

Comparison of Position Estimation Methods for the Rotating Equatorial Microphone

Jeremy Lawrence^{1,2}, Jens Ahrens³ and Nils Peters^{1,2}

¹ University of Erlangen-Nuremberg, ² International Audio Laboratories Erlangen,

³ Chalmers University of Technology, Gothenburg, Sweden jeremy.lawrence@fau.de, nils.peters@fau.de

1 – Introduction

- State-of-the-art microphone arrays many microphones and are often costly
 - → A fast rotating microphone may provide an alternative to microphone arrays
- We developed a proof-of-concept prototype of a rotating microphone and compared estimation methods for its instantaneous position
- > 100 rotations per second (RPS) were achieved

3 – Microphone Position Estimation Methods

The instantaneous microphone position can be derived from the RPS and the initial position of the microphone. We compared four RPS estimation methods:

- Electronic Speed Controller (ESC) Readout: the motor control signal generated by the ESC correlates with RPS
- FM Demodulation: the microphone rotation causes a frequency modulation of the recorded audio (see 4); the distance between the resulting spectral lines correlates with RPS
- BrushLess DC (BLDC) Motor Self-Noise: vibrations create an audible tone during rotation, the frequency of which correlates with RPS
- Zero-Phase: a photodiode placed at the equator of the sphere records time stamps of light peaks as it passes an external LED, from which RPS can be derived

6 — Conclusion

- 1. Rotating microphones feasible in practice
- 2. Zero-Phase estimation most consistent RPS estimation method, allowing for position estimation with < 0.5 deg accuracy in theory (no ground truth available!)
- 3. External audio processing possible, since raw microphone signal can be streamed via Wi-Fi

7 – Future Work

- Reduce structure-borne noise and wind noise with hardware improvements and software filters
- Develop algorithms for sound field analysis
- Test higher rotational speeds
- Experiment with different housing geometries and materials

2 – Rotating Equatorial Microphone Design

4 – Frequency Modulation due to Rotation

Recording of a 1kHz sine wave at the start of rotation

5 – Comparison of Position Estimation Methods

ESC		FM		
Throttle Setting	ESC Readout	Demodulation	BLDC Self-Noise	Zero-Phase
8%	19.49, (<mark>0.08</mark>)	19.18, (0.48)	27.57, (0.85)	19.49, (<mark>< 0.01</mark>)
9%	41.70, (0.28)	42.31, (1.06)	41.74, (<mark>0.04</mark>)	41.70, (<mark>0.01</mark>)
11%	76.48, (0.42)	74.74, (6.93)	76.48, (0.36)	76.48, (<mark>0.02</mark>)
13%	101.90, (0.98)	_	102.78, (<mark>0.03</mark>)	101.90, (<mark>0.04</mark>)

Detected RPS at different ESC Throttle Values: Mean RPS, (standard deviation of the first derivative of the RPS)

8 – References