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Music Genre Classification

R. Schumann, 
Sonata No. 2 op. 22,
II. Andantino
B. Glemser, Piano

J. S. Bach,
Brandenburg Concerto 
No. 2 in F major, I. Allegro,
Cologne Chamber Orch.

L. van Beethoven,
Fidelio, Overture,
Slovak Philharm.

A. Webern,
Variations for Orchestra op. 30
Ulster Orchestra



Music Genre Classification

Period / Era

Sub-era

Composer

Subgenre
Categories:



 Standard approach (content-based)

 Supervised machine learning

 Based on spectral / timbral features

 In classical music → Instrumentation

 Better categories?

 Musical style

 Independent from instrumentation

 → Tonality / Harmony

Music Genre Classification



Music Genre Classification
 Typical approach: Supervised machine learning

Dataset

Training set

Test set

Feature 
extraction

Feature 
extraction

Dimensionality
reduction

Classifier
training

Classification
Dimensionality

reduction



Music Genre Classification

Baroque

Classical
Romantic

Modern

training test

 Experimental design: Evaluation with Cross Validation (CV)

 Separate data into different parts (folds)

 Distribution of classes balanced for all folds



Classification Scenario
 Dataset: CrossEraDB (Historical Periods)

 Balanced Piano (p) – Orchestra (o)

 Each 200 pieces → 1600 in total



Classification Scenario

1809
17001650 1750 1800 1850 1900 1950 2000



Classification Features
Standard Dim. Tonal Dim.
MFCC 16 Interval cat. 6 x 4
OSC 14 Triad types 4 x 4
ZCR 1 Complexity 7 x 4
ASE 16 Chord progr. 11 x 5
SFM 16
SCF 16
SC 16
LogLoud 12
NormLoud 12

Sum 119 Sum 123
Mean & Std x 2 Mean & Std x 2
Total 238 Total 246



Dimensionality Reduction

 Reduce feature space to few dimensions

 Maximize separation of classes with Linear Discriminant Analysis (LDA)
 Using standard features (MFCC, spectral envelope, …)



Dimensionality Reduction

 Reduce feature space to few dimensions

 Maximize separation of classes with Linear Discriminant Analysis (LDA)
 Using tonal features (interval, triad types, tonal complexity, … 4 time scales)



Dimensionality Reduction

 Reduce feature space to few dimensions

 Maximize separation of classes with Linear Discriminant Analysis (LDA)
 Using tonal & standard features



Classifier

 Train Machine Learning Classifier

 Gaussian Mixture Model (GMM)
 Using Gaussian distributions to model data points in feature space



Classification Results

 Gaussian Mixture Model (GMM) classifier, LDA reduction, 3-fold cross validation

Weiss / Mauch / Dixon, Timbre-Invariant Audio Features for
Style Analysis of Classical Music, ICMC / SMC 2014

Full Dataset Piano Orchestra

Standard features 87 % 88 % 85 %

Tonal features 84 % 84 % 86 %

Combined 92 % 86 % 80 %



Classification Results

 GMM classifier, LDA reduction, 3-fold cross validation

Baroque

Classical
Romantic

Modern

training test

Full Dataset Piano Orchestra

Standard features 87 % 88 % 85 %

Tonal features 84 % 84 % 86 %

Combined 92 % 86 % 80 %

Flexer, A Closer Look on Artist Filters for
Musical Genre Classification, ISMIR 2007



Full Dataset Piano Orchestra

Standard features 54 % 36 % 70 %

Tonal features 73 % 70 % 78 %

Combined 68 % 44 % 68 %

Full Dataset Piano Orchestra

Standard features 87 % 88 % 85 %

Tonal features 84 % 84 % 86 %

Combined 92 % 86 % 80 %

Classification Results

 GMM classifier, LDA reduction, 3-fold cross validation

 No composer filter

 Using composer filter

Weiss / Müller, Tonal Complexity Features for Style 
Classification of Classical Music, ICASSP 2015



Classification Results – Confusion Matrix

 80 tonal features, GMM with 1 Gaussian, LDA, composer filtering

 Full dataset

 Mean accuracy: 75 %
 Inter-class standard deviation: 6.7 %



Classification Results – Summary

 Different types of tonal features

 Combination of time scales

 Classifiers (SVM, Random Forest)

 State-of-the-art

 Few studies on audio

 Good separation of tonal-vs.-atonal (91 %):

 Composer Identification

 Up to 78 % for 11 composers

 Dataset balanced?

Izmirli, Tonal-Atonal Classification of Music Audio Using Diffusion Maps, ISMIR 2009

Hamel, Pooled Features Classification, MIREX 2011
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Musical Style Analysis
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Musical Style Analysis – Complexity



Clustering: Years

 Features: Interval, complexity, chord progressions

 Dimensional reduction with Principal Component Analysis (PCA)
 k-means clustering with different number of clusters k



Clustering: Pieces
 k-means clustering with k = 5 clusters
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Clustering: Composers
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Clustering: Composers
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Clustering: Composers
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Clustering: Composers


