

Workshop HfM Karlsruhe

Music Information Retrieval

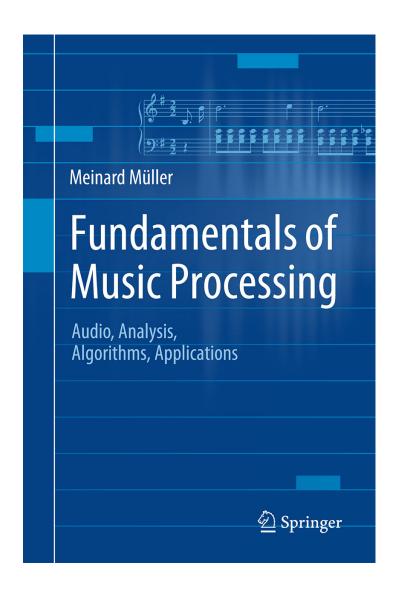
Classification & Clustering

Christof Weiß, Frank Zalkow, Christian Dittmar, Meinard Müller

International Audio Laboratories Erlangen

christof.weiss@audiolabs-erlangen.de frank.zalkow@audiolabs-erlangen.de meinard.mueller@audiolabs-erlangen.de

Book: Fundamentals of Music Processing



Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover
ISBN: 978-3-319-21944-8
Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing

Chapter		Music Processing Scenario	
1		Music Represenations	
2		Fourier Analysis of Signals	
3		Music Synchronization	
4		Music Structure Analysis	
5		Chord Recognition	
6	A++++	Tempo and Beat Tracking	
7		Content-Based Audio Retrieval	
8		Musically Informed Audio Decomposition	

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

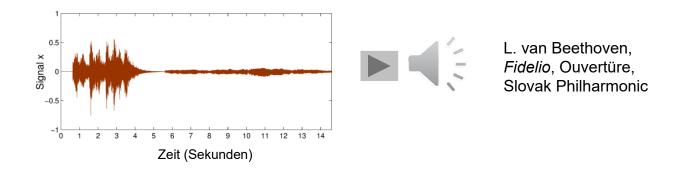
Dissertation: Tonality-Based Style Analysis

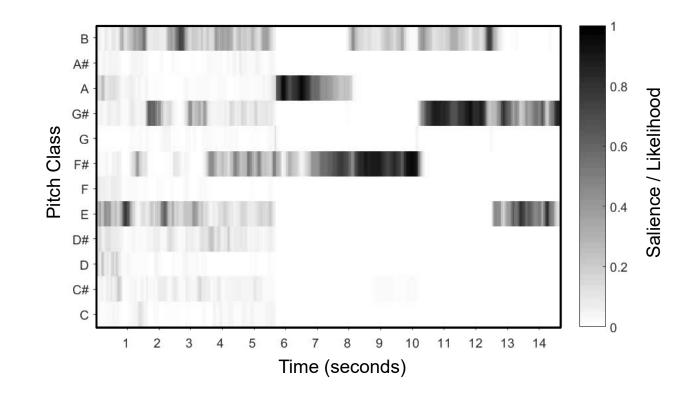
Christof Weiß
Computational Methods for Tonality-Based Style Analysis of
Classical Music Audio Recordings
Dissertation, Ilmenau University of Technology, 2017

Chapter 7: Clustering and Analysis of Musical Styles

Chapter 8: Subgenre Classification for Western Classical Music

Recall: Chroma Features

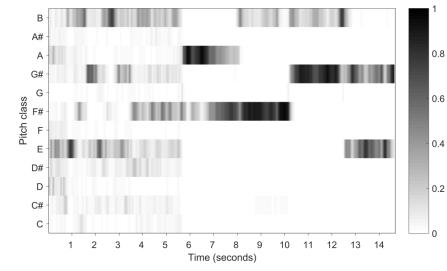




Recall: Chroma Features

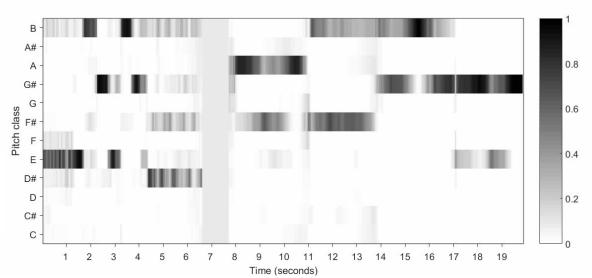
Orchestra

L. van Beethoven, Fidelio, Ouvertüre, Slovak Philharmonic



Piano

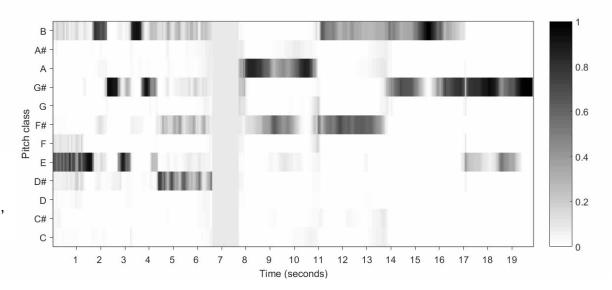
Fidelio, Ouvertüre, arr. Alexander Zemlinsky M. Namekawa, D.R. Davies, Klavier vierhändig



Recall: Chroma Features

Piano

Fidelio, Overture, arr. Alexander Zemlinsky M. Namekawa, D.R. Davies, piano four hands

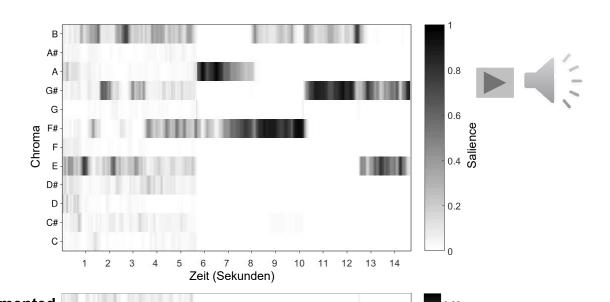


Chroma-based Classification Features

Chromagram

Triad featues

Interval features

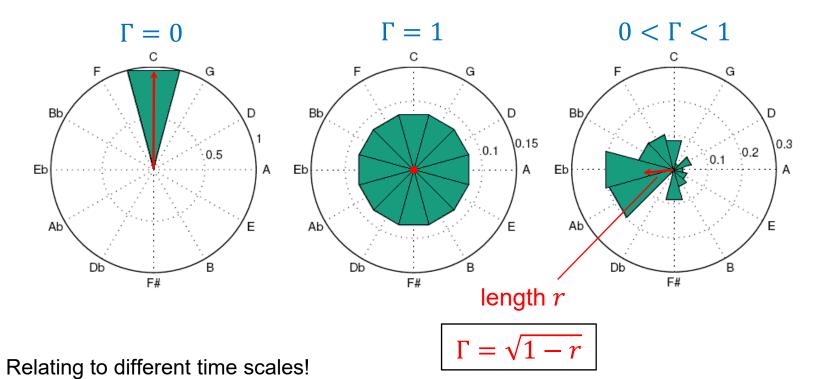


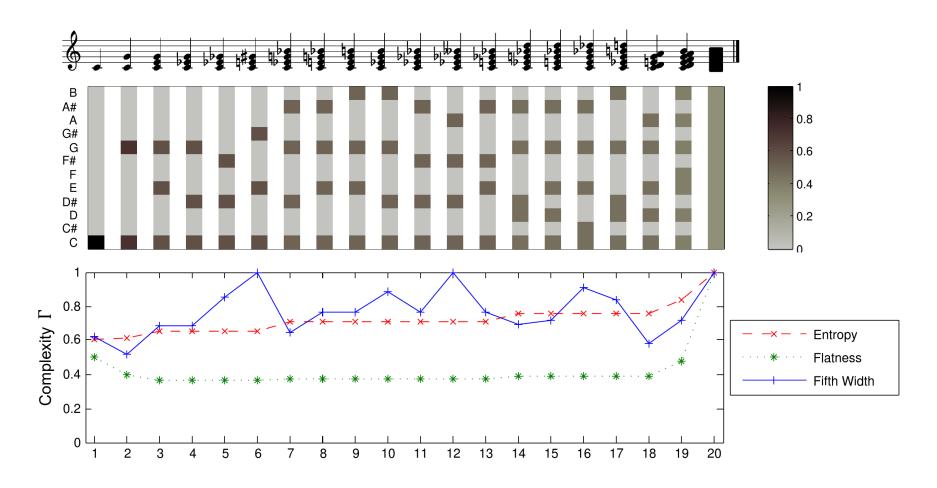
0.03 0.02 especial of the contract of the cont

0.2

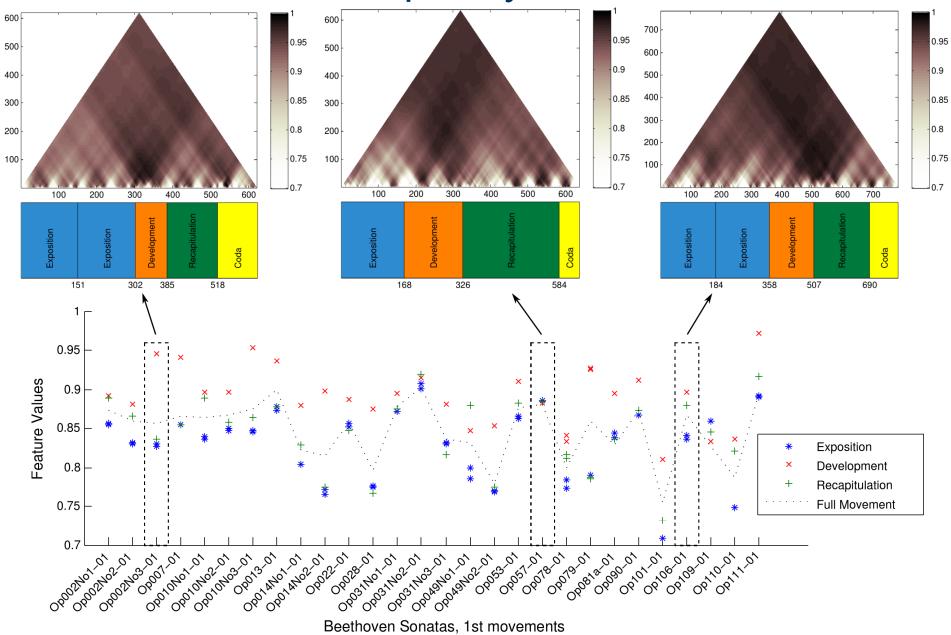
 \rightarrow transposition-invariant

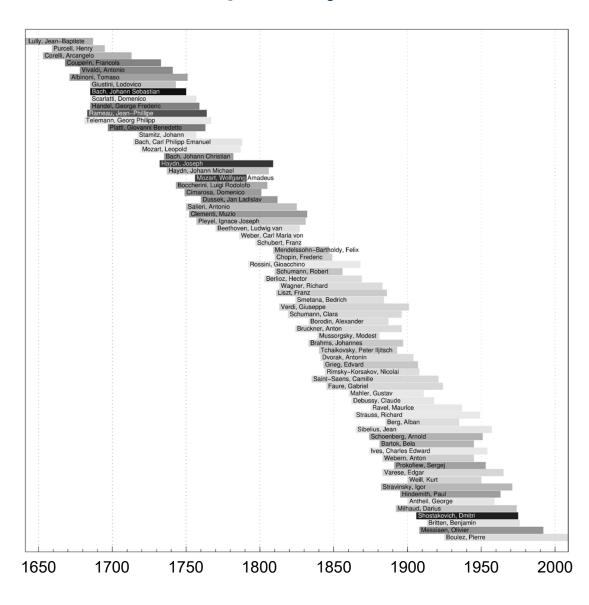
- Realization of complexity measure Γ
 - Entropy / Flatness measures
 - Distribution over Circle of Fifths

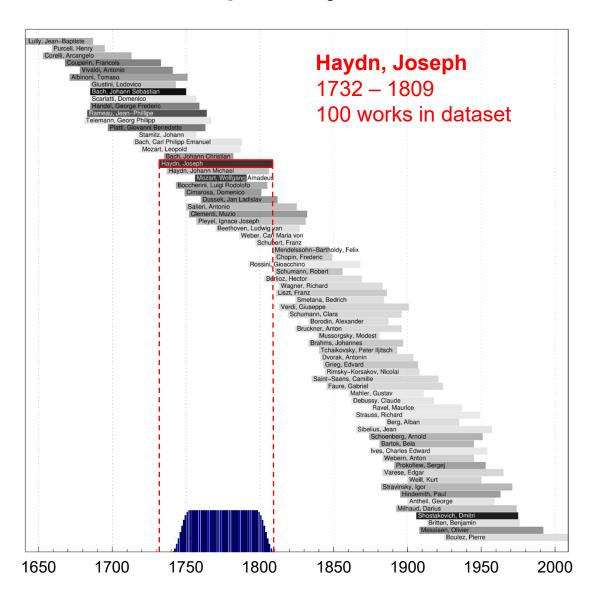


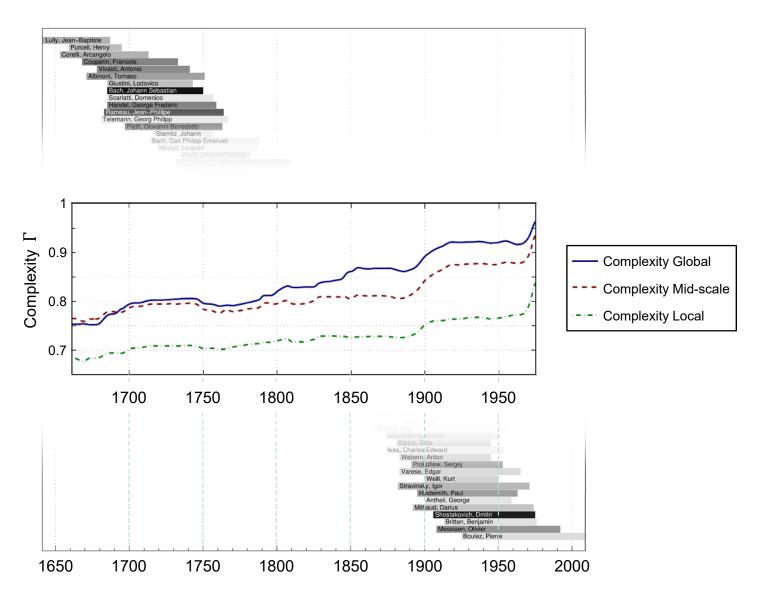


Weiss / Müller, Quantifying and Visualizing Tonal Complexity, CIM 2014





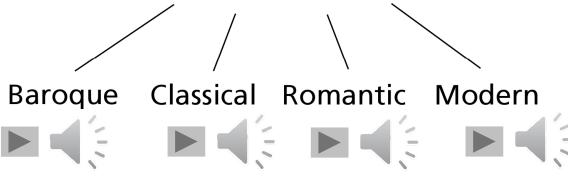




world music JAZZ

HipHop Pop Rock

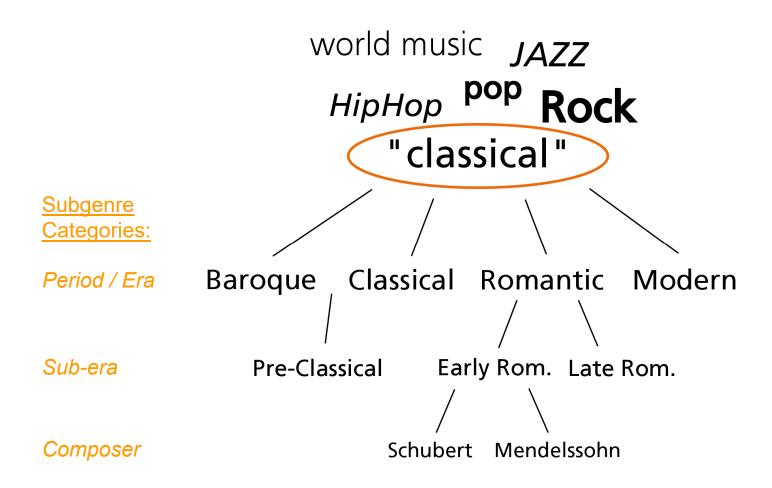
"classical"



J. S. Bach, Brandenburg Concerto No. 2 in F major, I. Allegro, Cologne Chamber Orch.

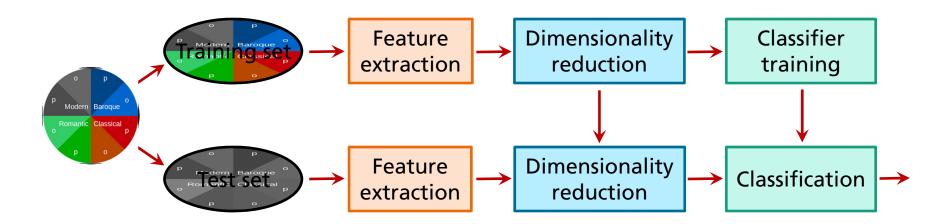
L. van Beethoven, *Fidelio*, Overture, Slovak Philharm.

R. Schumann, Sonata No. 2 op. 22, II. Andantino B. Glemser, Piano A. Webern, Variations for Orchestra op. 30 Ulster Orchestra

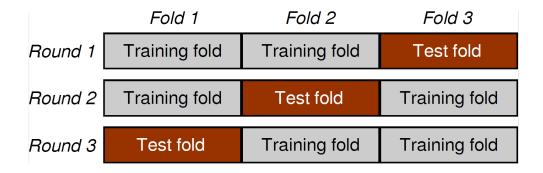


- Standard approach (content-based)
 - Supervised machine learning
 - Based on spectral / timbral features
- In classical music → Instrumentation
- Better categories?
 - Musical style
 - Independent from instrumentation
 - → Tonality / Harmony

Typical approach: Supervised machine learning



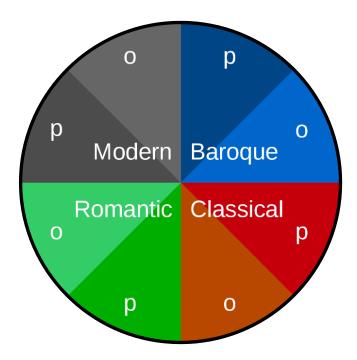
- Experimental design: Evaluation with Cross Validation (CV)
- Separate data into different parts (folds)



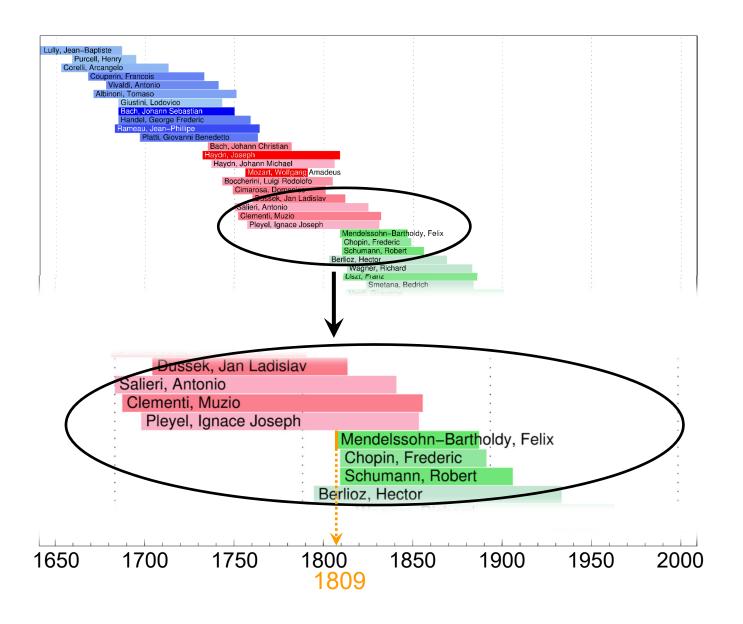
Distribution of classes balanced for all folds

Classification Scenario

- Dataset: CrossEraDB (Historical Periods)
 - Balanced Piano (p) Orchestra (o)
 - Each 200 pieces → 1600 in total



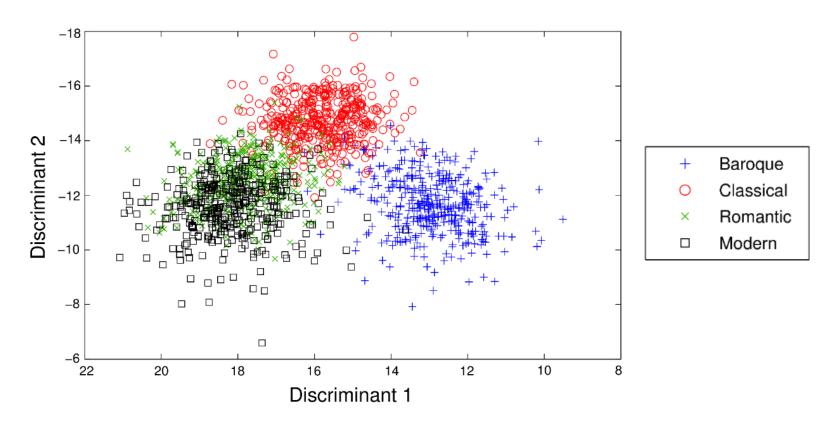
Classification Scenario



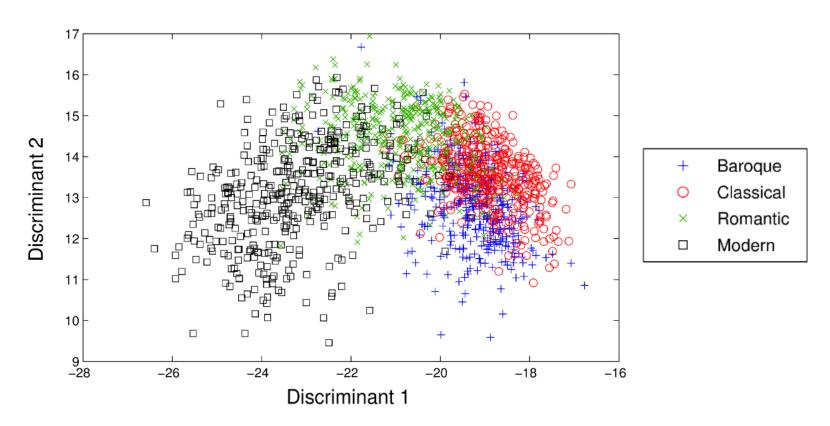
Classification Features

Standard	Dim.	Tonal	Dim.
MFCC	16	Interval cat.	6 x 4
OSC	14	Triad types	4 x 4
ZCR	1	Complexity	7 x 4
ASE	16	Chord progr.	11 x 5
SFM	16		
SCF	16		
SC	16		
LogLoud	12		
NormLoud	12		
Sum	119	Sum	123
Mean & Std	x 2	Mean & Std	x 2
Total	238	Total	246

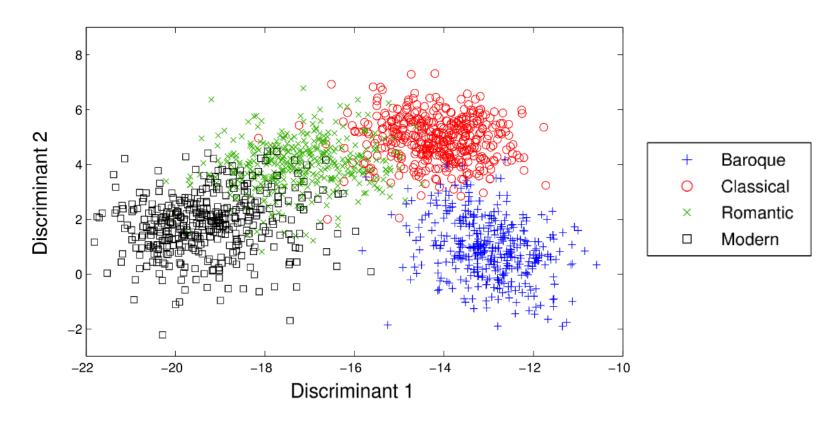
- Reduce feature space to few dimensions (prevent curse of dimensionality)
- Maximize separation of classes with Linear Discriminant Analysis (LDA)
- Using standard features (MFCC, spectral envelope, ...)



- Reduce feature space to few dimensions
- Maximize separation of classes with Linear Discriminant Analysis (LDA)
- Using tonal features (interval, triad types, tonal complexity, ... 4 time scales)

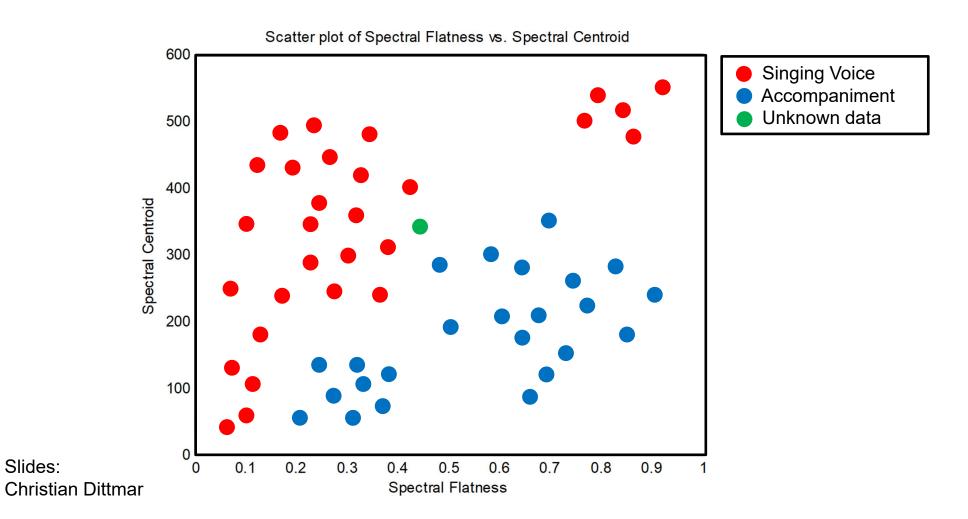


- Reduce feature space to few dimensions
- Maximize separation of classes with Linear Discriminant Analysis (LDA)
- Using tonal & standard features



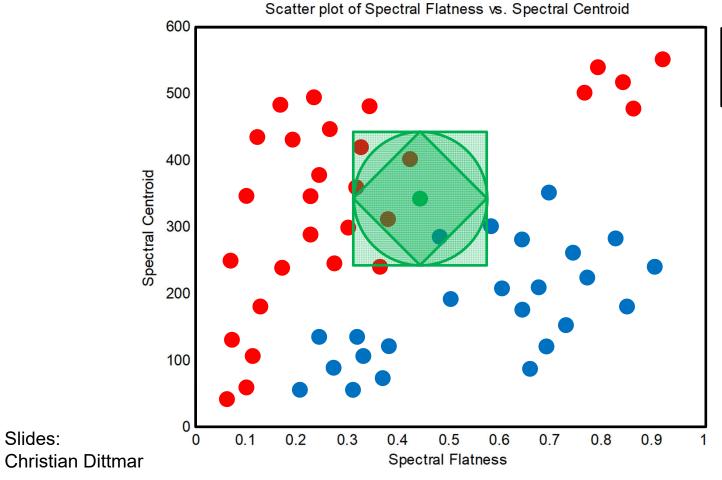
- Reduce feature space to few dimensions
- Other methods (supervised):
 - (DNN-based) Autoencoder
 - Feature selection
- Other methods (unsupervised):
 - Principal component analysis (PCA)
 - Nonnegative matrix factorization (NMF)

k Nearest Neighbours (kNN)



k Nearest Neighbours (kNN)

Slides:



Singing Voice Accompaniment

Unknown data

L1-Dist. (Manhattan)

$$||d||_1 = \sum_{m=1}^{M} |x_m - y_m|$$

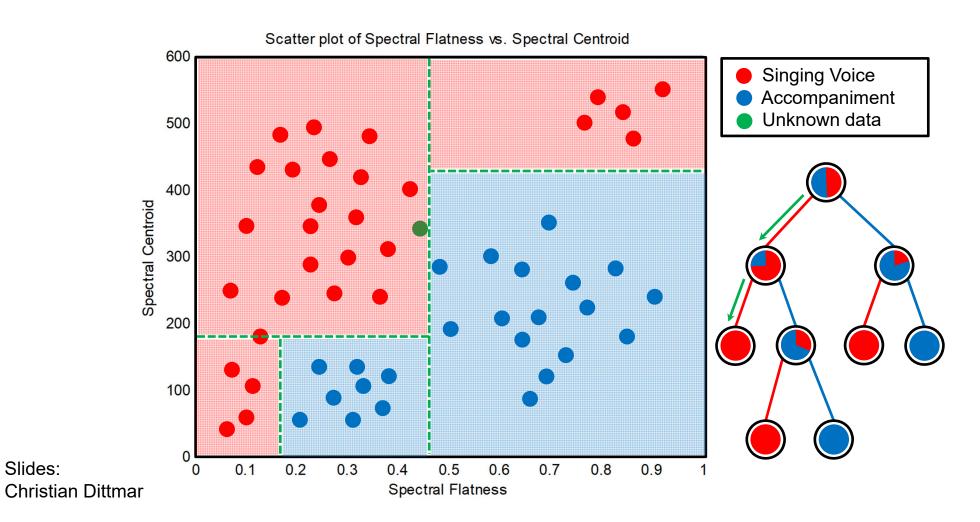
L2-Dist. (Euclidean)

$$\|d\|_{2} = \sqrt{\sum_{m=1}^{M} |x_{m} - y_{m}|^{2}}$$

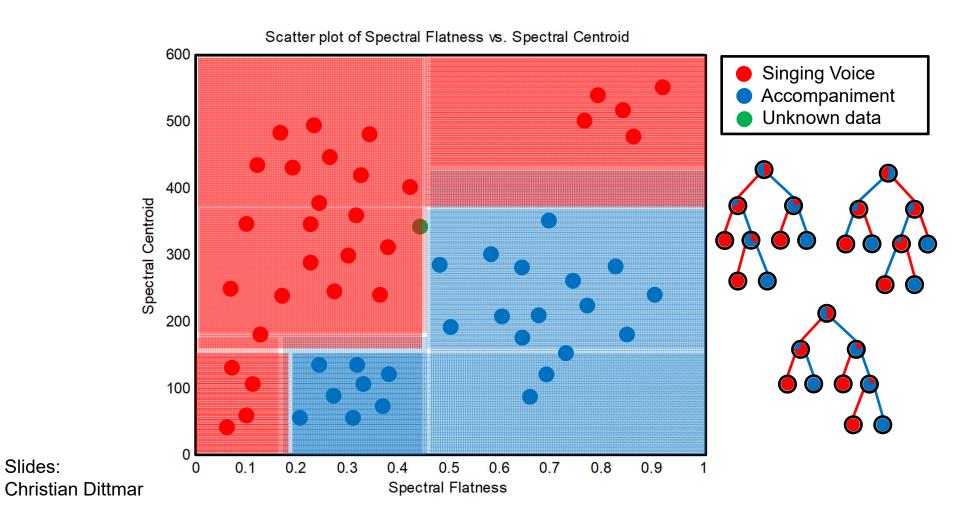
L∞-Dist. (Maximum)

$$||d||_{\infty} = \max(|x_1 - y_1|, ..., |x_M - y_M|)$$

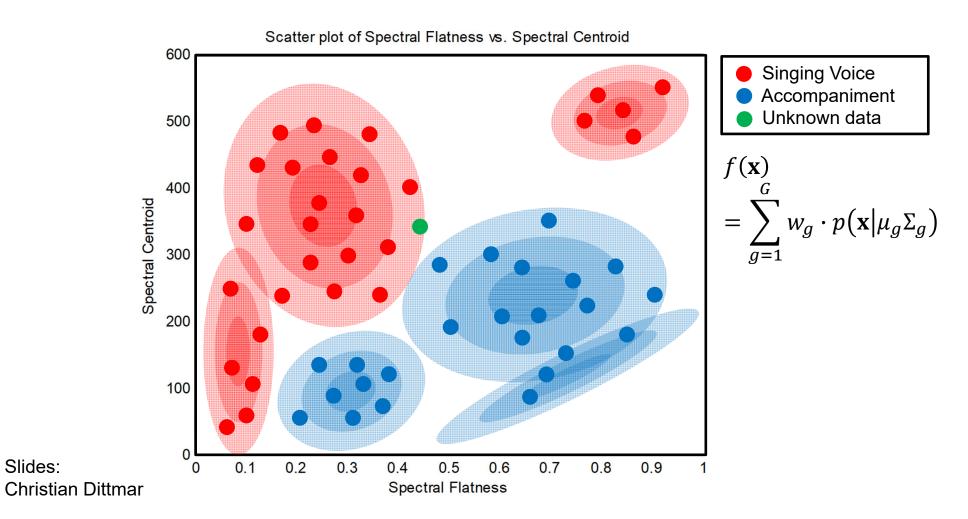
Decision Trees (DT)



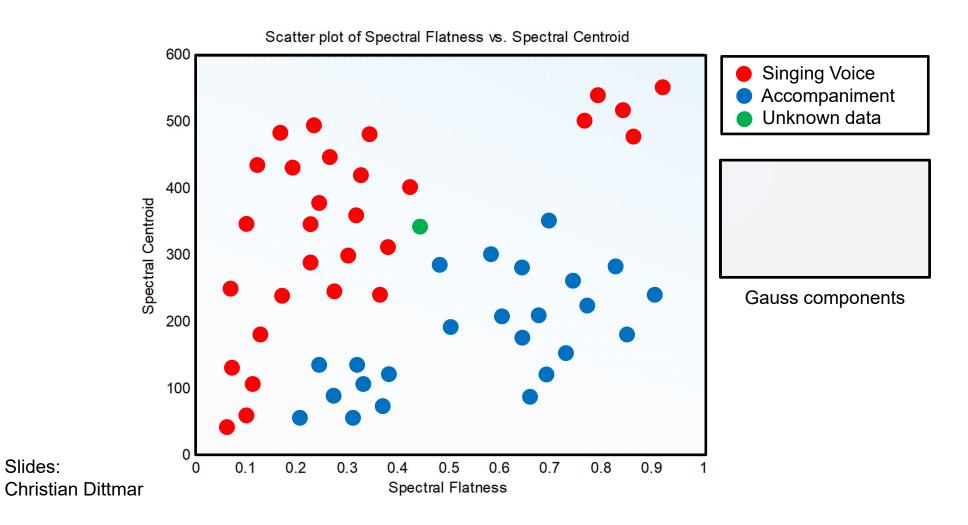
Random Forests (RF)



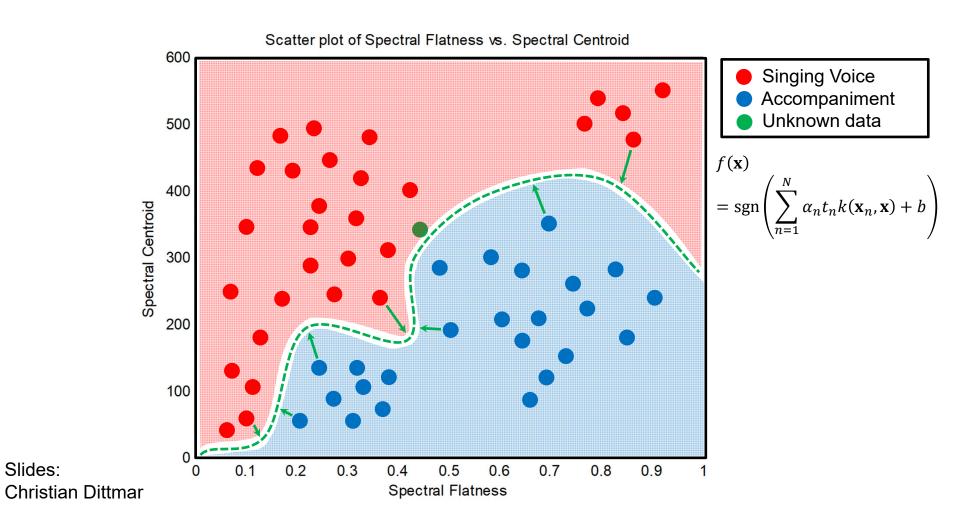
Gaussian Mixture Models (GMM)



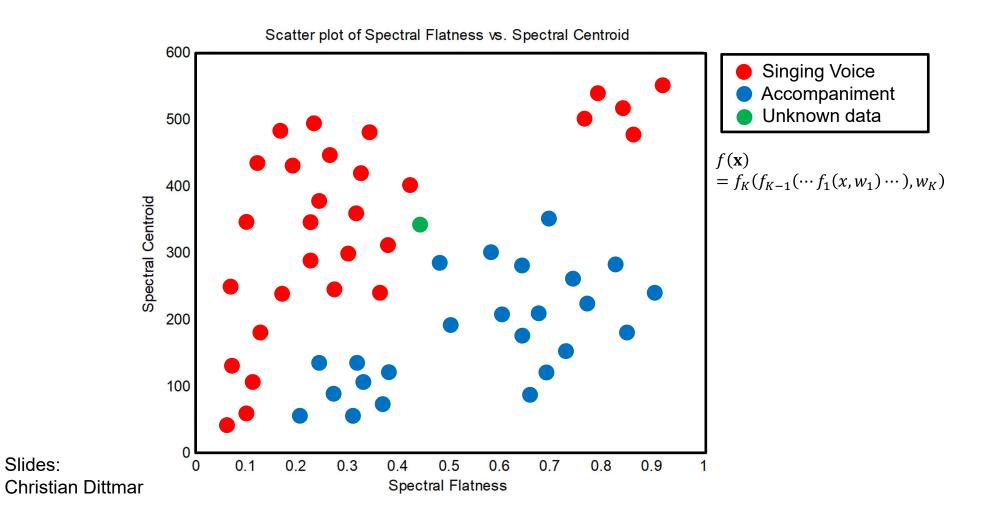
Gaussian Mixture Models (GMM)



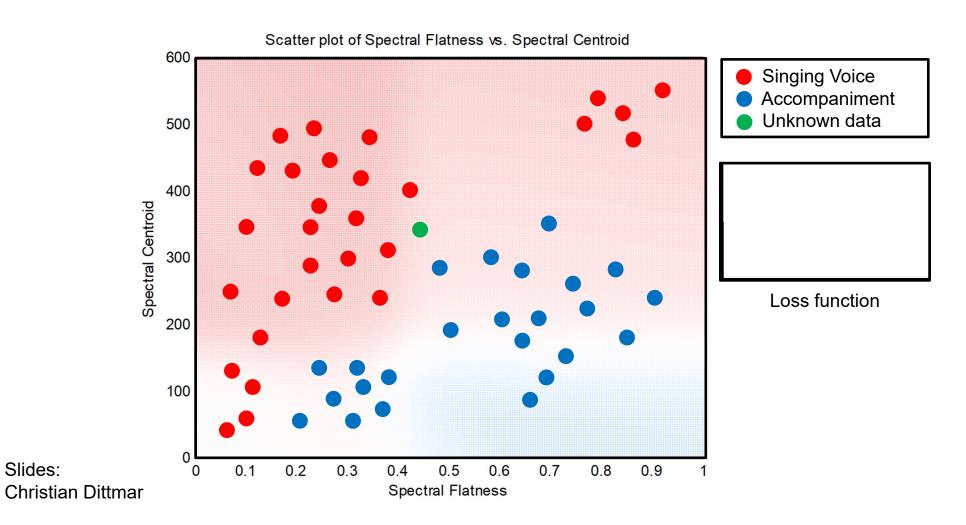
Support Vector Machines (SVM)



Deep Neural Networks (DNN)



Deep Neural Networks (DNN)



Classification Results

Gaussian Mixture Model (GMM) classifier, LDA reduction, 3-fold cross validation

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Weiss / Mauch / Dixon, *Timbre-Invariant Audio Features* for Style Analysis of Classical Music, ICMC / SMC 2014

Gaussian Mixture Model (GMM) classifier, LDA reduction, 3-fold cross validation

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Overfitting???

Weiss / Mauch / Dixon, *Timbre-Invariant Audio Features* for Style Analysis of Classical Music, ICMC / SMC 2014

GMM classifier, LDA reduction, 3-fold cross validation

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Flexer, A Closer Look on Artist Filters for Musical Genre Classification, ISMIR 2007

- GMM classifier, LDA reduction, 3-fold cross validation
- No composer filter

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Using composer filter

	Full Dataset	Piano	Orchestra
Standard features	54 %	36 %	70 %
Tonal features	73 %	70 %	78 %
Combined	68 %	44 %	68 %

Weiss / Müller, Tonal Complexity Features for Style Classification of Classical Music, ICASSP 2015

- GMM classifier, LDA reduction, 3-fold cross validation
- No composer filter

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Using composer filter

	Full Dataset	Piano	Orchestra
Standard features	54 %	36 %	70 %
Tonal features	73 %	70 %	78 %
Combined	68 %	44 %	68 %

Weiss / Müller, Tonal Complexity Features for Style Classification of Classical Music, ICASSP 2015

- What is actually learned?
- Pay attention to:
 - Overfitting
 - "Curse of dimensionality" use dimensionality reduction techniques
 - Artist / album effects
- Evaluation: "Figures of merit":
 - Confusion matrix
 - Error examples: Consistently misclassified items
 - Listening tests
- Evaluation on unseen data (no cross validation)

Bob Sturm, *Classification Accuracy is not enough*, Journal of Intelligent Information Systems, 2013

Classification Results – Confusion Matrix

- 80 tonal features, GMM with 1 Gaussian, LDA, composer filtering
- Full dataset
- Mean accuracy: 75 %
- Inter-class standard deviation: 6.7 %

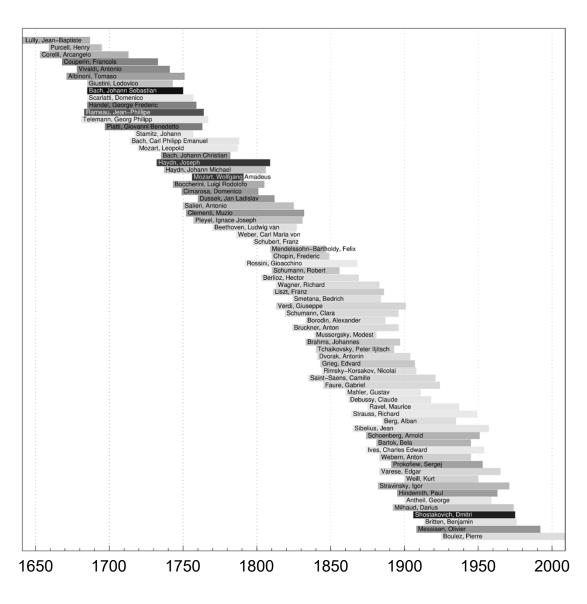
	Baroque	65.2	23.2	10.9	0.6
Era (correct)	Classical	17.0	74.9	8.1	0.0
Era (c	Romantic	6.5	5.0	77.7	10.8
	Modern	1.7	0.9	16.8	80.6
	•	Batoque	Jiassical P	onartic	Modern
			Era (cla		

Classification Results: Error Examples

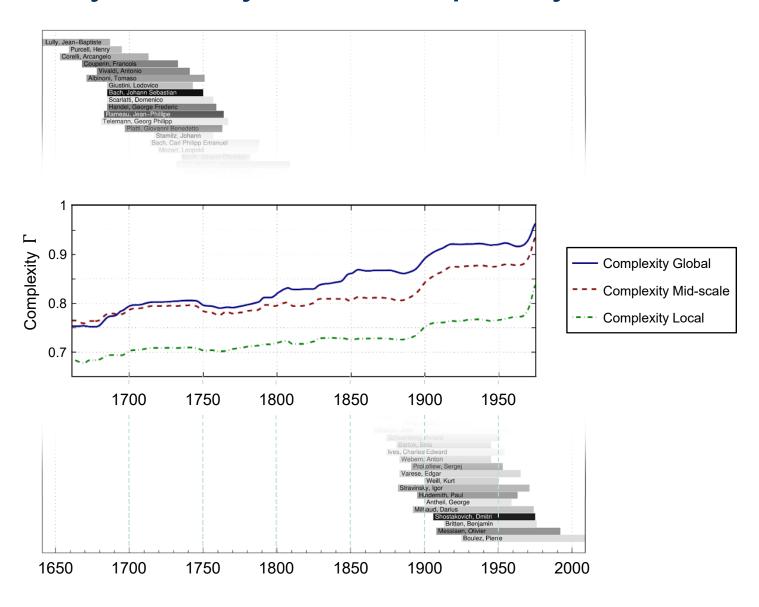
- 80 tonal features, GMM with 1 Gaussian, LDA
- Look at consistently and persistently misclassified items

Class	Composer	Piece	Classified
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in Eb minor BWV 853	Romantic
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in F major BWV 856	Romantic
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in Aminor BWV 865	Romantic
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in Bb major BWV 866	Romantic
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in Bb minor BWV 867	Romantic
Baroque	Bach, J. S.	English Suite No. 3 in G minor BWV 808, Sarabande	Romantic
Baroque	Bach, J. S.	Brandenburg Conc. No. 1 in F major BWV 1046, Adagio	Romantic
Baroque	Bach, J. S.	Overture No. 2 in B minor BWV 1067, Badinerie	Romantic
Baroque	Bach, J. S.	Overture No. 3 in D major BWV 1068, Gigue	Romantic
Baroque	Couperin, F.	27 Ordres, Huitième ordre, IX. Rondeau passacaille	Romantic
Baroque	Corelli, A.	Concerto grosso op. 6 No. 2, III. Grave – Andante largo	Romantic
Baroque	Lully, JB.	Ballet de Xerces LWV 12, Gavotte en rondeau	Romantic
Baroque	Purcell, H.	Opera "Dido and Aeneas" Z. 626, Overture	Romantic
Baroque	Vivaldi, A.	"The Four Seasons," RV 293 "Autumn," Adagio molto	Romantic
Romantic	Schumann, R.	Kinderszenen op. 15, "Haschemann"	Baroque
Romantic	Grieg, E.	Holberg suite op. 40, Gavotte	Baroque
Romantic	Mendelssohn, F.	Symphony No. 4 in A major, IV. Saltarello, presto	Baroque
Modern	Shostakovich, D.	Preludes & Fugues op. 87 Fugue No. 1 in C major	Baroque
Modern	Shostakovich, D.	Preludes & Fugues op. 87 Fugue No. 5 in D major	Baroque

Musical Style Analysis

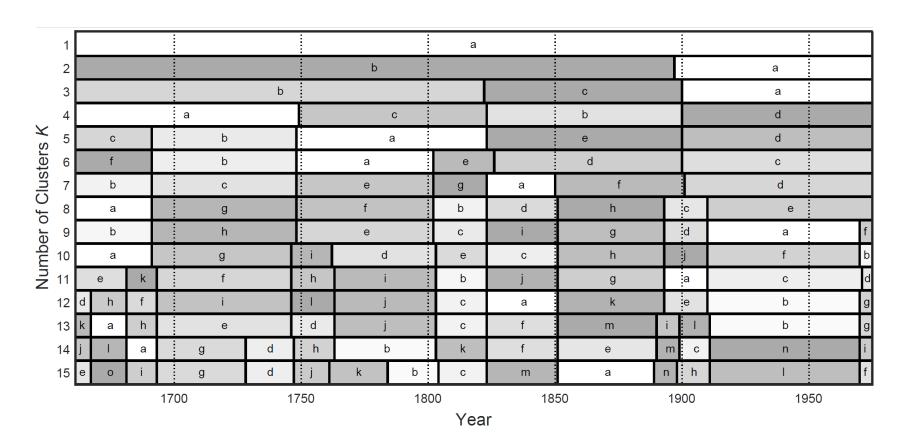


Musical Style Analysis – Complexity



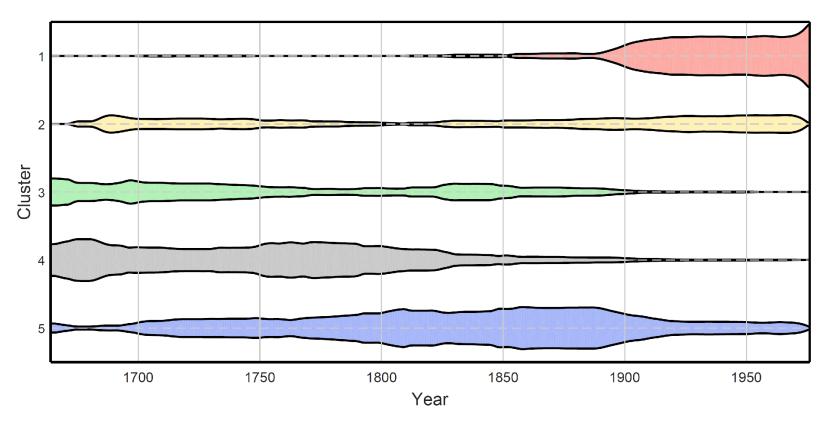
Clustering: Years

- Features: Interval, complexity, chord progressions
- Dimensional reduction with Principal Component Analysis (PCA)
- k-means clustering with different number of clusters k

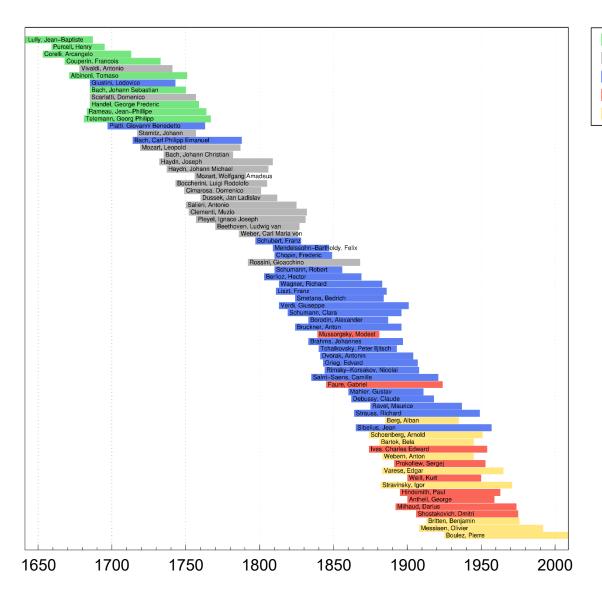


Clustering: Pieces

• k-means clustering with k = 5 clusters



Weiss / Mauch / Dixon / Müller, Investigating Style Evolution of Western Classical Music: A Computational Approach Musicae Scientiae 2018



Cluster 1

Cluster 2 Cluster 3 Cluster 4 Cluster 5

