

Workshop HfM Karlsruhe

Music Information Retrieval

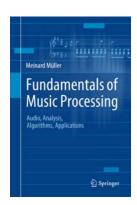
Audio Features

Christof Weiß, Frank Zalkow, Meinard Müller

International Audio Laboratories Erlangen

christof.weiss@audiolabs-erlangen.de frank.zalkow@audiolabs-erlangen.de meinard.mueller@audiolabs-erlangen.de

Book: Fundamentals of Music Processing



Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

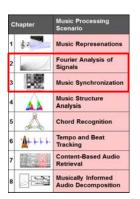
Book: Fundamentals of Music Processing



Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing



Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Chapter 2: Fourier Analysis of Signals

- 2.1 The Fourier Transform in a Nutshell
- 2.2 Signals and Signal Spaces2.3 Fourier Transform
- 2.4 Discrete Fourier Transform (DFT)
- 2.5 Short-Time Fourier Transform (STFT)
- 2.6 Further Notes

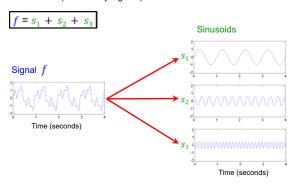
Important technical terminology is covered in Chapter 2. In particular, we approach the Fourier transform—which is perhaps the most fundamental tool in signal processing—from various perspectives. For the reader who is more interested in the musical aspects of the book, Section 2.1 provides a summary of the most important facts on the Fourier transform. In particular, the notion of a spectrogram, which yields a time–frequency representation of an audio signal, is introduced. The remainder of the chapter treats the Fourier transform in greater mathematical depth and also includes the fast Fourier transform (FFT)—an algorithm of great beauty and high practical relevance.

Chapter 3: Music Synchronization

- 3.1 Audio Features
- 3.2 Dynamic Time Warping
- 3.3 Applications
- 3.4 Further Notes

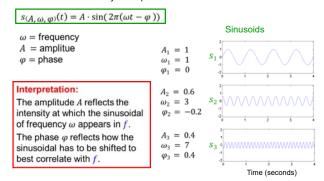
As a first music processing task, we study in Chapter 3 the problem of music synchronization. The objective is to temporally align compatible representations of the same piece of music. Considering this scenario, we explain the need for musically informed audio features. In particular, we introduce the concept of chroma-based music features, which capture properties that are related to harmony and melody. Furthermore, we study an alignment technique known as dynamic time warping (DTW), a concept that is applicable for the analysis of general time series. For its efficient computation, we discuss an algorithm based on dynamic programming—a widely used method for solving a complex problem by breaking it down into a collection of simpler subproblems.

Idea: Decompose a given signal into a superposition of sinusoids (elementary signals).



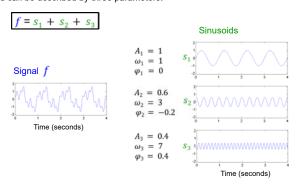
Fourier Transform

Each sinusoid has a physical meaning and can be described by three parameters:



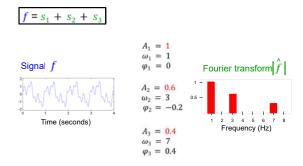
Fourier Transform

Each sinusoid has a physical meaning and can be described by three parameters:



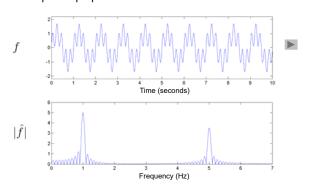
Fourier Transform

Each sinusoid has a physical meaning and can be described by three parameters:



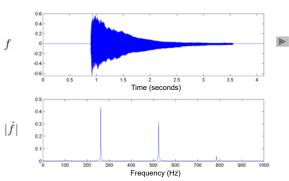
Fourier Transform

Example: Superposition of two sinusoids

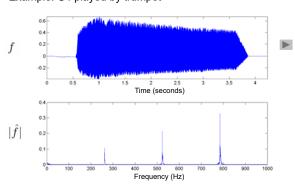


Fourier Transform

Example: C4 played by piano

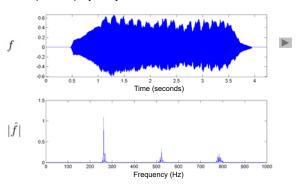


Example: C4 played by trumpet



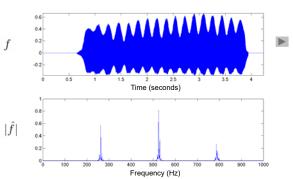
Fourier Transform

Example: C4 played by violine



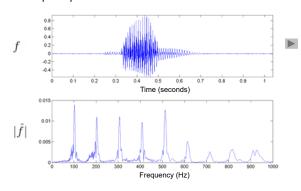
Fourier Transform

Example: C4 played by flute



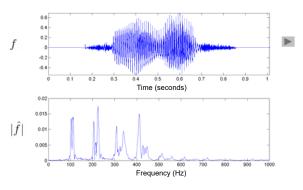
Fourier Transform

Example: Speech "Bonn"



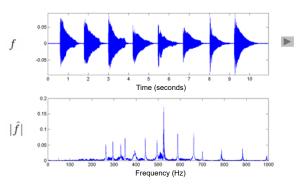
Fourier Transform

Example: Speech "Zürich"



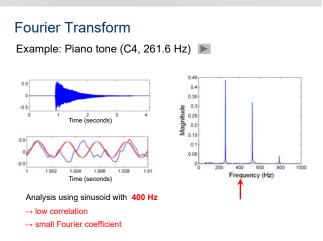
Fourier Transform

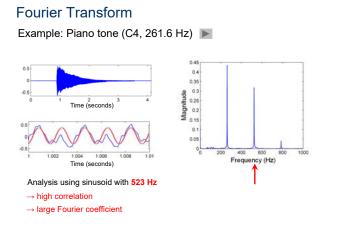
Example: C-major scale (piano)

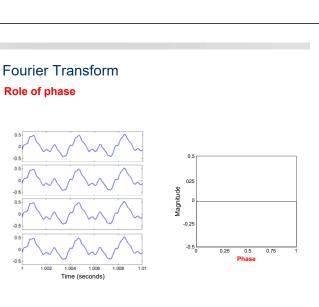


Fourier Transform Example: Piano tone (C4, 261.6 Hz)

Frequency (Hz)

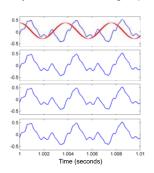


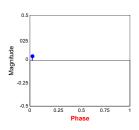




Role of phase

Analysis with sinusoid having frequency 262 Hz and phase φ = 0.05

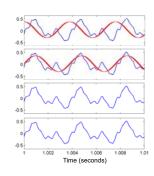


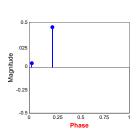


Fourier Transform

Role of phase

Analysis with sinusoid having frequency 262 Hz and phase φ = 0.24

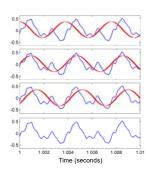


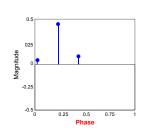


Fourier Transform

Role of phase

Analysis with sinusoid having frequency 262 Hz and phase $\varphi = 0.45$

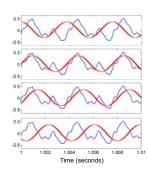


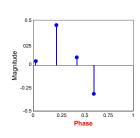


Fourier Transform

Role of phase

Analysis with sinusoid having frequency 262 Hz and phase $\varphi = 0.6$





Fourier Transform

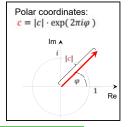
Each sinusoid has a physical meaning and can be described by three parameters:

$$s_{(A,\,\omega,\,\varphi)}(t) = A \cdot \sin(2\pi(\omega t - \varphi))$$

 $\omega = \text{frequency}$

A = amplitue

 $\varphi = \mathsf{phase}$



Complex formulation of sinusoids:

$$e_{(\mathcal{C},\,\omega)}(t) = \mathbf{c} \cdot \exp(\,2\pi i \omega t) = \mathbf{c} \cdot (\cos(\,2\pi \omega t) + i \cdot \sin(\,2\pi \omega t))$$

 $\omega = \text{frequency}$

A = amplitue = |c|

 $\varphi = \text{phase}$ = arg(c)

Fourier Transform

Signal

$$f: \mathbb{R} \to \mathbb{R}$$

Fourier representation

$$f(t) = \int_{\omega \in \mathbb{R}} c_{\omega} \exp(2\pi i \omega t) d\omega$$

Fourier transform
$$c_{\omega} = \hat{f}(\omega) = \int_{t \in \mathbb{R}} f(t) \exp(-2\pi i \omega t) dt$$

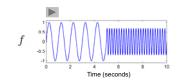
Signal $f: \mathbb{R} \to \mathbb{R}$

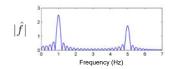
Fourier representation $f(t) \, = \, \int_{\omega \in \mathbb{R}} c_{\omega} \exp(2\pi i \omega t) d\omega$

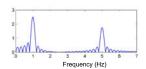
Fourier transform $c_{\pmb{\omega}} = \hat{f}(\pmb{\omega}) = \int_{t \in \mathbb{R}} f(t) \exp(-2\pi i \pmb{\omega} t) dt$

- Tells which frequencies occur, but does not tell when the frequencies occur.
- Frequency information is averaged over the entire time interval.
- Time information is hidden in the phase

Fourier Transform





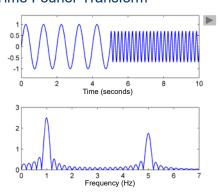


Short Time Fourier Transform

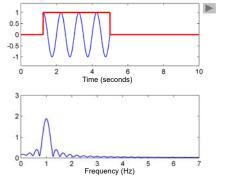
Idea (Dennis Gabor, 1946):

- Consider only a small section of the signal for the spectral analysis
 - \rightarrow recovery of time information
- Short Time Fourier Transform (STFT)
- Section is determined by pointwise multiplication of the signal with a localizing window function

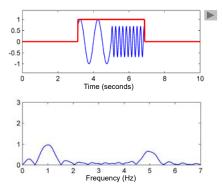
Short Time Fourier Transform



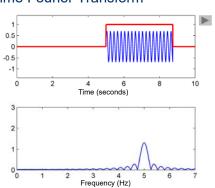
Short Time Fourier Transform



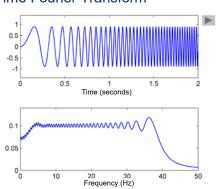
Short Time Fourier Transform



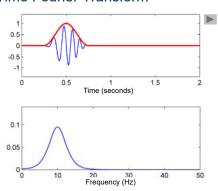
Short Time Fourier Transform



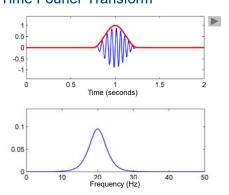
Short Time Fourier Transform



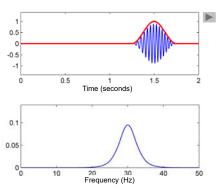
Short Time Fourier Transform



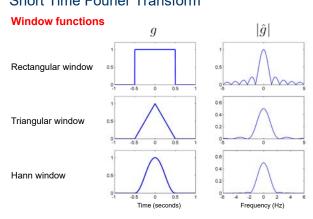
Short Time Fourier Transform



Short Time Fourier Transform

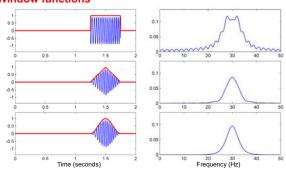


Short Time Fourier Transform



Short Time Fourier Transform

Window functions



→ Trade off between smoothing and "ringing"

Short Time Fourier Transform

Definition

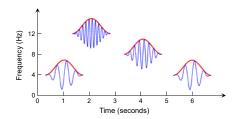
- Signal
- $f: \mathbb{R} \to \mathbb{R}$
- Window function $g: \mathbb{R} \to \mathbb{R}$ $(g \in L^2(\mathbb{R}), \|g\|_2 \neq 0)$
- STFT $\widetilde{f}_g(t, \omega) = \int_{u \in \mathbb{R}} f(u)\overline{g}(u-t) \exp(-2\pi i \omega u) du = \langle f|g_{t,\omega} \rangle$

with
$$g_{t,\omega}(u) = \exp(2\pi i \omega(u-t))g(u-t)$$
 for $u \in \mathbb{R}$

Short Time Fourier Transform

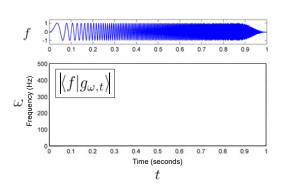
Intuition:

- $g_{t,\omega}$ is "musical note" of frequency ω centered at time t
- Inner product $\langle f|g_{t,\omega}\rangle$ measures the correlation between the musical note $g_{t,\omega}$ and the signal f



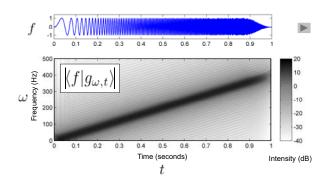
Time-Frequency Representation

Spectrogram



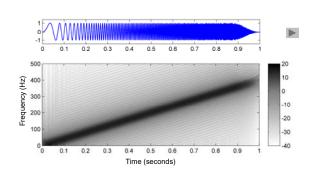
Time-Frequency Representation

Spectrogram



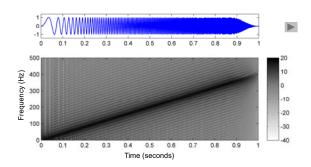
Time-Frequency Representation

Chirp signal and STFT with Hann window of length 50 ms



Time-Frequency Representation

Chirp signal and STFT with box window of length 50 ms



Time-Frequency Representation

Time-Frequency Localization

 Size of window constitutes a trade-off between time resolution and frequency resolution:

Large window: poor time resolution

good frequency resolution

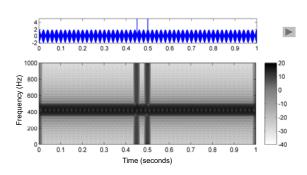
Small window: good time resolution

poor frequency resolution

 Heisenberg Uncertainty Principle: there is no window function that localizes in time and frequency with arbitrary position.

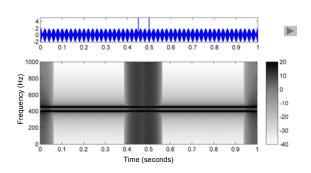
Time-Frequency Representation

Signal and STFT with Hann window of length 20 ms



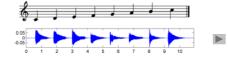
Time-Frequency Representation

Signal and STFT with Hann window of length 100 ms

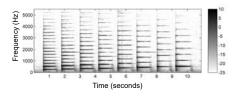


Audio Features

Example: C-major scale (piano)

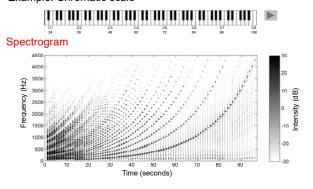


Spectrogram

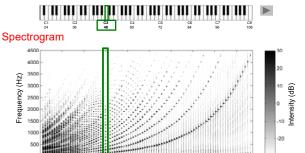


Audio Features

Example: Chromatic scale



Example: Chromatic scale



Time (seconds)

Audio Features

Model assumption: Equal-tempered scale

• MIDI pitches: $p \in [1:128]$

■ Piano notes: p = 21 (A0) to p = 108 (C8)■ Concert pitch: $p = 69 \text{ (A4)} \triangleq 440 \text{ Hz}$

- Center frequency: $F_{\mathrm{pitch}}(p) = 2^{(p-69)/12} \cdot 440 \ \mathrm{Hz}$

→ Logarithmic frequency distribution Octave: doubling of frequency

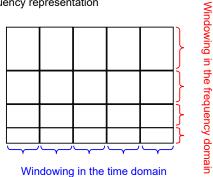
Audio Features

Idea: Binning of Fourier coefficients

Divide up the fequency axis into logarithmically spaced "pitch regions" and combine spectral coefficients of each region to a single pitch coefficient.

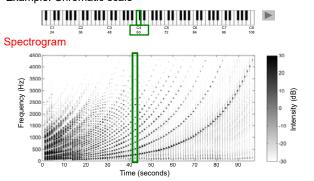
Audio Features

Time-frequency representation



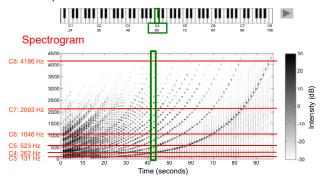
Audio Features

Example: Chromatic scale

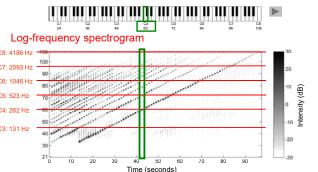


Audio Features

Example: Chromatic scale



Example: Chromatic scale



Audio Features

Frequency ranges for pitch-based log-frequency spectrogram

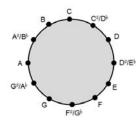
Note	MIDI pitch	Center [Hz] frequency	Left [Hz] boundary	Right [Hz] boundary	Width [Hz]
	p	$F_{\rm pitch}(p)$	$F_{\rm pitch}(p-0.5)$	$F_{\rm pitch}(p+0.5)$	
A3	57	220.0	213.7	226.4	12.7
A#3	58	233.1	226.4	239.9	13.5
В3	59	246.9	239.9	254.2	14.3
C4	60	261.6	254.2	269.3	15.1
C#4	61	277.2	269.3	285.3	16.0
D4	62	293.7	285.3	302.3	17.0
D#4	63	311.1	302.3	320.2	18.0
E4	64	329.6	320.2	339.3	19.0
F4	65	349.2	339.3	359.5	20.2
F#4	66	370.0	359.5	380.8	21.4
G4	67	392.0	380.8	403.5	22.6
G#4	68	415.3	403.5	427.5	24.0
A4	69	440.0	427.5	452.9	25.4

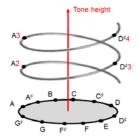
Audio Features

Chroma features

Chromatic circle

Shepard's helix of pitch





Audio Features

Chroma features

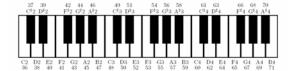
- Human perception of pitch is periodic in the sense that two pitches are perceived as similar in color if they differ by an octave.
- Seperation of pitch into two components: tone height (octave number) and chroma.
- Chroma: 12 traditional pitch classes of the equaltempered scale. For example:

Chroma C $\,\widehat{=}\,\left\{\ldots\;,\;\mathrm{C0}\;,\;\mathrm{C1}\;,\;\mathrm{C2}\;,\;\mathrm{C3}\;,\;\ldots\right\}$

- Computation: pitch features → chroma features
 Add up all pitches belonging to the same class
- Result: 12-dimensional chroma vector.

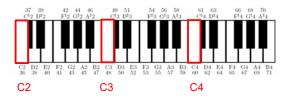
Audio Features

Chroma features

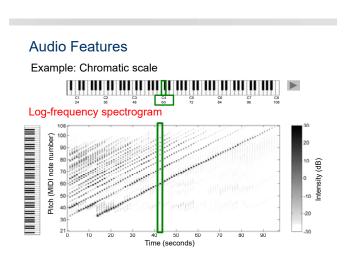


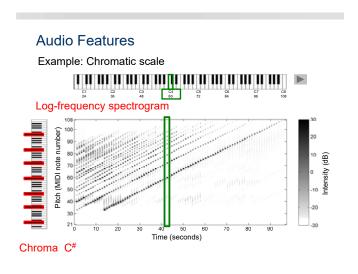
Audio Features

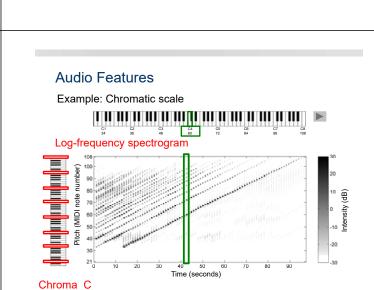
Chroma features



Chroma C







D3

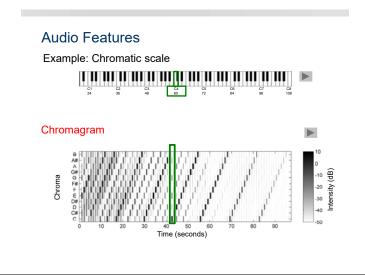
D4

Audio Features

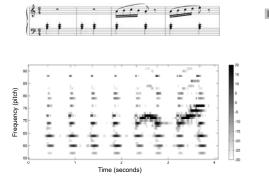
Chroma features

D2

Chroma D

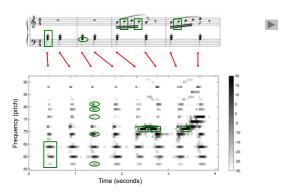


Chroma features



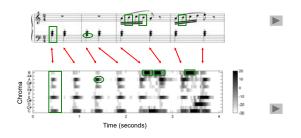
Audio Features

Chroma features



Audio Features

Chroma features



Audio Features

Chroma features

- Sequence of chroma vectors correlates to the harmonic progression
- Normalization x → x/||x|| makes features invariant to changes in dynamics
- Further denoising and smoothing
- Taking logarithm before adding up pitch coefficients accounts for logarithmic sensation of intensity

Audio Features

Logarithmic compression

For a positive constant $\, \gamma \in \mathbb{R}_{>0} \,$ the $\,$ logarithmic compression

$$\Gamma_{\gamma}: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$$

is defined by

$$\Gamma_{\gamma}(v) := \log(1 + \gamma \cdot v)$$

A value $\,v\in\mathbb{R}_{>0}\,$ is replaced by a compressed value $\, \varGamma_{\gamma}(v)\,$

Audio Features

Logarithmic compression

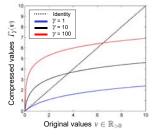
For a positive constant $\gamma \in \mathbb{R}_{>0}$ the logarithmic compression

$$\Gamma_{\gamma}: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$$

is defined by

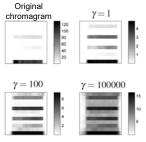
$$\Gamma_{\gamma}(v) := \log(1 + \gamma \cdot v)$$

A value $v \in \mathbb{R}_{>0}$ is replaced by a compressed value $\varGamma_{\gamma}(v)$

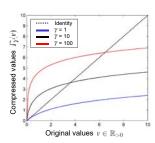


The higher $\gamma \in \mathbb{R}_{>0}$ the stronger the compression

Logarithmic compression



A value $\, v \in \mathbb{R}_{>0} \,$ is replaced by a compressed value $\Gamma_{\gamma}(v)$



The higher $\gamma \in \mathbb{R}_{>0}$ the stronger the compression

Audio Features

Normalization

Replace a vector by the normalized vector

$$x/\|x\|$$

using a suitable norm | . |

Example:

Chroma vector $\ x \in \mathbb{R}^{12}$

Euclidean norm

$$||x|| := \left(\sum_{i=0}^{11} |x(i)|^2\right)^{1/2}$$

Audio Features

Normalization

Replace a vector by the normalized vector

using a suitable norm $\|\cdot\|$

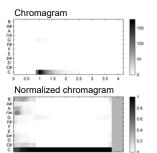
Example:

Chroma vector $\ x \in \mathbb{R}^{12}$

Euclidean norm

$$||x|| := \left(\sum_{i=0}^{11} |x(i)|^2\right)^{1/2}$$

Example: C4 played by piano



Audio Features

Normalization

Replace a vector by the normalized vector

$$x/\|x\|$$

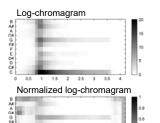
using a suitable norm $\|\cdot\|$

Example:

Chroma vector $x \in \mathbb{R}^{12}$ Euclidean norm

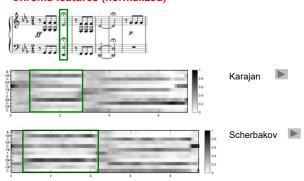
$$||x|| := \left(\sum_{i=0}^{11} |x(i)|^2\right)^{1/2}$$

Example: C4 played by piano



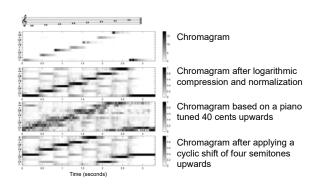
Audio Features

Chroma features (normalized)



Audio Features

Chroma features



- There are many ways to implement chroma features
- Properties may differ significantly
- Appropriateness depends on respective application

- http://www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/
- MATLAB implementations for various chroma variants

Inner Product

$$\langle x|y\rangle:=\sum_{n=0}^{N-1}x(n)\overline{y(n)}$$
 for $x,y\in\mathbb{C}^N$

for
$$x, y \in \mathbb{C}^N$$

Length of a vector

Orthogonality of two vectors

$$||x|| := \sqrt{\langle x|x\rangle}$$

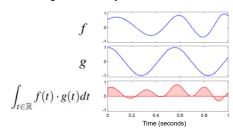
$$cos(\varphi) = \frac{|\langle x|y\rangle|}{\|x\| \cdot \|y\|}$$

$$\langle x|y\rangle = 0$$

Inner Product

Additional Material

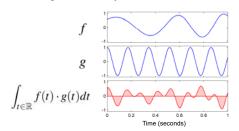
Measuring the similarity of two functions



- \rightarrow Area mostly positive and large
- $\to \text{Integral large}$
- \rightarrow Similarity high

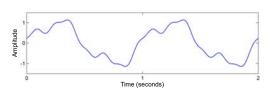
Inner Product

Measuring the similarity of two functions



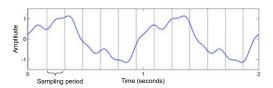
- \rightarrow Area positive and negative
- → Integral small
- $\rightarrow \text{Similarity low}$

Discretization



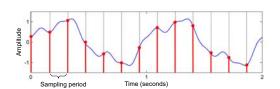
Discretization

Sampling



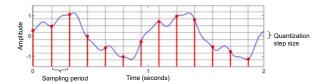
Discretization

Sampling



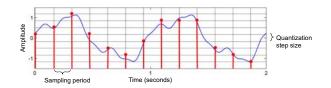
Discretization

Quantization



Discretization

Quantization



Discretization

Sampling

 $f \colon \mathbb{R} \to \mathbb{R}$ CT-signal

T>0 Sampling period

 $x(n) := f(n \cdot T)$ Equidistant sampling, $n \in \mathbb{Z}$

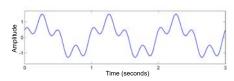
 $x \colon \mathbb{Z} \to \mathbb{R}$ DT-signal

x(n) Sample taken at time $t = n \cdot T$

 $F_{\rm s} := 1/T$ Sampling rate

Discretization

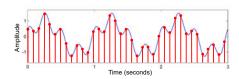
Aliasing



Original signal

Discretization

Aliasing

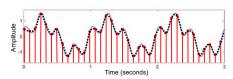


Original signal

Sampled signal using a sampling rate of 12 Hz

Discretization

Aliasing



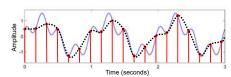
Original signal

Sampled signal using a sampling rate of 12 Hz

Reconstructed signal

Discretization

Aliasing



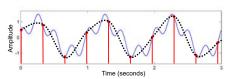
Original signal

Sampled signal using a sampling rate of $\bf 6~Hz$

Reconstructed signal

Discretization

Aliasing



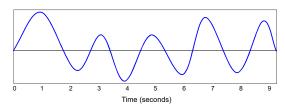
Original signal

Sampled signal using a sampling rate of ${\bf 3}\ {\bf Hz}$

Reconstructed signal

Discretization

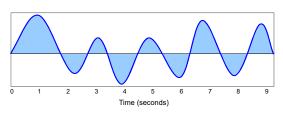
Integrals and Riemann sums



CT-signal f

Discretization

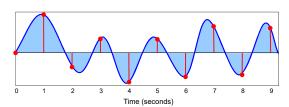
Integrals and Riemann sums



 $\int_{t\in\mathbb{R}}|f(t)|dt$

Discretization

Integrals and Riemann sums



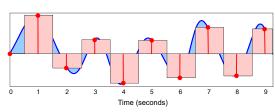
CT-signal fIntegral (total area)

 $\int_{t\in\mathbb{R}} |f(t)| dt$

DT-signals (obtained by 1-sampling) x

Discretization

Integrals and Riemann sums



CT-signal fIntegral (total area) $\int_{t\in\mathbb{R}} |f(t)| dt \approx \sum_{n\in\mathbb{Z}} x(n)$

DT-signals (obtained by 1-sampling) x

Riemann sum (total area) → Approximation of integral

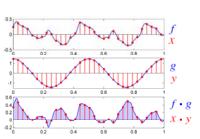
Discretization

Integrals and Riemann sums

First CT-signal and DT-signal

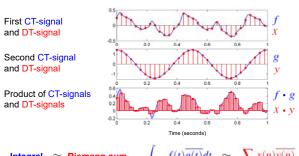
Second CT-signal and DT-signal

Product of CT-signals and DT-signals



Discretization

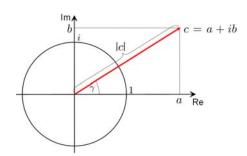
Integrals and Riemann sums



Integral \approx Riemann sum

Exponential Function

Polar coordinate representation of a complex number



Exponential Function

Real and imaginary part (Euler's formula)

$$\exp(i\gamma) = \cos(\gamma) + i\sin(\gamma)$$



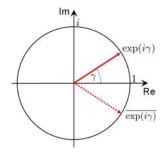
$$|\exp(i\gamma)|=1$$

$$\exp(i\gamma) = \exp(i(\gamma + 2\pi))$$

Exponential Function

Complex conjugate number

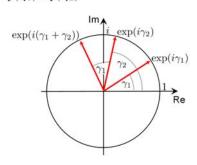
$$\overline{\exp(i\gamma)} = \exp(-i\gamma)$$



Exponential Function

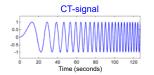
Additivity property

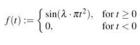
$$\exp(i(\gamma_1 + \gamma_2)) = \exp(i\gamma_1)\exp(i\gamma_2)$$

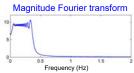


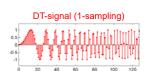
Fourier Transform

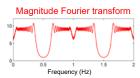
Chirp signal with $\lambda = 0.003$





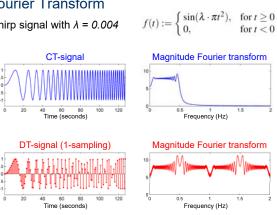






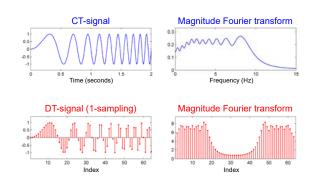
Fourier Transform

Chirp signal with $\lambda = 0.004$



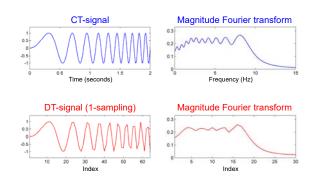
Fourier Transform

DFT approximation of Fourier transform



Fourier Transform

DFT approximation of Fourier transform



Discrete STFT

$$\mathcal{X}(m,k) := \sum_{n=0}^{N-1} x(n+mH)w(n) \exp(-2\pi i k n/N)$$

 $x: \mathbb{Z} \to \mathbb{R}$

DT-signal

 $w:[0:N-1]\to\mathbb{R}$

Window function of length $N \in \mathbb{N}$

 $H \in \mathbb{N}$

Hop size

K = N/2

Index corresponding to Nyquist frequency

 $\mathcal{X}(m,k)$

Fourier coefficient for frequency

index $k \in [0:K]$ and time frame $m \in \mathbb{Z}$

Fourier Transform

Discrete STFT

$$\mathcal{X}(m,k) := \sum_{n=0}^{N-1} x(n+mH)w(n)\exp(-2\pi ikn/N)$$

Physical time position associated with $\mathcal{X}(m,k)$:

$$T_{\mathrm{coef}}(m) := \frac{m \cdot H}{F_{\mathrm{s}}}$$
 (seconds)

H = Hop size

 F_s = Sampling rate

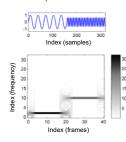
Physical frequency associated with $\mathcal{X}(m,k)$:

$$F_{\text{coef}}(k) := \frac{k \cdot F_{\text{s}}}{N}$$
 (Hertz)

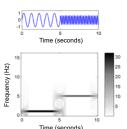
Fourier Transform

Discrete STFT

Parameters N = 64H = 8 $F_{\rm s} = 32 \, {\rm Hz}$



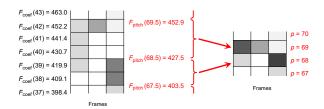
Physical world



Log-Frequency Spectrogram

Pooling procedure for discrete STFT

N = 4096H = 2048 $F_{\rm s}$ = 44100 Hz



Fast Fourier Transform

Algorithm: FFT $\begin{array}{ll} \textbf{Input:} & \text{The length } N = 2^L \text{ with } N \text{ being a power of two} \\ & \text{The vector } (x(0), \dots, x(N-1))^\top \in \mathbb{C}^N \\ \textbf{Output:} & \text{The vector } (X(0), \dots, X(N-1))^\top = \text{DFT}_N \cdot (x(0), \dots, x(N-1))^\top \\ \end{array}$ **Procedure:** Let $(X(0),\ldots,X(N-1))= \mathrm{FFT}(N,x(0),\ldots,x(N-1))$ denote the general form of the FFT algorithm. If N = 1 then X(0) = x(0).Otherwise compute recursively: (A(0),...,A(N/2-1)) = FFT(N/2,x(0),x(2),x(4)...,x(N-2)),(B(0),...,B(N/2-1)) = FFT(N/2,x(1),x(3),x(5),...,x(N-1)), $C(k) = \omega_N^k \cdot B(k) \text{ for } k \in [0:N/2-1],$ $X(k) = A(k) + C(k) \text{ for } k \in [0:N/2-1],$ X(N/2+k) = A(k) - C(k) for $k \in [0:N/2-|1]$.

Signal Spaces and Fourier Transforms

Signal space	$L^2(\mathbb{R})$	$L^2([0,1))$	$\ell^2(\mathbb{Z})$
Inner product	$\langle f g\rangle = \int_{t \in \mathbb{R}} f(t)\overline{g(t)}dt$	$\langle f g\rangle = \int_{t\in[0,1)} f(t)\overline{g(t)}dt$	$\langle x y\rangle = \sum_{n\in\mathbb{Z}} x(n)\overline{y(n)}$
Norm	$ f _2 = \sqrt{\langle f f\rangle}$	$ f _2 = \sqrt{\langle f f\rangle}$	$ x _2 = \sqrt{\langle x x\rangle}$
Definition	$L^2(\mathbb{R}) :=$ $\{f : \mathbb{R} \to \mathbb{C} \mid f _2 < \infty\}$	$L^{2}([0,1)) :=$ $\{f : [0,1) \to \mathbb{C} \mid f _{2} < \infty\}$	$\ell^2(\mathbb{Z}) :=$ $\{f : \mathbb{Z} \to \mathbb{C} \mid x _2 < \infty\}$
Elementary frequency function	$\mathbb{R} \to \mathbb{C}$ $t \mapsto \exp(2\pi i \omega t)$	$[0,1) \rightarrow \mathbb{C}$ $t \mapsto \exp(2\pi i k t)$	$\mathbb{Z} \to \mathbb{C}$ $n \mapsto \exp(2\pi i \omega n)$
Frequency parameter	$\omega \in \mathbb{R}$	$k \in \mathbb{Z}$	$\omega \in [0,1)$
Fourier representation	$f(t) = \int_{\omega \in \mathbb{R}} c_{\omega} \exp(2\pi i \omega t) d\omega$	$f(t) = \sum_{k \in \mathbb{Z}} c_k \exp(2\pi i k t)$	$x(n) = \int_{\omega \in [0,1)} c_{\omega} \exp(2\pi i \omega n) d\omega$
Fourier transform	$\hat{f}: \mathbb{R} \to \mathbb{C}$ $\hat{f}(\omega) = c_{\omega} = \int_{t \in \mathbb{R}} f(t) \exp(-2\pi i \omega t) dt$	$\hat{f}: \mathbb{Z} \to \mathbb{C}$ $\hat{f}(k) = c_k = \int_{t \in [0,1)} f(t) \exp(-2\pi i k t) dt$	$\hat{x}: [0, 1) \rightarrow \mathbb{C}$ $\hat{x}(\omega) = c_{\omega} = \sum_{n \in \mathbb{Z}} x(n) \exp(-2\pi i \omega n)$