Tutorial T3
A Basic Introduction to Audio-Related Music Information Retrieval

Audio Features

Meinard Müller, Christof Weiß

International Audio Laboratories Erlangen
meinard.mueller@audiolabs-erlangen.de, christof.weiss@audiolabs-erlangen.de
Book: Fundamentals of Music Processing

Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover
ISBN: 978-3-319-21944-8
Springer, 2015

Accompanying website:
www.music-processing.de
Book: Fundamentals of Music Processing

Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover
ISBN: 978-3-319-21944-8
Springer, 2015

Accompanying website:
www.music-processing.de
Book: Fundamentals of Music Processing

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Music Processing Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Music Representations</td>
</tr>
<tr>
<td>2</td>
<td>Fourier Analysis of Signals</td>
</tr>
<tr>
<td>3</td>
<td>Music Synchronization</td>
</tr>
<tr>
<td>4</td>
<td>Music Structure Analysis</td>
</tr>
<tr>
<td>5</td>
<td>Chord Recognition</td>
</tr>
<tr>
<td>6</td>
<td>Tempo and Beat Tracking</td>
</tr>
<tr>
<td>7</td>
<td>Content-Based Audio Retrieval</td>
</tr>
<tr>
<td>8</td>
<td>Musically Informed Audio Decomposition</td>
</tr>
</tbody>
</table>

Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover
ISBN: 978-3-319-21944-8
Springer, 2015

Accompanying website:
www.music-processing.de
Chapter 2: Fourier Analysis of Signals

2.1 The Fourier Transform in a Nutshell
2.2 Signals and Signal Spaces
2.3 Fourier Transform
2.4 Discrete Fourier Transform (DFT)
2.5 Short-Time Fourier Transform (STFT)
2.6 Further Notes

Important technical terminology is covered in Chapter 2. In particular, we approach the Fourier transform—which is perhaps the most fundamental tool in signal processing—from various perspectives. For the reader who is more interested in the musical aspects of the book, Section 2.1 provides a summary of the most important facts on the Fourier transform. In particular, the notion of a spectrogram, which yields a time–frequency representation of an audio signal, is introduced. The remainder of the chapter treats the Fourier transform in greater mathematical depth and also includes the fast Fourier transform (FFT)—an algorithm of great beauty and high practical relevance.
Chapter 3: Music Synchronization

3.1 Audio Features
3.2 Dynamic Time Warping
3.3 Applications
3.4 Further Notes

As a first music processing task, we study in Chapter 3 the problem of music synchronization. The objective is to temporally align compatible representations of the same piece of music. Considering this scenario, we explain the need for musically informed audio features. In particular, we introduce the concept of chroma-based music features, which capture properties that are related to harmony and melody. Furthermore, we study an alignment technique known as dynamic time warping (DTW), a concept that is applicable for the analysis of general time series. For its efficient computation, we discuss an algorithm based on dynamic programming—a widely used method for solving a complex problem by breaking it down into a collection of simpler subproblems.
Fourier Transform

Idea: Decompose a given signal into a superposition of sinusoids (elementary signals).

\[f = s_1 + s_2 + s_3 \]
Each sinusoid has a physical meaning and can be described by three parameters:

\[s(A, \omega, \varphi)(t) = A \cdot \sin(2\pi(\omega t - \varphi)) \]

- \(\omega \) = frequency
- \(A \) = amplitude
- \(\varphi \) = phase

Interpretation:
The amplitude \(A \) reflects the intensity at which the sinusoidal of frequency \(\omega \) appears in \(f \).
The phase \(\varphi \) reflects how the sinusoidal has to be shifted to best correlate with \(f \).
Each sinusoid has a physical meaning and can be described by three parameters:

\[f = s_1 + s_2 + s_3 \]

Signal \(f \)

- \(A_1 = 1 \)
- \(\omega_1 = 1 \)
- \(\varphi_1 = 0 \)

- \(A_2 = 0.6 \)
- \(\omega_2 = 3 \)
- \(\varphi_2 = -0.2 \)

- \(A_3 = 0.4 \)
- \(\omega_3 = 7 \)
- \(\varphi_3 = 0.4 \)
Each sinusoid has a physical meaning and can be described by three parameters:

\[f = s_1 + s_2 + s_3 \]

- \(A_1 = 1 \)
- \(\omega_1 = 1 \)
- \(\varphi_1 = 0 \)
- \(A_2 = 0.6 \)
- \(\omega_2 = 3 \)
- \(\varphi_2 = -0.2 \)
- \(A_3 = 0.4 \)
- \(\omega_3 = 7 \)
- \(\varphi_3 = 0.4 \)
Fourier Transform

Example: Superposition of two sinusoids
Fourier Transform

Example: C4 played by piano
Fourier Transform

Example: C4 played by trumpet
Fourier Transform

Example: C4 played by violin
Fourier Transform

Example: C4 played by flute
Fourier Transform

Example: C-major scale (piano)
Fourier Transform

Signal \(f : \mathbb{R} \to \mathbb{R} \)

Fourier representation \(f(t) = \int_{\omega \in \mathbb{R}} c_\omega \exp(2\pi i \omega t) d\omega \)

Fourier transform \(c_\omega = \hat{f}(\omega) = \int_{t \in \mathbb{R}} f(t) \exp(-2\pi i \omega t) dt \)
Fourier Transform

Signal

\[f : \mathbb{R} \rightarrow \mathbb{R} \]

Fourier representation

\[f(t) = \int_{\omega \in \mathbb{R}} c_{\omega} \exp(2\pi i \omega t) d\omega \]

Fourier transform

\[c_{\omega} = \hat{f}(\omega) = \int_{t \in \mathbb{R}} f(t) \exp(-2\pi i \omega t) dt \]

- Tells **which** frequencies occur, but does not tell **when** the frequencies occur.
- Frequency information is averaged over the entire time interval.
- Time information is hidden in the phase
Fourier Transform

\[f \]

Time (seconds)

\[|\hat{f}| \]

Frequency (Hz)

\[f \]

Time (seconds)

\[|\hat{f}| \]

Frequency (Hz)
Short Time Fourier Transform

Idea (Dennis Gabor, 1946):

- Consider only a **small section** of the signal for the spectral analysis
 -> recovery of time information

- Short Time Fourier Transform (STFT)

- Section is determined by pointwise multiplication of the signal with a localizing **window function**
Short Time Fourier Transform

![Waveform and Frequency Spectrum]
Short Time Fourier Transform

![Time Domain and Frequency Domain Plots]
Short Time Fourier Transform
Short Time Fourier Transform

![Graph showing the Short Time Fourier Transform with time and frequency axes labeled. The top graph shows a time-domain waveform, and the bottom graph shows the corresponding frequency-domain spectrum.]
Short Time Fourier Transform

Definition

- **Signal** \(f : \mathbb{R} \rightarrow \mathbb{R} \)

- **Window function** \(g : \mathbb{R} \rightarrow \mathbb{R} \quad (g \in L^2(\mathbb{R}), \|g\|_2 \neq 0) \)

- **STFT** \(\tilde{f}_g(t, \omega) = \int_{u \in \mathbb{R}} f(u) \overline{g(u-t)} \exp(-2\pi i \omega u) du = \langle f | g_{t, \omega} \rangle \)

with \(g_{t, \omega}(u) = \exp(2\pi i \omega (u-t))g(u-t) \quad \text{for} \quad u \in \mathbb{R} \)
Short Time Fourier Transform

Intuition:

- $g_{t,\omega}$ is “musical note” of frequency ω centered at time t
- Inner product $\langle f | g_{t,\omega} \rangle$ measures the correlation between the musical note $g_{t,\omega}$ and the signal f
Time-Frequency Representation

Spectrogram

$$\langle f | g_{\omega}, t \rangle$$
Time-Frequency Representation

Spectrogram
Time-Frequency Representation

Spectrogram
Time-Frequency Representation

Spectrogram
Time-Frequency Representation

Spectrogram

\[f \]
-0.05
0
0.05
0 1 2 3 4 5 6 7 8 9 10

\[\omega \]
5000
4000
3000
2000
1000
0
0 1 2 3 4 5 6 7 8 9 10

Intensity (dB)
Time-Frequency Representation

Signal and STFT with Hann window of length 20 ms
Time-Frequency Representation

Signal and STFT with Hann window of length 100 ms
Time-Frequency Representation

Time-Frequency Localization

- Size of window constitutes a trade-off between time resolution and frequency resolution:
 - Large window: poor time resolution, good frequency resolution
 - Small window: good time resolution, poor frequency resolution

- Heisenberg Uncertainty Principle: there is no window function that localizes in time and frequency with arbitrary precision.
Audio Features

Example: Chromatic scale

Spectrogram
Audio Features

Example: Chromatic scale

Spectrogram
Audio Features

Example: Chromatic scale

Spectrogram

- C8: 4186 Hz
- C7: 2093 Hz
- C6: 1046 Hz
- C5: 523 Hz
- C4: 262 Hz
- C3: 131 Hz
Audio Features

Example: Chromatic scale

Log-frequency spectrogram

C8: 4186 Hz
C7: 2093 Hz
C6: 1046 Hz
C5: 523 Hz
C4: 262 Hz
C3: 131 Hz
Audio Features

Example: Chromatic scale

Log-frequency spectrogram
Audio Features

Example: Chromatic scale

Log-frequency spectrogram

Chroma C
Audio Features

Example: Chromatic scale

Log-frequency spectrogram

Chroma C#
Audio Features

Example: Chromatic scale

Chromagram

Chroma

Intensity (dB)

Time (seconds)
Audio Features

Chroma features

Chromatic circle

Shepard’s helix of pitch

Tone height
Audio Features

Chroma features
Audio Features

Chroma features
Audio Features

Chroma features
Audio Features

- There are many ways to implement chroma features
- Properties may differ significantly
- Appropriateness depends on respective application
- Chroma Toolbox (MATLAB)
 https://www.audiolabs-erlangen.de/resources/MIR/chromatoolbox
- LibROSA (Python)
 https://librosa.github.io/librosa/
- Feature learning: “Deep Chroma”
 [Korzeniowski/Widmer, ISMIR 2016]