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Choral singing is a central part of musical cultures across the world, yet many facets of this widespread 
form of polyphonic singing are still to be explored. Music information retrieval (MIR) research on choral 
singing benefits from multitrack recordings of the individual singing voices. However, there exist only few 
publicly available multitrack datasets on polyphonic singing. In this paper, we present Dagstuhl ChoirSet 
(DCS), a multitrack dataset of a cappella choral music designed to support MIR research on choral singing. 
The dataset includes recordings of an amateur vocal ensemble performing two choir pieces in full choir 
and quartet settings. The audio data was recorded during an MIR seminar at Schloss Dagstuhl using 
different close-up microphones to capture the individual singers’ voices. In this article, we give detailed 
insights into all stages of creating DCS: recording process, data preparation, generation of annotations as 
well as development of suitable interfaces for publicly accessing and reusing the data. Furthermore, we 
demonstrate the potential of the dataset for MIR research by discussing case studies on choral intonation 
assessment and multiple fundamental frequency (F0) estimation.
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1. Introduction
Choral singing is one of the most widespread types of 
polyphonic singing (Sundberg, 1987). For instance, the 
European Choral Association1 reports over 37 million 
amateur and professional choir singers on the European 
continent, while Chorus America2 reports 54 million 
active singers in the U.S. The great interest in choral 
singing motivates the need for MIR technologies to 
support singers and conductors in their rehearsal practices 
(Gómez et al., 2020) via mobile applications3,4 and web-
based interfaces.5 Over the last years, there has been an 
increasing number of MIR techniques developed for 
analyzing polyphonic vocal music (Dai and Dixon, 2017; 
Mauch et al., 2014; Cuesta et al., 2018; Devaney, 2011; 
Devaney and Ellis, 2008; Howard et al., 2013; Howard, 
2007; Weiß et al., 2019) as well as for synthesizing 
expressive singing (Chandna et al., 2019; Blaauw and 
Bonada, 2017). Essential to the development of such 
techniques is the availability of suitable datasets and 
processing tools. In particular, multitrack recordings are 
of great value for evaluation purposes. However, due to 
high demands on recording equipment and infrastructure, 
there exist only few publicly available multitrack datasets 
on polyphonic vocal music.

The lack of suitable research data was one of the driving 
motivations to create Dagstuhl ChoirSet (DCS), a publicly 
available multitrack dataset of a cappella choral music for 
MIR research (cf. Figure 1). The audio data was recorded 
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Figure 1: Dagstuhl ChoirSet—an overview.
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during a one-week research seminar on “Computational 
Methods for Melody and Voice Processing in Music 
Recordings” (Müller et al., 2019) at Schloss Dagstuhl.6 For 
the recordings, we assembled a vocal ensemble of mostly 
amateur singers (all were participants of the Dagstuhl 
seminar) covering different SATB (Soprano, Alto, Tenor, 
and Bass) voice sections. After several rehearsals with a 
conductor, we recorded multiple takes of two choir pieces 
in a full choir setting and two quartet settings (Quartet 
A and Quartet B). Furthermore, we recorded some 
systematic exercises for practicing choral intonation. As 
one main feature of the dataset, individual singers were 
recorded using multiple close-up microphones, including 
larynx, headset, and dynamic microphones. Subsequent 
to recording and curating the recorded multitrack data, 
we annotated beat positions and generated time-aligned 
score representations for each of the music recordings. 
Furthermore, we automatically extracted F0-trajectories 
for all close-up microphone signals. The publicly available 
dataset is archived on Zenodo7 and is accessible via an 
interactive web-based interface with score-following and 
playback functionality.8 In order to facilitate reprodu-
cibility and further research using this dataset, we have 
created an open source Python toolbox with helper 
functions to load, parse, and process dataset files.9

In summary, our annotated dataset has different musical 
and acoustical dimensions that open up a variety of 
research scenarios. Besides being a good basis for studying 
amateur choral singing, DCS constitutes a challenging 
scenario for various fundamental tasks in MIR such as 
automatic music transcription (Benetos et al., 2019), 
score-to-audio alignment (Thomas et al., 2012), and beat 
tracking (Zapata et al., 2014; Böck et al., 2019). Moreover, 
the close-up microphone signals as well as the available 
F0-trajectories and scores can serve as a baseline to 
research on (informed) source separation techniques (Cano 
et al., 2019, 2014). Furthermore, it allows for comparisons 
between multiple choir/quartet performances, choir 
settings, and microphone types.

The remainder of this article is structured as follows. In 
Section 2, we give an overview on datasets related to our 

work. In Section 3, we describe DCS by providing details 
on the choir settings, selected pieces, technical setup of 
the recordings, and generated annotations. In Section 4, 
we explain the different interfaces to access and use the 
dataset. In Section 5, we demonstrate the relevance of this 
dataset for MIR research by conducting two case studies on 
choral intonation assessment and multiple F0-estimation 
using state-of-the-art algorithms. Finally, in Section 6, we 
summarize our contributions and experimental results.

2. Prior Work
There is an urgent need for datasets in the field of MIR: 
annotated data are crucial for training data-driven systems 
or evaluating methods developed to solve specific tasks. 
Over the last years, the availability of suitable datasets has 
triggered research on tasks such as melody extraction (e.g., 
MedleyDB (Bittner et al., 2014)), music style identification 
(e.g., Ballroom dataset (Gouyon et al., 2004)), and 
automatic chord recognition (e.g., Beatles dataset (Harte 
et al., 2005)).

The datasets closely related to DCS are presented 
in Table 1. Su et al. (2016) created a small dataset for 
research on choral music. It consists of five short excerpts 
of Western choral music, ranging from 18 to 40 seconds 
in length. The dataset contains stereo audio recordings 
and note event annotations, annotated by a professional 
pianist. Although small in size, this dataset is relevant 
for multiple-F0-estimation in complex scenarios where 
sources are similar, (e.g., voices of a choir), and where 
several sources produce the same notes (i.e., unisons).

Over the last years, there has been an increasing interest 
of the MIR community in analyzing world music (Serra, 
2014; Panteli, 2018), including traditional singing (van 
Kranenburg et al., 2019). A conceptually similar dataset 
to DCS in terms of recording methodology and utilized 
microphones is a set of multitrack field recordings of three-
voice Georgian vocal music (Scherbaum et al., 2019). The 
dataset includes 216 songs recorded with video cameras, 
portable stereo recorders as well as multiple close-up 
microphones attached to each of the singers. Furthermore, 
the Erkomaishvlili Dataset is a publicly available corpus 

Table 1: Comparison of polyphonic singing datasets described in Section 2. The reported durations refer to the total 
recording duration (not counting multiple tracks per recording if available).

Name/Author Multitrack Annotations Publicly 
Available

# Recordings Duration 
(hh:mm:ss)

Su et al. (2016) No MIDI On Request 5 excerpts 00:02:11

Barbershop Quartets10 Yes MIDI No 22 songs 00:42:10

Bach Chorales11 Yes MIDI No 26 songs 00:58:20

Scherbaum et al. (2019) Yes – On Request 216 songs 06:04:40

Erkomaishvili Dataset No Structure, F0, Score, Onsets Yes 101 songs 07:05:00

(Rosenzweig et al. 2020)

Choral Singing Dataset (CSD) Yes MIDI, F0, Notes Yes 3 songs 00:07:14

(Cuesta et al., 2018)

Dagstuhl ChoirSet (DCS) Yes MIDI, F0, Beats Yes 2 songs, exercises 00:55:30



Rosenzweig and Cuesta et al: Dagstuhl ChoirSet: A Multitrack Dataset for MIR Research on Choral Singing100 

based on historic tape recordings of three-voice traditional 
Georgian songs performed by the former master chanter 
Artem Erkomaishvili (Rosenzweig et al., 2020). The dataset 
includes digital sheet music, F0- and onset annotations of 
the three voices as well as annotations of the overdubbing-
based recording structure.

In the context of Western polyphonic vocal music, 
we find very few multitrack datasets. Two examples are 
datasets from a commercial application that have been 
used by Schramm and Benetos (2017); McLeod et al. 
(2017): the Barbershop Quartets10 and the Bach Chorales.11 
Both datasets contain separate tracks for each of the four 
SATB singers and an additional track with a stereo mix. 
The Barbershop recordings comprise 22 songs with a total 
length of 42 minutes, whereas the Bach Chorales contain 
26 recordings with a total length of 58 minutes. The audio 
recordings and the accompanying synchronized MIDI files 
are not freely available.

The Choral Singing Dataset (CSD) (Cuesta et al., 2018) is 
a publicly available dataset of Western polyphonic vocal 
music.12 The CSD consists of multitrack recordings of 
three SATB choral pieces: Locus Iste by Anton Bruckner, 
Niño Dios d’Amor Herido by Francisco Guerrero, and El 
Rossinyol, a popular Catalan song, performed by a small 
choir of 16 singers. The four singers of each choir section 
were recorded simultaneously in the same room with 
individual handheld dynamic microphones. However, the 
different sections were recorded separately where a MIDI 
track served as reference. The recording length of the 
three songs is around seven minutes. Furthermore, the 
CSD includes synchronized MIDI files, note annotations 
per choir section, and F0-annotations. In summary, the 
CSD is most similar to our dataset in terms of musical 
aspects. Further similarities and differences of the CSD to 
our dataset are discussed in Section 3.3.

3. Dagstuhl ChoirSet
In this section, we describe all components of DCS. In 
Section 3.1, we give details on the choir settings as well 
as the recorded pieces and exercises. Then, we explain 
the recording setup of the multitrack recordings in 
Section 3.2 and discuss the different dimensions of DCS in 

Section 3.3. Subsequently, we elaborate on the manually 
created beat annotations in Section 3.4. Furthermore, we 
provide details on the time-aligned score representations 
in Section 3.5. Finally, we describe the automatically 
extracted F0-trajectories in Section 3.6.

3.1 Choir Settings and Musical Content
In total, 13 singers (Dagstuhl seminar participants) took 
part in the recording session. All singers have provided 
their consent to publish the recorded material for 
research purposes under a Creative Commons license. 
The Full Choir consisted of two sopranos, two altos, four 
tenors, and five basses. From the Full Choir, we selected 
two soloistic SATB quartets (Quartet A and Quartet B) 
with four different singers each. The singers had diverse 
musical backgrounds (from hobby musicians to such 
holding a music degree) as well as varying levels of 
experience in (choir) singing within different musical 
genres. These experiences ranged from singers who had 
never sung in a choir before to a professional singer with 
many years of training. Considering that the singers 
had not sung in this constellation before the Dagstuhl 
seminar and had only few rehearsals together (3 sessions 
of roughly 1 hour length), the recorded choir and quartets 
may be representative of an amateur choir level, with 
individual skills partly exceeding that level. Rehearsals 
and recorded performances were also conducted by 
a Dagstuhl seminar participant, who is a professional 
composer with solid experience in conducting semi-
professional choirs, orchestras, and big bands. We 
recorded two pieces as well as several intonation exerci-
ses with the full choir and the two quartets. The central 
piece of DCS is Anton Bruckner’s Locus Iste (WAB 23) 
in Latin language. Figure 2 displays the first eleven 
measures of the piece’s score obtained from the Choral 
Public Domain Library (CPDL).13 This small choir piece 
of approximately three minutes’ duration is musically 
interesting, containing several melodic and harmonic 
challenges such as chromatic parts and covering a large 
part of each voice’s tessitura (S: B3-G5, A: G3-B4, T: C3-E4, 
B: F2-C4). Beyond that, the piece is part of the CSD (Cuesta 
et al., 2018) (see Section 2), thus allowing for interesting 

Figure 2: Anton Bruckner, Locus Iste WAB 23 (measures 1 to 11). The score was obtained from CPDL and edited by 
Brian Marble.13
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comparative studies across datasets. Furthermore, we 
selected the piece Tebe Poem by the Bulgarian composer 
Dobri Hristov.14 Both pieces are written for SATB choirs 
in four parts. In addition to these two pieces, the dataset 
contains a set of vocal exercises of different difficulties 
and forms taken from the book Choral Intonation 
(Alldahl, 1990). The exercises include scales, long and 
stable notes, chords, cadences, and a variety of intonation 
exercises. The additional recordings are potentially 
interesting to study aspects of ensemble singing such as 
interval intonation, F0-agreement in unison singing, and 
intonation drift in a cappella performances.

3.2 Multitrack Recordings
During the recording session, which took place in a 
Dagstuhl seminar room, we recorded multiple takes of the 
different pieces and settings. An overview of the recorded 
material in DCS is presented in Table 2. The reported 
durations refer to the accumulated durations of all takes 
for a specific piece and setting (not counting multiple 
tracks per take). The different choir settings were recorded 
using multiple microphones. In order to record the 
overall performance, we used an ORTF stereo microphone 
(Schoeps MSTC 64 U) spaced ca. 3 m away from the 
singers. The recorded stereo microphone signal is referred 
to as STM signal in the following. Furthermore, we used 
several close-up microphones to record individual singers. 
The recording setup for one singer, which is illustrated 
in Figure 3, includes a handheld dynamic microphone 
(Sennheiser MD421 II), a headset microphone (DPA 
4066F), and a larynx/throat microphone (Albrecht AE 38 
S2a). In the following, we abbreviate the three microphone 
types as DYN, HSM, and LRX respectively.

LRX microphones have shown to be beneficial for 
analyzing voices of individual singers in polyphonic vocal 
music (Scherbaum et al., 2015, 2018). Being attached to 
the skin at the human throat, LRX microphones nicely 
capture the pitch of the singing voice. Furthermore, 
compared to other conventional microphones such 
as DYN microphones, LRX microphones are robust to 
environmental noise, e.g., the voices of neighbouring 
singers. However, due to the missing contributions of the 
vocal tract, LRX signals primarily serve as analysis signals. 
To illustrate the microphone differences, magnitude 
spectrograms of LRX and DYN microphone signals for a 
tenor singer in a quartet setting are shown in Figure 4a. 
The shown excerpts correspond to the marked Locus Iste 
passage in Figure 2. It can be observed that the LRX signal 
is cleaner than the DYN signal. This becomes evident 
especially in Part II (middle part of the marked passage), 
where the solo bass voice leaks more strongly into the 
DYN signal than into the LRX signal of the tenor.

For our recordings, we had four DYN, three HSM and 
eight LRX microphones available. The complete setup 
as shown in Figure 3 could only be used for three 
singers—other singers were equipped with two, one, or no 
individual microphone(s). Note that we distributed the 
microphones such that at least one singer of each part 
was captured with one LRX and one DYN microphone. 
The microphone signals were recorded using one RME 

Fireface UFX audio interface, two 8-channel RME Micstasy 
A/D converters, and the Digital Audio Workstation 
(DAW) Logic Pro X running on an Apple MacBook Pro 
(see Figure 5). Furthermore, we created an additional 
reverb version of the stereo microphone signal using the 
ChromaVerb plug-in in Logic Pro X with a decay time of 
2 seconds. After recording, all tracks were exported from 
the DAW and subsequently cut according to manually set 
cut points using the tool PySox (Bittner et al., 2016). PySox 
is an open source library that provides a Python interface 
to SoX (Sound exchange),15 a command line tool for 
sound processing. The cut tracks are available in DCS as 
monophonic WAV files with a sampling rate of 22050 Hz.

3.3 Dagstuhl ChoirSet Dimensions
DCS offers different musical and acoustical dimensions, 
which are summarized in Table 3. We refer to the dimen-
sions as Song, Setting, Take, Voice, and Microphone. The 

Table 2: Overview of the audio recordings in DCS. The 
third column indicates the number of takes available 
for each piece and the last column refers to the total 
duration of all takes together.

Piece Setting # Takes Duration 
(mm:ss)

Locus Iste Full Choir 3 07:22

Quartet A 7 16:26

Quartet B 6 14:02

Tebe Poem Full Choir 5 05:27

Quartet A 2 02:30

Exercises Full Choir 33 06:00

Quartet A 25 03:43

Total 81 55:30

Figure 3: Microphone setup for one singer.
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Song dimension consists of the two choral pieces Locus 
Iste and Tebe Poem as well as the systematic exercises. 
The Setting dimension includes the three choir settings: 
Full Choir, Quartet A, and Quartet B. The Take dimension 
indicates the number of takes. The Voice dimension is 
defined by the singers present in the signal—either one of 
the SATB sections or the mixture of all sections recorded by 
the STM microphone. Finally, the Microphone dimension 
refers to the microphone types used to record the singers.

The multiple dimensions of DCS make it unique when 
compared to related datasets such as the CSD (Cuesta et al., 
2018). The main differences between the CSD and DCS lie 
in the Setting, Take, and Microphone dimensions. The CSD 
includes one singer setting, a single take per song and one 

microphone type. Furthermore, the CSD choir sections 
were recorded separately, while all singers were captured 
at the same time in DCS. The different recording setup 
in DCS enables studies on interactions between sections. 
However, as opposed to the Full Choir setting in DCS, the 
recorded choir in the CSD is larger and balanced in the 

Figure 4: Comparison of LRX and DYN signals from a tenor singer. Excerpts correspond to the marked Locus Iste pas-
sage in Figure 2. (a) Magnitude spectrograms. CREPE F0-trajectories are plotted on top in the respective colors. (b) 
Smoothed CREPE confidence. (c) Binarized trajectory activations obtained by thresholding smoothed confidence 
(LRX threshold: 0.935, DYN threshold: 0.9).

Figure 5: Screenshot (detail) of digital audio workstation 
(Logic Pro X) with multiple tracks.

Table 3: DCS dimensions.

Dimension Shortcut Meaning

Song

LI Locus Iste

TP Tebe Poem

SE Systematic Exercises

Setting

FullChoir Full Choir Setting

QuartetA Quartet A Setting

QuartetB Quartet B Setting

Take Take Take Number

Voice

S Soprano

A Alto

T Tenor

B Bass

Stereo Stereo Mic

StereoReverb Stereo Mic Reverb

Microphone

LRX Larynx Mic

DYN Dynamic Mic

HSM Headset Mic

STR Stereo Mic R

STL Stereo Mic L

STM Stereo Mic L+R
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number of singers per section. Therefore, CSD allows for 
more detailed studies on singer interaction within choir 
sections.

In order to account for the variety of different dimen-
sions, we developed a filename convention for all audio 
and annotation files included in DCS. The general 
format of the filenames is the following (cf. Table 3): 
DCS_{Song}_{Setting}_Take{#}_{Voice}
{#}_{Microphone}.{Suffix}. For example, DCS_
LI_FullChoir_Take02_T2_LRX.wav refers to 
the audio signal from the larynx microphone (LRX) of 
the second tenor (T2) in the Full Choir setting (FullChoir) 
during the second take (Take02) of Locus Iste (LI). Note 
that the files with microphone shortcut STM contain 
a mono mix of the left and right channel of the stereo 
microphone.

3.4 Manual Beat Annotations
The beat is a key unit of the temporal structure of music 
(Goto and Muraoka, 1997). As stated by Robertson (2012), 
when beat annotations are manually generated by 
tapping along to an audio signal, they reflect the ability 
of the annotator to produce the beats rather than their 
perception. In such cases, the produced beat annotations 
can be subsequently refined by iteratively listening and 
modifying them according to perceptual cues. Following 
this premise, we generated beat annotations for all STM 
signals of Locus Iste and Tebe Poem in a two-stage process: 
in the first stage, annotations were manually created 
by an annotator with some musical background. The 
annotation by tapping feature in Sonic Visualiser (Cannam 
et al., 2010b) was used for this task. Sonic Visualiser is an 
open source software for generating manual annotations 
of various kinds. In the second stage, annotations were 
reviewed and refined by a second, experienced annotator 
using the same software.

These beat annotations are provided as comma-separa-
ted value (CSV) files with two columns. The first column 
contains timestamps in seconds, whereas the second 
column contains beat and measure information provided 
as floating point numbers to three decimal places. The 
part in front of the decimal point encodes the measure 
number. The part after the decimal point indicates the 
beat position inside the measure. For example, in 4/4 time, 
each beat is represented as an increment of 1/4 = 0.250, 
and therefore the beat positions are given as 1.000, 1.250, 
1.500, 1.750, 2.000, 2.250, 2.500….

3.5 Time-Aligned Score Representations
In order to obtain a musical reference for the different 
performances of Locus Iste and Tebe Poem, we aligned 
MIDI representations of the pieces to the STM signals 
using the beat annotations from Section 3.4. The MIDI 
files were obtained from the CPDL (see Section 3.1). For 
synchronization, we used the dynamic time warping 
pipeline from Ewert et al. (2009) and Müeller et al. 
(2004) that uses the beat annotations as anchor points 
for the alignment. In order to facilitate data parsing and 
processing, we converted the aligned MIDI files to CSV files 
using pretty_midi (Raffel and Ellis, 2014), a Python 

library for processing and converting MIDI files. For each 
STM signal, DCS contains one separate CSV file per section 
(as opposed to MIDI files that include all sections). Each 
CSV file contains three columns, which represent note 
onset in seconds, note offset in seconds, and MIDI pitch. 
The number of rows is equal to the number of notes in 
the piece.

3.6 Fundamental Frequency Trajectories
One of the most important cues for computational 
studies on choral singing and choral intonation are the 
F0-trajectories of the individual singers’ voices (Cuesta 
et al., 2018; Dai and Dixon, 2017, 2019). However, 
annotating F0-trajectories from polyphonic mixtures is 
cumbersome and requires a lot of labor-intensive work. 
We exploit the multitrack nature of DCS to automatically 
compute the F0-trajectories of each singer from the 
close-up microphone signals using two state-of-the-art 
algorithms for monophonic F0-estimation: pYIN (Mauch 
and Dixon, 2014) and CREPE (Kim et al., 2018).

The pYIN annotations were obtained using the pYIN 
Vamp Plug-in16 for Sonic Annotator (Cannam et al., 
2010a). For pYIN, we used an FFT size of 2048 and a hop 
size of 221 samples, which corresponds to around 10 ms 
for a sampling rate of 22050 Hz. We used the algorithm 
in the smoothedpitchtrack mode, which uses a 
hidden Markov model (HMM) and Viterbi decoding to 
smooth the F0-estimates. In addition, we configured 
the plugin to output negative F0-values in frames that 
are estimated as unvoiced (outputunvoiced=2) 
as well as the probability of each frame to be voiced 
(output=voicedprob). For CREPE, we used the CREPE 
Python package17 with the model capacity set to full, 
Viterbi smoothing activated, a default hop size of 10 ms, 
and a default input size of 1024 samples. Similar hop sizes 
were used with both methods for an easier comparison. 
The F0-trajectories are stored in CSV files with three 
columns. The first two columns contain the timestamps 
in seconds and the F0-values in Hz. In the case of pYIN, 
the third column contains the probabilities of the frames 
to be voiced. In the case of CREPE, the third column 
contains the confidence as provided by the algorithm. The 
confidence is a number between 0 and 1 that indicates 
the reliability of an F0-estimate.

In order to validate the automatically extracted 
F0-trajectories, we generated manual F0-annotations for 
all voices of two quartet recordings based on the LRX 
signals. The annotations were made by a sound engineer 
with over ten years’ training on saxophone using the tool 
Tony (Mauch et al., 2015) and are included in DCS as CSV 
files. For evaluation, we use common evaluation metrics 
for melody extraction as detailed by Poliner et al. (2007); 
Salamon et al. (2014). The metrics Voicing Recall (VR) 
and Voicing False Alarm (VFA) measure the accuracy of 
the algorithm’s voice activity estimation. The metrics Raw 
Pitch Accuracy (RPA) and Raw Chroma Accuracy (RCA) 
measure the proportion of frames for which the estimated 
F0-trajectory lies within 50 cents (half a semitone) of the 
reference (RCA ignores octave errors). Additionally, the 
Overall Accuracy (OA) is a combined metric that accounts 
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for both voice activity and F0-accuracy. We use the open 
source toolbox mir_eval (Raffel et al., 2014) to compute 
the evaluation metrics. In our experiments, we derive 
the voice activity for F0-trajectories extracted by CREPE 
by choosing a confidence threshold that maximizes the 
overall accuracy. The evaluation results averaged over 
the two recordings for pYIN and CREPE (8 LRX, 6 HSM, 
8 DYN trajectories per algorithm) are given in Tables 4 
and 5, respectively. The standard deviations are given in 
brackets. Both algorithms perform most accurately on the 
LRX signals (0.93 of overall accuracy), slightly less accurate 
on DYN signals and least accurate on HSM signals. This is 
expected, since the F0 of the voice is more dominant in 
LRX signals than in DYN or HSM signals (see Section 3.2). 
The overall performance of both algorithms is similar on 
LRX and DYN signals and deviates for HSM signals, where 
CREPE performs better than pYIN.

In the following, we further analyze the differences 
between the microphone signals. Figure 4 illustrates the 
F0-trajectories from a tenor singer extracted from LRX and 
DYN signals using CREPE. The CREPE confidence values 
are depicted in Figure 4b. For visualization purposes, the 
confidences are smoothed with a median filter of length 
210 ms. Thresholding the smoothed confidence values with 
a threshold of 0.935 for the LRX confidence and a threshold 
of 0.9 for the DYN confidence leads to the binary activations 
depicted in Figure 4c and the F0-trajectories depicted in 
Figure 4a. Note that the thresholds are chosen exempla-
rily to show the differences between the microphones. 
In Part I, CREPE shows similar confidence values for both 
microphone signals when the tenor is singing. Part II shows 
significant differences between the two microphones. In 
this part, low confidence values are expected since the 
tenor is not active. Still, CREPE shows some confidence 
for both microphone signals due to cross-talk of the bass 
voice. However, one can find a suitable threshold for the 
LRX confidence to avoid an F0-output. Since the cross-
talk is much stronger in the DYN signal, there exists no 
meaningful threshold that suppresses any F0-output in 
Part II of the DYN signal. In Part III, the F0-trajectory of the 
DYN microphone suffers from confusions with the bass 
voice even though the tenor is singing.

4. Dagstuhl ChoirSet Interfaces
The main goal of our work is to create a freely available 
and easy-to-access dataset in order to support MIR 
research on a cappella choral music. To this end, we 
provide several interfaces to interact with the dataset. As 
the most important step, we make the dataset publicly 
available in order to support scientific exchange and 
ensure reproducibility of scientific results. We decided to 
host DCS on Zenodo,7 an Open Science platform, which 
supports sharing and distributing scientific data. As main 
features, the platform provides versioning and citeable 
Digital Object Identifiers (DOIs) for uploaded data.

However, Zenodo is a data repository and does not 
offer to play back the audio files in the browser. The 
interdisciplinary field of MIR benefits from interfaces 
that help to lower access barriers to datasets by providing 
direct, intuitive, and comprehensive access. This can 
be accomplished by means of interactive interfaces, 
e.g., with playback functionalities (Gasser et al., 2015; 
Jeong et al., 2017; Röwenstrunk et al., 2015). As one 
contribution, we created a publicly accessible web-based 
interface,8 which hosts the multitrack audio data. The 
entry page of the interface is subdivided into a “Music 
Recordings” section providing links to the Locus Iste and 
Tebe Poem recordings as well as a “Systematic Exercises 
and Additional Recordings” section. Furthermore, the 
interface allows for searching and sorting of specific 
recordings. Each multitrack recording has an individual 
sub-page with an open source audio player (Werner 
et al., 2017) with score-following functionality (Zalkow 
et al., 2018) that allows for seamless switching between 
the different tracks.

Accompanying dataset-specific processing tools simplify 
the usage of datasets (Bittner et al., 2014, 2019). Therefore, 
we created a Python toolbox named DCStoolbox9 that 
accompanies the release of the dataset. The toolbox 
provides basic functions to parse and load data from 
DCS, which are demonstrated in a Jupyter notebook. 
Additionally, the toolbox includes scripts to reproduce 
the computed F0-trajectories from Section 3.6 and an 
Anaconda18 environment file that specifies all Python 
packages required to run the toolbox functions.

Table 4: Evaluation results for pYIN trajectories averaged over two quartet recordings.

Mic VR VFA RPA RCA OA

LRX 0.99 (0.00) 0.11 (0.06) 0.95 (0.02) 0.95 (0.01) 0.93 (0.03)

HSM 0.98 (0.01) 0.33 (0.09) 0.81 (0.10) 0.91 (0.04) 0.77 (0.08)

DYN 0.99 (0.00) 0.16 (0.11) 0.93 (0.04) 0.95 (0.01) 0.90 (0.05)

Table 5: Evaluation results for CREPE trajectories averaged over two quartet recordings.

Mic VR VFA RPA RCA OA

LRX 0.96 (0.01) 0.12 (0.02) 0.96 (0.01) 0.96 (0.01) 0.93 (0.02)

HSM 0.92 (0.02) 0.32 (0.08) 0.91 (0.01) 0.91 (0.02) 0.84 (0.02)

DYN 0.93 (0.01) 0.18 (0.07) 0.93 (0.01) 0.93 (0.01) 0.90 (0.02)
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5. Applications to MIR Research
In this section, we demonstrate the potential of DCS 
for MIR research by means of two case studies. In the 
first case study discussed in Section 5.1, the goal is to 
evaluate and compare the intonation quality of quartet 
performances using a recently published intonation 
measure (Weiß et al., 2019). In the second case study, 
conducted in Section 5.2, we consider the task of multiple 
F0-estimation. More specifically, we apply a state-of-the-
art approach (Bittner et al., 2017) on different recordings 
and show the benefits of our multitrack recordings for 
multiple-F0-estimation in polyphonic vocal music.

5.1 Intonation Quality of Quartet Performances
A central challenge for a cappella singers is the 
adjustment of pitch in order to stay in tune relative 
to the fellow singers. Even if choirs achieve good local 
intonation, they may suffer from intonation drifts slowly 
evolving over time (Devaney, 2011). Algorithms that 
attempt to measure intonation quality have to account 
for such intonation drifts. A recently published approach 
measures the distance between the recording’s local 
salient frequency content and a shifted 12-tone equal-
tempered (12-TET) grid (Weiß et al., 2019). Although 
choirs often aim for just intonation, the 12-TET scale 
has been used to approximate intonation in Western 
choral performances (Gnann et al., 2011). The intonation 
measure requires as input the F0s and harmonic 
partials (integer multiples of the F0) together with their 
respective amplitudes for the four singing voices. In a 
frame-wise fashion, a grid-shift parameter is computed 
that minimizes the distance between the F0s partials 
and the shifted 12-TET grid. As output, the approach 
returns a frame-wise intonation cost (IC) that reflects the 
remaining distance from the optimally shifted 12-TET 
grid. The IC is bounded in the interval [0, 1], where small 
values indicate good local intonation, and large values 
indicate local intonation deviations. In the following, 
we use this approach to compare the performances of 
Quartet A and B in our DCS.

Weiß et al. (2019) show that multitrack recordings 
of the individual voices are beneficial for estimating 
the frequency and amplitude information required to 
compute the IC. For our case study, we make use of the 
recorded LRX and DYN signals as follows. We obtain 
the frequency information from the extracted pYIN 
F0-trajectories of the LRX signals (see Section 3.6). Using 
the time-aligned score representations from Section 3.5, 
we restrict the trajectories to regions where the respective 
voices are active. We obtain the amplitude information 
from a magnitude spectrogram representation of the DYN 
signals at the locations of the extracted LRX F0-trajectories 
and their harmonic partials. In our experiments, we 
consider 16 harmonic partials. Subsequently, we compute 
IC measure curves for all quartet recordings of Locus Iste 
in DCS. In order to compare the different takes, we map 
the curves on a common time axis in measures using the 
measure information encoded in the beat annotations 
from Section 3.4.

The averaged IC curves for six recordings of Quartet A 
and five recordings of Quartet B are depicted in Figure 6. 
To remove local outliers, we post-process the IC curves 
using a moving median filter of length 21 frames. 
Note that the IC is zero for silent regions and small for 
monophonic passages where only one singer is active (see 
measures 12, 20/21, and 43). Overall, the curves exhibit a 
similar progression. For both curves, we observe higher IC 
values in the passage from measures 13 to 20. This passage 
is challenging to sing due to the highly chromatic voice 
leading and the jumps in the bass part. Furthermore, the 
passage from measure 40 to 42 exhibits higher intonation 
costs for both quartets—a passage which is highly 
chromatic. The largest differences between the quartets 
can be found in the last part of the piece (measures 
44 to 48). For this passage, Quartet B achieves a better 
intonation quality on average than Quartet A, especially in 
the intonation of the final chord of the piece.

This short case study indicates the potential of our 
recordings for studying intonation in polyphonic a 
cappella music. Furthermore, our data can form a starting 

Figure 6: Averaged intonation cost (IC) measures for six takes of Locus Iste by Quartet A and five takes by Quartet B. 
The local standard deviations are indicated in light grey.
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point for future studies on singer interaction in amateur 
choirs.

5.2 Multiple-F0-Estimation in A Cappella Singing
Multiple-F0-estimation is defined as the task of estima-
ting the F0s of several concurrent sounds in a polyphonic 
signal (Klapuri, 2008, 2006). This task is particularily 
challenging for polyphonic vocal music (Schramm et al., 
2017; Su et al., 2016). In a cappella choral singing, we 
find multiple singers with similar timbres singing in 
harmony, thus producing overlapping harmonics (Cuesta 
et al., 2019). Furthermore, it is very common that several 
singers sing the same part (unison), but produce slightly 
different frequencies. However, MIR research on multiple-
F0-estimation in polyphonic vocal music has so far been 
focusing on SATB quartets and there exist no suitable 
methods for multiple-F0-estimation in larger ensembles 
with multiple singers per part. The Full Choir recordings 
in DCS constitue a starting point for further research in 
this direction.

In the following, we show the potential of DCS by apply-
ing a state-of-the-art multiple-F0-estimation algorithm on 
different scenarios offered by the DCS quartet recordings. 
The first scenario consists of applying the algorithm on a 
mix of all DYN signals. In the second and third scenario, the 
algorithm is applied on the STM signal (room microphone) 
with and without additional reverb. In particular, we 
consider the recordings of Locus Iste from Quartet A (Take 3).

In our case study, we use the DeepSalience method 
(Bittner et al., 2017), a deep convolutional neural net-
work trained to produce a pitch salience representation 
(enhanced time–frequency representation) of the input 
signal, which contains values in the range [0, 1]. This 
salience representation is thresholded such that only time–
frequency bins with a salience value above the chosen 
threshold remain. These remaining bins correspond to 
the multiple-F0-estimates. Although the model is not 
specifically trained for polyphonic vocal music, it was found 
to obtain the best performance for multiple-F0-estimation 

in vocal quartets (Cuesta et al., 2019). For the evaluation, 
we exploit the multitrack nature of DCS. In particular, we 
take the previously extracted pYIN F0-trajectories from the 
LRX signals as reference (see Section 3.6). Note that these 
trajectories are the output of an algorithm. Although our 
evaluation reveals they are very accurate (see Table 4), 
they still contain some errors. As evaluation metrics, we 
use the standard multiple-F0-estimation metrics Precision, 
Recall, and F-Score. For a detailed description of these 
metrics, we refer to Bittner (2018, Chapter II, Section 6.3). 
The evaluation metrics were computed using the mir_
eval library (Raffel et al., 2014).

We experimented with several thresholds between 0.05 
and 0.5, and found 0.1 to obtain the best results on the 
studied quartet recordings with respect to our evaluation 
metrics. However, instead of comparing absolute values 
(which is problematic for automatically extracted reference 
F0-trajectories), we want to focus on relative differences 
between the different scenarios. Figure 7a shows excerpts 
of the computed multiple-F0-estimates for the mix of 
DYN signals and the STM signal with reverb obtained by 
thresholding the salience representations with a threshold 
of 0.1. Figure 7b shows the evaluation results for all three 
scenarios. From the F-Score values, we observe that the 
algorithm performs best for the DYN signal mix of Quartet 
A. Furthermore, we observe that an increasing amount of 
reverb in the recordings goes along with a decreasing overall 
performance of the algorithm. This indicates that reverb 
further complicates the task of multiple-F0-estimation. The 
Precision and Recall measures give further insights into this 
observation. While Precision is lower in the scenario with 
reverb, Recall is not affected. In reverb conditions, sung 
notes become temporally smeared, leading to a temporal 
mismatch between the reference F0-trajectories from 
the LRX signals and the audio recording. For this reason, 
the number of false positives increases, causing Precision 
to decrease. This effect can be seen by comparing the 
red marked areas in Figure 7a. We leave a more detailed 
analysis of these effects to future studies.

Figure 7: Multiple-F0-estimation using DeepSalience (Bittner et al., 2017) with a threshold of 0.1. (a) Estimation 
results (excerpts) for the mix of DYN signals and the STM signal with reverb. (b) Evaluation metrics for all scenarios.
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In summary, this brief case study indicates that the DCS 
is a versatile and challenging resource to develop and 
test algorithms for multiple-F0-estimation in polyphonic 
a cappella vocal music. Furthermore, the time-aligned 
score representations could serve as a reference for the 
evaluation of note-tracking algorithms. This requires 
accounting for intonation drifts of the choirs, which can, 
e.g., be determined from the F0-annotations.

6. Conclusions
In this paper, we presented Dagstuhl ChoirSet—a publicly 
accessible multitrack dataset of a cappella choral music 
for MIR research. This work is based on our recordings 
of an amateur vocal ensemble we gathered at an MIR 
seminar at Schloss Dagstuhl. As main feature of the 
dataset, the singers were recorded using different close-up 
microphones including dynamic, headset, and larynx 
microphones. As part of our work, we curated the recorded 
material and manually generated beat annotations as 
well as time-aligned sheet music representations. Fur-
thermore, we automatically extracted F0-trajectories for 
all close-up microphone tracks. The dataset is released 
together with an interactive web-based interface and a 
Python toolbox to provide convenient access. In summary, 
the different musical and acoustical dimensions of DCS 
open up a variety of new and challenging scenarios for 
MIR research.

Notes
 1 https://europeanchoralassociation.org.
 2 https://www.chorusamerica.org.
 3 https://www.carus-verlag.com/en/digital-media/

carus-music-the-choir-app.
 4 https://www.singerhood.com.
 5 https://trompamusic.eu/choir-singers.
 6 https://www.dagstuhl.de/19052.
 7 https://doi.org/10.5281/zenodo.3956666.
 8 https://www.audiolabs-erlangen.de/resources/

MIR/2020-DagstuhlChoirSet.
 9 https://github.com/helenacuesta/ChoirSet-Toolbox.
 10 https://www.pgmusic.com/barbershopquartet.htm.
 11 https://www.pgmusic.com/bachchorales.htm.
 12 https://zenodo.org/record/2649950.
 13 http://www1.cpdl.org/wiki/images/9/94/Locus_

Iste_rev.pdf.
 14 http://www3.cpdl.org/wiki/index.php/Tebe_Poem_ 

(Dobri_Hristov).
 15 http://sox.sourceforge.net/.
 16 https://code.soundsoftware.ac.uk/projects/pyin.
 17 https://github.com/marl/crepe.
 18 https://www.anaconda.com/distribution/.
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