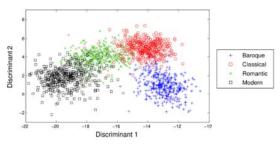
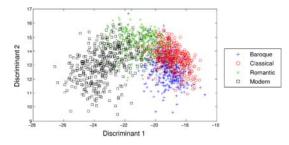


Classification Features

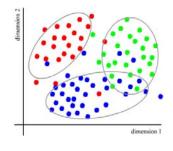
Standard	Dim.	Tonal	Dim.
MFCC	16	Interval cat.	6 x 4
OSC	14	Triad types	4 x 4
ZCR	1	Complexity	7 x 4
ASE	16	Chord progr.	11 x 5
SFM	16		
SCF	16		
SC	16		
LogLoud	12		
NormLoud	12		
Sum	119	Sum	123
Mean & Std	x 2	Mean & Std	x 2
Total	238	Total	246


Dimensionality Reduction

- Reduce feature space to few dimensions
- Maximize separation of classes with Linear Discriminant Analysis (LDA)
- Using standard features (MFCC, spectral envelope, ...)


Dimensionality Reduction

- Reduce feature space to few dimensions
- Maximize separation of classes with Linear Discriminant Analysis (LDA)
- Using tonal & standard features


Dimensionality Reduction

- Reduce feature space to few dimensions
- Maximize separation of classes with Linear Discriminant Analysis (LDA)
- Using tonal features (interval, triad types, tonal complexity, ... 4 time scales)

Classifier

- Train Machine Learning Classifier
- Gaussian Mixture Model (GMM)
- Using Gaussian distributions to model data points in feature space

Classification Results

Gaussian Mixture Model (GMM) classifier, LDA reduction, 3-fold cross validation

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Weiss / Mauch / Dixon, Timbre-Invariant Audio Features for Style Analysis of Classical Music, ICMC / SMC 2014

Classification Results

Gaussian Mixture Model (GMM) classifier, LDA reduction, 3-fold cross validation

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Overfitting???

Weiss / Mauch / Dixon, Timbre-Invariant Audio Features for Style Analysis of Classical Music, ICMC / SMC 2014

Classification Results

GMM classifier, LDA reduction, 3-fold cross validation

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

training	test
Baroque	
Classical	
Modern	

Classification Results

GMM classifier, LDA reduction, 3-fold cross validation

No composer filter

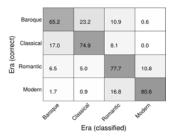
		Full Dataset	Piano	Orchestra
	Standard features	87 %	88 %	85 %
	Tonal features	84 %	84 %	86 %
	Combined	92 %	86 %	80 %
• Usin	g composer filter		Diana	Orobostra
 Usin 	g composer filter	Full Dataset	Piano	Orchestra
• Usin	g composer filter Standard features	Full Dataset	Piano 36 %	Orchestra 70 %
• Usin				
• Usin	Standard features	54 %	36 %	70 %

Weiss / Müller, Tonal Complexity Features for Style Classification of Classical Music, ICASSP 2015

Classification Results

- · What is actually learned?
- Pay attention to:
- Overfitting
- "Curse of dimensionality" use dimensionality reduction techniques
- Artist / album effects
- Evaluation: "Figures of merit":
- Confusion matrix
- Error examples: Consistently misclassified items
- Listening tests
- Evaluation on unseen data (no cross validation)

Bob Sturm, Classification Accuracy is not enough, Journal of Intelligent Information Systems, 2013


Classification Results: Error Examples

- 80 tonal features, GMM with 1 Gaussian, LDA
- · Look at consistently and persistently misclassified items

Class	Composer	Piece	Classified
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in E>minor BWV 853	Romantic
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in F major BWV 856	Romantie
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in A minor BWV 865	Romantic
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in B> major BWV 866	Romantic
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in B>minor BWV 867	Romantic
Baroque	Bach, J. S.	English Suite No. 3 in G minor BWV 808, Sarahande	Romantic
Baroque	Bach, J. S.	Brandenburg Conc. No. 1 in F major BWV 1046, Adagio	Romantic D
Baroque	Bach, J. S.	Overture No. 2 in B minor BWV 1067, Badinerie	Romantic
Baroque	Bach, J. S.	Overture No. 3 in D major BWV 1068, Gigue	Romantic
Baroque	Couperin, F.	27 Ordres, Huitième ordre, IX. Rondeau passacaille	Romantic
Baroque	Corelli, A.	Concerto grosso op. 6 No. 2, III. Grave - Andante largo	Romantic
Baroque	Lully, JB.	Ballet de Xerces LWV 12, Gavotte en rondeau	Romantic
Baroque	Purcell, H.	Opera "Dido and Aeneas" Z. 626, Overture	Romantic
Baroque	Vivaldi, A.	"The Four Seasons," RV 293 "Autumn," Adagio molto	Romantic
Romantic	Schumann, R.	Kinderszenen op. 15, "Haschemann"	Baroque
Romantic	Grieg, E.	Holberg suite op. 40, Gavotte	Baroque
Romantic	Mendelssohn, F.	Symphony No. 4 in A major, IV. Saltarello, presto	Baroque
Modern	Shostakovich, D.	Preludes & Fugues op. 87 Fugue No. 1 in C major	Baroque
Modern	Shostakovich, D.	Preludes & Fugues op. 87 Fugue No. 5 in D major	Baroque

Classification Results: Confusion Matrix

- · 80 tonal features, GMM with 1 Gaussian, LDA, composer filtering
- Full dataset
- Mean accuracy: 75 %
- Inter-class standard deviation: 6.7 %

Further Information

- Artist / album effect [Pampalk/Flexer/Widmer, ISMIR 2005]
- Evaluation of genre classification
 [Sturm, IEEE TIMM 2014]
 [Sturm, JIIS 2013]
 [Mishra/Sturm/Dixon, ISMIR 2017] → Poster Session 2
- Genre classification using Deep Learning [Oramas et al., ISMIR 2017] → Oral Session 1 [Choi et al., ISMIR 2017] → Oral Session 5 [Tsaptsinos, ISMIR 2017] → Poster Session 3
- Python machine learning & classification Toolbox: Scikit-learn www.scikit-learn.org/stable/