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ABSTRACT

Abstract

Data is everywhere, more people have access to the internet than ever before. As a result,

the amount of audio data being collected over the internet for communication, telemedicine,

machine learning, speech recognition, and many more applications is growing exponentially.

With increase in connected audio devices, security and privacy aspects of distributed audio

data is becoming a growing concern. While traditional encryption secures data at rest and in

transit, it does not secure the data while in use. In recent years, research on privacy preserving

techniques like homomorphic encryption, differential privacy, zero knowledge proofs are under

way to allow data protection while in transit. This thesis looks into the feasibility of using

Fully Homomorphic Encryption (FHE) to preserve privacy of audio data. FHE enables certain

mathematical operations to be performed on encrypted data without the need for decryption.

This allows to preserve privacy of the data while operating over cloud server or untrusted

parties. Combining FHE schemes with operations like audio correlation, more efficient and secure

distributed audio applications can be developed. In this thesis, we perform similarity estimation

for different audio data (audio fingerprint and audio signal data) in FHE domain. To compute

audio data in the homomorphic domain, unique techniques and algorithms are proposed which

could be used in larger audio applications. We conduct experiments to evaluate and analyse the

performance of different FHE schemes based on accuracy, speed and memory requirements. This

thesis provides a discussion into the application of different FHE schemes for audio data.
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1. INTRODUCTION

Chapter 1

Introduction

The advancement in connected technology is leading to a world with more and more connected

IoT devices. With the introduction of 5G communication technology, the IoT infrastructure

is expected to grow with increased speed, capacity and decreased latency [27]. It is now more

convenient to outsource complex computing to the cloud which also reduces cost for infrastructure.

However, as the technology becomes more accessible, it raises serious questions on the privacy

and data integrity as pointed out in [8] and [5]. With raising improvements in speech recognition

and language processing technologies, everyday appliances like speakers, washing machines,

refrigerators and other smart home appliances collect enormous amount of speech data from the

consumers and process this data over the cloud using machine learning algorithms to improve

the quality of service. This is leading to a large amount of audio data being processed and

stored in the cloud. The privacy concerns during data exchange and storage have been largely

researched upon and address the problems by using cryptography techniques like Rivest, Shamir

Adleman (RSA) [6]. One of the more challenging problems to solve with respect to privacy in

cloud based applications is securing the data while in use. Majority of audio IoT devices used

in home settings record the audio from the consumers and process this data over the cloud,

using the current infrastructure the consumer confidentiality is breached while processing on

speech data. Some of the privacy preserving techniques being researched upon are differential

privacy where limited information is leaked while data is in use and the sensitive information is

kept secure. Zero knowledge proof is another privacy preserving technique in which the secret

information of one party can be proved by another party without exchange of any information

between the two parties [24]. In this thesis, to overcome the privacy problem we propose making

use of fully homomorphic encryption (FHE) to secure audio data while in use.

Homomorphic encryption enables processing on encrypted data i.e. operations can be performed

on encrypted data without the need for decryption. There has been a increase in research interest

in homomorphic encryption over the recent years with the security concerns over consumer
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1. INTRODUCTION

data. In [24], the Big Data UN Global Working Group suggests homomorphic encryption as one

of the emerging privacy-preserving techniques. The privacy and confidentiality issues can be

solved by integrating homomorphic encryption techniques with the current IoT infrastructure

[40]. There is also a need for a more reliable security infrastructure as the current security

infrastructure is expected to be obsolete with the advancement in quantum cryptography [13].

However, homomorphic encryption comes with its own challenges [3], it is significantly more

complicated to implement and slower for wide range practical applications. This thesis looks into

the feasibility of using homomorphic encryption in the audio processing context. We experiment

with operations on audio fingerprint data and signal data in the homomorphic encrypted domain.

According to the audio data we chose three different FHE schemes and propose homomorphic

techniques that can be applied to larger audio applications.

1.1 Thesis Organization

This thesis is organised as follows:

In Chapter 2, we give the background on homomorphic encryption along with the theory required

for this thesis and explain the different FHE schemes used with respect to their properties.

We discuss the current state of the art in the field of FHE and audio. And cover the different

audio data used in our implementations for similarity estimation. Chapter 3 covers the different

algorithms and techniques used to estimate similarity score using the integer based schemes BFV

and BGV. The experiments and different parameters used to evaluate the schemes are described

along with detailed analysis of the results from the experiments. In Chapter 4 the algorithms

related to correlation estimation using CKKS scheme are covered. An analysis of the algorithms

used, based on accuracy and performance is discussed. In the end, the experiment setup and

results are presented and discussed. Lastly, in Chapter 5 summarises the thesis and an outlook

for the future work is provided.
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Chapter 2

Theoretical Foundations and State of

the Art

In this Chapter we layout the theoretical foundations and basic primitives of the fully homomorphic

encryption in Section 2.1. We introduce the different homomorphic encryption schemes used in

this thesis and give a brief description of the tools used for FHE implementations in Section 2.2.

Finally, we discuss the current state of the art of FHE in the audio context in Section 2.3 and

cover the different audio data used in this thesis in Section 2.5.

2.1 Homomorphic Encryption

Homomorphic encryption allows mathematical operations to be performed on encrypted data.

The main property of homomorphic encryption is, the same output should be obtained from

operating on the initial plaintext as from decrypting the operated ciphertext. The history

of homomorphic encryption dates back to 1978 when Rivest, Adleman, and Dertouzos first

introduced the idea in [34]. However the first fully homomorphic encryption scheme was proposed

by Gentry in 2009 [20]. In this paper Gentry first constructs a somewhat homomorphic schemes

and modifies it to a fully homomorphic scheme with the introduction of bootstrapping technique.

This was considered a breakthrough in the cryptography field and many more FHE schemes were

proposed in the coming years. All the schemes that were proposed over the years are divided into

4 generations. The first generation schemes were based on ideal lattices and only operated over

integers [20] [44]. The second generation schemes were based on stronger cryptographic hardness

assumptions and had faster computing time than the previous schemes. The third generation

schemes had different approach to noise management and were based on weaker cryptopgraphic

hardness assumptions. The fourth generation scheme operates over fixed point values and
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performs approximate evaluations [14]. Homomorphic encryption schemes are categorised into

3 main forms: somewhat, partially and fully homomorphic. Somewhat homomorphic schemes

support both addition and multiplication operations but have a fixed amount of noise that can be

added to the ciphertext, this allows only limited number of operations allowed on the ciphertext

after which decryption is not possible. Partially homomorphic schemes allow only either addition

or multiplication operations. Finally, fully homomorphic encryption schemes allow both addition

and multiplication operations with no limit to the number of operations. In this thesis we work

with Brakerski-Fan-Vercauteren (BFV) [19] and Brakerski-Gentry-Vaikuntanathan (BGV) [11]

FHE schemes for integer based applications, and Cheon-Kim-Kim-Song (CKKS) [14] FHE scheme

for fixed-point based applications.

2.1.1 Lattice Based Cryptography

A lattice can basically be thought of as any regularly spaced grid of points stretching out to

infinity. There are problems based on lattices that are extremely hard to solve. In [2] Ajtai

proposed the first lattice based cryptographic construction whose security was based on the

hardness assumption of solving lattice problems. Using lattices we can define problems that are

easy to construct but hard to crack. The advantages of lattice problems is there are no efficient

algorithms that can solve the problems (classical or quantum) in better than exponential time

[21]. The security of FHE schemes discussed in this thesis are based on the hardness of solving

learning with error (LWE) and ring-learning with error (RLWE) lattice problems [33]. The FHE

schemes are constructed in such a way that they are hard to crack if some particular information

about the problem construction is unknown, but simple to solve if the problem construction

is known. The RLWE problem is a extended version of the LWE problem to polynomial rings.

As a consequence we operate in polynomial rings and the homomorphic operations are over

polynomials.

2.1.2 Noise Management

In FHE schemes, noise is added to the ciphertext to conceal the plaintext. Figure 2.1 show how

the noise increases after each homomorphic operation. After an homomorphic multiplication

operation the noise also increases multiplicative and eventually the noise is too large and accurate

decryption of the ciphertext is not possible. To get around this problem, Gentry in [20] proposed

the bootstrapping technique for FHE schemes. In this technique the noise of the ciphertext is

reset by first decrypting the ciphertext in a separate encryption system and encrypting it again

to get a fresh noise level. Figure 2.2 gives an illustration of this process. Bootstrapping can

be a time consuming processes and many different techniques have been proposed to improve

this step of the FHE [22] [18] [17]. There are also other techniques used for managing noise like
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E1 E2 E3X

E3 E4 E5X

Encrypted message 

Noise

Figure 2.1: Illustration of the noise growth in homomorphic encryption.

E1 E1E1
Bootstrapping 

Encrypted
message

Encrypted
message

Noise
level

Figure 2.2: Example of the bootstrapping technique to reduced the noise in homomorphic
encryption.

relinearisation and modulus switching techniques which are used based on the FHE scheme. We

will introduce these techniques in the later sections while discussing the different FHE schemes.

2.1.3 Basic Primitives

In this section we will introduce the notations and definitions that are common in the all FHE

schemes. The structure of FHE is similar to the traditional encryption schemes with additional

algorithms for encryption parameters and homomorphic operations. The choice of the encryption

parameters directly impact the performance, complexity and security of the FHE schemes.

Therefore, it is important to choose optimal parameters according to the requirements of the

implementation. In [4] the FHE standardization consortium provide the basic primitives of

homomorphic encryption with a goal to standardise them in the future.

ParamGen(λ)→ Params : The parameter generation algorithm takes as input the security

parameter λ, which is a number used to define the security level of the FHE scheme, and returns

a set of encryption parameters. Values for λ can be 128 and 256.

KeyGen(Params)→ (Pk, Sk,Ek) : The Key generation algorithm takes as input the encryption

parameters and returns a set of keys. In addition to secret keys (Sk) and public keys (Pk) used

in traditional encryption, FHE schemes have evaluation keys (Ek) which are used to perform
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homomorphic operations on the ciphertext.

Encrypt(Pk,M)→ C : The encryption algorithm takes input as Pk and message M and returns

ciphertext C as the output.

Decrypt(Sk,C)→M : The decryption algorithm takes input as Sk and C and returns message

M as the output.

EvalAdd(Params,Ek,C1, C2)→ C3 : The EvalAdd algorithm takes input as Params, Ek and

two valid ciphertexts C1 of message M1 and C2 of message M2, and returns ciphertext C3

which is (M1 +M2).

EvalMult(Params,Ek,C1, C2)→ C3 : The EvalMult algorithm takes input as Params, Ek

and two valid ciphertexts C1 of message M1 and C2 of message M2, and returns ciphertext C3

which is (M1 ∗M2).

2.2 Homomorphic Encryption Schemes

In this section we discuss the different FHE schemes, give definitions to scheme-specific encryption

parameters and the type of data the encryption schemes support. In this thesis, all the FHE

schemes were implemented using the Simple Encrypted Arithmetic Library (SEAL) developed

by Microsoft therefore we define the FHE schemes according to the SEAL manual [30].

2.2.1 Brakerski/Fan-Vercauteren Scheme (BFV)

The Brakerski/Fan-Vercauteren scheme, (also referred to as Fan-Vercauteren (FV) scheme) is a

second generation FHE scheme [19], constructed based on Brakerski’s fully homomorphic scheme

with Learning With Errors (LWE) problem [9] ported to the ring-LWE setting. Compared with

its predecessors the BFV scheme introduced optimal relinearisation and bootstrapping methods

to achieve faster computations. Relinearisation method is used to reduce noise while keeping the

ciphertext at the same size. The BFV scheme supports arithmetic circuits evaluation, therefore

the inputs are integers. It also supports Single Instruction/Multiple Data (SIMD) or batching

operations where multiple input messages can be encrypted in to a single ciphertext, this allows

parallel computations and reduces memory and complexity. This form of packed ciphertext

encryption is based on techniques proposed in [10] and [41]. The batching process does not allow

access to elements of the encrypted ciphertext. All homomorphic operations apply to the packed

data as a whole. There are small differences between the Textbook-BFV implementation in

[19] and the BFV implementation in SEAL [30]. The SEAL implementation of BFV improved

upon the noise consumption and computation time for addition and multiplication operations.

Additionally, operations like adding and multiplying multiple ciphertexts simultaneously, adding
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M1 1 + 2x+ 1x2

M2 1 + 1x+ 1x2

Table 2.1: Example of plaintext messages in polynomial form for (n, t) = (3, 4)

and multiplying ciphertext with a plaintext and negate operations are possible using SEAL BFV

implementation.

2.2.2 Brakerski-Gentry-Vaikuntanathan Scheme (BGV)

Brakerski, Gentry and Vaikuntanathan proposed a new approach for constructing a leveled

FHE scheme to further improve performance and security of lattice-based FHE schemes [11].

Both BFV and BGV are lattice-based and their security is based on learning with errors (LWE)

hardness assumption, they operate in the same plaintext space but differ in their handling of

noise management, homomorphic multiplication operation and message encoding. Additionally,

the BGV scheme also works in the ring-learning with errors (RLWE) instance and achieves better

performance in this setup. The BGV scheme supports arithmetic circuits evaluation, SIMD or

batching operation similar to the BFV scheme. The key difference of the BGV scheme is the

noise is managed in the scheme by reducing the ciphertext modulus after each multiplication in

order to keep the noise level constant, this processes is called modulus switching and was first

introduced by Brakerski and Vaikuntanathan [12]. With use of the modulus switching technique

the BGV scheme supports faster multiplications. The SEAL BGV implementation is constructed

based on HElib open source library [25]. In [28] the authors make a comparative analysis between

the BFV and the BGV scheme. They observe in the current practical implementations BFV

scheme is faster than the BGV scheme but insist BGV still has lower theoretical complexity than

BFV.

2.2.3 Parameters for integer based FHE schemes

The BFV and BGV schemes are constructed based on the same idea, therefore they share many

common features. In integer based FHE schemes we perform polynomial evaluations. Operating

with polynomials provide a good trade-off between security and efficiency. The plaintext space

(P) and ciphertext (C ) space are distinct polynomial rings given by P = Rt = Zt/(x
n + 1) and

C = Rt × Rq respectively, where Rq = Zq/(x
n + 1), n ∈ Z is the ring dimension and t ∈ Z

and q ∈ Z are the plaintext and ciphertext coefficients respectively. In practice the ciphertext

space C is larger than the plaintext space P to allow multiple valid ciphertexts in C for a single

plaintext message M in P , this implies q is greater than t. Table 2.1 shows examples of plaintexts

in polynomial form for n = 3 and t = 4.

9 Master Thesis, Srivatsav Chenna
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polynomial modulus ciphertext modulus

1024 27
2048 54
4096 109
8192 218
16384 438
32798 881

Table 2.2: Examples of polynomial modulus value and the corresponding maximum possible
ciphertext modulus value

The number of arithmetic operations that can be performed on encrypted data is depends on

the encryption parameters in the BFV and BGV schemes. Since pseudo random noise is added

to conceal the plaintext, the noise in the ciphertext is increased every time an operation is

performed with the encrypted data. Every ciphertext has a fixed amount of noise called noise

budget which is measure in bits, If the noise budget of a ciphertext reaches zero, decryption

of the ciphertext is incorrect. The addition operation in general consumes less noise budget

compared to multiplication as the noise is additive. Similarly, multiplication produce significantly

more noise since the noise is multiplicative and as the number of multiplications increases the

noise also increases exponentially.

Polynomial evaluations are performed in BFV scheme using modular arithmetic. The plaintext

and ciphertext space affect the performance and security level of the scheme, therefore they

should be defined precisely according to the requirement of the implementation. The polynomial

modulus, plaintext modulus and ciphertext modulus are encryption parameters of the BFV scheme

which collectively define the plaintext space, ciphertext space and the noise budget available for

the homomorphic operations. The encryption parameters are defined below.

polynomial modulus : This parameter must be a positive power of 2 integer. Larger polynomial

modulus enables more complicated encryption computations at the same time making the

ciphertext size larger consequently making all operations slower. Recommended values are 1024,

2048, 4096, 8192, 16384, 32768 , but it is also possible to go beyond this range.

plaintext modulus: This parameter can be any positive integer. It determines the size of the

plaintext and consumption of noise budget in encrypted multiplications. Therefore, smaller the

plaintext modulus, lower the the noise consumption and better the performance. In homomorphic

encryption we use modular addition and multiplication, the modulus value is determined by the

plaintext modulus.

ciphertext modulus: This parameter is the product of prime numbers each up to 60 bits in size.

It determines the size of the ciphertext. Larger ciphertext modulus increases the noise budget

and allows for more operations to be performed on the encrypted data. The maximum value for

10 Master Thesis, Srivatsav Chenna



2.2 HOMOMORPHIC ENCRYPTION SCHEMES

ciphertext modulus is determined by the polynomial modulus. The ciphertext modulus should

be large enough to accommodate the noise from all arithmetic operations for your application.

Table 2.2 shows some examples for polynomial modulus value and the corresponding maximum

possible ciphertext modulus value.

slot size : While using the SIMD or batching technique, the input is encoded into a plaintext

matrix. The number of elements encoded into the plaintext matrix is called slot size. The slot

size is determined by the polynomial modulus value. For example, if the polynomial modulus

value is 8192, the input is encoded into a 2× 4096 matrix.

2.2.4 Cheon-Kim-Kim-Son Scheme (CKKS)

Cheon, Kim, Kim and Son constructed an approximate homomorphic encryption scheme that

operates over fixed-point values [14]. Its is a forth generation FHE scheme that is based on

the ring learning with errors (RLWE) hardness assumption. CKKS schemes uses a rescaling

procedure to reduce the noise and error during approximate homomorphic operations. They

propose a new SIMD or batching technique to allow parallel computations and preserve the

precision of the plaintext. The SIMD technique allows us to encrypt multiple plaintext values

in a single ciphertext, therefore the plaintext is encoded in form of a matrix similar to the

integer based schemes. In CKKS the noise growth is linear and not exponential unlike the

previous generation FHE schemes. The CKKS scheme also allows operations over vectors of

complex values. The outputs from the CKKS schemes are approximate values with predetermined

precision.

CKKS also works with polynomials, the message space is a complex number field Cn/2, where n

is the polynomial modulus, which is a power of 2. The plaintext space is defined by polynomials

in the cyclotomic ring Z[X]/(Xn + 1) and the ciphertext space is defined by (Zq[X]/(Xn + 1))2

where q is the ciphertext modulus. The message is first encoded into the plaintext space and

the plaintext is encrypted into the ciphertext space. After the homomorphic operations, the

encrypted message is decrypted to the plaintext space and decoded to the message space. The

encryption parameters polynomial modulus and ciphertext modulus have similar properties as

discussed in Section 2.2.3.

The scale parameter is unique to the CKKS scheme. The scale determines the precision of the

output. The multiplication operation causes the scale in the ciphertext to grow and if the scale

of the ciphertext grows close to the ciphertext modulus value, accurate decryption will not be

possible. To address this issue in the CKKS scheme, rescaling operation is implemented. The

rescaling operation is similar to modulus switching (See 2.2.2) operation used in the BGV scheme.

The scale of the ciphertext is reset by reducing the size of the ciphertext. For managing noise

further, relinearisation operation (See 2.2.1) used the BFV scheme is used.
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Name Developers FHE Libraries

SEAL Microsoft BFV, BGV, CKKS
PALISADE Consortium of DARPA BFV, BGV, CKKS, TFHE

HElib IBM BFV, BGV

Table 2.3: Popular open source libraries and the FHE schemes implemented.

2.2.5 Other Homomorphic Encryption Schemes

There are other popular homomorphic encryption schemes like Gentry-Sahai-Waters (GSW)

[22] scheme, it is a lattice-based scheme that operates over integers. For noise management

the authors propose a new conceptually simpler approximate eigenvector method. Torus FHE

(TFHE) scheme [16] is a FHE C++ library and the implementation is based on the ring variant

of the GSW scheme and it operates over Boolean circuits. The FHEW scheme [17] implements a

faster FHE schemes in which the bootstrapping process is optimised to be less than a second.

There are some popular open source libraries that implement the FHE schemes like Microsoft

SEAL, PALISADE, HElib and TFHE. Table 2.3 shows the list of libraries and the FHE schemes

they support.

2.3 Current Work on Homomorphic Encryption in Audio Do-

main

In recent years with the heightened interest in homomorphic encryption and its privacy-preserving

properties, audio researchers are exploring FHE integration to solve audio security problems.

Shortell and Shokoufandeh proposed a secure signal processing in FHE domain [38]. They

implemented FHE scheme based on the GSW [22] scheme and made modification to the FHE

scheme to operate over real values, reduce errors in results and increase the practicality of FHE

scheme. The scheme was tested by experimenting on filtering images in the encrypted domain.

They observed that the encrypted processing introduced small error in the image which slightly

decreased the quality of the image. Although the implementation and testing was conducted

over image signal data, the FHE implementation could be extended to support audio signal

processing.

Machine learning is another area where FHE could provide solutions. Privacy is a huge issue with

models that are trained using user sensitive data. In [47], Zuber, Carpov and Sirdey implemented

a FHE system based on combination BFV [19] and TFHE [16] schemes to hide the data in a

speaker recognition neural-network model. They propose operations to compute the distance of

the speakers and present two methods to find minimum distance. Their implementation showed

accurate results and their FHE system can be used for larger machine learning applications.
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Compression and decompression are increasingly being outsourced over the internet. To protect

sensitive data being shared to untrusted parties, a homomorphic FLAC decompression method

is proposed in [42]. The authors use the BGV FHE scheme for their implementation. They

regularizes dynamic controls in FLAC decoding with static controls to achieve the decompression.

They only encrypt the FLAC payload to keep the basic audio and compression information

readable and make use of the SIMD technique to increase efficiency. The implementation can

also be applied to decompress similar audio standards. However the processing time for the

decompression is slow and needs further improvements to be practical.

A secure end-to-end voice over IP (VoIP) system using homomorphic encryption was proposed by

Rohloff, Cousins and Sumorok in [35]. To support homomorphic mixing of the encrypted VoIP

data, the authors propose VoIP encoding scheme to reduce the circuit depth that is scalable

to existing VoIP infrastructure. They use the LTV homomorphic encryption scheme [31] for

their implementation. The data is encrypted at the user end and sent to the VoIP server for

homomorphic processing. The encrypted data is returned to the end user where it is decrypted.

Since mobile communication is time sensitive the end-to-end homomorphic system introduces

delays in communication which makes it impractical at its current state.

Encrypted audio watermarking in cloud servers using homomorphic domain was proposed in

[29]. A system was proposed in which encrypted audio and encrypted watermark data is

sent to the cloud server, the could server would perform homomorphic operations and send

back the encrypted watermarked audio. The implementation was constructed using the CKKS

encryption scheme and making use of SIMD technique to increase efficiency. The similarity

between homomorphically computed audio watermark was compared with the original watermark

to check if the audio has been tampered or not. There was no analysis presented with regards to

the quality of the encrypted watermarked audio. They tested their implementation by computing

encrypted audio watermark for different sizes of audio and evaluated the security and processing

time.

A speech homomorphic encryption scheme was constructed in [37] to secure speech storing

in public computing. They proposed an encryption techniques to reduce data expansion in

ciphertext during encryption. The speech signal is represented in form of a speech matrix and to

encrypt the speech matrix, a matrix encryption method is used. The proposed homomorphic

scheme supports only addition operation. The scheme has low computational time and is resistant

to attacks. A similar speech homomorphic encryption scheme is proposed in [46]. In this paper,

Qiu-Yu and Yu-Jiao divide the audio into sound and silent parts by comparing the audio energy.

Then they make use of BGV scheme to encrypt sound information and Paillier homomorphic

encryption algorithm to encrypt silent information. The two ciphertext are combined to construct

the scheme. The system has good efficiency and security analysis was also performed by testing

their system against attacks.
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ServerClient

Audio
Database

Audio Data

Similarity Score

Figure 2.3: Overview of the client-server application scenario for similarity estimation.

Homomorphic encryption has a wide range of applications in the health care system. In the

area of telemedicine to preserve privacy of patient data like voice calls, voice notes and video

recording, a homomorphic approach is proposed in [26]. A homomorphic searching system to

search sensitive medical data of the patients from the cloud is proposed using the BGV scheme.

They use speech recognition models for the searching algorithm and tested their system by

experimenting the search algorithm with different size audio files. They present their results

based on the encryption time, searching time and decryption time.

Additionally, implementations of fast Fourier transform (FFT) have also been implemented

using the FHE schemes [39]. From all the research over the years we can observe over time the

computing time for the homomorphic operations is becoming more efficient and practical.

2.4 Application of Similarity Estimation in the Encrypted Do-

main

In this section we discuss the application scenario covered in this thesis and describe the techniques,

algorithms and experiments performed to achieve the application constraints in the later sections.

We give a simple example of a client-server model, in this scenario the client needs to compare

sensitive audio data with the data from a audio database. The server takes the clients audio data

as the input and performs the comparison operation with the database and returns the similarity

score. We require this process to complete without revealing any information about the clients

audio data to the server. An overview of the application scenario is shown in Figure 2.3.

In this thesis we solve this problem by using fully homomorphic encryption, we propose two

methods for estimating similarity score for two different types of audio data using three different

homomorphic schemes. We propose similarity estimation for audio fingerprint data using integer

based homomorphic encryption schemes BFV and BGV, and correlation of audio signal data
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using fixed-point homomorphic encryption scheme CKKS. The application scenario presented

above is only an example for the use case of the methods proposed in this thesis, the algorithms

proposed can be applied to preserve privacy in various settings like audio data from smart

speakers and voice assistants, music data identification, training audio-based machine learning

models, media applications and so on.

2.5 Audio Data

In this thesis we evaluate the homomorphic encryption on two different types of audio data:

audio fingerprint data and audio signal data. The commonly used FHE schemes BFV and BGV

are integer based schemes and to take advantage of this in the audio processing domain we chose

audio fingerprint. The CKKS scheme operated over fixed-point values which is suitable for audio

signal processing. We perform the function of matching audio tracks in the FHE domain for

BFV and BGV. We use XNOR operation to match the fingerprint data. For CKKS we find the

correlation of the audio signals. For the integer based schemes we get accurate results for our

implementation and for CKKS implementation we obtain approximate results. In this thesis we

investigated the different encryption schemes and how they can be utilised for different audio

applications. To this end we propose different algorithms and techniques that can be used in

larger audio applications which we discuss in the later sections.

2.5.1 Audio Fingerprint

Audio fingerprinting is a unique identification method for audio files. It is a condensed digital

summary, deterministically generated from an audio signal. Fingerprints represent the most

relevant acoustic components of an audio file. Manipulation of the audio is reflected in the

audio fingerprint, this can be used to identify audio samples. The fingerprints are obtained

by algorithms that extract time and frequency differences or audio features in spectrograms.

Chromaprint is an audio fingerprinting library that was developed by AcoustID [1]. Chromaprint

generates audio fingerprint by transforming frequencies into musical notes called chroma features

[7]. These features go through filtering and normalisation processes to extract an audio fingerprint

that is robust to audio compression, gain and pitch changes. There are other popular audio

fingerprinting tools developed by Shazam, Phillips and Intrasonics that are used for music

identification and audio forensics applications. Audio fingerprints obtained by Chromaprint is

one of the audio data that is used in our experiments. The fingerprints are represented in a list

of 32-bit integers which are converted to binary data for the purpose of similarity estimation in

our application.
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2.5.2 Audio Correlation

The correlation operation is used to find the similarity between two audio signals. Correlation is a

commonly performed operation for sound localisation, speaker recognition, source separation and

many more audio applications. Since we use the SIMD techniques in our similarity estimation

algorithm, we represent our plaintext in form of matrix. We can find the correlation for audio

data encoded in matrix form using the Equation 2.1. We compute the floating point time series

values of the audio signal using the librosa library [32]. Since we have to operate over floating

point values, to find the correlation between audio signals we use the CKKS FHE scheme. We

encode the first 4000 time series values from the audio signals as the plaintext for our similarity

estimation implementation.

r =
a · b
|a||b|

(2.1)
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Chapter 3

Audio Fingerprint Matching in the

Encrypted Domain

The most accurate way to measure the similarity of the raw audio fingerprint generated from

Chromaprint is to convert the integer values of the two fingerprints that need to be compared

into binary 0’s and 1’s and perform bit-wise XNOR operation. Considering the integer data

type of the audio fingerprint, the BFV and BGV homomorphic encryption schemes described in

Section 2.2.1 and 2.2.2 are ideal for our implementation. By choosing the optimal encryption

parameters we can achieve efficient and accurate results for estimating the similarity score for

audio fingerprint data. Since both BFV and BGV schemes are integer based schemes, they have

the same encryption parameters but differ in noise management process (See Section 2.2.3), thus

making the algorithms of both schemes similar.

In this Chapter, in Section 3.1 and 3.2 we introduce the different algorithms and techniques used

for audio fingerprint matching using integer based homomorphic encryption schemes. Lastly, in

Section 3.3 we describe the experiments and present our results.

3.1 Similarity Estimation for Fixed Length Audio Tracks

In this section we describe the algorithm for computing the similarity score for fixed length audio

track (we used 30 second audio tracks). This section provides the base algorithm for similarity

estimation which is further improved on according to additional requirements in the next section.

We describe the algorithms with an example scenario that is similar to our experiments which

we cover in the later sections. We consider an encrypted audio data base with audio fingerprint

data of Y different audio tracks. Table 3.1 gives the algorithm for similarity estimation of audio

fingerprint for fixed length audio tracks. In Section 2.2.1, we discussed the different encryption
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[ 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ]

[ 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ]
XNOR

[ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
XNOR
Result

A

B

A XNOR B

[ 20 20 20 20 20 20 .... 20 20 20 20 20  ]
Comparison

score

Figure 3.1: Example of bit-wise XNOR operation between matrix A and B.

[1 0 1 0 0 0 1 0]
[0 1 0 0 0 1 0 1]
[1 1 1 0 0 1 1 1]
[1 0 0 1 1 1 1 1]
[2 1 1 1 1 2 2 2]
[1 2 2 2 2 1 1 1]
[3 3 3 3 3 3 3 3]

Add

Add

Add

A0

A0 rotated by 1 place

A1

A1 rotated by 2 places

A2

A2 rotated by 4 places

Sum of all 1's

Figure 3.2: Example for the summing the 1’s in a matrix.

parameters and their impact on the performance, in Table 3.1 we define the encryption parameter

values used for the similarity estimation for fixed length audio tracks implementation. The

polynomial modulus defines how many plaintext messages can be encrypted in a single plaintext

matrix, here the polynomial modulus value is 8192 i.e. 8192 bits from the audio fingerprint data

are encoded in single plaintext matrix. The 8192 slots of the matrix are encoded in form of

a 2 × 4096 plaintext matrix. The ciphertext modulus or noise budget is 218 bits which is the

maximum amount of noise available for a polynomial modulus value of 8192 (See Figure 2.2).

This indicates the noise growth from the addition and multiplication operations cannot exceed

218 bits. The plaintext modulus value is 786433 meaning all the homomorphic operations are

computed using 786433 as the modulus. This value is computed by SEAL library [36] function

according to the polynomial modulus value. The output is 1× Y matrix where each element of

the matrix is a similarity score an audio track with the audio tracks from the database.

I0 = 1− (E0 + E1)− (2× E0× E1) (3.1)
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Since our input fingerprint data is 0’s and 1’s we perform the bit-wise XNOR operation between

two input matrices using Equation 3.1 where E0 and E1 are the input matrix and I0 is the

XNOR result. Figure 3.1 show an example of the bit-wise XNOR operation, here each element of

the matrix A and B is encrypted into a ciphertext and because of the SIMD or batching property

of the encryption scheme, we are able to encode multiple ciphertexts into a single plaintext

matrix and perform homomorphic operations on them in parallel. After the XNOR operation,

all the 1’s in the matrix are added up using repeated cyclic rotations and additions as shown in

Algorithm 1. In Algorithm 1 the number of for loop iterations needed is log2(N), where N is the

size of the matrix. Rotations were incremented in logarithmic order to reduce the number of

iterations to compute the addition, thus saving noise budget and improving performance. An

example of this process is shown in Figure 3.2, for a matrix of length 8, 3 addition and rotation

operations are used to compute the sum of all the 1’s. Finally, the output from algorithm in

Table 3.1 is the similarity score in a 1× Y matrix, where Y is the number of audio tracks in the

audio database. Each element in the output matrix is a similarity score of input audio track

fingerprint E1 with each file in the audio database. To read the output matrix you need to

know how the audio files are arranged in the database. In this setup, we estimate similarity

score for fixed length audio track, however a more robust estimation would be computing the

estimation score between arbitrary length audio tracks i.e. computing estimation scores for 5

second fragments for a audio tack with 30 second audio tracks.

Algorithm 1 An algorithm for summing the 1’s

Input: X ▷ Matrix after bit-wise XNOR
Output: Y ← X
i← 0
N ← 0
for i← 0 to i← log2(N) do ▷ N is number of elements in input matrix X

N ← 2i

Y ← rotate rows N times
Y ← Y +X
X ← Y

end for

3.2 Similarity Estimation for Arbitrary Length Audio Tracks

In the previous section we proposed an algorithm to estimate similarity score among audio tracks

of the same size, in this section we propose further improvements on Algorithm 3.1 to be able to

compute similarity score for audio tracks of any length. For example, 5, 6 or 10 second audio

tracks can be compared with each other. The maximum length of the audio tracks for describing

the algorithms is kept at 30 seconds in this thesis. However this can be varied by adjusting the

encryption parameters.
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Algorithm: Similarity estimation for fixed length audio tracks.

Encryption parameters: 1. Polynomial modulus - 8192

2. Ciphertext modulus - 218

3. Plaintext modulus - 786433

4. Input martix size - 2× 4096 matrix

Inputs: Encrypted audio database (E1) and Encrypted audio track to be compared (E0).

Outputs: Encrypted estimation score (S0) represented by 1× Y matrix, where Y

is the number of audio tracks in the database.

Procedure: 1. Initialise the encryption parameters and plaintexts required.

2. Initialise E1 as the first encrypted audio file from the database.

3. Compute bit-wise XNOR using I0 = 1− (E0 + E1)− (2 ∗ E0 ∗ E1).

4. Add all the 1’s from matrix I0 to get the estimation score.

5. Store the estimation score to S0 and rotate the S0 matrix by one place.

6. Change E1 to the next encrypted audio file from the database and

repeat 2-5 till all the files from the data base have been compared.

7. Output the estimation score matrix S0.

Table 3.1: Iterative algorithm for calculating the estimation score for audio fingerprints of fixed
length audio tracks (30 seconds).

20 Master Thesis, Srivatsav Chenna



3.2 SIMILARITY ESTIMATION FOR ARBITRARY LENGTH AUDIO TRACKS

[ 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]

[ 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]

Relevant
bits

Padded
0's

Mask

[ 1 1 786432 786432 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]

A

A*

MASK
(A*)2

Figure 3.3: Example of creating a mask for a given matrix A. A* is the modified matrix where
the 0’s from the relevant bits of A are modified. The modified matrix A* is then squared to
obtain the mask for A.

[ 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]

Mask Padded
0's

[ 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 ]


Multiply

Mask A

Mask B

[ 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]Required
Mask 

Mask A * Mask B

Figure 3.4: Example for computing the shorter mask from 2 different masks A and B.

3.2.1 Masking

To estimate similarity score for arbitrary length audio tracks we require the knowledge of length

of the audio track. Since in the homomorphic domain we have no information on the inputs we

need different techniques and additional operations to achieve estimation of arbitrary length

tracks. In this thesis we propose a novel method to calculate an indicator for the length of the

audio track by modifying the input audio fingerprint using the concepts of modular arithmetic.

For example, in modular arithmetic if 8 is the modulus value and we need to compute (2+7

mod 8), the result we obtain from this problem is 1. The input wraps around 8 back to 1, we

exploit this property to compute a mask for the input which is an indicator of the length of

the audio fingerprint. The masking technique is only possible with FHE schemes operative over

polynomials where the input value wraps around the plaintext modulus values (See 2.2.3).

(modulus− 1)2 = 1 (3.2)

Figure 3.3 we give an example on how we can modify the input and make use of modular

arithmetic to create a mask. Making use of Equation 3.2 we can encode the 0’s as (modulus− 1)

and square the matrix make all the relevant bits as 1’s which will give us the indicator of the
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[ 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]

[ 1 1 786432 786432 1 1 0 0 0 0 0 0 0 ]

[ 786432 786432 786432 786432 786432 ... ]A

B

C
A - B

D

[ 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]Unmodified
input

C * D

[ 393217 393217 393217 393217 393217 ... ]

Figure 3.5: Example for getting back the unmodified input. In this example the modulus values
is 786433 and 393217 is the multiplicative inverse of 2.

length of the relevant bits. As an example we take the plaintext modulus to be 786433 (See Table

3.1), therefore we encode all the 0’s from the relevant bit of the audio fingerprint to 786432 and

further square this matrix to obtain the mask. Consider the example shown in Figure 3.3, 12 is

one and 786432 is also 1 (From Equation 3.2) converting all the relevant bits from matrix A to 1

and essentially making an indicator for the length of the matrix. We want to find the estimation

score of small fragments of the audio tracks with larger audio tracks, for this we need the smaller

mask between the two audio fingerprints. This can be calculated by first computing the mask for

both the fingerprints and multiplying the masks with each other as shown in Figure 3.4, this

works as the irrelevant bits of the fingerprint are padded with zeros.

To compute the mask we modified the inputs. We need to now get back the input with only 0’s

and 1’s to be able to find the similarity score. Therefore, to continue forward with computing

the bit-wise XNOR, we need to undo the modifications done on the input matrix, this can be

done by performing a subtraction and a multiplication operation as shown in Algorithm 2 and

Figure 3.5. A modulus value of 786433 is assumed again to explain the process of obtaining

the unmodified input. To obtain back the 0’s from the input matrix we first subtract input

matrix with a 786432 matrix where all the elements of the matrix are 786432, however since the

homomorphic operation applies to all the elements of the matrix even the 1’s are subtracted by

786432, so we need another step to get back the 1’s. After the subtraction, the 1’s are converted

to 2 (Because of modular arithmetic). We now need to divide the whole matrix by 2 to get back

the unmodified input, however BFV and BGv schemes do not support division operation. To get

around this we use the multiplicative inverse of 2. For our example the multiplicative inverse of

2 in 786433 modulus domain is equal to 393217, therefore multiplying a 393217 matrix gives us

the unmodified input matrix. Figure 3.5 shows an example for this technique.
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Algorithm 2 An algorithm for obtaining the mask

Input: X ▷ Audio fingerprint matrix
i← 0
M ← 0 ▷ Mask matrix
for i← 0 to i← N do ▷ N is the length of audio fingerprint matrix

if X[i] is 0 and X[i] not padded 0 then
X[i]← Y ▷ Y value is (modulus -1)

end if
end for
M ← X2 ▷ Mask of X
X ← X − Y
X ← X × 1/2 ▷ Get back unmodified audio fingerprint matrix

[ 1 1 1 1 1  1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 ]

[ 1 0 1 0 1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]

[ 1 0 1 0 1  0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 ]

XNOR

[ 1 1 1 1 1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
Multiply

[ 3 3 3 3 3  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ]

[ 1 0 1 0 1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]

A

B

A XNOR B

MASK

(A XNOR B) * MASK

Comparison
score

(a) Step 1

[ 1 1 1 1 1  1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 ]

[ 0 0 0 0 0  1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 ]

[ 0 0 0 0 0  1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 ]

XNOR

[ 0 0 0 0 0  1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 ]
Multiply

[ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 ]

[ 0 0 0 0 0  1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 ]

A

Rotated B

A XNOR B

Rotated MASK

Comparison
score

(A XNOR B) * MASK

(b) Step 2

Figure 3.6: An example for the computing similarity score for arbitrary length audio tracks using
the siding window technique. Figure 3.6a shows the first iteration of bit-wise XNOR between
matrix A and B and Figure 3.6b shows the second iteration of bit-wise XNOR after rotating
matrix B.

3.2.2 Sliding Window

After obtaining the mask and getting back the unmodified input, we propose a sliding window

technique to estimate the similarity score of the audio track fragment with the audio track. For

example, consider we get 500 bits of fingerprint data from the first 5 seconds of a 30 second

audio track and 3000 bits of fingerprint data from the whole 30 second audio track. The first

500 bits of the 3000 bits fingerprint data will be equal to the 500 bits fingerprint from the 5

second audio fragments. Figure 3.6 shows an example the proposed sliding window process, we

use rotation operations to compare the audio fragment with the complete audio track. We use

a fixed stride to determine the number of rotations. For example if the stride is 300 bits, 300

places are rotated from the matrix after each iteration to obtain the similarity score. If the total

length of the fingerprint data matrix is around 5000 bits, a total of 18 iterations are required to

compute the similarity score. This is because 300× 18 gives us 5400 which would cover all the

bit in a 5000 bit matrix.
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Algorithm: Similarity estimation for arbitrary length audio tracks.

Encryption parameters: 1. Polynomial modulus - 16384

2. Ciphertext modulus - 438

3. Plaintext modulus - 786433

4. Input martix size - 2× 8192 matrix

Inputs: Modified encrypted audio database (E1) and Encrypted audio track

to be compared (E0).

Outputs: Encrypted estimation score (S0) represented by 1× Y matrix, where Y

depends on the number of audio tracks in the database and stride used

for sliding window technique

Procedure: 1. Initialise the encryption parameters and plaintexts.

2. Initialise E1 as the first encrypted audio file from the database.

3. Compute the mask for E1 and E0.

4. Convert back E1 and E0 to unmodified matrix.

5. Compute bit-wise XNOR using I0 = 1− (E0 + E1)− (2 ∗ E0 ∗ E1).

6. Multiply I0 with the mask

7. Rotate E0 by Z places and repeat steps 5-7 for Z/N iterations. Where Z

is the stride and N is the length of the input matrix

8. Add all the 1’s from matrix I0 to get the estimation score.

9. Store the estimation score to S0 and rotate the S0 matrix by one place.

10. Change E1 to the next encrypted audio file from the database and

repeat 2-5 till all the files from the data base have been compared.

11. Output the estimation score matrix S0.

Table 3.2: Iterative algorithm for calculating the estimation score for audio fingerprints of
arbitrary length audio tracks (30 seconds).
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[ 20 20 20 20 20 20 20 20 20 20 20 20 20 ]XNOR
Output 1

A [ 1   0   0   0   0   0   0   0   0   0   0   0   0 ]

[ 20   0   0   0   0   0   0   0   0   0   0   0   0 ]Output
Matrix 1

Multiply

(a) Step 1

[ 60 60 60 60 60 60 60 60 60 60 60 60 60 ]XNOR
Output 2

A [ 1   0   0   0   0   0   0   0   0   0   0   0   0 ]

[ 60   0   0   0   0   0   0   0   0   0   0   0   0 ]Output
Matrix 2

Multiply

[ 0   20   0   0   0   0   0   0   0   0   0   0   0 ]Rotated Output
Matrix 1

ADD

[ 60   20   0   0   0   0   0   0   0   0   0   0   0 ]Output
Matrix 

(b) Step 2

Figure 3.7: An example for the computing the bit-wise XNOR outputs in a single matrix. Figure
3.7a shows the first iteration of storing the XNOR result in the output matrix and Figure 3.7b
shows the second iteration for storing the next XNOR output.

Table 3.2 shows the iterative algorithm to compute similarity score for arbitrary length audio

tracks. We use different encryption parameters compared to parameters used for computing

similarity score for fixed length audio tracks (See Table 3.1). To accommodate for the additional

operations from masking and sliding window techniques we require a higher noise budget, therefore

the polynomial modulus is increased to 16384 giving us a maximum noise budget of 438 bits

(See Table 2.2). The input matrix is encoded into a 2 × 8192 matrix, 16384 plaintext values

can be encoded in a single plaintext matrix (See Section 2.2.3). Most of the steps from the

algorithm are identical to the algorithm from Table 3.1 with additional steps for generating mask

for the inputs and an iterative process to compute similarity score for different fragments using

sliding window technique. To get all the bit-wise XNOR results in a single output matrix, we we

use a multiplication and an addition operation. We rotate the output matrix after computing

each bit-wise XNOR output and add the output matrix with bit-wise XNOR result as shown in

Figure 3.7. The length of the output matrix depends on the number of audio tracks in the audio

database and the stride used in the sliding window technique. If we have 20 audio tracks and we

use 18 iterations for the sliding window technique, the output would be a 1× 360 matrix where

18 bit-wise XNOR operations give 18 similarity scores for comparison of each encrypted file

from the data base with the encrypted input file. In order to understand the output similarity

score, we need the knowledge of the arrangement of the encrypted database. If we performed 18

iteration of sliding window technique, the first 18 similarity score are the similarity score of the

input audio fingerprint with the first audio fingerprint data from the database and next 18 score

would be the similarity scores with the second fingerprint from the database and so on.

3.3 Experiments and Results

In the previous Sections 3.1 and 3.2 we described the algorithms to evaluate similarity score

for audio fingerprint data using integer based homomorphic encryption schemes. We discussed

different techniques and algorithms with examples explaining their workings. In this section, we
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No. Audio tracks Size (in Bits) No. Audio tracks Size (in Bits)

1 blues 0 6928 11 jazz 0 6824

2 blues 1 6487 12 jazz 1 6744

3 classical 0 6965 13 metal 0 7035

4 classical 1 6642 14 metal 1 7060

5 country 0 6626 15 pop 0 6645

6 country 1 6667 16 pop 1 6972

7 disco 0 7054 17 reggae 0 7002

8 disco 1 6996 18 reggae 1 6506

9 hiphop 0 7033 19 rock 0 7029

10 hiphop 1 7072 20 rock 1 6790

Table 3.3: Example for dataset audio tracks and their audio fingerprint sizes.

first present the datasets used for evaluation and give an overview of the setup for the experiments.

We later describe the experiments performed in this thesis for the integer based homomorphic

encryption schemes and lastly, we present and discuss our results.

3.3.1 Datasets

The dataset for evaluation was taken from GTZAN Genre Collection dataset [43]. The data set

contains 1000 tracks with 10 different genre and each genre having 100 tracks. The tracks are all

22050 Hz monophonic 16-bit audio files in .wav format. The dataset was used in over 100 papers,

the 30 second clips are small with a lot of features making it ideal for research evaluation. In this

thesis, 30 tracks were used for the experiments. The tracks included 2 tracks from each genre

along with ten 5 second clips of the 30 second audio tracks. In Table 3.3 we see an example of

different audio files from the dataset and their corresponding audio fingerprint sizes.

3.3.2 Experiments for BFV and BGV

In Section 2.4, we give the application scenario used in this thesis, in this section we describe the

experiments for computing similarity score for audio fingerprint data based on the application

scenario. For both BFV and BGV schemes we use the procedure from Table 3.2 to construct

our experiments. In Section 2.2.3, we discussed the different encryption parameters and their

impact on the performance, in Table 3.4 we define the encryption parameter values used for the

implementation. In Section 3.1 we cover the encryption parameters and their effect on the inputs

with respect to our implementation.
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Encryption Parameters BFV BGV

polynomial modulus 16384 16384

ciphertext modulus 250 390

plaintext modulus 786433 786433

Table 3.4: Encryption parameters used for BFV and BGV experiments.

3.3.2.1 Encrypted Audio Database

First an encrypted audio database is created, the audio fingerprint of all the audio tracks

from the dataset (See Table 3.3) are computed in python programming language using the

Chromaprint library [1]. In Section 3.2 we modified the input fingerprint data to support

arbitrary length similarity estimation. Similarly, after we modify our fingerprint data for the

encryption parameters shown in Table 3.4. All the 0’s are encoded as 786432 to compute the

mask (See Section 3.2.1), this is now our audio fingerprint input data. The modified fingerprint

from each of the audio tracks is stored into separate text files. These text files are encrypted

using the encryption parameters and stored in a database which we refer to as the encrypted

audio database. The schematics of this process is show in Figure 3.8.

3.3.2.2 Inputs and Output

Now we move to the inputs and output of our experiments. The maximum fingerprint data has

around 7000 values, a polynomial modulus value of 8192 is sufficient to encode our fingerprint data

into the input matrix. (polynomial modulus determines the number of input values that can be

packed into a plaintext matrix). However we require a higher noise budget for the homomorphic

operation. Therefore, a polynomial modulus values of 16384 is used to get a noise budget of 438

bits (See Table 2.2). This allows us to perform more encrypted operations on the data. For

our implementation we do not make use of all the 438 bits of noise budget, therefore the noise

budget is reduced to 250. This reduces the size of the ciphertext and gives up better performance

time. The inputs to our experiments are the encrypted audio data base and an encrypted audio

fingerprint file whose similarity score has to be computed. In Section 3.2 we describe the sliding

window technique which uses a stride to compare throughout the fingerprint data. For our

implementation we use a stride of 300 bits. Since our audio fingerprint is around 7000 bits long,

we use 18 iterations to fully compare through all the bits. We compare over 20 different audio

tracks which gives us a output encrypted matrix with 360 different similarity scores (20× 18).
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Audio Fingerprint Encryption

Audio
Tracks

Fingerprint
text files

Encrypted Audio
Database

Pk/Sk

Figure 3.8: Schematics for creating the encrypted audio database

3.3.2.3 Similarity Estimation

The algorithm for the procedure to compute the similarity score is shown in Table 3.2 is

implemented in C++ programming language using the SEAL library [36]. The bit-wise XNOR

operation is performed linearly throughout the audio database. If blues 1 is the input file whose

similarity score has to be determined, first blues 1 is compared with blues 0, then with blues 1,

after that classical 0 and so on according to the index shown in Table 3.3. This help us identify

the output according to the index of the output matrix. This also implies we need the knowledge

of how the encrypted database is arranged in order to analyse the output. From the description

of the experiment we can observe that the program has no knowledge of the data being operated

on, thus preserving privacy.

3.3.3 Results and Discussion

In the following, we discuss the results from the BFV and BGV experiments.All the experiments

were implemented using Windows 10 operating system and Intel i5 2.30GHz processor with

8GB RAM. We decrypt the output matrix to get readable plaintext results. If the encryption

parameters are not correct for the implementation, decrypting accurately is not possible. If the

noise budget used is not sufficient we get incorrect output. The optimised noise budget was

chosen after multiple runs according to the expected output. Each output score is compared to

the size of the fingerprint according to the index, if the value from the output matches the size of

the fingerprint from Table 3.3, the fingerprints and the audio signals are identical to each other.

In Figure 3.9 the results for the BFV experiments are shown. In Figure 3.9a the estimation

scores for the blues 0 files is shown, we can observe a peak in the similarity score of blues 0

when compared with itself. The value of the peak is 6928, which is the same as the fingerprint

size of the blues 0 file as seen in Table 3.3, therefore accurately matching fingerprint from the

encrypted audio database. We can observe similar results for matching pop 1 fingerprint data

with the database in Figure 3.9b. From the figures we can observe that the similarity score

for the non matching files is around 3500, this is because we are performing bit-wise XNOR

operation over 0’s and 1’s and 50% of the time the values would match which is evident from the
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(a) Similarity scores for blues 0. (b) Similarity scores for pop 1.

Figure 3.9: Similarity scores for the BFV experiments.
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Figure 3.10: Probability odds for fingerprint data matching. The figure shows probabilities for
fingerprint data from two different audio tracks to match by random chance. x is the number of
bits.

(a) Similarity scores for classical 0. (b) Similarity scores for metal 1.

Figure 3.11: Similarity scores for the BGV experiments.
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Figure 3.12: Similarity score for .wav and .mp3 formats for the same blues 0 audio file.

Figure 3.13: Similarity score for blues 0 file with modified gain of -10dB.

results. Figure 3.10 show the probability of the fingerprint data matching for different audio

signals. The figure shows the probability graph for up to 100 bits of the fingerprint data to

match by random chance. From the Figure 3.10 we can see that the probability for 10 fingerprint

bits to match in random is 0.097 %, in our case the probability of 7000 bits to match by random

chance is negligible. In Figure 3.11 we have the similarity score for classical 0 and metal 1 files

which were computed using the BGV scheme, we observe similar peaks where there is a match

in the fingerprint data. Since both BFV and BGV are integer based schemes and have similar

algorithms and experiments setups, we get accurate similarity scores for both schemes. One of

the properties of the Choromaprint audio fingerprint is that the fingerprint does not change with

change in format or changes in gains made to the audio file. To test this, we computed similarity

scores for blues 0 mp3 file and blues 0 file with -10dB gain modification. The results are shown

in Figure 3.12 and 3.13. From this we can observe the similarity scores are identical for blues 0

.wav file and blues 0 .mp3 file. Analogously, We get identical similarity scores when comparing

blues 0 and blues 0 file with -10dB gain modification.

Now we will look at the performance of the BFV and BGV schemes. Figure 3.14 shows the
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(a) Processing time blues 0 in BFV. (b) Processing time blues 0 in BGV.

Figure 3.14: Comparison of processing time for BFV and BGV.

processing time for the comparison of each fingerprint file in BFV (Figure 3.14a) and BGV

(Figure 3.14b) schemes. The timing values were measure using C++ high resolution clock

function. We measured the timing values using 2 clocks, The first clock measured the time taken

to estimate each similarity score excluding the encryption and decryption times. The second

clock measured the time taken for estimating the similarity scores for one fingerprint with all the

fingerprint from the database, this included the encryption and decryption times. The average

time it takes to compute similarity score for one fingerprint with another fingerprint from the

database in BFV scheme is 324657 µs and for BGV scheme is 449332 µs. The average time taken

to compute similarity score for one fingerprint with the whole database is 113.299995 seconds for

BFV scheme and 160.942683 seconds for BGV scheme (All the processing times were computed

by averaging over the timing values obtained after 10 runs). We can observe from the results that

on average the BFV scheme performs significantly better compared to BGV in our experiment

setting. The BFV scheme is on average 30% more efficient than the BGV scheme. This is because

the BFV scheme uses relinearisation (See Section 2.2.1) and the BGV scheme uses modulus

switching (See section 2.2.2) to manage the noise in the ciphertext. In the BFV scheme the noise

is reduced while keeping the ciphertext size the same, this make the processing time for all the

multiplications the same. In BGV the noise is reduced by decreasing the ciphertext size after

each multiplication, this makes the multiplications with reduced ciphertext size faster i.e. the

processing time decreases as the number of multiplications increases however at the same time

the noise budget also decreases at a higher rate.

31 Master Thesis, Srivatsav Chenna





4. AUDIO CORRELATION IN THE ENCRYPTED DOMAIN

Chapter 4

Audio Correlation in the Encrypted

Domain

In chapter 3, we implemented similarity estimation algorithm for audio fingerprint data using

BFV and BGV integer based schemes. However, many audio applications require processing of

audio signal data which is usually floating-point values. In this chapter we explore the feasibility

of the CKKS FHE scheme discussed in Section 2.2.4 for computing audio signal correlation. The

CKKS scheme operates over fixed-point values, which makes it suitable for our audio correlation

application. In Section 4.1 we introduce the different algorithms and techniques used for our

implementation. In Section 4.2 we present the algorithm for computing approximate correlation

in CKKS using the techniques covered in Section 4.1. Finally, we describe our experiments and

discuss our results in Section 4.3.

4.1 Algorithms for Inverse and Square Root in CKKS Scheme

In this section we will discuss the techniques and algorithms used for our correlation in CKKS

implementation. The Equation 4.1 is used for computing the correlation between our input

vectors. In Equation 4.1 the numerator
∑n

i=1 aibi can be computed homomorphically using the

multiplication operation and the summation can be computed using Algorithm 1. To compute

magnitude of the vectors |a| and |b| we require a square root operation. Finally, to compute

the correlation we need to find the inverse of the denominator |a||b|. CKKS scheme supports

only addition and multiplication operation, in order to compute the square root and inverse we

require a different approach. In [15] the authors propose an approximate inverse and square

root operation using multiplications and additions. We employ the approximate inverse and

square root algorithms proposed in [15] to compute the correlation using CKKS FHE schemes.
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In the following subsections we will cover the details on the approximate inverse and square root

algorithms.

r =

∑n
i=1 aibi
|a||b|

(4.1)

4.1.1 Inverse in CKKS Scheme

We need an inverse operation to compute the Equation 4.1, we use a approximate inverse

operation for this. The algorithm for computing the approximate inverse for real number values

is based on the Goldschmidt’s division algorithm [23]. Algorithm 3 Inv(x;d) shows the iterative

method used to compute the approximate inverse for a given value x. For x ∈ (0, 2) and a

positive integer d, the error in the output value depends on the number of iterations d. As the

number of iterations increases the approximate result from Inv(x;d) gets close to 1/x (error

reduces) but is always smaller than 1/x. Figure 4.1 give an example representation of the inverse

operation in CKKS scheme. The input and output in CKKS scheme is in form of a matrix. The

input for Algorithm 3 should be scaled to the range 0 > x > 2, additional operations might be

required like dividing the input by a large number to fit the range.

Algorithm 3 Inv(x;d) (Cheon, Jung Hee, Dongwoo, Lee and Lee, 2019 [15] )

Input: 0 < x < 2, d ∈ N
Output: an approximate value for 1/x
a0 ← 2− x
b0 ← 1− x
for n← 0 to d− 1 do

bn+1 ← b2n
an+1 ← an · (1 + bn+1)

end for
Return: ad

4.1.2 Square Root in CKKS

To compute the correlation using Equation 4.1 we need a square root operation. To compute the

magnitude of |a| and |b| as shown in Equation 4.2, we use an approximate square root operation.

The algorithm for computing the approximate square root for real number values is based on

the Wilkes’s iterative method [45]. Algorithm 4 Sqrt(x;d) shows the iterative method used to

compute the approximate square root for a given value x. For x ∈ (0, 1) and a positive integer

d, similar to the Inv(x;d) operation the error in the output value depends on the number of

iterations d. As the number of iterations increases the approximate result from Sqrt(x;d) gets

close to
√
x but is always smaller than

√
x. Figure 4.2 give an example representation of the
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[ 1.5  1.5  1.5  1.5  1.5  1.5  1.5  1.5  1.5  1.5 ]
Inv(x;d)

a0

b0 [ 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 ]

[ 2.0  2.0  2.0  2.0  2.0  2.0  2.0  2.0  2.0  2.0 ]ad
1/x

a0

b0

2 - x

1 - x

Figure 4.1: Example for finding the inverse in CKKS scheme based on Algorithm 3. x = 0.5 in
this example.

the square root operation in CKKS scheme. The input for Algorithm 4 should be scaled to the

range 0 > x > 1, both the algorithms Sqrt(x;d) and Inv(x;d) need additional operations to fit

the input in range.

|a| =

√√√√ n∑
i=1

a2i (4.2)

Algorithm 4 Sqrt(x;d) (Cheon, Jung Hee, Dongwoo, Lee and Lee, 2019 [15] )

Input: 0 ≤ x ≤ 1, d ∈ N
Output: an approximate value for

√
x

a0 ← x
b0 ← x− 1
for n← 0 to d− 1 do

an+1 ← an(1− bn
2 )

bn+1 ← b2n(
bn−3
4 )

end for
Return: ad

4.2 Approximate Correlation in CKKS Scheme

Making use of the algorithms covered in Section 4.1.1 and 4.1.2 we build an implementation for

finding the correlation between two audio signals in CKKS scheme. We give a description of the

algorithm for finding the correlation between two audio tracks in Table 4.1. The inputs needed

to find the correlation are time series values of the audio tracks. The encryption parameters for

CKKS scheme are similar to the BFV and BGV schemes. Therefore, the definitions covered

in Section 2.2.3 holds true for all three schemes. The CKKS scheme does have the plaintext

modulus values and has an additional parameter called scale (See Section 2.2.4) which is used
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[ 0.25  0.25  0.25  0.25  0.25  0.25  0.25  0.25 ]
Sqrt(x;d)

a0

b0

ad
 

a0

b0

x

x - 1

[ -0.75  -0.75  -0.75  -0.75  -0.75  -0.75  -0.75  -0.75 ]

[ 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 ]

Figure 4.2: Example for finding the square root in CKKS scheme based on Algorithm 4. x =
0.25 in this example.

for precision and to rescale the ciphertext size. In Table 4.1 we give the encryption parameter

values. In the algorithm the polynomial modulus value is 32768, this indicates the size of the

input matrix. 32768 time series values from the audio track can be encoded into a single plaintext

matrix and homomorphic operations can performed on the elements of the matrix simultaneously.

The polynomial modulus value of 32768 defines a predetermined maximum ciphertext modulus

value of 881 bits (See Table 2.2). This is also the noise budget, every homomorphic operation

consumes some amount of noise budget. When the noise budget value reduces to 0, decryption

will be false and we do not obtain correct results. The scale parameter determines the amount of

noise introduced to the ciphertext. This allows to set predetermined precision for the outputs of

CKKS operations. For example, if the scale parameter is set to 40, it allows about 10 bits of

precision before and after the decimal point in the results.

In the correlation algorithm from Table 4.1 the input audio track time series value matrix is

labeled E0 and E1. The correlation is computed using Equation 4.1 and the procedure can

be split into 2 parts. First, the numerator part of the equation is computed. The E0 and E1

encrypted matrix are homomorphically multiplied and all the elements of the multiplication

result matrix are summed up. The summation is performed using the Algorithm 1 described in

Section 3.1. The second part, the denominator part of Equation 4.1 is computed. The square

root algorithm from Algorithm 4 is used to find the magnitude of E0 and E1 using the Equation

4.2 and the magnitudes are multiplied together. The inverse of |E0||E1| is computed next using

Algorithm 3. Finally, the correlation is computed by multiplying the results from multiplying

a · b and inverse of |E0||E1|. The output is in form of a matrix as shown in Figure 4.3.

4.3 Experiments and Results

In the previous sections we covered the different algorithms used for calculating the correlation in

CKKS scheme. Since we cannot perform inverse or square root operations directly in homomorphic
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Algorithm: Correlation of two audio tracks in CKKS scheme.

Encryption parameters: 1. Polynomial modulus - 32768

2. Ciphertext modulus - 881

2. Scale - 40

4. Input martix size - 2× 16384 matrix

Inputs: Time series values of Audio track 1 (E0) and Audio track 2 (E1)

Outputs: Correlation score of E0 and E1

Procedure: 1. Initialise the encryption parameters and plaintexts required.

2. Multiply E0 and E1 and sum all the elements of the matrix

and store the result in S0 (Numerator from Equation 4.1).

3. Compute the magnitude of E0 and E1 using the approximate

square root operation from Algorithm 4.

4. Multiply the magnitudes |E0| and |E1| (Denominator from Equation 4.1).

5. Compute the approximate inverse for |E0||E1| using the

Algorithm 3 and store the result in S0

6. Multiply S0 and S1 and store the result in R0.

7. Output the correlation score R0.

Table 4.1: Iterative algorithm for calculating the correlation score of audio tracks.

[ 0.9  0.9  0.9  0.9  0.9  0.9  0.9  0.9 ]
Multiply

[ 0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 ]

[ 0.45  0.45  0.45  0.45  0.45  0.45  0.45  0.45  0.45  0.45 ]
Correlation

Score

Figure 4.3: Example for finding the correlation in CKKS scheme.
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domain, we looked into approximate inverse and square root algorithms that use multiplication

and addition operations. In this sections we will present the datasets used for experiments and

analyse the performance and accuracy of inverse and square root operations individually. Later,

we describe the experiments for finding the approximate correlation between audio signals using

CKKS scheme and lastly, we present and discuss our results.

4.3.1 Datasets

We use the same dataset that was used for evaluating the integer based schemes in Chapter

3. The GTZAN Genre Collection dataset [43] contains 1000 audio tracks of which we use 20

audio tracks from 10 different genres. Table 3.3 from Section 3.3.1 show the different genres of

audio tracks used in our experiments. We use first 8000 time series values of the audio signals to

compute our correlation. Further details of the audio data will be explained while describing the

experiments for our correlation process in the later sections.

4.3.2 Approximate Inverse Operation Analysis

The results from the the inverse operation are approximate values. In this section we analyse

the error and performance of the approximate inverse operation performed in the homomorphic

domain using CKKS scheme. We implement the approximate inverse algorithm from Algorithm

3 using the CKKS scheme. As described in Section 4.1.1 the accuracy of the inverse operation

depends on the number of iterations of the algorithm. To get an idea of the choice for the number

of iterations, we analysed the performance by running the algorithm for up to 6 iterations as

shown in Figure 4.4. We experiment with 10 values from 0 to 1 with a 0.1 increment after each

value (0.1, 0.2, 0.3 and so on till 1). In Figure 4.4 the reference values are the accurate 1/x results

computed in plaintext and the measured values are the approximate 1/x results obtained from

computing inverse homomorphically using the CKKS scheme. We can see from the figures as

the number of iterations increases the measured approximate values are converging closer to the

inverse values. The Figures 4.4a, 4.4b and 4.4c show values from 1, 2 and 3 iterations in which

the measured values have a noticeable deviation from the reference values for x < 0.5. Figure 4.5

shows the root mean square error (RMSE) values and processing time for different iterations

of the inverse algorithm. These RMSE values were computed using Equation 4.3, where e is

measured values, r is reference values and N = 10. The processing time were measured using the

high resolution clock function in C++. We can observe in Figure 4.5 the RMSE value converges

close to 0 from 4 iterations and after. However, from the computation time graph from Figure

4.5 we see as expected the processing time increases with the number of iterations. Figure 4.6

shows the error graph where the errors are computed by subtracting the reference values from

the measured values. We observe irrespective of the number of iterations the error in measured
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results are significantly smaller for values x > 0.5. This can be used to scale the input x to

be x > 0.5 and perform the inverse operation with only 1 iteration and improve performance.

For our implementation we use 4 iterations to compute the approximate inverse algorithm as

we achieve reasonable accuracy and performance. The average time taken after 10 runs of the

inverse algorithm for 4 iterations is 9.22668 seconds.

RMSE =

√∑N
i (ei − ri)2

N
(4.3)

4.3.3 Approximate Square Root Operation Analysis

In this section we analyse the square root operation to find the ideal iteration choice for our

correlation using CKKS implementation. We implement our square root operations using

Algorithm 4. The performance and accuracy of the square root result depends on the number

iterations on the algorithm. In Figure 4.7 the accuracy of the square root operations after each

iterations is illustrated. We experiment with 10 values (0, 0.04, 0.09, 0.16, 0.25, 0.36, 0.49, 0.64,

0.81, 0.96) for which we find the approximate square root. In Figure 4.7 the reference values are

the accurate
√
x results computed in plaintext and the measured values are the approximate

√
x

results obtained from computing square root homomorphically using the CKKS scheme. We can

observe as the number of iterations increases the measured values coincide withe the reference

values. Figures 4.7a and 4.7b show results for 1 and 2 iterations, the measured values have a

significant deviation from the reference values. Figures 4.7c and 4.7d show results for 3 and 4

iterations, the measured values come closer to reference values for x > 0.5. Figures 4.7e and 4.7f

show results for 5 and 6 iterations, the error in measured values in these figures is very small even

for x < 0.5 values and the improvement in performance from 5 iterations to 6 iterations is not

significant. Figure 4.8 shows the root mean square error (RMSE) and performance graph over

multiple iterations. From this we observe that we can obtain good accuracy and performance

trade-off for 5 iterations. For our implementation we use 5 iterations to compute the approximate

square root algorithm as we achieve reasonable accuracy and performance trade-off. The average

processing time computed after 10 runs for 5 iterations of the square root algorithm is 11.810

seconds.

4.3.4 Experiments for Correlation Estimation

In Section 4.1 we discussed the algorithms for approximate inverse and square root operations

and in Section 4.3.2 and 4.3.3 we analysed the approximation algorithms and found the optimal

iterations for our correlation implementation. In this section, we describe the experiments for

approximate correlation of audio signal data using CKKS scheme. Figure 4.9 gives the overview
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Figure 4.4: Approximate inverse values after each iteration. Reference values are 1/x calculated
in plaintext without error, Measured values are 1/x calculated using CKKS scheme.

40 Master Thesis, Srivatsav Chenna



4.3 EXPERIMENTS AND RESULTS

Number of iterations

1 2 3 4 5 6

R
M

S
E

0

1

2

3
RMSE for inverse

Number of iterations

1 2 3 4 5 6

T
im

e
 (

m
ic

ro
 s

e
c
o

n
d

s
) ×106

2

4

6

8

10
Computation time for inverse

Figure 4.5: Inverse RMSE values and processing time for 6 iterations.
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value calculated using CKKS scheme.
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Figure 4.7: Approximate square root values after each iteration. Reference values are
√
x

calculated in plaintext without error, Measured values are
√
x calculated using CKKS scheme.
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Figure 4.8: Square root RMSE values and processing time for 7 iterations.
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Figure 4.9: Schematics for computing the correlation score using CKKS. A1 and A2 are the
audio signal data who’s correlation is computed.

of the correlation experiments. The audio signal data for the audio tracks is encrypted, the

encrypted correlation algorithm takes as input two encrypted audio signal data and outputs the

correlations between them. This can be viewed as a client needing correlation between two audio

tracks, the audio track time series values are encrypted input to the server. The server performs

the encrypted correlation between the audio tracks and returns the correlation score.
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Encryption Parameters CKKS

polynomial modulus 32768

ciphertext modulus 881

scale 40

Table 4.2: Encryption parameters used for CKKS experiments.

4.3.4.1 Inputs and Outputs

We build our experiments according to the algorithms shown in Table 4.1. The inputs for are

experiments are audio tracks from the dataset described in Section 4.3.1. The floating point time

series values of the audio tracks are computed in python using the librosa library [32]. CKKS

works with fixed-point values, therefore we round off our time series values to the 8th decimal

place. We used 8000 time series values from the audio tracks as the audio signal data. The

audio signal data is encoded into a plaintext matrix and then encrypted using the encryption

parameters shown in Table 4.2. The output is the correlation score of the input encrypted audio

signal data.

The polynomial modulus value is chosen to be 32768, this allows 32768 plaintext values to be

encrypted in a single plaintext matrix. We encoded our 8000 time series values of the audio data

in into the plaintext matrix. A large polynomial modulus is chosen to obtain a larger noise budget

(See Table 2.2). The ciphertext modulus or noise budget is 881 bits. Since the implementation

requires many multiplication and addition operations to support approximate inverse and square

root operations a large noise budget is used. The scale value used for our experiments is 40, this

gives 10 bits precision after the decimal point for our approximate CKKS scheme.

4.3.4.2 Correlation Estimation

The approximate correlation is implemented according to the procedure shown in Table 4.1 and

Equation 4.1. The application was implemented using C++ programming language using the

SEAL library [36]. Experiments performed for integer based schemes in Section 3.3 used an

encrypted audio data base for similarity estimation. For the approximate correlation experiments

we compute the correlation between two audio tracks at a time. This is because of the correlation

operation has higher number of multiplication operations and requires longer processing time. In

our implementation we use 4 iterations to compute the inverse and 5 iterations to compute the

square root. We evaluate our results from our experiments based on the accuracy and processing

time.
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No. Audio tracks Correlation (reference) Correlation (measured) Error

1 blues 0 1.00000014 1.04977914 0.04977900

2 blues 0 gain 0.99116422 1.00479660 0.01363238

3 blues 0 invert -1.00000014 -1.04977248 0.04977234

4 blues 1 0.03100886 0.03115996 0.00015109

5 classical 0 0.01207058 0.01223717 0.00016659

6 classical 1 -0.031578181 -0.03173782 0.000159639

7 country 0 0.095074045 0.09552808 0.000454035

8 country 1 0.015664266 0.01574113 0.000076864

9 pop 0 0.12493632 0.12554668 0.00061036

10 pop 1 0.04132448 0.04154284 0.00021836

11 metal 0 -0.01511109 -0.01518831 0.00007722

12 metal 1 0.00809020 0.00812981 0.00003961

Table 4.3: Correlation scores for blues 0 audio track with 10 audio tracks from the dataset.
Reference values calculated in plaintext and measured values are calculated homomorphically
using CKKS scheme.

4.3.5 Results and Discussion

In this section we discuss the results for our CKKS correlation estimation experiments. All

the experiments were implemented using Windows 10 operation system and Intel i5 2.30GHz

processor with 8GB RAM. The results obtained from the CKKS correlation experiments are

decrypted and analysed against correlation scores computed over plaintext. The error between

the reference values calculated in plaintext and measured values calculated homomorphically

is computed. The encryption parameters chosen for the experiments are optimised to enable

correct decryption.

Table 4.3 and 4.4 show the correlation scores for blues 0 and pop 0 audio tracks with 10 tracks

from the dataset. In Table 4.3 we can observe the measured correlation score obtained from

calculating homomorphically for blues 0 with itself is 1.04977914 and the reference correlation

score calculated in plaintext is 1.00000014. The reference and measured correlation score are

close to each other with an error of 0.04977900. We observe similar results for correlation scores

of pop 0 in Table 4.4. The correlation score for blues 0 and pop 0 tracks with phase inverted

and gain modified (-10dB) versions of the tracks was also computed to check the correctness of

the implementation. All the measured correlation scores from both the tables are similar to the

reference scores up to 2 decimal places. In section 4.3.2 and 4.3.3 we analyse the accuracy of

the inverse and square root operations implemented in the correlation estimation algorithm. In

our implementation we use 4 iterations to compute the inverse and 5 iterations to compute the

square root. The operations in CKKS scheme give us approximate results but the precision can

be predefined using the scale parameter. For our implementation we define the scale parameter

to be 40 which gives us 10 bits of precision after the decimal point. Since we round our inputs
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No. Audio tracks Correlation (reference) Correlation (measured) Error

1 blues 0 0.12493632 0.12554629 0.00060997

2 blues 1 0.11250327 0.11307004 0.00056677

3 classical 0 0.03027052 0.03042199 0.00015147

4 classical 1 -0.00685206 -0.00692657 0.00007451

5 country 0 0.05619905 0.05648229 0.00028324

6 country 1 -0.02829657 -0.02843877 0.00014220

7 pop 0 1.00000001 1.00503106 0.00503105

8 pop 0 gain 0.99999995 1.01694382 0.06943825

9 pop 0 invert -1.00000001 -1.00502980 0.00502979

10 pop 1 0.10764407 0.10818547 0.00054140

11 metal 0 -0.02268830 -0.02280257 0.00011427

12 metal 1 0.01874566 0.01884014 0.00009448

Table 4.4: Correlation scores for pop 0 audio track with 10 audio tracks from the dataset.
Reference values calculated in plaintext and measured values are calculated homomorphically
using CKKS scheme.

to 8 decimal points (See section 4.3.4.1), the results from CKKS addition and multiplication

operations are accurate. To further reduce the error in the correlation results, the number of

iterations for the inverse and square root operations can be increased. This comes at the cost

of increasing the computational time of the correlation process. Therefore in CKKS there is a

trade off between accuracy and computational time. Each correlation operation between two

audio tracks in CKKS takes on average 46.78 seconds to compute. The computation time was

measured using high resolution clock function in C++ and the encryption and decryption times

are not included. The inverse operation for 4 iterations and the square root operations for 5

iterations takes an average processing time of 9.22668 and 11.810 seconds respectively (All the

processing times were computed by averaging over the timing values obtained after 10 runs). The

processing time of the correlation estimation implementation can be improved by implementing

more efficient algorithms for computing inverse and square root in the homomorphic domain.

46 Master Thesis, Srivatsav Chenna



5. CONCLUSIONS AND FUTURE WORK

Chapter 5

Conclusions and Future Work

In this thesis we presented similarity estimation methods for audio fingerprint data and audio

signal data in the homomorphic encryption domain. We built a system which can perform

the similarity estimation operation on encrypted audio data without leaking any information.

To achieve this, three different fully homomorphic schemes were used for similarity estimation

implementations. The integer based FHE schemes BFV and BGV were employed to compute

similarity score between audio fingerprint data and the fixed-point based CKKS scheme was

employed to compute correlation between audio tracks. We conducted experiments to test our

FHE implementations and evaluated the schemes based on accuracy and computation time.

For testing our systems, we created an encrypted database of different genre audio tracks.

We constructed our experiments such that the party performing the fingerprint matching or

correlation operations have no information about the audio data. Additionally, we implemented

novel masking and sliding window techniques in homomorphic domain to compute fingerprint

matching for arbitrary length data in BFV and BGV schemes. We also implemented inverse and

square root operations homomorphically to facilitate correlation using CKKS scheme. According

to our experiments the integer based schemes showed accurate results. The similarity score

between audio fingerprints computed using the BFV and BGV schemes give us the same results

as the similarity score computed over plaintext data. Analysing the performance of the BFV and

BGV schemes from our experiments, we saw the BFV scheme has around 30% faster processing

time compared to that of BGV scheme. This makes the BFV scheme overall a more efficient

scheme for computing similarity score for audio fingerprint data. However, BFV and BGV

schemes are restricted to only integer operations which can limit wider audio application.

From our correlation estimation experiments, we provide an analysis to the inverse and square

root operations based on accuracy and computation time. According to our results we chose

optimal inverse and square root algorithms for our implementation with efficient trade-off

between accuracy and processing time. The results from our CKKS scheme experiments show
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the correlation score for the audio tracks was close to the correlation score computed in plaintext.

The correlation score for our implementation are accurate up to 2 decimal places. This precision

can be improved further by increasing the accuracy of the inverse and square root algorithms

at the cost of longer processing time. For computing the correlation between two audio tracks

our implementations takes on average 46.78 seconds. The CKKS based scheme can operate

over both integer and fixed-point values making it more practical for audio applications. The

homomorphic algorithms and techniques for fingerprint matching and correlation operations

proposed in this thesis can be used to construct different homomorphic systems with applications

in music identification, speech recognition algorithms, telemedicine and so on.

The future work of the thesis can follow many directions. We implemented our fingerprint

estimation using arithmetic circuit FHE schemes. An implementation using Boolean circuit

schemes like Torus fully homomorphic scheme that operates directly over binary data could

provide better insight into FHE feasibility with respect to different circuit schemes. The CKKS

scheme also supports operations on complex numbers, operations like phase unwrapping can

be implemented to extend the CKKS correlation implementation proposed in this thesis to

perform time delay estimations on audio signals. There was no security analysis performed on

our implementations, experiments could be conducted to test the security of our implementations

against common attacks. Evaluation of the FHE techniques against other privacy preserving

techniques like differential privacy and zero knowledge proof in the audio context would provide an

understanding of the state of art in the privacy preserving field. In conclusion, the computational

time seen in our homomorphic implementations are still very high and not practical for real

world applications. However, homomorphic encryption schemes are getting more efficient and

the processing time is reducing on average about 8 seconds every year. With a more online world

and advancements in quantum cryptography, homomorphic encryption could be the solution to

secure audio data.
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Appendix A

Source Code

In this Chapter, the functions created during the writing of this thesis are reproduced. The

headers provide the description of the functions, its input/output behavior and the libraries

used. We cover our implementation of BFV, BGV and CKKS schemes. Both the python script

for modifying the audio data and the C++ programs for implementing the applications are

reproduced.

Function: Computing audio fingerprint and formatting it into a text file (BFV/BGV).

Inputs: Audio track

Outputs: Fingerprint text file

Libraries: fpcalc by Chromaprint [1], numpy, subprocess

import subprocess

import numpy as np

#compute the fingerprint for the audio track

fpcalc_out = subprocess.check_output('fpcalc -raw -length %i %s'

% (500, "test/blues.00000.wav"))

fpcalc_out = str(fpcalc_out)

fingerprint_index = fpcalc_out.find('FINGERPRINT=') + 12

# convert fingerprint to list of integers

fingerprints = map(int, fpcalc_out[fingerprint_index:-5].split(','))

fingerprints = list(fingerprints)

#convert to binary
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bin_fingerprints = []

for i in fingerprints:

bin_fingerprints.append(bin(int(i))[2:])

#Format and modify fingerprint

bin_fingerprints = ''.join(bin_fingerprints)

bin_fingerprints = str(bin_fingerprints)

bin_fingerprints = " ".join(bin_fingerprints)

bin_fingerprints = bin_fingerprints.replace("0","786432")

#Write the formatted fingerprint into a text file

with open('blues.00000.txt', 'w') as f:

f.write(bin_fingerprints)

————————————————————————————————————–

Function: Summing the 1’s of a matrix (See Algorithm 1)

Inputs: encrypted matrix 1 and encrypted matrix 2

Outputs: encrypted matrix 2

Libraries: SEAL library [36]

for (size_t j = 0; j < 12; j++) {

//Rotate rows in logarithmic order (2,4,16..)

int num = pow(2, j);

evaluator.rotate_rows_inplace(encrypted_matrix_2, num, galois_keys);

//addition operation

evaluator.add(encrypted_matrix_1, encrypted_matrix_2, encrypted_matrix_2);

//storing intermediate sum

encrypted_matrix_1 = encrypted_matrix_2;

}

————————————————————————————————————–

Function: Creating mask of a matrix in BFV and BGV(See Algorithm 2)

Inputs: encrypted matrix 1,

sub matrix← 786432 (modulus - 1),

mul matrix← 393217 (multiplicative inverse of 0.5)
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Outputs: encrypted matrix mask

Libraries: SEAL library [36]

//mask

evaluator.square(encrypted_matrix_1, encrypted_matrix_mask);

//relinearisation to reduce ciphertext size

evaluator.relinearize_inplace(encrypted_matrix_1, relin_keys);

//getting back the unmodified input

evaluator.sub_plain_inplace(encrypted_matrix_1, sub_matrix);

evaluator.multiply_plain_inplace(encrypted_matrix_1, mul_matrix);

evaluator.relinearize_inplace(encrypted_matrix_1, relin_keys);

evaluator.relinearize_inplace(encrypted_matrix_mask, relin_keys);

————————————————————————————————————–

Function: Computing audio signal data and formatting it into a text file (CKKS).

Inputs: Audio track

Outputs: time series values text file

Libraries: liberosa [32], numpy

import librosa

import numpy as np

file = input("file name") #input audio track

#extract time series values of the audio track

sig, sample_rate = librosa.load("path/"+ file + ".00000.wav",sr=None)

#roundoff values to 8th decimal place

sig = np.around(sig, 8)

#format data

sig = list(sig)

c = str(sig)

c = ''.join(c)

c = c.replace(",","")

c = c.replace("]","")
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c = c.replace("[","")

#write data in text file

with open('path/'+ file + '.00000.txt', 'w') as f:

f.write(c)

————————————————————————————————————–

Function: Computing the inverse in CKKS (See Algorithm 3)

Inputs: encrypted matrix 0,

add matrix← 1 ,

2 matrix← 2

Outputs: encrypted matrix 2

Libraries: SEAL library [36]

//Initial matrices

evaluator.negate_inplace(encrypted_matrix_1);

evaluator.add_plain(encrypted_matrix_0, add_matrix, encrypted_matrix_1);

evaluator.add_plain(encrypted_matrix_0, 2_matrix, encrypted_matrix_2);

for (int i = 0; i < 3; i++){

// b_n+1 = (b_n)^2

evaluator.square_inplace(encrypted_matrix_1);

//Rescale to reduce ciphertext size

evaluator.relinearize_inplace(encrypted_matrix_1, relin_keys);

evaluator.rescale_to_next_inplace(encrypted_matrix_1);

//changing parameters

add_matrix.scale() = pow(2.0, 40);

encrypted_matrix_1.scale() = pow(2.0, 40);

parms_id_type last_parms_id1 = encrypted_matrix_1.parms_id();

evaluator.mod_switch_to_inplace(add_matrix, last_parms_id1);

// 1 + b_n+1

evaluator.add_plain(encrypted_matrix_1, add_matrix, encrypted_matrix_2);

encrypted_matrix_3.scale() = pow(2.0, 40);

encrypted_matrix_2.scale() = pow(2.0, 40);
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parms_id_type last_parms_id2 = encrypted_matrix_3.parms_id();

evaluator.mod_switch_to_inplace(encrypted_matrix_2, last_parms_id2);

// a_n (1 + b_n+1)

evaluator.multiply_inplace(encrypted_matrix_2, encrypted_matrix_3);

evaluator.relinearize_inplace(encrypted_matrix_2, relin_keys);

evaluator.rescale_to_next_inplace(encrypted_matrix_2);

}

————————————————————————————————————–

Function: Computing the square root in CKKS (See Algorithm 4)

Inputs: encrypted matrix 1,

1 matrix← 1 ,

2 matrix← 0.5,

3 matrix← 3,

4 matrix← 4

Outputs: encrypted matrix 3

Libraries: SEAL library [36]

//Initial matrix

evaluator.sub_plain(encrypted_matrix_1, 1_matrix, encrypted_matrix_2);

for (int i = 0; i < 5; i++){

// (b_n)/2

evaluator.multiply_plain(encrypted_matrix_2, 2_matrix, encrypted_matrix_3);

//Rescale to reduce ciphertext size

evaluator.relinearize_inplace(encrypted_matrix_3, relin_keys);

evaluator.rescale_to_next_inplace(encrypted_matrix_3);

//changing parameters

1_matrix.scale() = pow(2.0, 40);

encrypted_matrix_3.scale() = pow(2.0, 40);

parms_id_type last_parms_id1 = encrypted_matrix_3.parms_id();

evaluator.mod_switch_to_inplace(1_matrix, last_parms_id1);

evaluator.negate_inplace(encrypted_matrix_3);
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//(1 - (b_n)/2)

evaluator.add_plain_inplace(encrypted_matrix_3, 1_matrix);

encrypted_matrix_3.scale() = pow(2.0, 40);

encrypted_matrix_1.scale() = pow(2.0, 40);

parms_id_type last_parms_id2 = encrypted_matrix_3.parms_id();

evaluator.mod_switch_to_inplace(encrypted_matrix_1, last_parms_id2);

// a_n (1 - (b_n)/2)

evaluator.multiply_inplace(encrypted_matrix_3, encrypted_matrix_1);

evaluator.relinearize_inplace(encrypted_matrix_3, relin_keys);

evaluator.rescale_to_next_inplace(encrypted_matrix_3);

encrypted_matrix_1 = encrypted_matrix_3;

3_matrix.scale() = pow(2.0, 40);

encrypted_matrix_2.scale() = pow(2.0, 40);

parms_id_type last_parms_id3 = encrypted_matrix_2.parms_id();

evaluator.mod_switch_to_inplace(3_matrix, last_parms_id3);

// b_n -3

evaluator.sub_plain(encrypted_matrix_2, 3_matrix, encrypted_matrix_4);

encrypted_matrix_4.scale() = pow(2.0, 40);

4_matrix.scale() = pow(2.0, 40);

parms_id_type last_parms_id4 = encrypted_matrix_4.parms_id();

evaluator.mod_switch_to_inplace(4_matrix, last_parms_id4);

// (b_n -3)/4

evaluator.multiply_plain_inplace(encrypted_matrix_4, 4_matrix);

// (b_n)^2

evaluator.square_inplace(encrypted_matrix_2);

evaluator.relinearize_inplace(encrypted_matrix_2, relin_keys);

evaluator.relinearize_inplace(encrypted_matrix_4, relin_keys);

evaluator.rescale_to_next_inplace(encrypted_matrix_2);

evaluator.rescale_to_next_inplace(encrypted_matrix_4);

encrypted_matrix_2.scale() = pow(2.0, 40);

encrypted_matrix_4.scale() = pow(2.0, 40);

parms_id_type last_parms_id5 = encrypted_matrix_2.parms_id();

evaluator.mod_switch_to_inplace(encrypted_matrix_4, last_parms_id5);
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// (b_n)^2 (b_n - 3)/4

evaluator.multiply_inplace(encrypted_matrix_2, encrypted_matrix_4);

evaluator.relinearize_inplace(encrypted_matrix_2, relin_keys);

evaluator.rescale_to_next_inplace(encrypted_matrix_2);

f2pt_matrix.scale() = pow(2.0, 40);

encrypted_matrix_2.scale() = pow(2.0, 40);

parms_id_type last_parms_id6 = encrypted_matrix_2.parms_id();

evaluator.mod_switch_to_inplace(2_matrix, last_parms_id6);

}

————————————————————————————————————–
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Appendix B

Software and Hardware

In this chapter, the software tools and hardware used in this thesis is described. All the

experiments presented in this thesis were implemented using a PC with Windows 10 operation

system and Intel i5 2.30GHz processor with 8GB RAM. The different tools and programming

languages employed in this thesis are listed below along with the description of where in the

implementation they were used.

No. IDE Programming Description

language

1. Visual Studio Code Python 3.8 Generating audio fingerprint and signal data.

version 1.70 Formatting data into a text file.

Measuring correlation in plaintext.

2. Visual Studio C++ Implementing similarity estimation

version 16.8.2 experiments using SEAL v3.7 library.

3. Matlab MATLAB Computing RMSE results,

version R2015a generating RMSE, timing, probability

and error graphs for CKKS experiments.

No. Libraries Programming Description

language

1. SEAL v3.7 C++ BFV, BGV and CKKS implementations.

2. Chromaprint Python 3.8 Generating audio fingerprints.

version 1.5.1

3. Librosa Python 3.8 Generating time series audio data.

version 0.9.2
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