





A Basic Introduction to Audio-Related **Music Information Retrieval** 

#### **Audio Features**

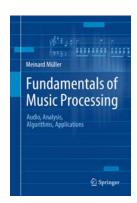
#### Meinard Müller, Christof Weiß

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de, christof.weiss@audiolabs-erlangen.de





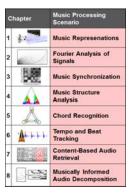
### Book: Fundamentals of Music Processing



Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

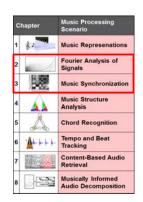
# Book: Fundamentals of Music Processing



Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

### Book: Fundamentals of Music Processing



Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

# Chapter 2: Fourier Analysis of Signals

- The Fourier Transform in a Nutshell
- 2.2 Signals and Signal Spaces 2.3 Fourier Transform
- Discrete Fourier Transform (DFT)
- 2.5 Short-Time Fourier Transform (STFT)
- **Further Notes**

Important technical terminology is covered in Chapter 2. In particular, we approach the Fourier transform—which is perhaps the most fundamental tool in signal processing—from various perspectives. For the reader who is more interested in the musical aspects of the book, Section 2.1 provides a summary of the most important facts on the Fourier transform. In particular, the notion of a spectrogram, which yields a time-frequency representation of an audio signal, is introduced. The remainder of the chapter treats the Fourier transform in greater mathematical depth and also includes the fast Fourier transform (FFT)—an algorithm of great beauty and high practical relevance.

# Chapter 3: Music Synchronization

- Audio Features 3.1
- 3.2 Dynamic Time Warping
- 3.3 Applications

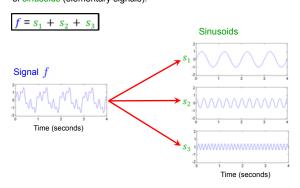




As a first music processing task, we study in Chapter 3 the problem of music synchronization. The objective is to temporally align compatible representations of the same piece of music. Considering this scenario, we explain the need for musically informed audio features. In particular, we introduce the concept of chroma-based music features, which capture properties that are related to harmony and melody. Furthermore, we study an alignment technique known as dynamic time warping (DTW), a concept that is applicable for the analysis of general time series. For its efficient computation, we discuss an algorithm based on dynamic programming—a widely used method for solving a complex problem by breaking it down into a collection of simpler subproblems

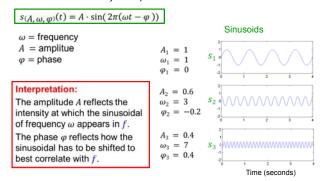
# **Fourier Transform**

Idea: Decompose a given signal into a superposition of sinusoids (elementary signals).



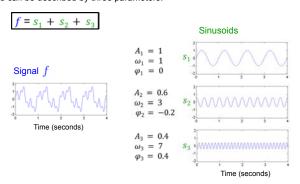
# **Fourier Transform**

Each sinusoid has a physical meaning and can be described by three parameters:



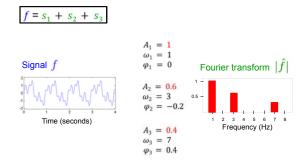
# **Fourier Transform**

Each sinusoid has a physical meaning and can be described by three parameters:



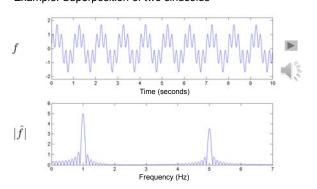
# **Fourier Transform**

Each sinusoid has a physical meaning and can be described by three parameters:



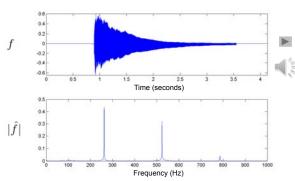
# **Fourier Transform**

Example: Superposition of two sinusoids



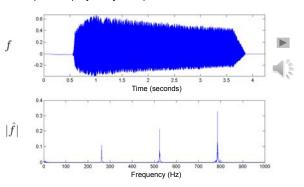
# **Fourier Transform**

Example: C4 played by piano



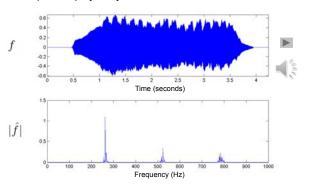
# **Fourier Transform**

Example: C4 played by trumpet



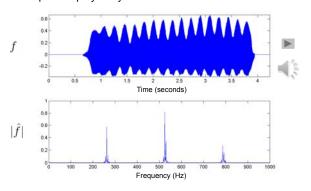
# **Fourier Transform**

Example: C4 played by violin



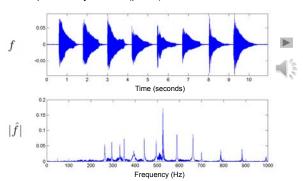
# **Fourier Transform**

Example: C4 played by flute



# **Fourier Transform**

Example: C-major scale (piano)



# **Fourier Transform**

Signal  $f: \mathbb{R} \to \mathbb{R}$ 

Fourier representation  $f(t) = \int_{\omega \in \mathbb{R}} c_{\omega} \exp(2\pi i \omega t) d\omega$ 

Fourier transform  $c_{\pmb{\omega}} = \hat{f}(\pmb{\omega}) = \int_{t \in \mathbb{R}} f(t) \exp(-2\pi i \pmb{\omega} t) dt$ 

# **Fourier Transform**

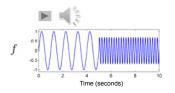
Signal  $f: \mathbb{R}$ 

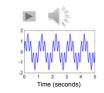
Fourier representation  $f(t) \, = \, \int_{\omega \in \mathbb{R}} c_{\omega} \exp(2\pi i \omega t) d\omega$ 

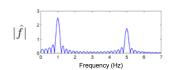
Fourier transform  $c_{\omega} = \hat{f}(\omega) = \int_{t \in \mathbb{R}} f(t) \exp(-2\pi i \omega t) dt$ 

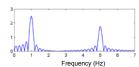
- Tells which frequencies occur, but does not tell when the frequencies occur.
- Frequency information is averaged over the entire time interval.
- Time information is hidden in the phase

# **Fourier Transform**







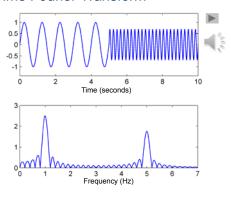


# **Short Time Fourier Transform**

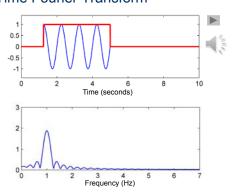
Idea (Dennis Gabor, 1946):

- Consider only a small section of the signal for the spectral analysis
  - → recovery of time information
- Short Time Fourier Transform (STFT)
- Section is determined by pointwise multiplication of the signal with a localizing window function

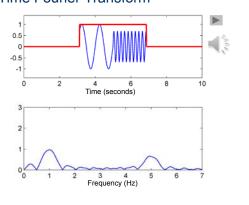
# **Short Time Fourier Transform**



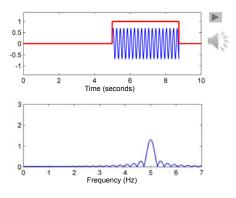
# **Short Time Fourier Transform**



# Short Time Fourier Transform



# **Short Time Fourier Transform**



# **Short Time Fourier Transform**

#### Definition

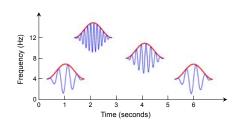
- Signal  $f: \mathbb{R} \to \mathbb{R}$
- Window function  $g:\mathbb{R}\to\mathbb{R}$   $(g\in L^2(\mathbb{R}),\|g\|_2\neq 0)$
- STFT  $\widetilde{f}_g(t, \omega) = \int_{u \in \mathbb{R}} f(u)\overline{g}(u-t) \exp(-2\pi i \omega u) du = \langle f|g_{t,\omega} \rangle$

with 
$$g_{t,\omega}(u) = \exp(2\pi i \omega(u-t))g(u-t)$$
 for  $u \in \mathbb{R}$ 

# **Short Time Fourier Transform**

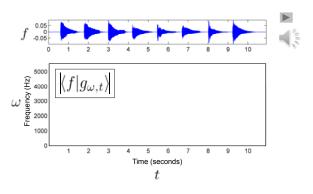
#### Intuition:

- $g_{t,\omega}$  is "musical note" of frequency  $\omega$  centered at time t
- Inner product  $\langle f|g_{t,\omega}\rangle$  measures the correlation between the musical note  $g_{t,\omega}$  and the signal f



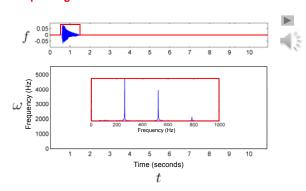
# Time-Frequency Representation

### **Spectrogram**



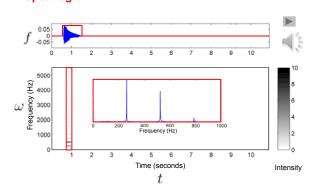
# Time-Frequency Representation

### **Spectrogram**



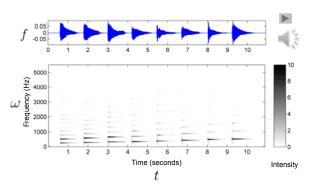
# Time-Frequency Representation

# Spectrogram



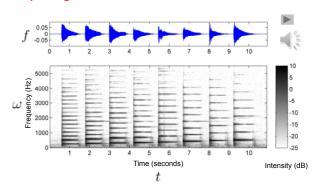
# Time-Frequency Representation

# **Spectrogram**



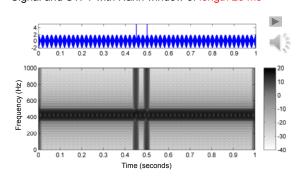
# Time-Frequency Representation

### **Spectrogram**



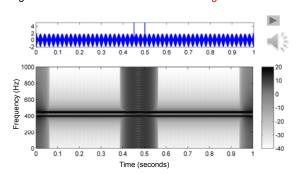
# Time-Frequency Representation

Signal and STFT with Hann window of length 20 ms



# Time-Frequency Representation

Signal and STFT with Hann window of length 100 ms



# Time-Frequency Representation

# **Time-Frequency Localization**

 Size of window constitutes a trade-off between time resolution and frequency resolution:

Large window: poor time resolution

good frequency resolution

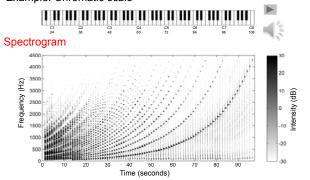
Small window: good time resolution

poor frequency resolution

 Heisenberg Uncertainty Principle: there is no window function that localizes in time and frequency with arbitrary precision.

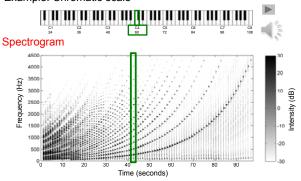
# **Audio Features**

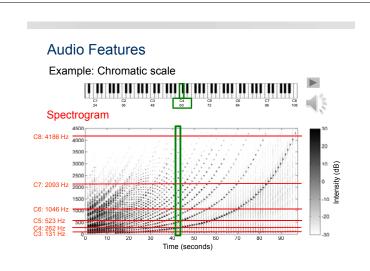
Example: Chromatic scale

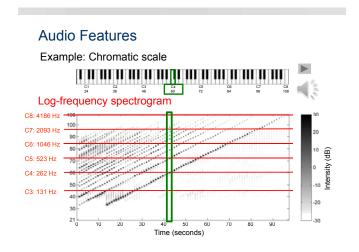


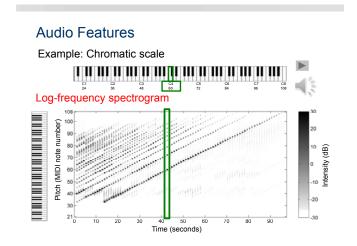
# **Audio Features**

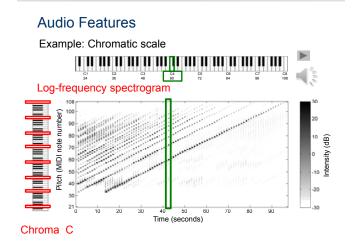
Example: Chromatic scale

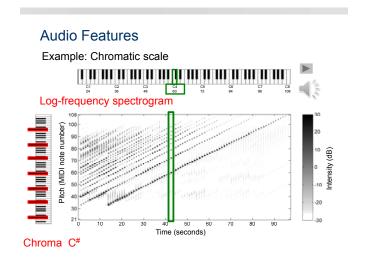


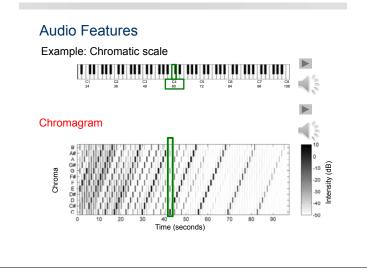










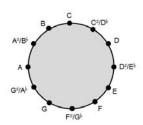


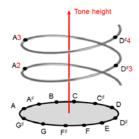
# **Audio Features**

#### **Chroma features**

Chromatic circle

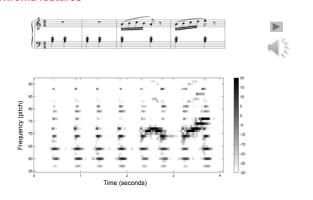
Shepard's helix of pitch





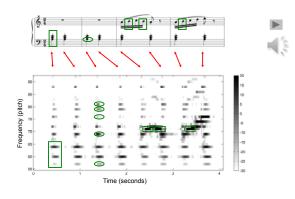
# **Audio Features**

### **Chroma features**



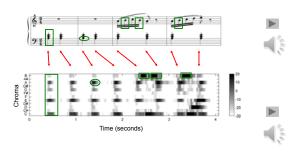
# **Audio Features**

#### **Chroma features**



# **Audio Features**

#### **Chroma features**



# **Audio Features**

- There are many ways to implement chroma features
- Properties may differ significantly
- Appropriateness depends on respective application
- Chroma Toolbox (MATLAB) https://www.audiolabs-erlangen.de/resources/MIR/chromatoolbox
- LibROSA (Python) https://librosa.github.io/librosa/
- Feature learning: "Deep Chroma" [Korzeniowski/Widmer, ISMIR 2016]