

Music Structure Analysis

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Music Structure Analysis

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Music Structure Analysis

General goal: Divide an audio recording into temporal segments corresponding to musical parts and group these segments into musically meaningful categories.

Examples:

- Stanzas of a folk song
- Intro, verse, chorus, bridge, outro sections of a pop song
- Exposition, development, recapitulation, coda of a sonata
- Musical form ABACADA ... of a rondo

Music Structure Analysis

General goal: Divide an audio recording into temporal segments corresponding to musical parts and group these segments into musically meaningful categories.

Challenge: There are many different principles for creating relationships that form the basis for the musical structure.

- Homogeneity: Consistency in tempo, instrumentation, key, ...
- Novelty: Sudden changes, surprising elements ...
- Repetition: Repeating themes, motives, rhythmic patterns,...

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.3

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Idealized SSM

A3 B3 B4

SSM Enhancement

Challenge: Presence of musical variations

- Fragmented paths and gaps
- Paths of poor quality •
- Regions of constant (low) cost
- Curved paths

Idea: Enhancement of path structure

SSM Enhancement

Path Enhancement

SSM Enhancement

Path Enhancement

Diagonal smoothing

Path Enhancement

- Diagonal smoothing
- Multiple filtering
- Thresholding (relative)
- Scaling & penalty

SSM Enhancement

Path Enhancement

- . Diagonal smoothing
- Multiple filtering

Novelty-Based Segmentation

Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

Novelty-Based Segmentation

Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

Novelty-Based Segmentation

Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

Novelty-Based Segmentation

Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

Novelty-Based Segmentation

Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

Novelty function using

Novelty-Based Segmentation

Idea (Foote):

Use checkerboard-like kernel function to detect corner points on main diagonal of SSM.

Novelty function using

0.3

Novelty function using

SSM Enhancement

Example: Zager & Evans "In The Year 2525"

SSM Enhancement

Example: Zager & Evans "In The Year 2525" Missing relations because of transposed sections

SSM Enhancement

Example: Zager & Evans "In The Year 2525" Idea: Cyclic shift of one of the chroma sequences

Two semitones up

SSM Enhancement

Example: Zager & Evans "In The Year 2525" Idea: Cyclic shift of one of the chroma sequences

One semitone up

SSM Enhancement

Audio Thumbnailing

Audio Thumbnailing

General goal: Determine the most representative section ("Thumbnail") of a given music recording.

Example: Zager & Evans "In The Year 2525"

— I (V1	V2	V3	V4	V5	V6	V7	в	V8	0

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Thumbnail is often assumed to be the most repetitive segment

Audio Thumbnailing

Two steps

2. Grouping

1. Path extraction

Both steps are problematic!

- Paths of poor quality (fragmented, gaps)Block-like structures
- Curved paths
 - Noisy relations
 - (missing, distorted, overlapping) Transitivity computation difficult

Main idea: Do both, path extraction and grouping, jointly

- One optimization scheme for both steps
- Stabilizing effect
- Efficient

Audio Thumbnailing

Main idea: Do both path extraction and grouping jointly

- For each audio segment we define a fitness value
- This fitness value expresses "how well" the segment explains the entire audio recording
- The segment with the highest fitness value is considered to be the thumbnail
- As main technical concept we introduce the notion of a path family

Fitness Measure

Enhanced SSM

Fitness Measure

Path over segment

- Consider a fixed segment

Fitness Measure

Path over segment

- Consider a fixed segment
- Path over segment
- Induced segment
- Score is high
- A second path over segment
- Induced segmentScore is not so high
- A third path over segment
- Induced segment
- Score is very low

Fitness Measure

Path family

- Consider a fixed segment
- A path family over a segment is a family of paths such that the induced segments do not overlap.

Fitness Measure

Path family

- Consider a fixed segment
- A path family over a segment is a family of paths such that the induced segments do not overlap.

This is a path family! (Even though not a good one)

Fitness Measure

Path family

- Consider a fixed segment
- A path family over a segment is a family of paths such that the induced segments do not overlap.

This is not a path family!

Fitness Measure

Optimal path family

Consider a fixed segment

Fitness Measure

Note: This optimal path family can be computed using dynamic programming.

Optimal path family

- Consider a fixed segment
- Consider over the segment the optimal path family, i.e., the path family having maximal overall score.
 - Call this value:

Score(segment)

Fitness Measure

Optimal path family

- Consider a fixed segment
- Consider over the segment the optimal path family, i.e., the path family having maximal overall score.
 - Call this value: Score(segment)
- Furthermore consider the amount covered by the induced segments.
- Call this value:
 - Coverage(segment)

Fitness Measure

Fitness Measure

Fitness

- Consider a fixed segment
- Self-explanation are trivial!

Fitness Measure

Book: Fundamentals of Music Processing

(63) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
🖄 Springer

Meinard Müller

Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Links

- SM Toolbox (MATLAB) http://www.audiolabs-erlangen.de/resources/MIR/SMtoolbox/
- MSAF: Music Structure Analysis Framework (Python) https://github.com/urinieto/msaf
- SALAMI Annotation Data http://ddmal.music.mcgill.ca/research/salami/annotations
- LibROSA (Python) https://librosa.github.io/librosa/
- Evaluation: mir_eval (Python) https://craffel.github.io/mir_eval/
- Deep Learning: Boundary Detection Jan Schlüter (PhD thesis)

Book: Fundamentals of Music Processing

с	hapter	Music Processing Scenario		
1	\$ 2.	Music Represenations		
2		Fourier Analysis of Signals		
3	100	Music Synchronization		
4		Music Structure Analysis		
5	Å	Chord Recognition		
6	≱+++⊦	Tempo and Beat Tracking		
7		Content-Based Audio Retrieval		
8		Musically Informed Audio Decomposition		

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de