

Workshop HfM Karlsruhe

Music Information Retrieval

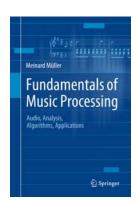
Music Synchronization

Christof Weiß, Frank Zalkow, Meinard Müller

International Audio Laboratories Erlangen

christof.weiss@audiolabs-erlangen.de frank.zalkow@audiolabs-erlangen.de meinard.mueller@audiolabs-erlangen.de

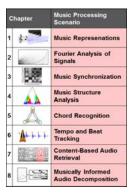
Book: Fundamentals of Music Processing



Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

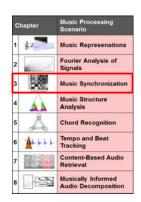
Book: Fundamentals of Music Processing



Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing



Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

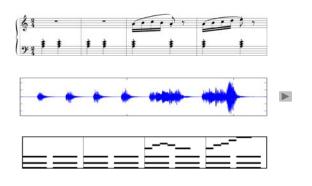
Accompanying website: www.music-processing.de

Chapter 3: Music Synchronization

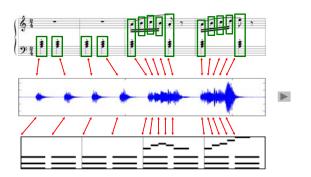
- 3.1 Audio Features
- 3.2 Dynamic Time Warping
- 3.3 Applications
- 3.4 Further Notes

As a first music processing task, we study in Chapter 3 the problem of music synchronization. The objective is to temporally align compatible representations of the same piece of music. Considering this scenario, we explain the need for musically informed audio features. In particular, we introduce the concept of chroma-based music features, which capture properties that are related to harmony and melody. Furthermore, we study an alignment technique known as dynamic time warping (DTW), a concept that is applicable for the analysis of general time series. For its efficient computation, we discuss an algorithm based on dynamic programming—a widely used method for solving a complex problem by breaking it down into a collection of simpler subproblems.

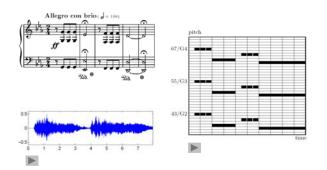
Music Data



Music Data



Music Data



Music Data

Various interpretations - Beethoven's Fifth

Bernstein	
Karajan	
Gould (piano)	>
MIDI (piano)	I

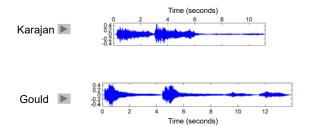
Music Synchronization: Audio-Audio

Given: Two different audio recordings of the same underlying piece of music.

Goal: Find for each position in one audio recording the musically corresponding position in the other audio recording.

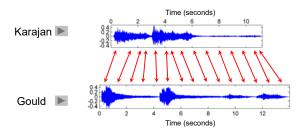
Music Synchronization: Audio-Audio

Beethoven's Fifth



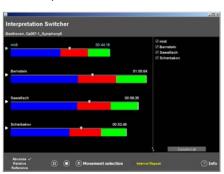
Music Synchronization: Audio-Audio

Beethoven's Fifth



Music Synchronization: Audio-Audio

Application: Interpretation Switcher



Music Synchronization: Audio-Audio

Two main steps:

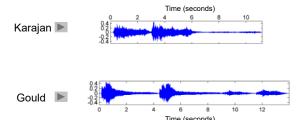
- 1.) Audio features
 - Robust but discriminative
 - Chroma features
 - Robust to variations in instrumentation, timbre, dynamics
 - Correlate to harmonic progression

2.) Alignment procedure

- Deals with local and global tempo variations
- Needs to be efficient

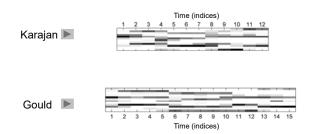
Music Synchronization: Audio-Audio

Beethoven's Fifth



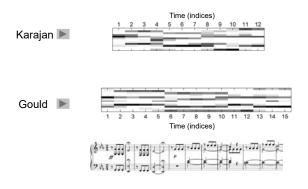
Music Synchronization: Audio-Audio

Beethoven's Fifth



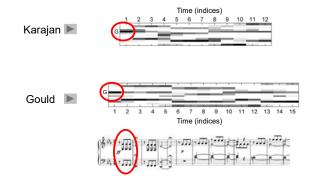
Music Synchronization: Audio-Audio

Beethoven's Fifth



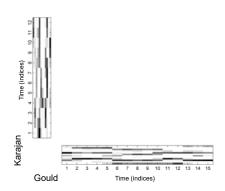
Music Synchronization: Audio-Audio

Beethoven's Fifth



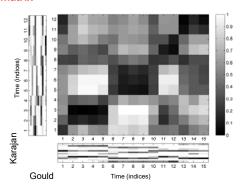
Music Synchronization: Audio-Audio Beethoven's Fifth

Music Synchronization: Audio-Audio



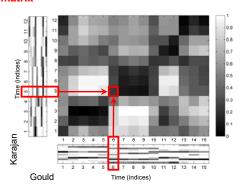
Music Synchronization: Audio-Audio

Cost matrix



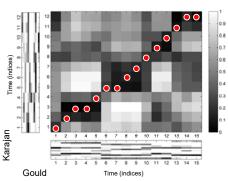
Music Synchronization: Audio-Audio

Cost matrix



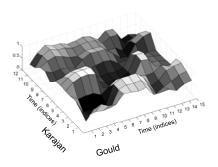
Music Synchronization: Audio-Audio

Optimal alignment (cost-minimizing warping path)



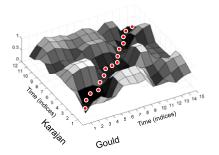
Music Synchronization: Audio-Audio

Cost matrix



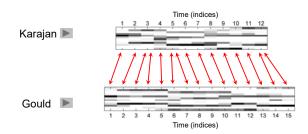
Music Synchronization: Audio-Audio

Optimal alignment (cost-minimizing warping path)



Music Synchronization: Audio-Audio

Optimal alignment (cost-minimizing warping path)

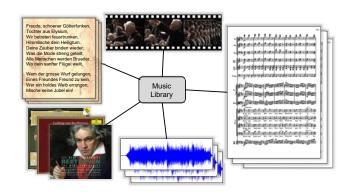


Music Synchronization: Audio-Audio

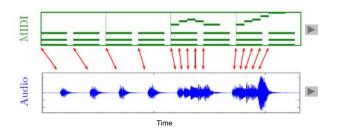
How to compute the alignment?

- ⇒ Cost matrices
- ⇒ Dynamic programming
- ⇒ Dynamic Time Warping (DTW)

Applications



Music Synchronization: MIDI-Audio



Music Synchronization: MIDI-Audio

MIDI = meta data

Automated annotation

Audio recording

Sonification of annotations

Music Synchronization: MIDI-Audio

- Automated audio annotation
- Accurate audio access after MIDI-based retrieval
- Automated tracking of MIDI note parameters during audio playback
- Performance analysis

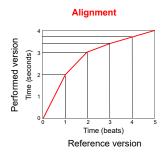
Music Synchronization: MIDI-Audio

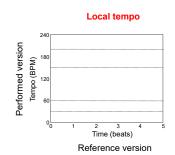
MIDI = reference (score)

Tempo information

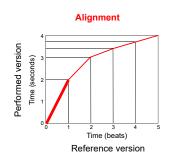
Audio recording

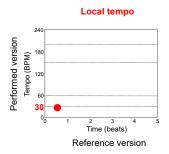
Performance Analysis: Tempo Curves





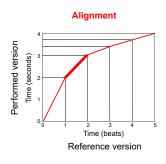
Performance Analysis: Tempo Curves

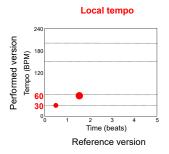




1 beat lasting 2 seconds ≜ 30 BPM

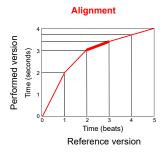
Performance Analysis: Tempo Curves

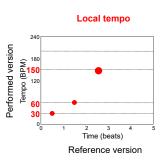




1 beat lasting 1 seconds ≜ 60 BPM

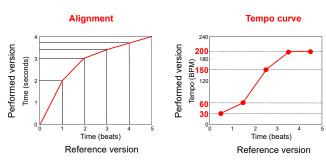
Performance Analysis: Tempo Curves





1 beat lasting 0.4 seconds △ 150 BPM

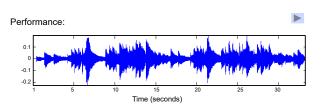
Performance Analysis: Tempo Curves



Tempo curve is optained by interpolation

Performance Analysis: Tempo Curves

Schumann: Träumerei



Performance Analysis: Tempo Curves

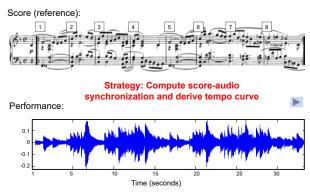
Schumann: Träumerei

Performance:

0.1
0.1
0.1
0.2
1 15 20 25 30
Time (seconds)

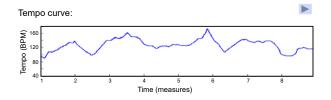
Performance Analysis: Tempo Curves

Schumann: Träumerei



Performance Analysis: Tempo Curves

Schumann: Träumerei

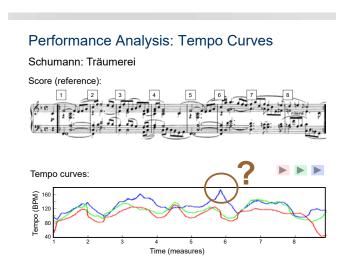


Performance Analysis: Tempo Curves

Schumann: Träumerei



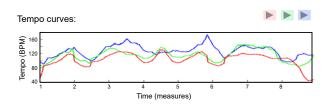
Performance Analysis: Tempo Curves Schumann: Träumerei Score (reference): Tempo curves:



Performance Analysis: Tempo Curves

Schumann: Träumerei

What can be done if no reference is available?

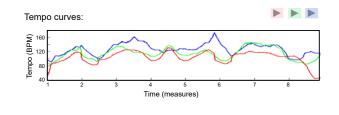


Performance Analysis: Tempo Curves

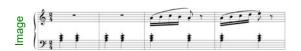
Schumann: Träumerei

What can be done if no reference is available?

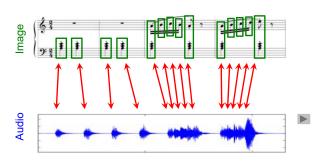
→ Tempo and Beat Tracking



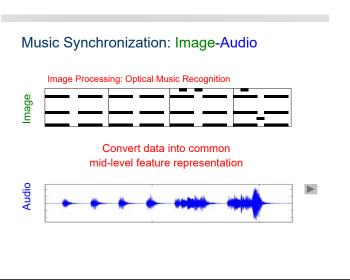
Music Synchronization: Image-Audio

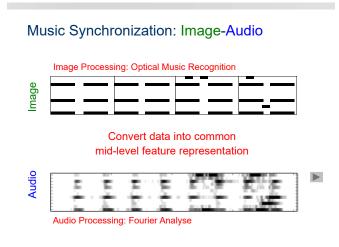


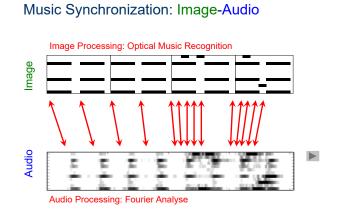
Music Synchronization: Image-Audio

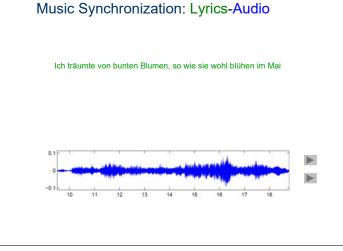


Music Synchronization: Image-Audio Convert data into common mid-level feature representation

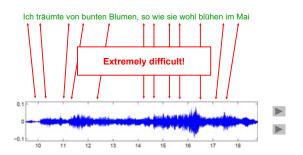








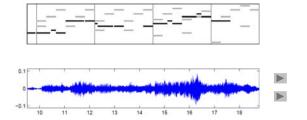
Music Synchronization: Lyrics-Audio



Music Synchronization: Lyrics-Audio

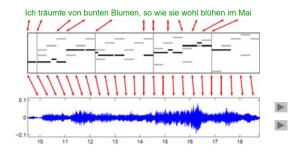
 ${\sf Lyrics\text{-}Audio} \to {\sf Lyrics\text{-}MIDI\text{-}Audio}$

Ich träumte von bunten Blumen, so wie sie wohl blühen im Mai



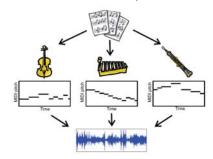
Music Synchronization: Lyrics-Audio

Lyrics-Audio → Lyrics-MIDI + MIDI-Audio

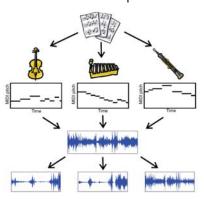


Score-Informed Source Separation

Score-Informed Source Separation



Score-Informed Source Separation



Score-Informed Source Separation

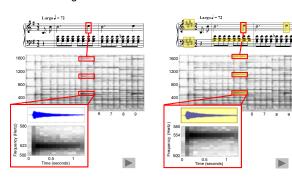
Experimental results for separating left and right hands for piano recordings:

Composer	Piece	Database	Results
			L R Eq Org
Bach	BWV 875, Prelude	SMD	
Chopin	Op. 28, No. 15	SMD	
Chopin	Op. 64, No. 1	European Archive	

Dynamic Time Warping

Score-Informed Source Separation

Audio editing



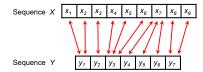
Dynamic Time Warping

- Well-known technique to find an optimal alignment between two given (time-dependent) sequences under certain restrictions.
- Intuitively, sequences are warped in a non-linear fashion to match each other.
- Originally used to compare different speech patterns in automatic speech recognition

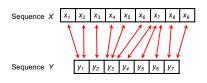
Dynamic Time Warping

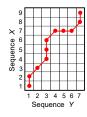
Sequence Y y_1 y_2 y_3 y_4 y_5 y_6 y_7

Dynamic Time Warping



Time alignment of two time-dependent sequences, where the aligned points are indicated by the arrows.





Time alignment of two time-dependent sequences, where the aligned points are indicated by the arrows.

Dynamic Time Warping

To compare two different features $\ x,y\in\mathcal{F}$ one needs a local cost measure which is defined to be a function

$$c: \mathcal{F} \times \mathcal{F} \to \mathbb{R}_{\geq 0}$$

Typically, c(x,y) is small (low cost) if x and y are similar to each other, and otherwise c(x,y) is large (high cost).

Dynamic Time Warping

The objective of DTW is to compare two (time-dependent) sequences

$$X := (x_1, x_2, \dots, x_N)$$

of length $N \in \mathbb{N}$ and

$$Y := (y_1, y_2, \dots, y_M)$$

of length $M \in \mathbb{N}$. Here,

$$x_n, y_m \in \mathcal{F}, n \in [1:N], m \in [1:M],$$

are suitable features that are elements from a given feature space denoted by $\ensuremath{\mathcal{F}}$.

Dynamic Time Warping

Evaluating the local cost measure for each pair of elements of the sequences $X \, \mathrm{and} \, \, Y$ one obtains the cost matrix

$$C \in \mathbb{R}^{N \times M}$$

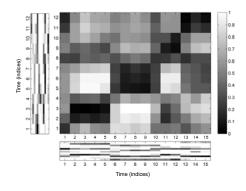
denfined by

$$C(n,m) := c(x_n, y_m).$$

Then the goal is to find an alignment between X and Y having minimal overall cost. Intuitively, such an optimal alignment runs along a "valley" of low cost within the cost matrix C.

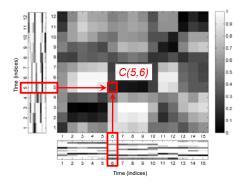
Dynamic Time Warping

Cost matrix C

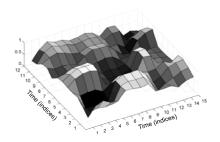


Dynamic Time Warping

Cost matrix C

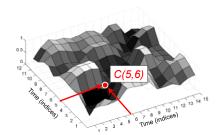


Cost matrix C



Dynamic Time Warping

Cost matrix C



Dynamic Time Warping

The next definition formalizes the notion of an alignment.

A warping path is a sequence $p = (p_1, \dots, p_L)$ with $p_{\ell} = (n_{\ell}, m_{\ell}) \in [1:N] \times [1:M]$

for $\ell \in [1:L]$ satisfying the following three conditions:

 $p_1 = (1,1)$ and $p_L = (N,M)$ Boundary condition:

• Monotonicity condition: $n_1 \leq n_2 \leq \ldots \leq n_L$ and

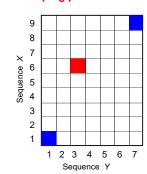
 $m_1 \le m_2 \le \ldots \le m_L$

Step size condition: $p_{\ell+1} - p_{\ell} \in \{(1,0), (0,1), (1,1)\}$

for $\ell \in [1:L-1]$

Dynamic Time Warping

Warping path



Each matrix entry (cell) corresponds to a pair of indices.

Cell = (6,3)

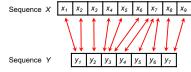
Boundary cells:

 $p_1 = (1,1)$ $p_L = (N,M) = (9,7)$

Dynamic Time Warping

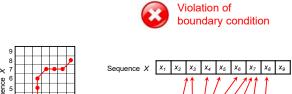
Warping path



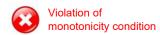


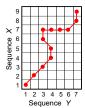
Dynamic Time Warping

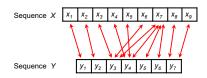
Warping path



Warping path

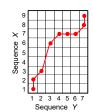


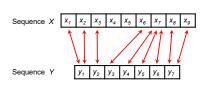




Dynamic Time Warping

Warping path





Dynamic Time Warping

The total cost $c_p(X,Y)$ of a warping path p between X and Y with respect to the local cost measure c is defined as

$$c_p(X,Y) := \sum_{\ell=1}^L c(x_{n_\ell}, y_{m_\ell})$$

Furthermore, an optimal warping path between X and Y is a warping path p^* having minimal total cost among all possible warping paths. The DTW distance $\mathrm{DTW}(X,Y)$ between X and Y is then defined as the total cost o p^*

$$\begin{array}{lll} \mathrm{DTW}(X,Y) &:= & c_{p^*}(X,Y) \\ &= & \min\{c_p(X,Y) \mid p \text{ is a warping path}\} \end{array}$$

Dynamic Time Warping

- The warping path p^* is not unique (in general).
- DTW does (in general) not definne a metric since it may not satisfy the triangle inequality.
- There exist exponentially many warping paths.
- How can p* be computed efficiently?

Dynamic Time Warping

Notation:
$$X(1:n) := (x_1, \dots, x_n), \quad 1 \le n \le N$$

 $Y(1:m) := (y_1, \dots, y_m), \quad 1 \le m \le M$
 $D(n,m) := DTW(X(1:n), Y(1:m))$

The matrix D is called the accumulated cost matrix.

The entry D(n,m) specifies the cost of an optimal warping path that aligns X(1:n) with Y(1:m).

Dynamic Time Warping

Lemma:

$$\begin{array}{lll} (i) & D(N,M) & = & \mathrm{DTW}(X,Y) \\ (ii) & D(1,1) & = & C(1,1) \end{array}$$

$$\begin{array}{cccc} (iii) & D(n,1) & = & \sum_{k=1}^{n} C(k,1) \\ D(1,m) & = & \sum_{k=1}^{m} C(1,k) \end{array}$$

$$\begin{array}{ll} (iv) & D(n,m) & = & \min \left(\begin{array}{ll} D(n-1,m-1) \\ D(n-1,m) \\ D(n,m-1) \end{array} \right) + C(n,m) \\ & \text{for } n>1, \ m>1 \end{array}$$

Proof: (i) – (iii) are clear by definition

Proof of (iv): Induction via n, m:

Let n>1, m>1 and $q=(q_1,\ldots,p_{L-1},p_L)$ be an optimal warping path for X(1:n)) and Y(1:m)). Then $q_L=(n,m)$ (boundary condition).

Let $q_{L-1}=(a,b)$. The step size condition implies

$$(a,b) \in \{(n-1,m-1), (n-1,m), (n,m-1)\}$$

The warping path (q_1,\ldots,q_{L-1}) must be optimal for $X(1:a),\ Y(1:b).$ Thus,

$$D(n,m) = c_{(q_1,\dots,q_{L-1})}(X(1:a),Y(1:b)) + C(n,m)$$

Dynamic Time Warping

Accumulated cost matrix

Given the two feature sequences X and Y, the matrix D is computed recursively.

- Initialize Dusing (ii) and (iii) of the lemma.
- Compute D(n, m) for n > 1, m > 1 using (iv).
- DTW(X, Y) = D(N, M) using (i).

Note:

- Complexity O(NM).
- Dynamic programming: "overlapping-subproblem property"

Dynamic Time Warping

Optimal warping path

Given to the algorithm is the accumulated cost matrix D. The optimal path $p^*=(p_1,\ldots,p_L)$ is computed in reverse order of the indices starting with $p_L=(N,M)$. Suppose $p_\ell=(n,m)$ has been computed. In case (n,m)=(1,1), one must have $\ell=1$ and we are done. Otherwise,

$$p_{\ell-1} := \left\{ \begin{array}{ll} (1,m-1), & \text{if } n=1 \\ (n-1,1), & \text{if } m=1 \\ \mathrm{argmin} \{D(n-1,m-1), \\ D(n-1,m), D(n,m-1)\}, & \text{otherwise,} \end{array} \right.$$

where we take the lexicographically smallest pair in case "argmin" is not unique.

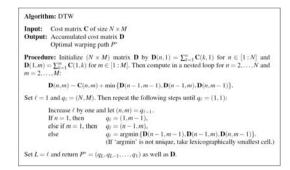
Dynamic Time Warping

Summary m = 10 D(N,M) = DTW(X,Y) D(n,m) D(n-1,m-1) D(n-1,m) D(n-1,m) D(n-1,m)

10 11 12 13 14 15

Dynamic Time Warping

Summary



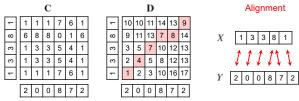
Dynamic Time Warping

Example

$$X = (1,3,3,8,1)$$

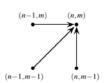
$$Y = (2,0,0,8,7,2)$$

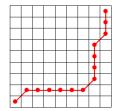
$$c(x,y) = |x - y|, x,y \in \mathbb{R}$$



Optimal warping path: $P^* = ((1,1), (2,2), (3,3), (4,4), (4,5), (5,6))$

Step size conditions

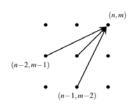


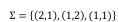


$$\Sigma = \{(1,0), (0,1), (1,1)\}$$

Dynamic Time Warping

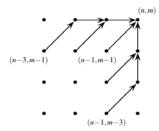
Step size conditions

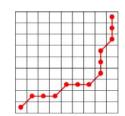




Dynamic Time Warping

Step size conditions





Dynamic Time Warping

- Computation via dynamic programming
- Memory requirements and running time: O(NM)
- Problem: Infeasible for large N and M
- Example: Feature resolution 10 Hz, pieces 15 min

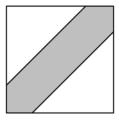
$$\Rightarrow$$
 N, M ~ 10,000

⇒
$$N \cdot M \sim 100,000,000$$

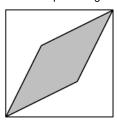
Dynamic Time Warping

Global constraints

Sakoe-Chiba band



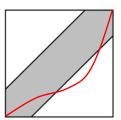
Itakura parallelogram



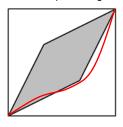
Dynamic Time Warping

Global constraints

Sakoe-Chiba band

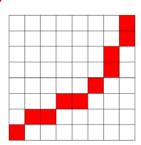


Itakura parallelogram



Problem: Optimal warping path not in constraint region

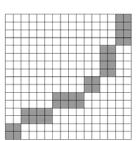
Multiscale approach



Compute optimal warping path on coarse level

Dynamic Time Warping

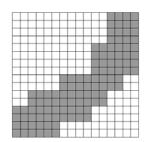
Multiscale approach



Project on fine level

Dynamic Time Warping

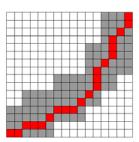
Multiscale approach



Specify constraint region

Dynamic Time Warping

Multiscale approach



Compute constrained optimal warping path

Dynamic Time Warping

Multiscale approach

- Suitable features?
- Suitable resolution levels?
- Size of constraint regions?

Good trade-off between efficiency and robustness?

Suitable parameters depend very much on application!