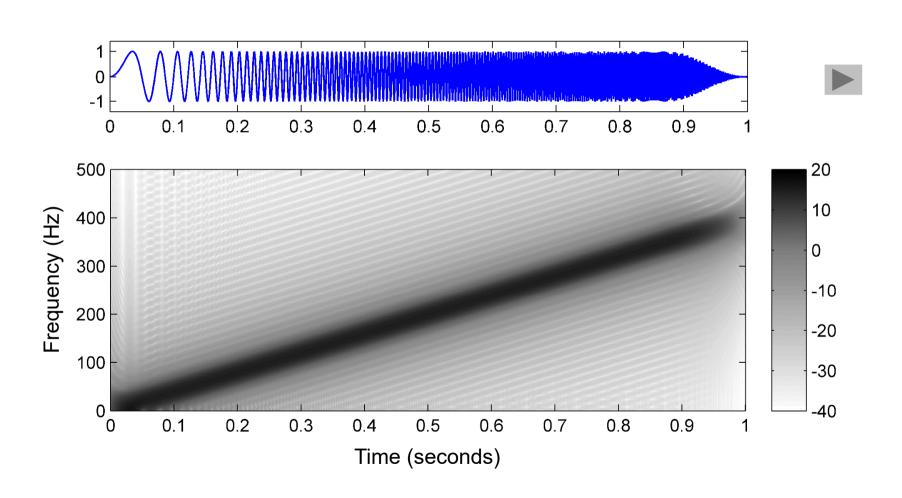




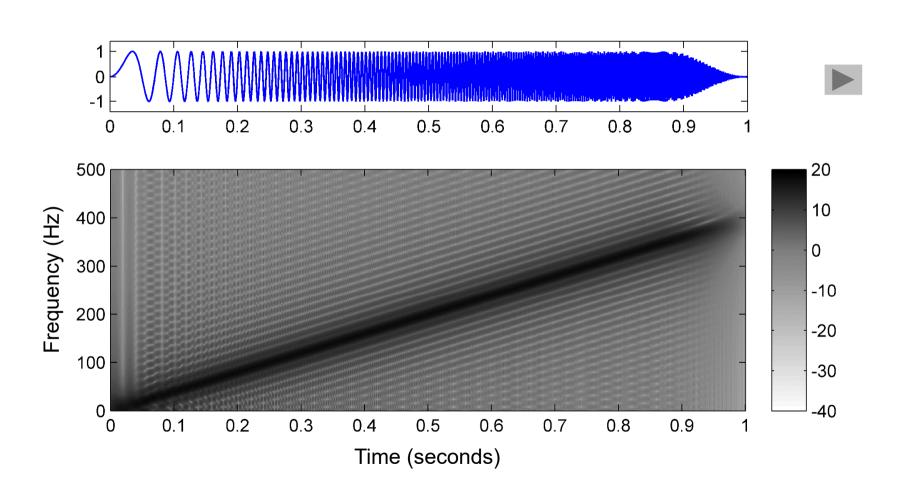




Chirp signal and STFT with Hann window of length 50 ms



Chirp signal and STFT with box window of length 50 ms



Time-Frequency Localization

 Size of window constitutes a trade-off between time resolution and frequency resolution:

Large window: poor time resolution

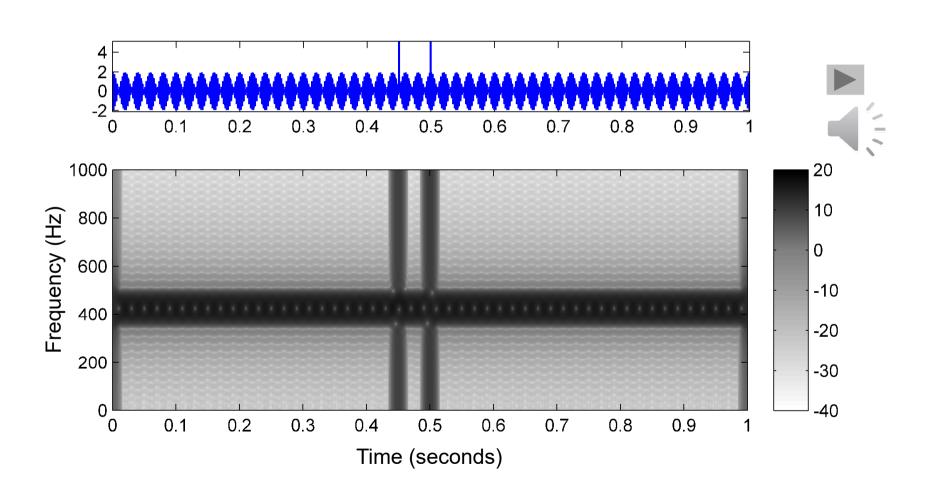
good frequency resolution

Small window: good time resolution

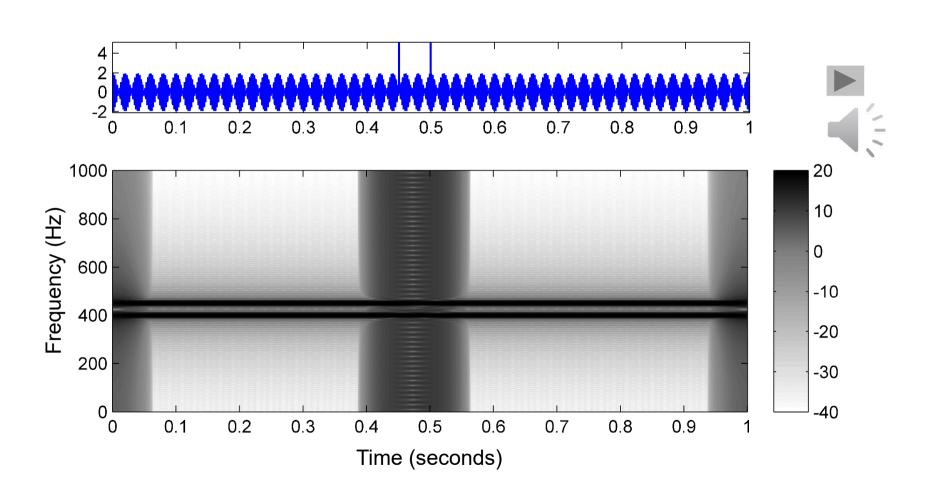
poor frequency resolution

 Heisenberg Uncertainty Principle: there is no window function that localizes in time and frequency with arbitrary precision.

Signal and STFT with Hann window of length 20 ms



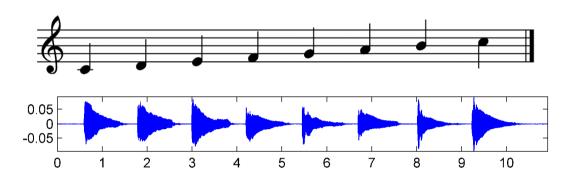
Signal and STFT with Hann window of length 100 ms

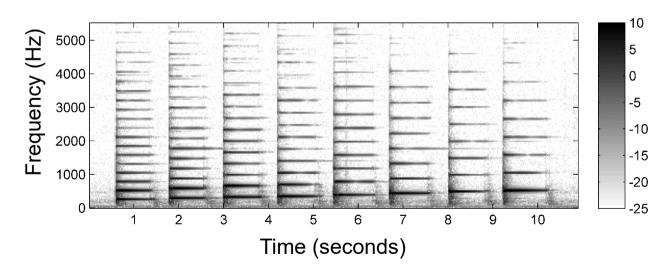


Audio Processing Basics Overview

- Fourier Transform: Motivation & Definition
- Short-Time Fourier Transform and Spectrograms
- Audio Features and Chromagrams

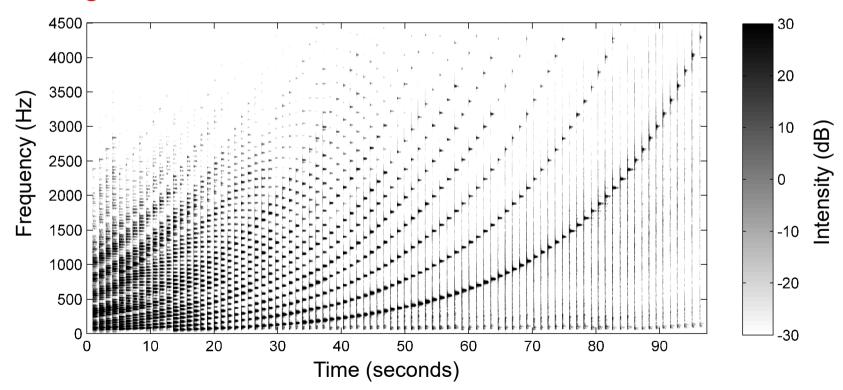
Example: C-major scale (piano)



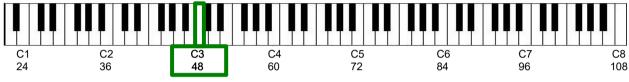


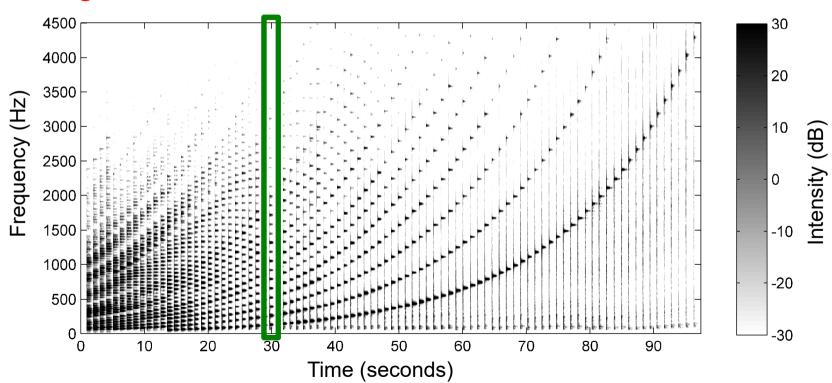
Example: Chromatic scale





Example: Chromatic scale





Model assumption: Equal-tempered scale

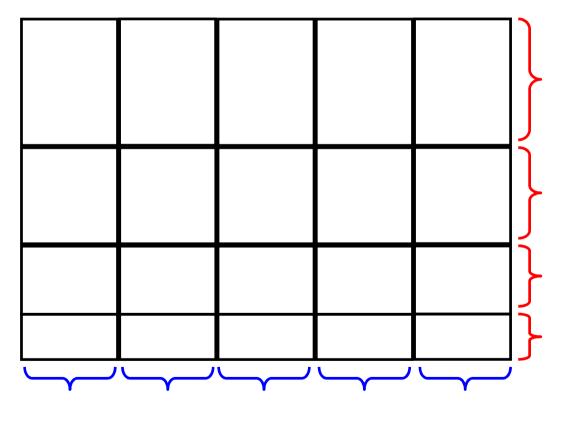
- MIDI pitches: $p \in [1:128]$
- Piano notes: p = 21 (A0) to p = 108 (C8)
- Concert pitch: $p = 69 \text{ (A4)} \triangleq 440 \text{ Hz}$
- Center frequency: $F_{\text{pitch}}(p) = 2^{(p-69)/12} \cdot 440 \text{ Hz}$

→ Logarithmic frequency distribution Octave: doubling of frequency

Idea: Binning of Fourier coefficients

Divide up the frequency axis into logarithmically spaced "pitch regions" and combine spectral coefficients of each region to a single pitch coefficient.

Time-frequency representation



Windowing in the time domain

Windowing in the frequency domain

Log-Frequency Spectrogram

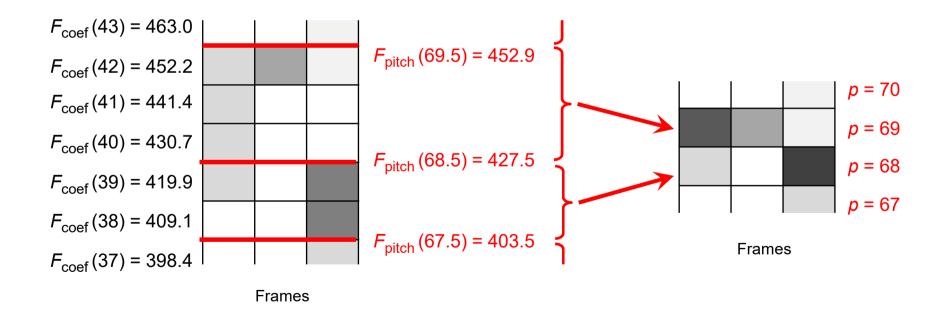
Pooling procedure for discrete STFT

Parameters

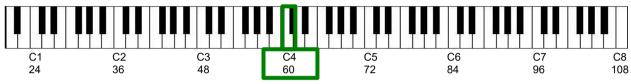
N = 4096

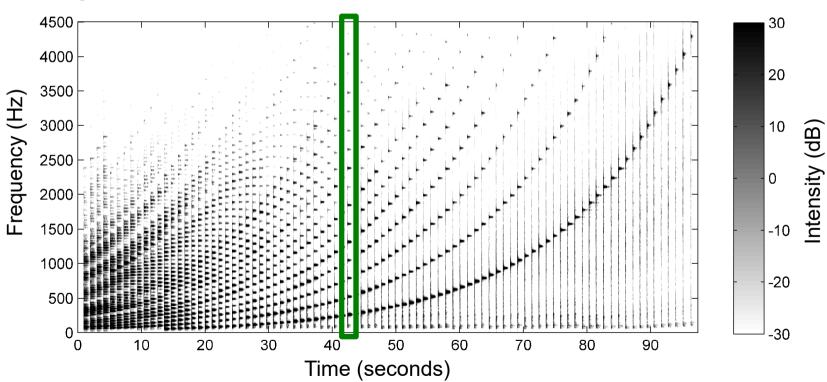
H = 2048

 $F_{\rm s}$ = 44100 Hz

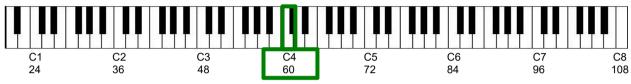


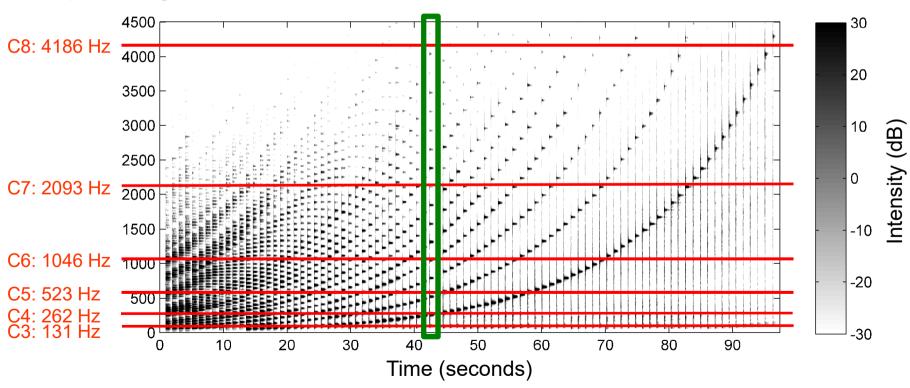
Example: Chromatic scale



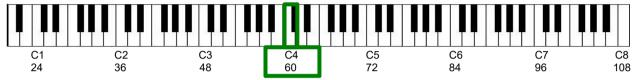


Example: Chromatic scale

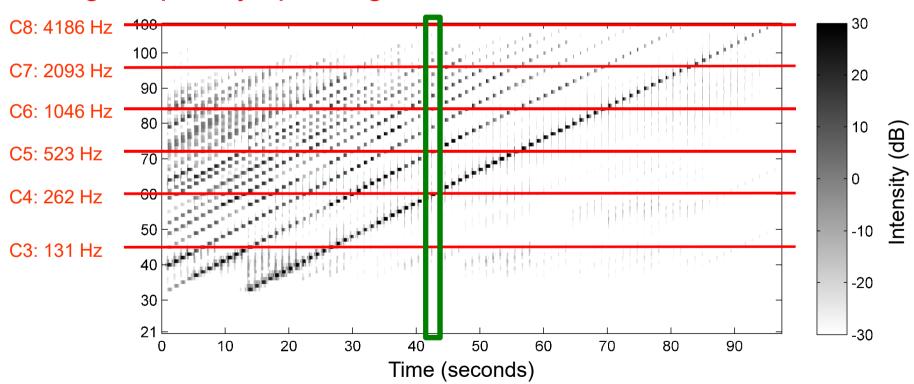




Example: Chromatic scale



Log-frequency spectrogram

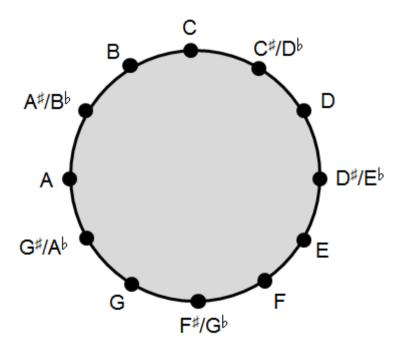


Frequency ranges for pitch-based log-frequency spectrogram

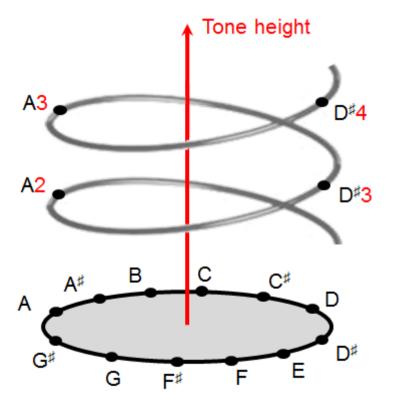
Note	MIDI pitch	Center [Hz] frequency	Left [Hz] boundary	Right [Hz] boundary	Width [Hz]
	p	$F_{ m pitch}(p)$	$F_{\text{pitch}}(p-0.5)$	$F_{\text{pitch}}(p+0.5)$	
A3	57	220.0	213.7	226.4	12.7
A#3	58	233.1	226.4	239.9	13.5
B3	59	246.9	239.9	254.2	14.3
C4	60	261.6	254.2	269.3	15.1
C#4	61	277.2	269.3	285.3	16.0
D4	62	293.7	285.3	302.3	17.0
D#4	63	311.1	302.3	320.2	18.0
E4	64	329.6	320.2	339.3	19.0
F4	65	349.2	339.3	359.5	20.2
F#4	66	370.0	359.5	380.8	21.4
G4	67	392.0	380.8	403.5	22.6
G#4	68	415.3	403.5	427.5	24.0
A4	69	440.0	427.5	452.9	25.4

Chroma features

Chromatic circle

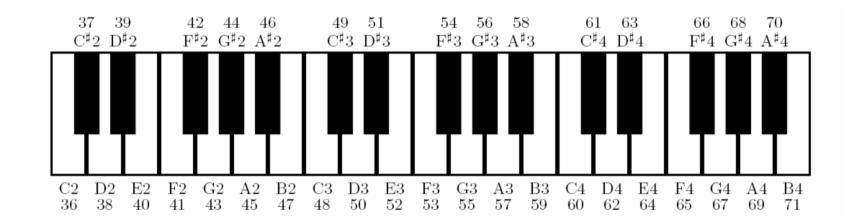


Shepard's helix of pitch

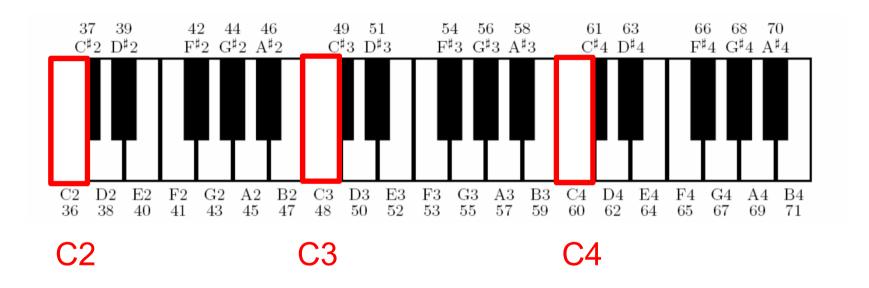


Chroma features

- Human perception of pitch is periodic in the sense that two pitches are perceived as similar in color if they differ by an octave (same pitch class).
- Separation of pitch into two components:
 tone height (octave number) and chroma / pitch class.
- Chroma: 12 pitch classes of the equal-tempered scale. For example:
 - Chroma C $\widehat{=} \{ \ldots, C0, C1, C2, C3, \ldots \}$
- Computation: pitch features → chroma features
 Add up all pitches belonging to the same pitch class
- Result: 12-dimensional chroma vector.

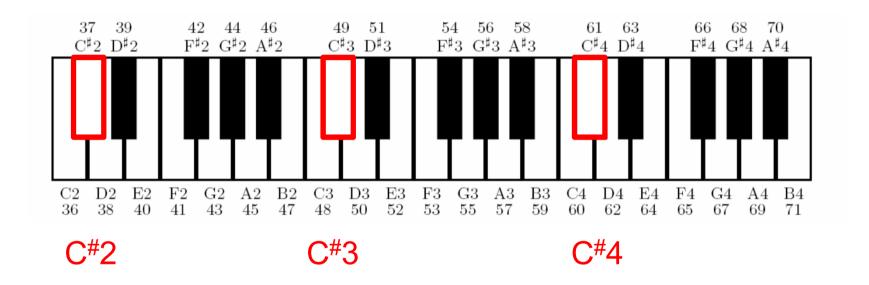


Chroma features



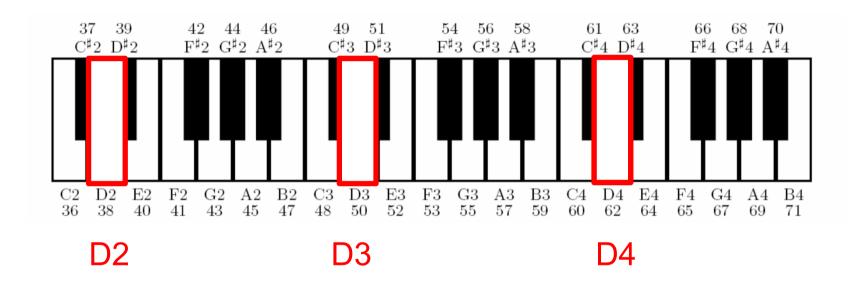
Chroma C

Chroma features



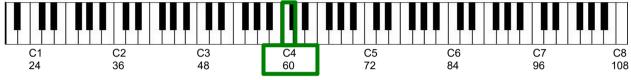
Chroma C#

Chroma features

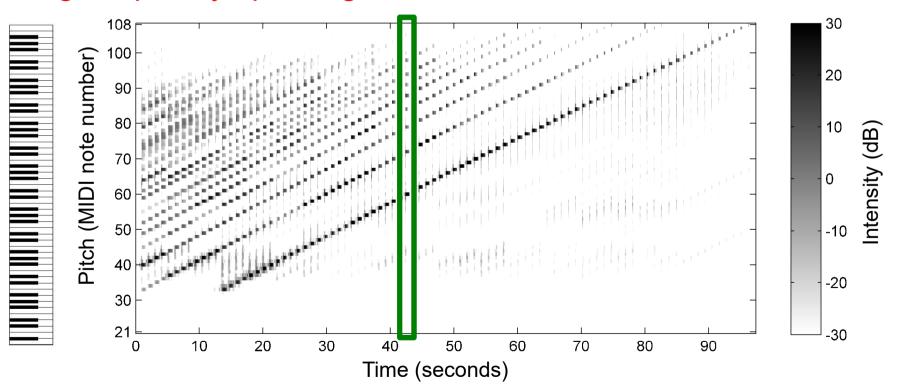


Chroma D

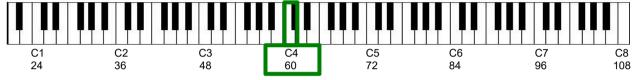
Example: Chromatic scale



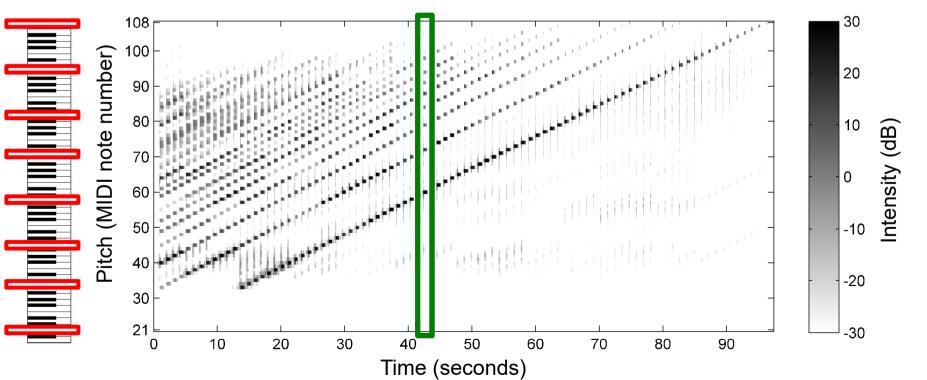
Log-frequency spectrogram



Example: Chromatic scale

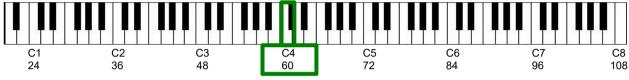


Log-frequency spectrogram

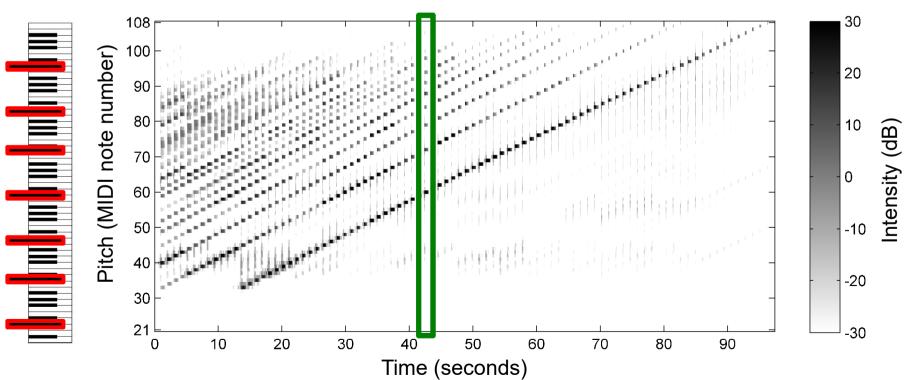


Chroma C

Example: Chromatic scale

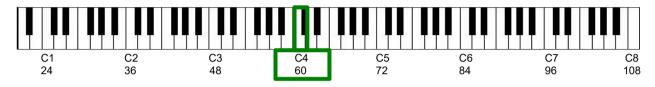


Log-frequency spectrogram



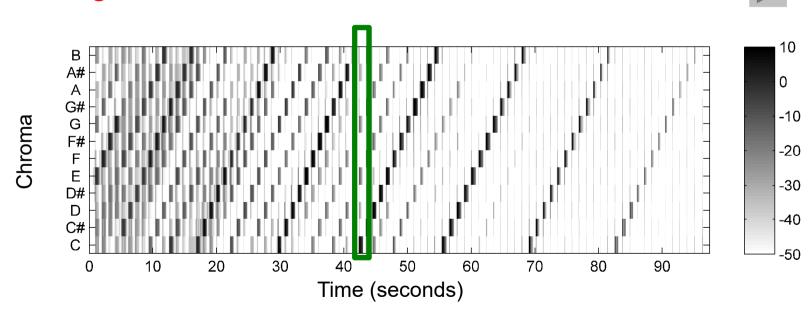
Chroma C#

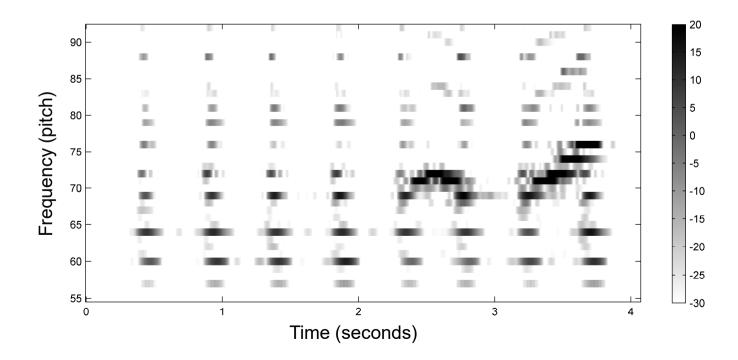
Example: Chromatic scale

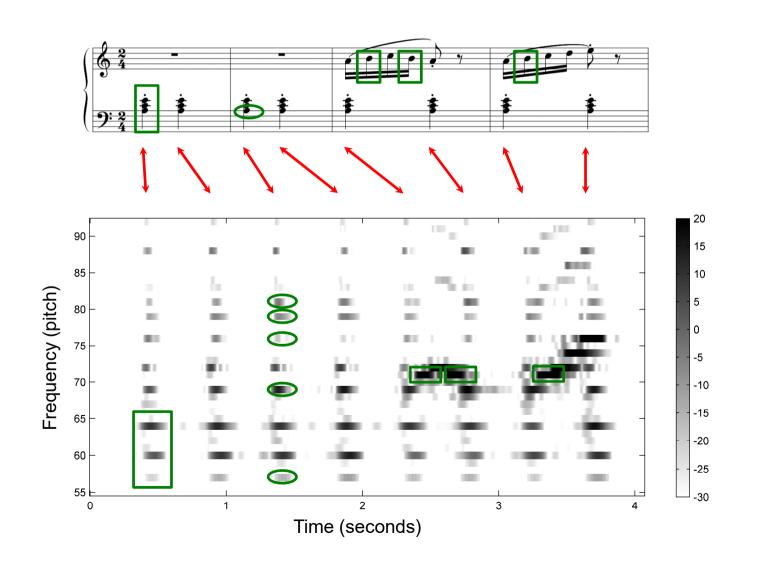


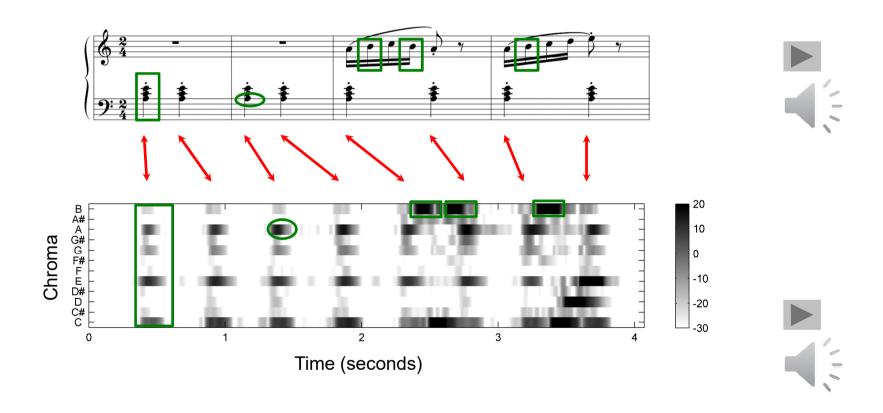
Intensity (dB)

Chromagram









- Sequence of chroma vectors correlates to the harmonic progression
- Normalization $x \to x/\|x\|$ makes features invariant to changes in dynamics
- Further denoising and smoothing
- Taking logarithm before adding up pitch coefficients accounts for logarithmic sensation of intensity

Logarithmic compression

For a positive constant $\gamma \in \mathbb{R}_{>0}$ the logarithmic compression

$$\Gamma_{\gamma}:\mathbb{R}_{>0}\to\mathbb{R}_{>0}$$

is defined by

$$\Gamma_{\gamma}(v) := \log(1 + \gamma \cdot v)$$

A value $v \in \mathbb{R}_{>0}$ is replaced by a compressed value $\Gamma_{\gamma}(v)$

Logarithmic compression

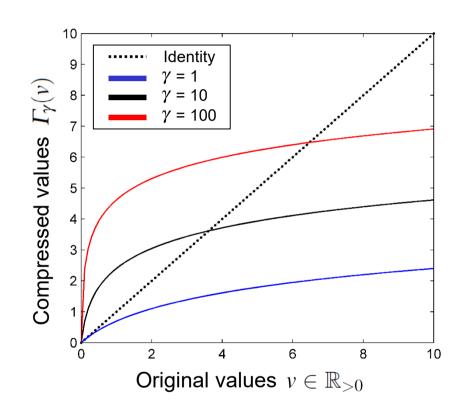
For a positive constant $\gamma \in \mathbb{R}_{>0}$ the logarithmic compression

$$\Gamma_{\gamma}:\mathbb{R}_{>0}\to\mathbb{R}_{>0}$$

is defined by

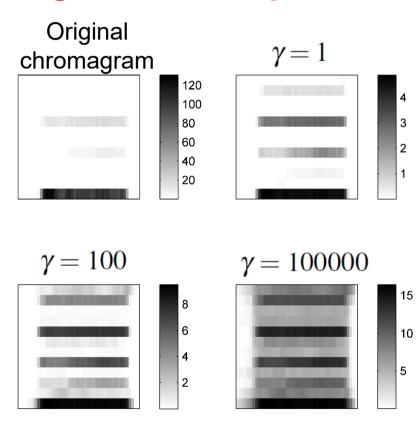
$$\Gamma_{\gamma}(v) := \log(1 + \gamma \cdot v)$$

A value $\,v\in\mathbb{R}_{>0}\,$ is replaced by a compressed value $\,arGamma_{\gamma}(v)\,$

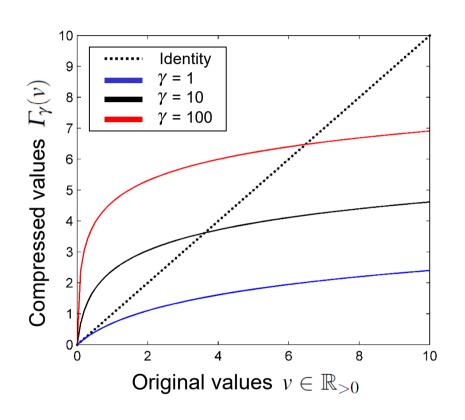


The higher $\gamma \in \mathbb{R}_{>0}$ the stronger the compression

Logarithmic compression



A value $v \in \mathbb{R}_{>0}$ is replaced by a compressed value $\Gamma_{\gamma}(v)$



The higher $\gamma \in \mathbb{R}_{>0}$ the stronger the compression

Normalization

Replace a vector by the normalized vector

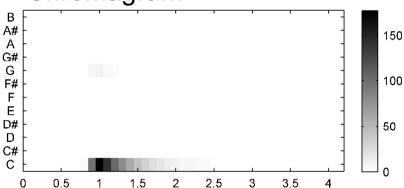
$$x/\|x\|$$

using a suitable norm $\|\cdot\|$

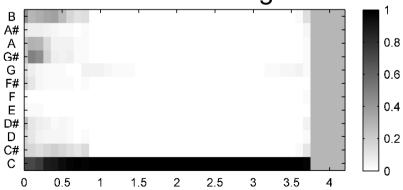
Example: Chroma vector $x \in \mathbb{R}^{12}$ Euclidean norm

$$||x|| := \left(\sum_{i=0}^{11} |x(i)|^2\right)^{1/2}$$

Example: C4 played by piano



Normalized chromagram



Normalization

Replace a vector by the normalized vector

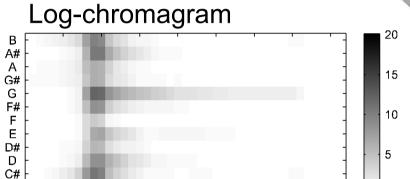
$$x/\|x\|$$

using a suitable norm $\|\cdot\|$

Example: Chroma vector $x \in \mathbb{R}^{12}$ Euclidean norm

$$||x|| := \left(\sum_{i=0}^{11} |x(i)|^2\right)^{1/2}$$

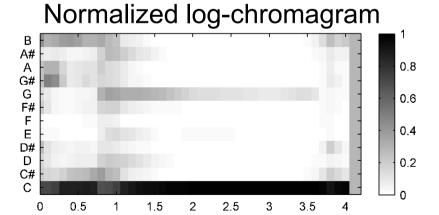
Example: C4 played by piano



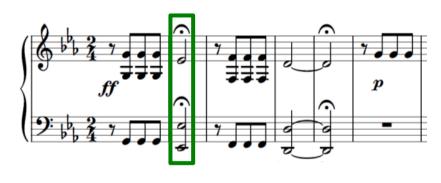
2.5

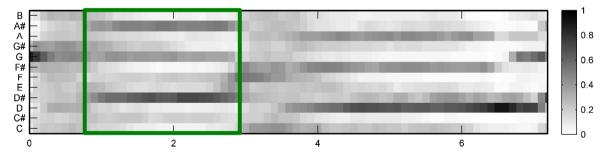
3.5

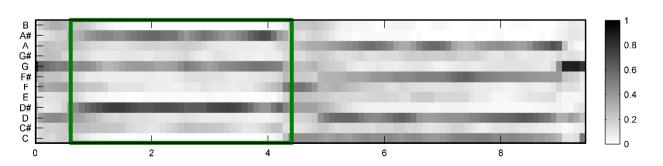
3



Chroma features (normalized)







Karajan

Scherbakov

