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Abstract: The growing prevalence of voice assistants has sparked privacy concerns
with respect to content privacy and potential human-based attacks such as eaves-
dropping which make users feel uncomfortable utilizing them in public. To address
these challenges, understanding human privacy perceptions in acoustic environ-
ments becomes paramount. This understanding can empower voice assistants to ac-
curately quantify privacy perceptions, adapt conversational patterns, and ultimately
enhance human-machine interaction. This study draws inspiration from human-to-
human interactions and previous research on acoustic privacy, to quantify privacy
perceptions in environments characterized by babble noise. The primary objective
is a comprehensive evaluation of both objective and subjective measures to quanti-
tatively capture privacy perceptions in acoustic environments.

1 Introduction

Voice-based devices and virtual assistants have become increasingly popular and significantly
influence how tasks are performed and services are utilized. Despite advantages, the rise of
privacy concerns regarding these assistants has prompted widespread attention. This paper
specifically addresses content privacy, i.e., sensitive linguistic information within audio record-
ings that is transmitted between humans and devices in loudly spoken form [1]. Thereby, we
focus on human-based attacks rather than machine-based attacks, particularly on the potential
threat of eavesdropping.

We distinguish two cases: 1) users sharing sensitive information with the machine and 2)
the machine vocalizing sensitive information. In the first case, users possess full control over
the information they are sharing with devices. To prevent their sensitive information from being
eavesdropped, they potentially employ measures such as self-censorship, avoiding the usage
of voice assistants in certain environments, or utilizing privacy solutions like voice masks1

However, in the second case, users have limited control over the sensitive information shared
by the device. This lack of control may lead to users avoiding voice assistants altogether - an
option unavailable to blind users who rely heavily on text-to-speech technology in the form of
screen readers [2]. Secure sound zones using jamming noise allow users to interact privately
with voice-based devices but negatively impact the environment through noise pollution as well
as user experience [3, 4].

*The International Audio Laboratories Erlangen are a joint institution of the Friedrich-Alexander-Universität
Erlangen-Nürnberg and Fraunhofer IIS.

1for instance https://kck.st/2pvXbr6, https://tcrn.ch/3S7IFGS
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Drawing insights from human-to-human conversations, our research aims to contribute to
preventing human-based attacks, specifically eavesdropping, in scenarios where users have lim-
ited control. Observing that people naturally adjust their communication style based on factors
like the acoustic environment, recipient and the type of information [5], context-aware voice-
based assistants could similarly tailor their conversation style to safeguard sensitive information
from eavesdropping. Previous studies on human-to-human conversations have explored speech
privacy in specific contexts, like hospitals and open-plan offices, to understand people’s privacy
perceptions, and expectations and inform the acoustic design of these environments [6, 7, 8, 9].
One study investigated privacy perception in three distinct noise scenarios revealing that acous-
tic information significantly impacts how listeners perceive privacy [10]. To the best of our
knowledge, we are first to build upon this foundation and explore how the number of back-
ground speakers surrounding a hypothetical private conversation influences privacy perceptions
utilizing both objective and subjective measures.

2 Experiments

To explore individuals’ subjective privacy perceptions and to investigate the appropriateness
of current objective measures for speech privacy assessment, sound samples, sourced from the
TIMIT dataset [11], are generated as a mix of one target speaker and varying numbers of back-
ground speakers at 0 dB signal-to-noise ratio (SNR). To avoid gender-specific influences, the
number of background speakers constitutes an equal distribution of male and female speakers.

2.1 Objective Measures

First, we investigate several objective metrics to assess their applicability for measuring speech
privacy in the context of voice assistants. Traditional speech privacy standards in the room
acoustics field often rely on impulse response measurements, e.g., the speech transmission in-
dex (STI) [12], rendering them unsuitable for the usage of voice assistants. However, there is
consensus that speech privacy is directly linked to speech intelligibility (SI) [12]. Consequently,
speech privacy standards often use SI as an inverse proxy for acoustic privacy [12, 6]. This as-
sumption has led to the development of measures such as the articulation index (AI) and its
successor, the speech intelligibility index (SII) [12].

Furthermore, objective SI measures have been thoroughly researched in the field of speech
enhancement and speech communication distinguishing between intrusive and non-intrusive [13].
Intrusive measures rely on a reference signal, requiring both clean and noisy speech samples,
while non-intrusive measures operate solely on the noisy speech sample [13]. While a clean
reference signal is usually not available in real-time applications like voice assistants, intrusive
measures can be adapted to non-intrusive ones by first estimating the clean reference signal [14].

In our analysis, we focus on well-established intrusive SI measures as well as on lightweight
measures of stationarity. Therefore, we generate samples as described above utilizing ten female
and ten male target speakers and varying numbers of background speakers.

The Speech Intelligibility Index (SII) is a metric used to quantify and assess the intelligi-
bility of speech in various acoustic environments [15]. It provides a numerical measure of how
well speech can be understood or comprehended under specific conditions. The SII is typically
expressed as a value between 0 and 1, with 0 indicating poor intelligibility and 1 representing
perfect intelligibility. For computation, we rely on the recently released Python implementation
of the standard SII protocol 2.

2https://sii.to/programs.html
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The short-time objective intelligibility (STOI) measure was primarily developed to assess
speech intelligibility after time-frequency weighting, commonly applied in speech enhancement
or speech separation techniques [16]. Yet, it was also found appropriate for the evaluation of
noisy signals before enhancement. Like SII, it takes on values between 0 and 1 with 1 indicat-
ing perfect speech intelligibility. However, STOI was found to perform poorly for modulated
noise such as competing speech signals akin to our scenario [17]. To address this limitation, an
extended short-time objective intelligibility (ESTOI) measure has been proposed [17]. De-
spite the weaknesses of STOI, we compute both metrics using a Python implementation 3 for
completeness.

Spectral flatness (SF) is a metric that characterizes the distribution of energy across dif-
ferent frequencies in a signal [18]. A high SF value indicates a more uniform distribution of
energy, resembling a flat spectrum. In situations with fewer background speakers tonal struc-
tures in the spectrum are anticipated, leading to lower SF values. In contrast, scenarios with
more background speakers and increased noisiness are expected to show an opposite trend. To
assess spectral flatness in our experiment, we only rely on the environmental acoustic informa-
tion, i.e., the mix of background speakers excluding the target speaker.

The zero-crossing rate indicates how frequently the signal value crosses the zero axes with
noisy sounds tending to have high zero-crossing rates [18]. Here, an increase in the number of
background speakers is expected to lead to higher zero-crossing rates. Consistent with the
spectral flatness calculation, we only consider the background speaker mix for computing the
zero-crossing rate.

2.2 Subjective Evaluation

We conducted a listening test with 12 participants (four females, and eight males) aged 19 to
57. We employed a paired comparison methodology using the webMUSHRA framework [19].
To keep the test completion time manageable, we opted for three distinct levels of background
speakers, i.e., 2, 6, and 12. These levels were selected by employing the Automatic Speech
Recognition (ASR) system Whisper [20] on the background speaker mix. We used Whisper
model base to transcribe the background speaker mix and compared the transcribed output with
the corresponding transcripts of audio samples. Due to the background speaker mix, we did
not employ Word Error Rate (WER) but the fraction of correctly detected words was found by
dividing the number of matching words by the total number of words in the reference transcripts.
The three levels were chosen based on their associated significant decrease in word detection
accuracy. Finally, each participant was presented with 30 randomized trials of audio samples,
each featuring an equal number of male and female background speakers.

Initially, participants were tasked with estimating the number of background speakers in
each sample as this aspect may be connected to the overall understanding and perception of
the audio sample. Following this, they answered four privacy questions, including three from
a previous study [10] and one additional question to complement the existing set. By adding
the additional question, we aim to identify correlations and streamline future privacy perception
tests by potentially condensing multiple questions into a single inquiry. Participants utilized a
7-point Likert scale (-3 to +3) on a slider to indicate their privacy perception. All rating tasks
had to be completed before moving to the next trial.

3https://github.com/mpariente/pystoi
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3 Results

3.1 Objective Measures

In Figure 1, we present the STOI, ESTOI and SII values obtained across varying levels of back-
ground speakers for 20 different speakers (10 male, 10 female). We do show aggregated scores
only as no gender-specific differences could be observed. It’s noteworthy that intelligibility
methods do not provide a direct prediction of the fraction of words understood but rather a scalar
value that is monotonically related to absolute intelligibility. Typically, a logistic mapping is
applied based on subjective data to establish this relationship [17]. We refrain from predicting
absolute intelligibility, as we did not conduct a subjective intelligibility test and are not con-
cerned with exact intelligibility scores. Instead, we are interested in differences between the
number of background speakers and possible correlations with experienced subjective speech
privacy. Despite significant differences between STOI estimates and ESTOI and SII estimates,
our analysis did not show a significant influence of the number of background speakers on ob-
jective intelligibility measures. Overall, STOI scores were consistently higher which is in line
with previous research [21, 22].

Furthermore, we investigated measures of stationarity including spectral flatness and zero-
crossing rate. Contrary to our expectations, we did not observe the anticipated trend of signals
with an increasing number of background speakers to approach spectral flatness values of one
or higher zero crossing rates.

Figure 1 – Intelligibility scores provided for STOI, ESTOI, and SII and computed for 20 mixes (10 male
and 10 female target speakers). We show aggregated scores only. Scores do not predict intelligibility
per se but are monotonically related to absolute intelligibility [17].

3.2 Subjective Evaluation

Before analyzing participants’ privacy perceptions, we assess reliability by checking the con-
sistency of ratings. The principle of transitivity in preferences asserts that if a participant favors
scenario A over B and B over C, then they also prefer A over C. In our experiment, participants
are consistent within their rating for 78% of trials. As none of the participants showed persistent
inconsistency, we did not exclude results for further analysis.

In the listening test, participants were asked to estimate the number of background speakers
chosen on a range from 0 to 14. Figure 2 shows that more than 50% accurately guessed samples
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Figure 2 – Participants’ Estimates of Background Speakers (original values are 2, 6 and 12) for given
Options 0 to 14.

with two background speakers. However, only 30% accurately guessed samples with six back-
ground speakers, indicating the increased difficulty. Remarkably, when confronted with twelve
background speakers, around 25% of the participants wrongly chose six, while nearly 15% cor-
rectly selected twelve. As the number of background speakers increases, predicting the exact
number becomes notably challenging. Nevertheless, even when participants chose six instead
of correctly 12 background speakers, they consistently assigned a lower number to the com-
paring sample. This suggests that participants were able to discern the increase in background
speakers even when they guessed incorrectly.

Figure 3 – Preference scores for each question with 95% CI are shown for the pairs (2,6), (6,12), and
(2,12). Participants consistently favored higher background speaker levels in Questions 1, 3, and 4,
while Question 2 exhibited a preference for lower background speaker levels.

Figure 3 illustrates the preference scores and corresponding 95% confidence intervals for
each question concerning two, six and twelve background speakers. The preference scores,
expressed as a percentage, are calculated based on the aggregate responses of the twelve partic-
ipants. It becomes clear that in contrast to the objective measures, participants’ preferences are
significantly distinct for each comparison across the four questions. Notably, for Questions 1,
3, and 4 (Figure 3), participants consistently favored samples with more background speakers.
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Conversely, for Question 2 – ’In which situation is an eavesdropper more likely to hear your
normal voice?’ – higher preference scores were consistently obtained for samples with fewer
background speakers. This inverse relationship of Questions 1, 3, and 4 with Question 2 aligns
with our anticipation, considering the reverse wording and focus on the attacker in the second
question. To potentially condense questions, we conducted a correlation analysis, using the
Pearson correlation coefficient [23]. We found a strong negative correlation only for questions
3 and 2 (r =−0.7), and a moderate negative correlation for questions 1 and 2 (r =−0.43) and
questions 1 and 4 (r = 0.45). As most of the questions did not show strong correlations, we can
not recommend shortening the questionnaire.

4 Discussion

This study investigated objective and subjective measures to assess privacy perceptions in acous-
tic settings with varying numbers of background speakers. Despite testing established metrics
like STOI, ESTOI, SII, spectral flatness, and zero-crossing rate, no significant variations were
observed, making them unsuitable for predicting privacy perceptions. This highlights the need
for more appropriate objective measures that could predict the level of subjective privacy in
acoustic settings. While ASR-based intelligibility measures could be beneficial, they face dif-
ficulties in complex acoustic conditions like competing talkers [14]. Based on previous speech
privacy standards [12], we assumed a direct link between SI and speech privacy. Yet, we did
not conduct a subjective intelligibility test limiting a deeper understanding of the relationship in
our setting. Moreover, a recent study found that the dissatisfaction, used as an inverse proxy for
speech privacy, was related non-linearly with SI and influenced by additional factors [6]. There-
fore, future research could explore measures unrelated to SI such as speaker count estimation
as a non-intrusive alternative [24].

Our study represents a pioneering effort as the first to conduct a subjective analysis based
on privacy perception and babble noise. The results unveil noteworthy insights, particularly
observing a stronger opinion for loudness and attack questions, potentially linked to partici-
pants’ existing awareness influenced by the Lombard effect [25]. This brings up the question:
Are privacy questions more inherently subjective? Additionally, what is the effect of adding
environmental sound cues, e.g., a train, with the babble noise on the privacy perception? These
questions open a new dimension for future work. We need to analyze whether the combination
of environmental cues with babble noise aligns with our study and previous work [10]. Fur-
thermore, the correlation analysis didn’t show a strong correlation between Questions 1, 3, and
4 or a strong inverse correlation of all questions with Question 2. This calls for a qualitative
approach as the factors influencing correlation are unclear. Therefore, we intend to retain all
four questions in future research, as each question provides unique insights into user privacy
perceptions. Participants demonstrated awareness of increasing background speakers, despite
challenges in precise quantification of background speaker level. In the case of privacy ques-
tions, consistent preference for more background speakers was noted in Questions 1, 3, and
4. Notably, Question 2 – ’In which situation is an eavesdropper more likely to hear your nor-
mal voice?’ – consistently preferred fewer background speakers, revealing nuanced preferences
in eavesdropping scenarios. It is important to note, however, that these responses were de-
rived from a paired comparison test, and uncertainties persist regarding individual presentation
responses. This uncertainty also paves the way for a valuable avenue in our future research
endeavors.
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5 Conclusion

As voice assistants continue to be deployed in diverse acoustic settings, understanding user per-
ceptions is crucial for developing systems aligned with expectations and concerns. Our research
contributes to this by exploring how individuals perceive privacy in the presence of background
speakers. Our subjective evaluation reveals significant differences in user preferences, while
various objective measures show no differences. This urges the need for alternative objective
measures to capture users’ privacy perceptions and allow the development of context-aware
voice assistants that effectively safeguard sensitive information from eavesdropping.
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