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Abstract—Voice conversion for speaker anonymization is an
emerging concept for privacy protection. In a deep learning
setting, this is achieved by extracting multiple features from
speech, altering the speaker identity, and waveform synthesis.
However, many existing systems do not modify fundamental
frequency (F0) trajectories, which convey prosody information
and can reveal speaker identity. Moreover, mismatch between F0
and other features can degrade speech quality and intelligibility.
In this paper, we formally introduce a method that synthesizes
F0 trajectories from other speech features and evaluate its
reconstructional capabilities. Then we test our approach within
a speaker anonymization framework, comparing it to a baseline
and a state-of-the-art F0 modification that utilizes speaker
information. The results show that our method improves both
speaker anonymity, measured by the equal error rate, and utility,
measured by the word error rate.

Index Terms—speaker anonymization, X-vector, bottleneck
features (BNs), F0, deep neural network (DNN)

I. INTRODUCTION

Speaker anonymization is a feasible solution to prevent per-

sonal information leakage during cloud-enabled speech pro-

cessing tasks, such as voice assistant usage [1]. The VoicePri-

vacy Initiative organizes a VoicePrivacy Challenge (VPC) to

facilitate further studies [2]. Many researchers adopt their

datasets, baselines and evaluation methodology [3]–[6].

The majority of the studies build upon a system based on

X-vectors and neural waveform models [7], citing its superior

anonymization performance as well as lower intelligibility

degradation, in comparison to the DSP-based anonymization

systems [8]. However, an important caveat of [7] is that the

fundamental frequency (F0) is not altered before synthesis

(see Fig. 1a), exposing the original F0, and introducing syn-

thesis artifacts due to the incompatibility between F0 and

the anonymized X-vector. Subsequent works [4], [5], [9]

investigated different F0 manipulations, however, a joint con-

sideration of the extracted features has not been investigated.

In our VPC 2022 contribution [10], we prototyped a novel

approach to address the aforementioned issues simultaneously.

Our system, attaining the best naturalness scores in a sub-

jective listening test, was found to be an effective contender

[11], but an evaluation beyond the VPC paradigm remained

out of scope. In this work, we formally test our approach by

evaluating its reconstructional capabilities and comparing it

with a state-of-the-art F0 modification for anonymization.
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Fig. 1: The three speaker anonymization systems under test.

II. RELATED WORKS

A. Speaker anonymization techniques

1) The VPC 2022 B1.b Baseline: The baseline, which our

contribution builds upon, is depicted in Fig. 1a [7]. It consists

of three feature extractors, an anonymization block and a

neural vocoder. Extractors decompose speech into individual

components, namely F0, bottleneck features (BNs), and X-

vectors. Table I summarizes their purposes and extraction

details. The anonymization block changes the X-vector, and

the neural vocoder (B1.b uses a neural source-filter (NSF)

trained with HiFi-GAN discriminators) synthesizes a speech

signal from the new set of features. The anonymization block

works in the following way:

(i) In the X-vector pool, find a set P of N X-vectors of a

certain gender (same as original or opposite) that are the

furthest away (per PLDA) from the original X-vector.

(ii) Select K random vectors from P and average them.

2) Proposed F0 modifications: Preserving the unmodified F0s

has been identified as a shortcoming, and several improve-

ments were proposed. For instance, a study compared various



TABLE I: Extracted features per utterance. W: window size,

H: hop size, N: number of frames of an utterance

Feature (purpose) Extractor Properties

F0 (Prosody) YAAPT [12] size: (Nx1), W: 35ms, H: 10ms

BN (Verbal content) TDNN-F [2] size: (Nx256), H: 10ms

X-vector (Identity) TDNN [2] size: (1x512)

DSP-based modifications [5]. Authors of [6] experimented

with speaking rate change and variable F0 shifting. Notably,

Champion et al. [4] proposed creating an F0 statistics dictio-

nary (mean, std) for each speaker in the pool, then assumed the

same K-subset averages of (mean, std) as the anonymized X-

vector statistics. This approach improved the synthesized audio

quality, especially for cross-gender anonymization. However,

it needs an F0 dictionary, so it is incompatible with many

anonymizers such as [3] that have a statistical model instead

of a speaker pool. We consider [4], the only system in

the literature that focuses on performing feature-aware F0

modification and reports VPC metrics, as the state-of-the-art,

and integrated it into our comparison framework (see Fig. 1b).

B. Deep learning-based F0 estimation

In recent years, data-driven F0 extractors were developed that

outperform the statistics-based ones. CREPE [13] and FCN

[14] perform a binned classification to estimate F0. Tran et al.

[15] uses a joint classification (voiced-unvoiced decision) and

regression (F0 values) formulation. Mentioned systems use

convolutional architectures to process the waveforms and are

trained on perfectly annotated data. Typical detection metrics

such as accuracy, precision and recall are used to evaluate the

voiced-unvoiced decision. Fine and gross pitch errors (FPE,

GPE [16]) are popular metrics to evaluate the F0 estimation

quality. The definitions that we utilized are given below:

GPE:
num. of frames whose error > 20%

num. of correctly identified voiced frames
(1)

FPE:
num. of frames whose error > 5%

num. of frames whose error < 20%
(2)

C. Speaker anonymization datasets and evaluation

In our work, we adopt the VPC framework, consisting of

datasets, attack models, and metrics and systems for evalu-

ation. The datasets consist of LibriSpeech and VCTK subsets

[2]. Table II outlines our dataset utilization and, which con-

forms to the VPC guidelines. Further information is available

in the VPC 2020 [17] and 2022 [2] evaluation plans.

Anonymization performance is measured using automated

speaker verification-equal error rate (ASV-EER). Higher EERs

correspond to better anonymization as the synthesized speech

is less linkable to the original speaker. Some systems in-

troduced in 2020 achieved sufficient anonymization (50%

EER) upon comparison to the original speech via a pretrained

ASV evaluator [8]. Thus in 2022, a stronger attack model is

introduced, where the attackers are able to train ASV systems

using anonymized data, i.e., a semi-informed attack model [2].

In our work we use the latter type of EER computation.

TABLE II: Dataset compositions. #F, #M: number of fe-

male/male speakers. #Utt: number of utterances

Used for Subset Name #F #M #Utt #Frames

training
libri-dev-trials 20 20 1978 1411330
vctk-dev-trials 15 15 11372 3792243
libritts-train-clean-100 123 124 33236 19297310

validation
libri-dev-enrolls 14 15 343 227416
vctk-dev-enrolls 15 15 600 192510

testing
libri-test-{enrolls,trials} 15 15 1934 1563092
vctk-test-{enrolls,trials} 15 15 12048 3846010

Moreover, the word error rate (WER) in an automated

speech recognition (ASR) scenario is measured. Lower WERs

are desired, meaning the anonymizer did not compromise

the utility. The 2022 challenge trains the ASR evaluation

system using anonymized data, however the training process

is cumbersome, limiting the breadth of our evaluation. Thus

we used the 2020 version of ASR evaluation which uses a pre-

trained model. In 2022, two auxiliary metrics are introduced:

pitch correlation (ρF0 ) and gain of voice distinctiveness (GVD)

[18]. To ensure that the emotions and the speaking pace

is largely preserved, ρF0 > 0.3 is required. A gain above

or below 0 correspond to an increase or decrease in voice

distinctiveness, and GVD = 0 would be the optimal value,

attained when the voice distinctiveness is preserved [2].

Some works in the speaker anonymization domain utilize

the so-called contrastive systems, that feature minor deviations

from the proposed idea, to assess the relative contributions

of individual design choices. For instance, in [19], speech

files with different feature combinations were synthesized and

evaluated, to gain insights on how the acoustic model and the

waveform model contribute to the anonymization.

III. METHODOLOGY

Rather than modifying extracted F0 trajectories as in previous

works, we propose a synthesis by regression approach (see

Fig. 1c). This approach eliminates the concern of leaking

original F0 to the output signal and can potentially improve the

quality of the subsequent neural waveform synthesis as the F0

trajectory would be coherent with the anonymized X-vector.

A. The framewise F0 synthesizer

We propose a 4-hidden-layer DNN (see Fig. 2) to framewise

infer F0 from the X-vector and BNs. Similar to [15], it yields

two outputs: F̂0[n], the predicted log-F0, and g[n], the logits

of a frame being voiced. Then, a mask is constructed, zeroing

F̂0[n] if the frame is classified as unvoiced (i.e., g < 0).
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Fig. 2: Proposed architecture. ’FC’ is a fully connected layer,

with number of neurons indicated below. The output layer

neurons are denoted with 1⃝, 2⃝.



The model is trained on a composite loss function as in [15].

L(F0, F̂0, g, v) = L1(F0, F̂0) + αBCE(g, v) (3)

A factor α balances the regression and classification tasks.

Here, v = 1 denotes a voiced frame whereas v = 0 is an

unvoiced one. The functions L1(·) and BCE(·) denote the L1

loss and binary cross-entropy with logits. Different to [15],

we do not have access to the perfect F0 annotations, so we

assume YAAPT extractions as the ground truth. To diminish

the effect of imperfect labels, we use L1 loss instead of MSE.

TABLE III: Hyperparameter search intervals and adopted

values. All parameters are searched in the log space.

Search Space Purpose Adopted Value

10
−3 < α < 500 loss factor 28.112

10
−4 < δ < 0.5 dropout probability 0

N/A learning rate 0.0003

N/A batch size 262144

B. Training strategies and hyperparameter tuning

The model is implemented with PyTorch [20]. The training

logic is provided by PyTorch Ignite [21]. Training utterances

(see Table II) are concatenated into a single tall matrix and

shuffled. This way, voiced and unvoiced frames from different

utterances are present in each batch. We used Nesterov-Adam

(NAdam) as our optimizer, with default parameters. Early

stopping after 10 epochs, and learning rate reduction by a

factor of 0.2 after 5 epochs of non-increasing validation metric

are used to combat overfitting. We used the total percentage of

accurately processed frames, i.e., correctly classified unvoiced

frames and frames that do not have gross pitch errors as

the validation metric. Table III outlines the hyperparameters

and their tuning procedure with OpTuna [22]. The procedure

yielded a δ < 0.001, so we disabled dropout by setting δ = 0.

C. Evaluation

Figures 3a and 3b compare the predictions by our model with

the assumed ground truth, for a male and a female utterance

from the validation set. Fig. 3c shows a cross-gender (female

to male) F0 conversion. The predicted F0 (blue) has a mean

that is significantly less than the original F0 (orange) while

preserving the global trend, hinting that our model is aware

TABLE IV: Contrastive systems and their feature descriptions.

ID Input F0 to NSF Input X-vector to NSF

Ours synthesized with anonymized X-vector anonymized

C1 synthesized with original X-vector original
C2 synthesized with anonymized X-vector original
C3 synthesized with original X-vector anonymized

of the effects of gender on F0. Now we utilize a two step

evaluation procedure to assess the capabilities of our model.

1) Reconstruction of known F0s: To measure the similarity

of the synthesized F0 values to the assumed ground truth, we

compute GPE, FPE and voiced-unvoiced classification metrics

(Accuracy, Precision, Recall).

2) Utilizing the model in a speaker anonymization system:

We integrate our model into the Baseline B1.b and evaluate

according to the VPC framework (see Section II-C). We also

introduce contrastive systems in Table IV, which use altered

neural vocoder inputs to gain insights. The anonymization

block behaves the same across trials for a fair comparison.

IV. RESULTS AND DISCUSSION

A. Reconstruction error of known F0s

Table V shows the F0 reconstruction performance of our

model. Despite its simplicity, in particular the narrow temporal

scope, it attains a voiced-unvoiced decision test accuracy

around 94%, similar to the YAAPT’s performance reported in

[16]. The visual inspection of the synthesized F0 suggests that

most decision errors occur at the edges of voiced segments,

instead of erratic switchings at random instances.

The regression performance, measured by GPE and FPE,

indicates that our system is only able to provide a crude

approximation of the ground truth. End-to-end systems that

operate on the full waveform report better GPE and FPE (e.g.,

[15]). A histogram of the voiced frame prediction errors is

provided in Fig. 4. They resemble a Gaussian distribution

with a high variance, centered near zero. We conclude a single

frame contains partial information to model the F0 trajectories,

and we expect the reconstruction performance to improve if

the model used the temporal context, e.g., via a recurrent or

convolutional architecture. The lack of perfect F0 annotations

also bounds the achievable performance, possibly fixable by a

self-supervised training scheme such as SPICE [23].
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TABLE V: Model F0 reconstruction performance, all reported

in percentages. Acc: Accuracy, Prec: Precision, Rec: Recall

Dataset Sex GPE(↓) FPE(↓) Acc.(↑) Prec.(↑) Rec.(↑)

libri-test
F 31.6 66.9 93.0 94.6 93.3
M 41.8 71.8 92.5 93.0 93.0

vctk-test
F 24.6 63.9 95.1 94.1 93.5
M 38.8 69.9 94.6 93.5 92.5

B. Utilizing the synthesizer in a speaker anonymization system

Evaluation of the mentioned anonymizers is presented in

Table VI. The new, stronger attack model caused some de-

crease in EER for the shift-and-scale approach [4] yet it still

outperforms the baseline. The different vocoder resulted in

better WERs compared to the original publication, however

the conclusions are the same: cross-gender synthesis became

more intelligible and same-gender synthesis is comparable

to the baseline. Our methodology alters the F0 trajectory

altogether, thus on average performs significantly better than

the other systems in terms of both metrics, in same gender

and cross-gender anonymization. Combined with the obser-

vations from the reconstruction performance, in particular the

voiced-unvoiced decision differences between YAAPT and our

method, we think that our system is possibly able to correct

some of the mistakes made by YAAPT thanks to the BNs and

this would explain the WER improvement.

Evaluation of the contrastive systems provide additional

intuition on understanding how F0 modification helps. Usage

of the original X-vectors together with the F0 modification

(systems C1 and C2) do not yield any significant anonymiza-

tion and cause an unexpected WER increase (+1%). We plan

to further investigate the reasons for this increase. Supplying

the synthesized F0 using the original speaker identity but using

the anonymized X-vector for synthesis (system C3) yields an

insignificant EER improvement and causes no WER change

TABLE VI: VPC framework results for the baseline (B1.b), our implementation of the state-of-the-art [4], our proposal, and

contrastive systems (C1-C3). Cross gender conversion is only possible for systems utilizing the anonymized X-vector at least

once. The weights for the average are introduced by the VPC 2022.

Dataset Weight
Gender EER [2] [%] (↑) WER [17] [%] (↓)

(From → To) B1.b [4] Ours C1 C2 C3 B1.b [4] Ours C1 C2 C3

libri-test 0.25
F → F 11.13 12.96 12.04 14.60 13.14 8.57

5.60 5.58 5.48 6.39 6.40 5.59
M → M 7.35 8.69 10.02 1.34 1.34 8.46

vctk-test-diff 0.20
F → F 12.04 13.73 16.20 5.45 8.39 12.81

14.66 14.76 14.57 16.28 16.10 14.66
M → M 8.78 9.93 10.79 1.61 2.01 8.84

vctk-test-com 0.05
F → F 11.56 15.03 18.50 2.31 4.04 15.32

M → M 9.04 12.71 14.12 1.41 0.84 11.30

weighted average / same gender 9.81 11.53 12.54 5.58 5.94 9.92 10.13 10.17 10.03 11.34 11.25 10.13

libri-test 0.25
F → M 14.23 23.18 22.99 N/A 13.50 12.77

5.99 5.82 5.66 N/A 6.79 5.87
M → F 8.46 15.81 19.38 N/A 1.34 9.8

vctk-test-diff 0.20
F → M 16.67 26.75 27.83 N/A 5.14 17.80

15.37 14.98 14.80 N/A 17.04 15.13
M → F 14.24 22.62 29.97 N/A 2.53 22.90

vctk-test-com 0.05
F → M 21.39 36.99 38.15 N/A 4.36 26.88
M → F 12.99 27.97 33.05 N/A 1.70 18.36

weighted average / cross gender 13.57 22.87 25.71 N/A 5.55 16.04 10.68 10.4 10.23 N/A 11.92 10.5



with respect to the baseline. Hence, it could conceivably be

hypothesised that the performance increase yielded by our

system is due to the learned characteristics of the speakers

and not due to the artifacts our system introduces.

Not mentioned in Table VI, our system satisfies the VPC

requirement ρF0
> 0.3 on all subsets. The GV D values are

comparable across the primary systems and indicate a common

loss of voice distinctiveness. Previous studies have already

shown that the anonymization block is the culprit, because

it yields unnaturally similar anonymized X-vectors [3].

Besides the improved metrics, we observe an improved run

time for F0 computation and thus speaker anonymization: For

all datasets utilized except ’libritts-train-clean-100’, it takes

only two minutes to synthesize F0 values using our approach,

whereas YAAPT extractions take 35 times longer.

V. CONCLUSION

In this work, we formally evaluated a DNN-based F0 synthesis

approach for speaker anonymization. Notwithstanding the ar-

chitectural simplicity and the lack of perfect F0 annotations for

training, the proposed approach managed to improve the EER

and WER metrics over the state-of-the-art speaker-dependent

F0 modification in the literature. The evidence we present

suggests that the F0 provided by our model is sufficient to

generate intelligible and natural sounding utterances, when

paired with the utilized neural vocoder. Our findings indicate

it is worthwhile to perform a follow-up study, to improve the

temporal behavior of F0, e.g., with a different architecture.

Also, a self-supervised training scheme may tackle the issue

of not having perfect F0 annotations for system training.
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