MEMORY-RESTRICTED MULTISCALE DYNAMIC TIME WARPING

Thomas Prdtzlich, Jonathan Driedger and Meinard Miiller

International Audio Laboratories Erlangen

ABSTRACT

Dynamic Time Warping (DTW) is an established method for finding
a global alignment between two feature sequences. However, hav-
ing a computational complexity that is quadratic in the input length,
memory consumption becomes a major issue when dealing with long
feature sequences. Various strategies have been proposed to reduce
the memory requirements of DTW. For example, online alignment
approaches often have a constant memory consumption by applying
forward path estimation strategies. However, this comes at the cost
of robustness. Efficient offline DTW based on multiscale strategies
constitutes another approach. While methods built on this princi-
ple are usually robust, their memory requirements are still depen-
dent on the input length. By combining ideas from online align-
ment approaches and offline multiscale strategies, we introduce a
novel alignment procedure that allows for specifying a constant up-
per bound on its memory requirements. This is an important aspect
when working on devices with limited computational resources. Ex-
periments show that when restricting the memory consumption of
our proposed procedure to eight megabytes, it basically yields the
same alignments as the standard DTW procedure.

Index Terms— Dynamic Time Warping, alignment, music syn-
chronization, memory requirements

1. INTRODUCTION

The task of finding a global alignment between two feature se-
quences has received large research interest in the past, in the con-
text of music information retrieval (MIR) and beyond. For exam-
ple, the goal in music synchronization is to align musically cor-
responding positions in different representations of a piece of mu-
sic. The different music representations may include sheet music
(images), symbolic score data, or audio recordings. Many meth-
ods for symbolic score-to-audio alignment [1, 2, 3], sheet music-to-
audio alignment [4], and audio-to-audio alignment [5, 6, 7] have
been developed. Furthermore, alignment techniques are important
in MIR tasks such as automatic accompaniment [8, 9] or score fol-
lowing [10, 11, 12]. Many different approaches have been used in
alignment systems. For example, Hidden Markov Models or parti-
cle filters have been employed in score to audio alignment, where
the current score position and tempo are modeled in a statistical
sense [13, 14]. In this paper, we focus on methods based on Dynamic
Time Warping (DTW) [5, 15, 16]. DTW is an effective technique
to find an optimal alignment of two feature sequences. However,
since the complexity of DTW is proportional to the product of the
feature sequences’ lengths [16], memory consumption becomes an

The International Audio Laboratories Erlangen are a joint institution of
the Friedrich-Alexander-Universitdt Erlangen-Niirnberg (FAU) and Fraun-
hofer IIS. This work has been supported by the BMBF project Freischiitz
Digital (Funding Code 01UG1239A to C) the German Research Foundation
(DFG MU 2686/7-1).

Multiscale Dynamic Time Warping (MsDTW)
(a) (b ©

Memory restricted Multiscale Dynamic Time Warping (MrMsDTW)
@ e @

(g

Fig. 1. Ilustration of MsDTW (a)-(c) with global tubular constraint
regions and the proposed MrMsDTW (d)-(e) with rectangular local
constraint regions. (a) Alignment on coarse feature resolution. (b)
Projection of (a) onto finer level with resulting tubular constraint
region. (c) Refinement of (a) on fine resolution within tubular con-
straint region. Illustration of the MrMsDTW procedure. (d) Warping
path P2 on coarse level (LEVEL C). (e) Projected warping path Pg
on fine level (LEVEL F) and derived anchor sequence A. (f) First
refinement of Pr by computing local paths within rectangular con-
straint regions defined by the anchor sequence A. (g) Derivation of
the anchor sequence A’ in a neighborhood of the anchor points in
A. (h) Second refinement constrained by the rectangular constraint
regions defined by A’. (i) Refined warping path Pj..

issue when dealing with long feature sequences. But also aligning
shorter sequences may become problematic with the standard DTW
procedure when working for example on mobile devices, which usu-
ally only provide a limited amount of memory. To reduce the mem-
ory requirements of DTW, several strategies were proposed. On
a global level, the Sakoe-Chiba band or the Itakura parallelogram
impose a constant global constraint region on the set of possible
alignments [15]. Using these constraints is problematic, as the op-
timal alignment may lie outside these regions. Another approach is
to use adaptive global constraints such as in multiscale DTW (Ms-
DTW) [6, 17]. Here, a projection of an alignment on a coarse feature
resolution level (see Figure la) is used to constrain the computa-

(a) (®) ©

| |
[mm| [mm|
a a
| |
|]
oo . J [mim}
ooo ooo ooo
O a
O O O
= = =
(d) (e) ®
| | I [|
) [] | q
() [
e

Fig. 2. Illustration of basic concepts. (a) Warping path P of length
|P| = 14. (b) Center h(P) = 8 of warping path P. (c) Subpath
P[1 : 8]. (d) Anchor sequence A C P. (e) Anchor sequence fulfill-
ing boundary conditions A" = P. (f) Maximum rectangular extent
R(A) = 12 of anchor sequence A.

tion of a refined alignment on a finer feature resolution level. In the
refinement, the alignment is restricted to lie within a tubular con-
straint region that is constructed from the projected alignment (see
Figure 1b+c). Note that there are cases where alignments computed
by MsDTW deviate from the globally optimal alignment, see [6, 17].

In online scenarios, local constraints are imposed on the align-
ment. Here, the alignment is usually computed using greedy forward
path estimation [5] or by using block-by-block processing where a
block defines a local rectangular constraint region [18].

In this paper, we propose an MsDTW variant using the idea of
building a global path from local alignments. Our memory-restricted
MsDTW procedure, in the following called MrMsDTW, uses lo-
cal rectangular constraint regions in the refinement step. The size,
and therefore the required memory to store them, is bounded by a
memory restriction parameter 7. The constraint regions are inferred
from anchor points on the projected alignment (see Figure 1e). This
yields a set of local alignments (see Figure 1f). In a second refine-
ment step, these local alignments are corrected in a neighborhood
around the initial set of anchor points. Again, this is done in rectan-
gular constraint regions that are restricted in size by 7. This makes
the memory requirement of our method basically constant in depen-
dence of 7, whereas the memory requirement of MsDTW is linearly
and DTW is quadratically growing with the lengths of the feature
sequences (see Figure 3).

In the remainder of this paper, we first introduce our novel pro-
cedure in detail (Section 2) and then discuss the influence of the
parameter 7 on the robustness of MrMsDTW within a music syn-
chronization application scenario (Section 3).

2. ALGORITHM

In this section, we introduce our memory-restricted alignment pro-
cedure that combines concepts from MsDTW [6, 17] with the idea
of using rectangular local constraint regions as already proposed
for online alignment procedures [18]. We first introduce some ba-
sic notions (Section 2.1), review the basics of DTW (Section 2.2)
and MsDTW (Section 2.3), and then explain our proposed memory-
restricted MsDTW approach (MrMsDTW) in detail (Section 2.4).

gzcj : ‘ T “ees DTW
3 : Pt - - ~MsDTW, §=75
g 10 : .- MsDTW, 6=30
g / T ——MrMsDTW, r=10°
o ezl : (, ——MrMsDTW, r=10°
100 200 300

Average duration (seconds)

Fig. 3. Memory requirement for storing the accumulated cost matrix
D for DTW, MsDTW, and MrMsDTW in dependency of the average
duration of the recordings. The curves for MsDTW are lower bounds
assuming a diagonal path for the constraint region computation.

2.1. Basic Notions

Let F be a suitable feature space. Furthermore, let X :=
(z1,...,zn) and Y := (y1,...,ynm) be feature sequences with
ZTn,Ym € F,wheren € [1: N]:={1,...,N}andm € [1 : M].
A cell is a tuple p := (n,m) € [1 : N] x [1 : M], which en-
codes the correspondence between two feature vectors x,, and ynm,.
We define the operators 71 (p) := n and m2(p) := m to refer to the
elements of a cell. A path is a sequence of cells P = (p1,...,pL),
with p, € [1: N| x [1: M]for £ € [1: L] satisfying the step size
condition (pey1 — pe) € ¥ = {(1,0),(0,1),(1,1)}. We refer
to the length of a path by |P| := L. A warping path is a path
that additionally fulfills the boundary conditions p1 = (1,1) and
pr = (N, M) (see Figure 2a). Note that a warping path constitutes
a global alignment between two feature sequences. We define the
operator h(P) := ||P|/2] 4+ 1 to return the center index of a se-
quence P (see Figure 2b). For retrieving the first, center, and last
element of a path, we define the operators B(P) := p1, H(P) :=
Pr(py, E(P) := pr, respectively. Furthermore, we define a sub-
path as P[i: j] == (pi,...,p;) with 1 < i < j < |P| (see Fig-
ure 2¢). An anchor point is a specified cell a = (n,m) and an
anchor sequence is a sequence of anchor points A = (a1, ...,ax)
with ar € [1 : N] x [1 : M] that fulfills the condition of strict
monotonicity ax+1 — ar € N x N. We write A C P if all cells of
A are also cells of P (Figure 2d). Furthermore, we write A C P if
A C P and A additionally fulfills the boundary conditions a1 = p;
and ax = pr (Figure 2e). Let dy := ag+1 —ax + (1,1). We
define the maximum rectangular extent of an anchor sequence A as
R(A) := maxyep.x—1) 71(dk) - m2(dx) , which is the maximum
rectangular area spanned between consecutive anchor points in A
(Figure 2f). This concept will later be used to make the memory re-
striction of the algorithm explicit. Finally, to compare two features
in F, we use a local cost measure ¢: F x F — [0, 1]. By comparing
each pair of elements in the sequences X and Y, we obtain the cost
matrix C(n,m) := ¢(xn, ym). Given two anchor points a1 and as,
we define the local cost matrix

Clai; az] := C(n, M), (a1)<n<mi(az), -
ma(a1)<m<ma(az)

which is a submatrix of C.

2.2. Classical Dynamic Time Warping (DTW)

The goal of DTW is to compute an optimal warping path between the
two feature sequences X and Y with respect to the cost measure c.
The total alignment cost of a warping path P between two sequences
X and Y is defined by cp(X,Y) := Y21, C(m1(pe), m2(pe)). We
say that a warping path P* is optimal, if it has minimal alignment
costs cp+ := min{cp(X,Y)|P is warping path}. To derive an op-
timal warping path, we first compute the accumulated cost matrix D

Recording 1 Recording 2 Memory
Identifier || Composer / Piece Performer 1 Dur. Performer 2 Dur. DTW |MsDTW | MrMsDTW

[s] [s] [GB] [MB] [MB]
ID-01 || Vivaldi/RV 269 (Spring), Ist movement Abbado 203.2 || Nishizaki 213.2 0.807 4.880 0.763
ID-02 || Shostakovich / Jazz Suite No. 2, 6th movement (Waltz) Chailly 223.7 || Yablonsky 193.8 0.808 5.120 0.763
ID-03 || Beethoven/ Symphony 5, Op. 67, Ist movement Karajan 444.0 || Bernstein 519.2 4.294 11.884 0.763
ID-04 || Weber/ “Der Freischiitz”, No. 8 Furtwingler 611.5 || Jochum 454.0 5.171 13.996 0.763
ID-05 || Wagner, “Meistersinger”, Prelude Armstrong 595.1 || Neumann 563.8 6.249 13.621 0.763
ID-06 || Ravel/“Bolero” Abbado 862.7 || Ozawa 901.1 14.480 | 20.625 0.763
ID-07 || Beethoven/ Symphony 9, Op. 125, 4th movement Karajan 932.6 || Bernstein 928.5 || 16.129 | 21.346 0.763
ID-08 || Schubert /Symphony 8, D759, Ist movement (Unfinished) || Solti 950.9 || Sacchi 817.5 || 14.479 | 21.764 0.763
ID-09 || Weber/ “Der Freischiitz”, full opera Carlos Kleiber | 7763.3 || Davis 8204.1 |/ 1186.379 | 187.784 0.763
ID-10 || Wagner/ “Das Rheingold”, WWYV 86A Karajan 8752.1 || Haitink 8930.3 || 1455.823 | 204.398 0.763

Table 1. Memory requirements for DTW, MsDTW with § = 30 (expansion size for tubular constraint region), and MrMsDTW with 7 = 10°
(rectangular constraint region size) for a selection of pieces. ID-09 and ID-10 were not used in our robustness experiments, as the memory

requirement for DTW is more than a terabyte. The alignments are therefore infeasible to compute for these pieces.

given by

D(n,m) = C(n,m)+ min D (n —i,m —j)
(4,5)ex

with D(n,1) = >°;_, C(k,1) forn € [1: N] and D(1,m) =

v, C(1,k) form € [1: M]. The optimal warping path can be
obtained by backtracking the steps through D, see [15] for details.
Note that the time and space complexity of the algorithm to compute
D and the optimal warping path is O(NM).

2.3. Multiscale DTW (MsDTW)

In this section, we review the basic concepts of MsDTW originally
introduced in [6, 17]. MsDTW aims to reduce the computational
requirements of DTW by first computing an alignment on a coarse
feature resolution level (LEVEL C). The coarse alignment is then
projected onto a finer feature resolution level (LEVEL F) and refined
using a tubular constraint region.

More precisely, let P55 be an optimal warping path computed on
LEVEL C (see Figure 1a). The optimal warping path P/ is projected
onto LEVEL F, resulting in a (potentially non-optimal) warping path
Pr (see Figure 1b). To compute an optimal warping path Pz on
LEVEL F, a tubular constraint region is constructed by adding 6 € N
cells to the left, top, right and bottom of Pr. Within this constraint
region, Pp is computed via DTW (see Figure 1c). The procedure
can be recursively applied by introducing further coarse resolution
levels. Note that, depending on the choice of §, the warping path Pz
might not coincide with the globally optimal warping path computed
with DTW. Using the MsDTW strategy reduces the memory require-
ments compared to classical DTW. However, the required memory
is still linearly dependent on the length of the feature sequences [17].
For a detailed description of the procedure, we refer to [6, 17].

2.4. Memory-restricted MsDTW (MrMsDTW)

We now describe our proposed MrMsDTW procedure. Given a
memory restriction parameter 7 that sets an upper bound on the num-
ber of cells that can be used for the alignment computation, our main
idea is to use rectangular local constraint regions that have a size of
at most 7 instead of a single global tubular constraint region. On
each rectangular constraint region, a local alignment is computed on
a local cost matrix. Each local alignment is computed by applying
standard DTW on the local cost matrix. Furthermore, the compu-
tations of the local alignments are independent of each other. They

can therefore be computed in a sequential way such that at most 7
cells are used at any time.

As in Section 2.3, we use two resolution levels to describe the
algorithm. The main difference to the classical MsDTW approach
is the refinement on LEVEL F, where rectangular local constraint re-
gions are derived from an alignment that is computed on LEVEL C.
As before, let P be an optimal warping path computed on LEVEL C
(Figure 1d). At this point, we assume that the computation of P did
not require more than 7 cells. Furthermore, let Pr be a suitable pro-
jection of P& onto LEVEL F (Figure le). In the next step, we use
Pr to construct a set of rectangular constraint regions to refine the
alignment on LEVEL F. To this end, we derive an anchor sequence
A C Pr (black dots in Figure le). Each consecutive pair of an-
chor points in A defines a rectangular constraint region. We further
require A to fulfill the condition R(A) < 7. Such an anchor se-
quence can be obtained by initially setting A := (B(Pr), E(Pr)).
If A does not fulfill R(A) < 7, the warping path P is recursively
divided at its center into subpaths from which the first and last el-
ement are used as anchors. This is repeated until R(A) < 7 (see
Figure le). In the next steps, we use A to compute a refined warping
path Pz from Pp:

(Step 1) Refinement between anchor points. We compute a set
of local paths Q1,...,Qr—1 constrained by the anchor sequence
A = (a1,...,ax). Each local path Q fulfills the boundary condi-
tions B(Qr) = ax and E(Qr) = ak+1 and is computed by using
standard DTW on the local cost matrix Ci := Clak; ar+1] (see
Figure 1f). If A contains only two anchor points (K = 2), we set
Pp := Q1. Otherwise, we proceed with the following steps.

(Step 2) Refinement in the neighborhoods of the anchor points.
In the first refinement step, the warping path Pr was not refined
at the anchor points in A. In this step, we therefore recompute the
refinement in neighborhoods of these anchor points. To this end,
we derive pairs of anchors A;, with k € [1 : K — 2], each fulfill-
ing R(A}) < 7. We initialize each A}, := (H(Qx), H(Qx+1))
and iteratively decrease the size of the respective rectangular con-
straint regions until they obey the memory restriction constraint (see
white dots in Figure 1g). Now, we compute the set of local paths
Q' ..., Q% _o where each local path Q) is constrained by the an-
chor pair A}, (see Figure 1g+h).

(Step 3) Concatenation. The local paths from the previous steps
are combined to a global warping path Pj by concatenation (see
Figure 1i). When computing the local alignments sequentially, the
maximum memory requirement of the algorithm in the two refine-
ment steps can be directly inferred from the used anchor sequences
A and A’ by computing R(A) and maxy, R(Aj,) respectively.

As a final remark, note that the procedure described above can
be applied in a recursive fashion by introducing further levels of de-
creasing feature resolution, similar as in the classic MsDTW proce-
dure. In practice, we choose the coarsest feature resolution level such
that we need at most 7 cells for the computation of the full DTW
procedure on this level. Note that this leads to a constant memory
requirement for MrMsDTW.

3. EXPERIMENTS

In this section, we first describe our experimental setting. Then, we
investigate the robustness of our proposed MrMsDTW procedure in
dependency of the memory restriction parameter 7 in the context of
an audio-to-audio music synchronization scenario.

In the experiment, we use four fixed feature resolution levels
(50 Hz, 10 Hz, 2 Hz, 1 Hz), referred to as Level 1-4 where Level 1
corresponds to the finest feature resolution and Level 4 to the coars-
est. In the case that the feature sequences are so long that the initial
alignment would violate our memory constraint, we add a fifth level
choosing a feature resolution that still fulfills the memory require-
ment. We use the same feature set as described in [19].

Our dataset contains 53 pairs of classical music recordings, each
pair consisting of two different performances of the same piece of
music. Table 1 shows a representative selection of the pieces used
in our experiments. For each entry, a lower bound for the memory
requirement of DTW, MsDTW, and MrMsDTW is given. The lower
bound is derived from the number of memory cells required to store
the accumulated cost matrices D that are used in DTW, MsDTW,
and MrMsDTW. The memory usage in megabytes (MB) is obtained
by multiplying the required number of memory cells to store D by
ﬁ (assuming a 64 bit machine using double precision floating
point numbers). Note that these values may need to by multiplied
by a factor of 2 or 3, depending on the implementation (for addi-
tionally storing the cost matrices and a matrix that saves the step
sizes and indices leading to a cost-minimizing path in D). However,
this factor is the same for all three DTW variants. For MsDTW, we
computed the lower bound by assuming a diagonal path between the
two feature sequences, leading to a requirement of 2 - N memory
cells, where N denotes the length of the longer feature sequence.
In our dataset, the shortest piece is roughly one minute long, and
the longest about 15 minutes. Note that the memory requirement of
DTW for the piece ID-07 in Table 1 is already higher than 16 giga-
bytes. As the memory usage of DTW grows quadratically with the
length of the input feature sequences, it is not feasible to use it for
longer pieces on a normal desktop computer (assuming a maximum
of 16 gigabytes of available memory). For example, full DTW would
require more than one terabyte of memory on the opera recordings
ID-09 and ID-10 in Table 1. However, our proposed MrMsDTW
approach has basically constant memory requirements, and is there-
fore capable to compute alignments for longer pieces. The memory
requirements for DTW (quadratic), MsDTW (linear), and MrMs-
DTW (constant) are illustrated in Figure 3.

In the following, we investigate the connection between the
memory restriction parameter 7 and the robustness of our proposed
MrMsDTW procedure, see Table 2. To this end, we compare the
alignments computed by MrMsDTW with the optimal alignments
computed by the full DTW procedure as described in Section 2.2.
When aligning two music recordings, the warping path PyviymspTw
may deviate from the optimal global warping path Pipyw. The
smaller the constraint regions, the more likely it is that such de-
viations occur. Since small deviations from the optimal alignment
might be acceptable, we introduce a tolerance parameter ¢ for the

>~E| 0 1 2 4 8 16 | 7[MB]
107 [99.90 99.90 99.90 99.91 99.93 99.94 || 76.29
106 [99.81 99.83 99.85 99.87 99.88 99.92 || 7.629
10° | 95.82 96.57 9690 97.49 98.31 99.13 || 0.763
10* | 82.60 87.94 90.18 93.36 96.37 98.44 || 0.076
10® | 37.58 59.53 69.81 82.00 91.98 97.29 || 0.008

Table 2. Overall percentage of warping path cells in PyrmspTw
that have a deviation < ¢ cells from the corresponding cells of the
optimal global warping path Pprw. The value has been computed
for each warping path and was then averaged over the whole dataset
(to avoid that longer pieces have a stronger influence). The error tol-
erance ¢ defines a tolerance region around the Pprw of d-¢ frames
in horizontal and vertical direction. One frame corresponds to 20
ms.

evaluation. We say that a cell in PyvrvspTw Was correct in case
it lies within a region of e-cells to the left, top, right, and bottom
around a cell from Pjpyw. This means that for e=0, a cell in the
PurmspTw s only considered to be correct if it coincides perfectly
with a corresponding cell in the optimal warping path Pirvw. In
contrast, for e=16, a deviation of up to 0.32 seconds from the opti-
mal path is allowed (assuming a feature resolution of 50 Hz).

Table 2 shows the overall percentage of correct warping path
cells in dependency of the memory restriction 7 and the tolerance
for our dataset. Furthermore, the memory requirement for a given
7 is stated. For 7=107, having a memory requirement of ~76 MB,
nearly all alignment cells coincide with the full DTW approach. As
a comparison, the full DTW needs already more memory for pieces
that are longer than 63 seconds. For 7=10°, reducing the mem-
ory requirement to ~7.6 MB, even with ¢ = 0, more than 99%
of the alignment cells are still correct. The memory requirement of
MsDTW with § = 30 is only smaller for pieces shorter than 334
seconds (see Figure 3). With 7=10°, requiring less than 1 MB of
memory, the deviations from the optimal path start to increase. In
this case, MsDTW with 6 = 30 is only more memory efficient for
pieces shorter than 34 seconds (see Figure 3). For 7<10* (when pro-
viding less than 100 kilobytes of memory), the procedure becomes
unstable, leading to stronger deviations from the optimal warping
path. When reducing the memory requirement down to 8 kilobytes
(1 = 10%), only 37.58% of the warping cells correspond with the
full DTW results with a tolerance ¢ = 0. However, within a toler-
ance of € = 16 (0.32 seconds), more than 97% of the cells are still
considered to be correct. Depending on the application, this accu-
racy might still be acceptable.

4. CONCLUSIONS

In this contribution, we proposed MrMsDTW, a new MsDTW vari-
ant using rectangular shaped local constraint regions. It combines
the block-by-block processing from online alignment techniques
with a multiscale strategy. The introduced procedure has a con-
stant memory requirement, being explicitly controlled by a memory
restriction parameter. In addition, MrMsDTW basically yields the
same alignments as a full DTW approach, even when restricting it to
require only eight megabytes of memory. As a final remark, opposed
to classical MsDTW, our presented procedure has the potential of
being implemented in a parallel fashion as the individual local paths
can be computed independently of each other. This would trade the
explicit memory restriction for a better runtime performance.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

5. REFERENCES

Roger B. Dannenberg and Ning Hu, “Polyphonic audio match-
ing for score following and intelligent audio editors,” in
Proceedings of the International Computer Music Conference
(ICMC), San Francisco, USA, 2003, pp. 27-34.

Cyril Joder, Slim Essid, and Gaél Richard, “A conditional
random field framework for robust and scalable audio-to-score
matching,” [EEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 19, no. 8, pp. 2385-2397, 2011.

Christopher Raphael, “A hybrid graphical model for aligning
polyphonic audio with musical scores,” in Proceedings of the
International Society for Music Information Retrieval Confer-
ence (ISMIR), Barcelona, Spain, 2004, pp. 387-394.

Frank Kurth, Meinard Miiller, Christian Fremerey, Yoon
ha Chang, and Michael Clausen, “Automated synchronization
of scanned sheet music with audio recordings,” in Proceed-
ings of the 8th International Conference on Music Information
Retrieval (ISMIR), Vienna, Austria, 2007, pp. 261-266.

Simon Dixon and Gerhard Widmer, “MATCH: A music align-
ment tool chest,” in Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR), London,
GB, 2005.

Meinard Miiller, Henning Mattes, and Frank Kurth, “An ef-
ficient multiscale approach to audio synchronization,” in Pro-
ceedings of the International Society for Music Information Re-
trieval Conference (ISMIR), Victoria, Canada, 2006, pp. 192—
197.

Robert J. Turetsky and Daniel P. W. Ellis, “Ground-truth tran-
scriptions of real music from force-aligned MIDI syntheses,”
in Proceedings of the International Society for Music Informa-
tion Retrieval Conference (ISMIR), Baltimore, USA, 2003, pp.
135-141.

Roger B. Dannenberg and Christopher Raphael, “Music score
alignment and computer accompaniment,” Communications of
the ACM, Special Issue: Music information retrieval, vol. 49,
no. 8, pp. 38-43, 2006.

Christopher Raphael, “A probabilistic expert system for auto-
matic musical accompaniment,” Journal of Computational and
Graphical Statistics, vol. 10, no. 3, pp. 487-512, 2001.

Arshia Cont, “A coupled duration-focused architecture for
real-time music-to-score alignment,” [EEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 32, no. 6, pp.
974-987, 2010.

Nicola Orio, Serge Lemouton, and Diemo Schwarz, “Score
following: State of the art and new developments,” in Pro-
ceedings of the International Conference on New Interfaces for
Musical Expression (NIME), Montreal, Canada, 2003, pp. 36—
41.

Andreas Arzt, Sebastian Bock, and Gerhard Widmer, “Fast
identification of piece and score position via symbolic finger-
printing,” in Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), 2012, pp. 433—438.

Zhiyao Duan and Bryan Pardo, “A state space model for on-
line polyphonic audio-score alignment,” in Proceedings of the
IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP), Prague, Czech Republic, 2011, pp.
197-200.

[14]

[15]

[16]

[17]

(18]

[19]

Nicola Montecchio and Arshia Cont, “A unified approach to
real time audio-to-score and audio-to-audio alignment using
sequential Montecarlo inference techniques,” in Proceedings
of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Prague, Czech Republic, 2011,
pp- 193-196.

Lawrence Rabiner and Bing-Hwang Juang, Fundamentals of
Speech Recognition, Prentice Hall Signal Processing Series,
1993.

Meinard Miiller, Fundamentals of Music Processing, Springer
Verlag, 2015.

S. Salvador and P. Chan, “FastDTW: Toward accurate dynamic
time warping in linear time and space,” in Proceedings of
the KDD Workshop on Mining Temporal and Sequential Data,
2004.

Robert Macrae and Simon Dixon, “Accurate real-time win-
dowed time warping,” in Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR),
Utrecht, Netherlands, 2010, pp. 423-428.

Sebastian Ewert, Meinard Miiller, and Peter Grosche, “High
resolution audio synchronization using chroma onset fea-
tures,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Taipei,
Taiwan, 2009, pp. 1869—-1872.

