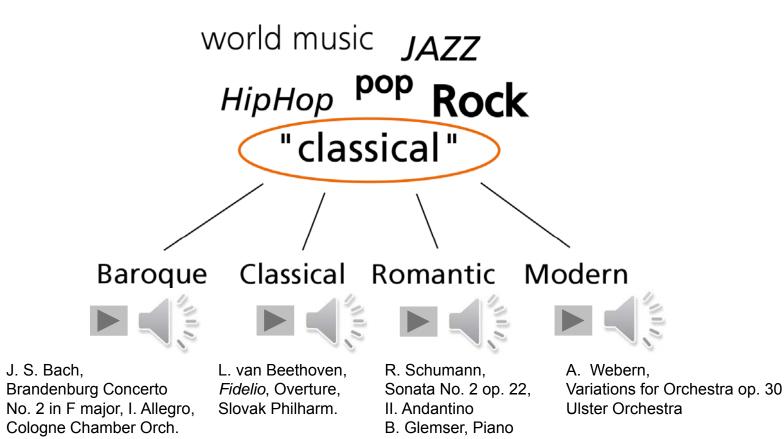
INTERNATIONAL AUDIO LABORATORIES ERLANGEN

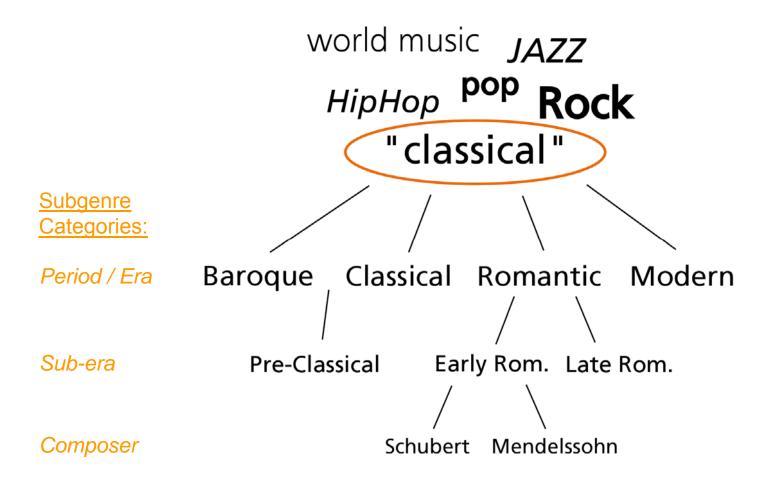
Tutorial T3 A Basic Introduction to Audio-Related Music Information Retrieval

Audio Classification

Meinard Müller, Christof Weiß

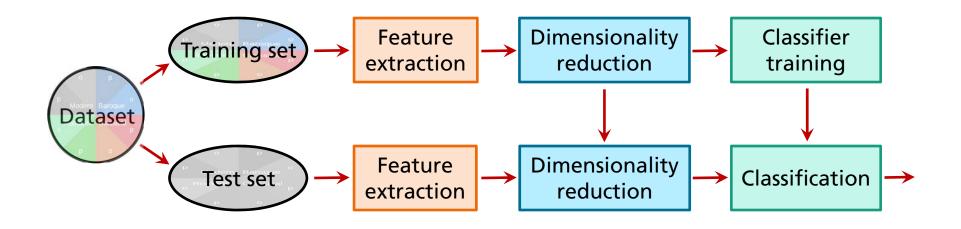
International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de, christof.weiss@audiolabs-erlangen.de



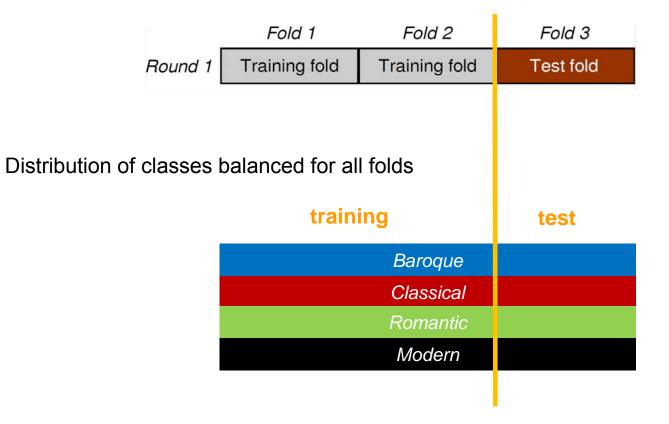

Dissertation: Tonality-Based Style Analysis

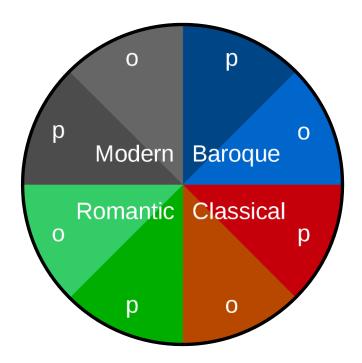
Christof Weiß Computational Methods for Tonality-Based Style Analysis of Classical Music Audio Recordings PhD thesis, Technical University of Ilmenau, 2017

Chapter 8: Subgenre Classification for Western Classical Music

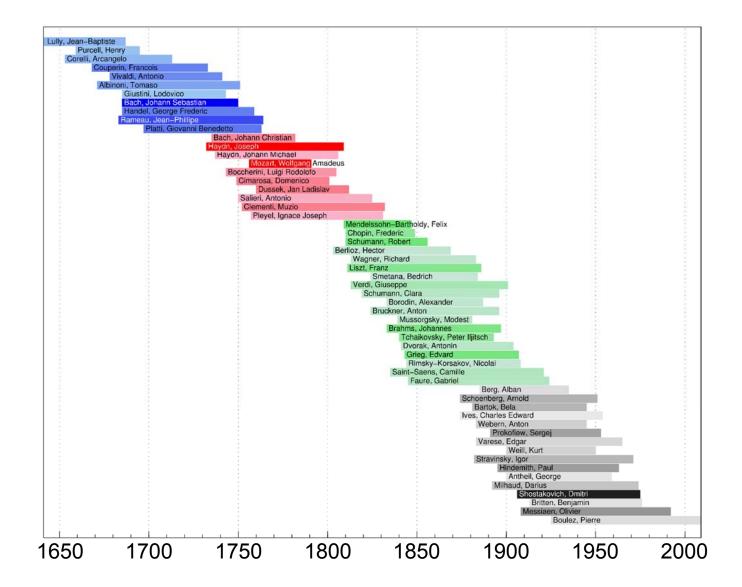

world music JAZZ HipHop ^{pop} Rock classical

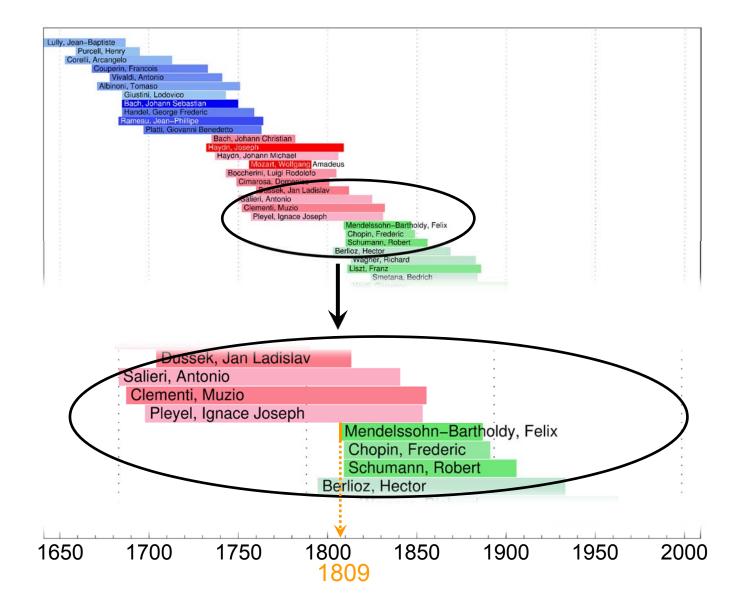
- Standard approach (*content-based*)
 - Supervised machine learning
 - Based on spectral / timbral features
- In classical music \rightarrow Instrumentation
- Better categories?
 - Musical style
 - Independent from instrumentation
 - \rightarrow Tonality / Harmony

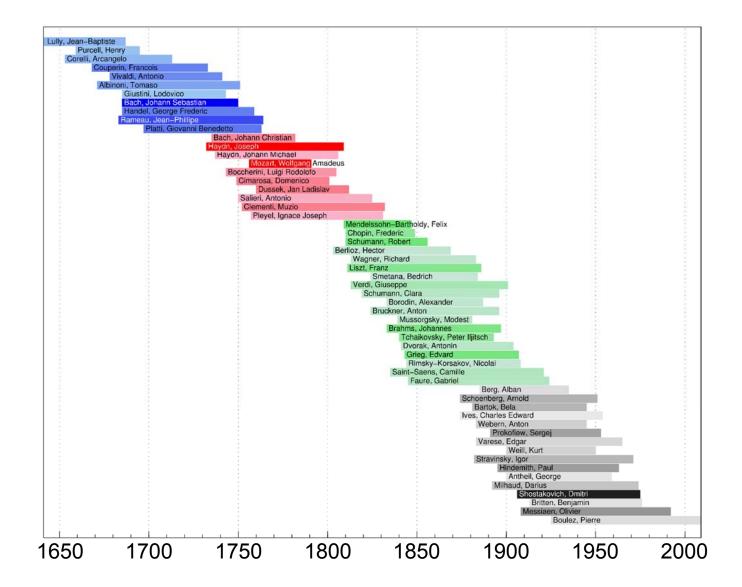

Supervised machine learning


- Experimental design: Evaluation with Cross Validation (CV)
- Separate data into different parts (*folds*)

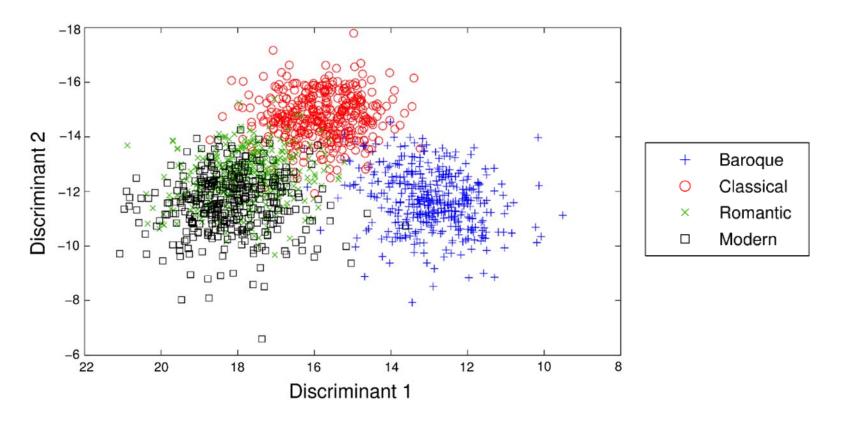
	Fold 1	Fold 2	Fold 3
Round 1	Training fold	Training fold	Test fold
Round 2	Training fold	Test fold	Training fold
Round 3	Test fold	Training fold	Training fold


- Experimental design: Evaluation with Cross Validation (CV)
- Separate data into different parts (folds)



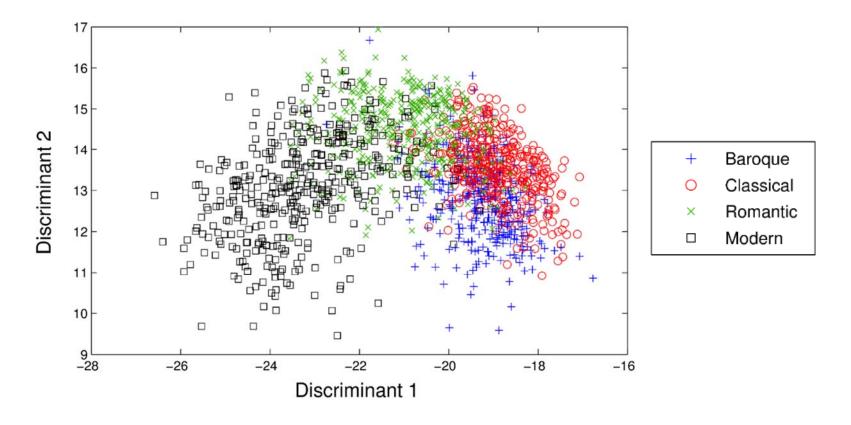

- Dataset: CrossEraDB (Historical Periods)
 - Balanced Piano (p) Orchestra (o)
 - Each 200 pieces \rightarrow 1600 in total

www.audiolabs-erlangen.de/resources/MIR/cross-era

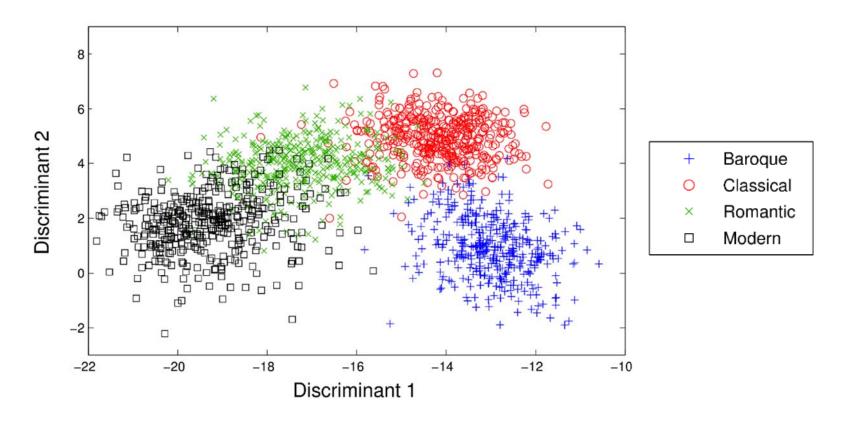


Classification Features

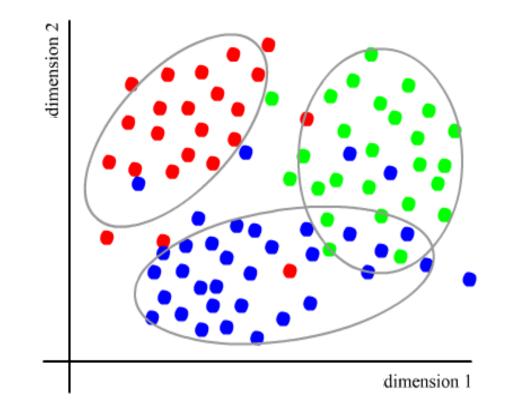
Standard	Dim.	Tonal	Dim.
MFCC	16	Interval cat.	6 x 4
OSC	14	Triad types	4 x 4
ZCR	1	Complexity	7 x 4
ASE	16	Chord progr.	11 x 5
SFM	16		
SCF	16		
SC	16		
LogLoud	12		
NormLoud	12		
Sum	119	Sum	123
Mean & Std	x 2	Mean & Std	x 2
Total	238	Total	246


Dimensionality Reduction

- Reduce feature space to few dimensions
- Maximize separation of classes with Linear Discriminant Analysis (LDA)
- Using standard features (MFCC, spectral envelope, ...)


Dimensionality Reduction

- Reduce feature space to few dimensions
- Maximize separation of classes with Linear Discriminant Analysis (LDA)
- Using tonal features (interval, triad types, tonal complexity, ... 4 time scales)


Dimensionality Reduction

- Reduce feature space to few dimensions
- Maximize separation of classes with Linear Discriminant Analysis (LDA)
- Using tonal & standard features

Classifier

- Train Machine Learning Classifier
- Gaussian Mixture Model (GMM)
- Using Gaussian distributions to model data points in feature space

• Gaussian Mixture Model (GMM) classifier, LDA reduction, 3-fold cross validation

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Weiss / Mauch / Dixon, *Timbre-Invariant Audio Features for Style Analysis of Classical Music*, ICMC / SMC 2014

• Gaussian Mixture Model (GMM) classifier, LDA reduction, 3-fold cross validation

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

Overfitting???

Weiss / Mauch / Dixon, *Timbre-Invariant Audio Features for Style Analysis of Classical Music*, ICMC / SMC 2014

• GMM classifier, LDA reduction, 3-fold cross validation

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

"Album effect"

Flexer, A Closer Look on Artist Filters for Musical Genre Classification, ISMIR 2007

- GMM classifier, LDA reduction, 3-fold cross validation
- No composer filter

	Full Dataset	Piano	Orchestra
Standard features	87 %	88 %	85 %
Tonal features	84 %	84 %	86 %
Combined	92 %	86 %	80 %

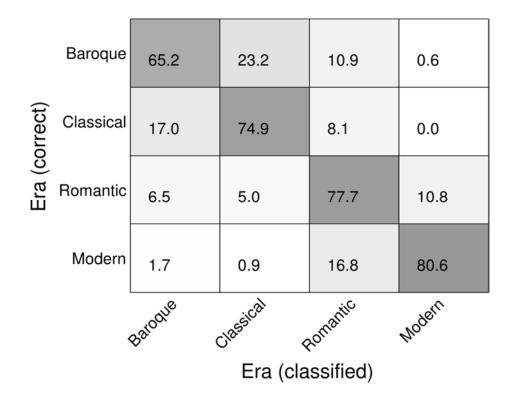
Using composer filter

	Full Dataset	Piano	Orchestra
Standard features	54 %	36 %	70 %
Tonal features	73 %	70 %	78 %
Combined	68 %	44 %	68 %

Weiss / Müller, Tonal Complexity Features for Style Classification of Classical Music, ICASSP 2015

- What is actually learned?
- Pay attention to:
 - Overfitting
 - "Curse of dimensionality" use dimensionality reduction techniques
 - Artist / album effects
- Evaluation: "Figures of merit":
 - Confusion matrix
 - Error examples: Consistently misclassified items
 - Listening tests
- Evaluation on unseen data (no cross validation)

Bob Sturm, *Classification Accuracy is not enough*, Journal of Intelligent Information Systems, 2013


Classification Results: Error Examples

- 80 tonal features, GMM with 1 Gaussian, LDA
- Look at consistently and persistently misclassified items

Class	Composer	Piece	Classified
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in E ^b minor BWV 853	Romantic
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in F major BWV 856	Romantic
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in A minor BWV 865	Romantic
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in B ^b major BWV 866	Romantic
Baroque	Bach, J. S.	Well-Tempered Piano 1, Prelude in B ^b minor BWV 867	Romantic
Baroque	Bach, J. S.	English Suite No. 3 in Gminor BWV 808, Sarabande	Romantic
Baroque	Bach, J. S.	Brandenburg Conc. No. 1 in F major BWV 1046, Adagio	Romantic
Baroque	Bach, J. S.	Overture No. 2 in B minor BWV 1067, Badinerie	Romantic
Baroque	Bach, J. S.	Overture No. 3 in D major BWV 1068, Gigue	Romantic
Baroque	Couperin, F.	27 Ordres, Huitième ordre, IX. Rondeau passacaille	Romantic
Baroque	Corelli, A.	Concerto grosso op. 6 No. 2, III. Grave – Andante largo	Romantic
Baroque	Lully, JB.	Ballet de Xerces LWV 12, Gavotte en rondeau	Romantic
Baroque	Purcell, H.	Opera "Dido and Aeneas" Z. 626, Overture	Romantic
Baroque	Vivaldi, A.	"The Four Seasons," RV 293 "Autumn," Adagio molto	Romantic
Romantic	Schumann, R.	Kinderszenen op. 15, "Haschemann"	Baroque
Romantic	Grieg, E.	Holberg suite op. 40, Gavotte	Baroque
Romantic	Mendelssohn, F.	Symphony No. 4 in A major, IV. Saltarello, presto	Baroque
Modern	Shostakovich, D.	Preludes & Fugues op. 87 Fugue No. 1 in C major	Baroque
Modern	Shostakovich, D.	Preludes & Fugues op. 87 Fugue No. 5 in D major	Baroque

Classification Results: Confusion Matrix

- 80 tonal features, GMM with 1 Gaussian, LDA, composer filtering
- Full dataset
- Mean accuracy: 75 %
- Inter-class standard deviation: 6.7 %

Further Information

- Artist / album effect [Pampalk/Flexer/Widmer, ISMIR 2005]
- Evaluation of genre classification
 [Sturm, IEEE TMM 2014]
 [Sturm, JIIS 2013]
 [Mishra/Sturm/Dixon, ISMIR 2017] → Poster Session 2
- Genre classification using Deep Learning
 [Oramas et al., ISMIR 2017] → Oral Session 1
 [Choi et al., ISMIR 2017] → Oral Session 5
 [Tsaptsinos, ISMIR 2017] → Poster Session 3
- Python machine learning & classification Toolbox: Scikit-learn www.scikit-learn.org/stable/