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Music Genre Classification
= Standard approach (content-based)
= Supervised machine learning

= Based on spectral / timbral features

= In classical music — Instrumentation

Music Genre Classification

= Typical approach: Supervised machine learning
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= Better categories?
= Musical style l l
= Independent from instrumentation ~N i i i
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= — Tonality / Harmony extraction reduction
Music Genre Classification Classification Scenario
= Experimental design: Evaluation with Cross Validation (CV) = Dataset: CrossEraDB (Historical Periods)
= Separate data into different parts (folds) = Balanced Piano (p) — Orchestra (0)
Fold 1 Fold 2 Fold 3 = Each 200 pieces — 1600 in total
Round 1| Training fold | Training fold Test fold
a2
Aound 3 EREETET] Training fold | Training fold
0
Modern Baroque
= Distribution of classes balanced for all folds
Baroque
Classical
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Classification Scenario Classification Features
o MFCC 16 Interval cat.  6x 4
T — osc 14 Triad types 4 x4
ZCR 1 Complexity 7x4
ASE 16 Chord progr. 11 x5
SFM 16
SCF 16
5S¢ 16
LogLoud 12
NormLoud 12
Sum 119 Sum 123
Mean & Std ~ x2 Mean & Std ~ x2
Total 238 Total 246
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Dimensionality Reduction Dimensionality Reduction

= Reduce feature space to few dimensions = Reduce feature space to few dimensions

Maximize separation of classes with Linear Discriminant Analysis (LDA)
= Using standard features (MFCC, spectral envelope, ...)

Maximize separation of classes with Linear Discriminant Analysis (LDA)

Using tonal features (interval, triad types, tonal complexity, ... 4 time scales)
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Dimensionality Reduction Classifier

= Reduce feature space to few dimensions

= Train Machine Learning Classifier

Maximize separation of classes with Linear Discriminant Analysis (LDA) = Gaussian Mixture Model (GMM)
= Using tonal & standard features .

Using Gaussian distributions to model data points in feature space
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Classification Results Classification Results
= Gaussian Mixture Model (GMM) classifier, LDA reduction, 3-fold cross validation = GMM classifier, LDA reduction, 3-fold cross validation
Full Dataset Piano Orchestra Full Dataset Piano Orchestra
Standard features 87 % 88 % 85 % Standard features 87 % 88 % 85 %
Tonal features 84 % 84 % 86 % Tonal features 84 % 84 % 86 %
Combined 92 % 86 % 80 % Combined 92 % 86 % 80 %

Weiss / Mauch / Dixon, Timbre-Invariant Audio Features for Baroque
Style Analysis of Classical Music, ICMC / SMC 2014 Classical
I

Flexer, A Closer Look on Artist Filters for
Musical Genre Classification, ISMIR 2007




Classification Results

= GMM classifier, LDA reduction, 3-fold cross validation

= No composer filter

Full Dataset Piano Orchestra
Standard features 87 % 88 % 85 %
Tonal features 84 % 84 % 86 %
Combined 92 % 86 % 80 %

= Using composer filter

Full Dataset Piano Orchestra
Standard features 54 % 36 % 70 %
Tonal features 73 % 70 % 78 %
Combined 68 % 44 % 68 %

Weiss / Miiller, Tonal Complexity Features for Style
Classification of Classical Music, ICASSP 2015

Classification Results — Confusion Matrix

80 tonal features, GMM with 1 Gaussian, LDA, composer filtering
Full dataset

Mean accuracy: 75 %

Inter-class standard deviation: 6.7 %
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Classification Results — Summary

= Different types of tonal features

Combination of time scales

Classifiers (SVM, Random Forest)

State-of-the-art
= Few studies on audio
= Good separation of tonal-vs.-atonal (91 %):

Izmirli, Tonal-Atonal Classification of Music Audio Using Diffusion Maps, ISMIR 2009

Composer Identification
= Up to 78 % for 11 composers
Hamel, Pooled Features Classification, MIREX 2011

= Dataset balanced?

Musical Style Analysis
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Musical Style Analysis — Complexity

—— Complexity Global
== = Complexity Mid-scale

= Complexity Local

Complexity T
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Clustering: Years

= Features: Interval, complexity, chord progressions
= Dimensional reduction with Principal Component Analysis (PCA)
= k-means clustering with different number of clusters k
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Clustering: Pieces Clustering: Composers

= k-means clustering with k = 5 clusters
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Clustering: Composers Clustering: Composers
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Clustering: Composers
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