

Loss Functions Matter

Three Case Studies in Informed Loss Design

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Lecture Series "Musical Informatics"

Linz, November 19, 2025

Meinard Müller

- Mathematics (Diplom/Master, 1997)
 Computer Science (PhD, 2001)
 Information Retrieval (Habilitation, 2007)
- Senior Researcher (2007-2012)
- Professor Semantic Audio Processing (since 2012)
- Former President of the International Society for Music Information Retrieval (MIR)
- IEEE Fellow for contributions to Music Signal Processing

International Audio Laboratories Erlangen

- Fraunhofer Institute for Integrated Circuits IIS
- Largest Fraunhofer institute with > 1000 members
- Applied research for sensor, audio, and media technology

- Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
- One of Germany's largest universities with ≈ 40,000 students
- Strong Technical Faculty

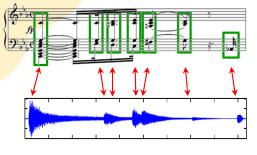
International Audio Laboratories Erlangen

International Audio Laboratories Erlangen

Audio Coding

Audio

Internet of Things



Music Processing

Psychoacoustics

Meinard Müller: Research Group

- Ben Maman
- Simon Schwär
- Johannes Zeitler
- Peter Meier

- Sebastian Strahl
- Uli Berendes
- Vlora Arifi-Müller
- Stefan Balke

- Ching-Yu Chiu (Sunny)
- Yigitcan Özer
- Michael Krause
- Christof Weiß
- Sebastian Rosenzweig
- Frank Zalkow

- Hendrik Schreiber
- Christian Dittmar
- Stefan Balke
- Jonathan Driedger
- Thomas Prätzlich
-

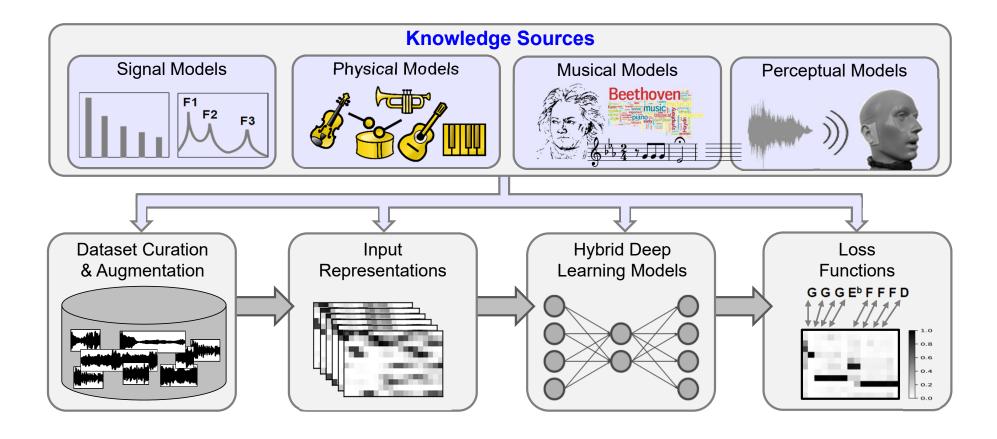
Meinard Müller: Research Group

- Ben Maman
- Simon Schwär
- Johannes Zeitler
- Peter Meier

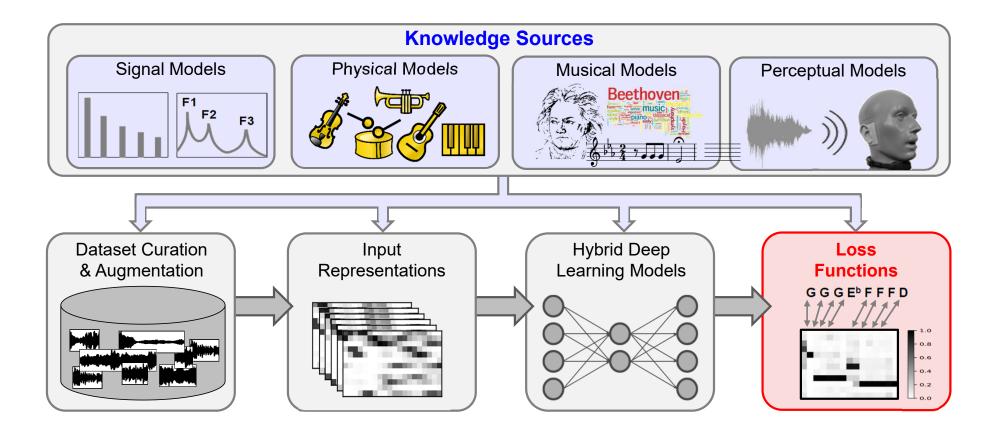
- Sebastian Strahl
- Uli Berendes
- Vlora Arifi-Müller
- Stefan Balke

- Ching-Yu Chiu (Sunny)
- Yigitcan Özer
- Michael Krause
- Christof Weiß
- Sebastian Rosenzweig
- Frank Zalkow

- Hendrik Schreiber
- Christian Dittmar
- Stefan Balke
- Jonathan Driedger
- Thomas Prätzlich
-



Richard, Lostanlen, Yang, Müller: Model-Based Deep Learning for Music Information Research: Leveraging Diverse Knowledge Sources to Enhance Explainability, Controllability, and Resource Efficiency. IEEE Signal Processing Magazine, 41(6): 51–59, 2024



Richard, Lostanlen, Yang, Müller: Model-Based Deep Learning for Music Information Research: Leveraging Diverse Knowledge Sources to Enhance Explainability, Controllability, and Resource Efficiency. IEEE Signal Processing Magazine, 41(6): 51–59, 2024.

Overview

- Multi-Scale Spectral Loss
 Knowledge Source: Signal Representations
- Hierarchical Classification Loss
 Knowledge Source: Musical Hierarchies
- Differentiable Alignment Loss
 Knowledge Source: Temporal Coherence

Simon Schwär

Michael Krause

Johannes Zeitler

Overview

- Multi-Scale Spectral Loss
 Knowledge Source: Signal Representations
- Hierarchical Classification Loss
 Knowledge Source: Musical Hierarchies
- Differentiable Alignment Loss
 Knowledge Source: Temporal Coherence

Simon Schwär

Michael Krause

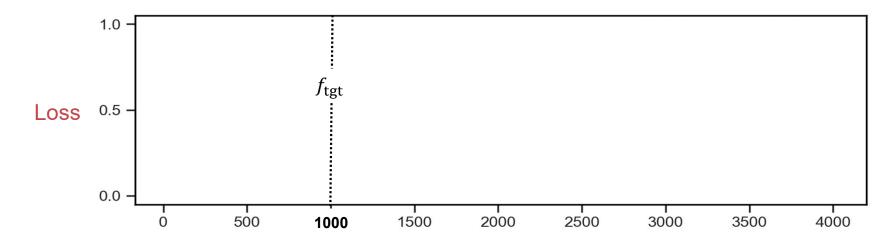
Johannes Zeitler

Literature

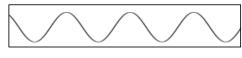
- Turian, Henry: I'm sorry for your loss: Spectrally-based audio distances are bad at pitch. Proc. Adv. Neural Inf. Process. Syst., 2020.
- Hayes, Saitis, Fazekas: Sinusoidal frequency estimation by gradient descent. Proc. ICASSP, 2023.
- Torres, Peeters, Richard: Unsupervised Harmonic Parameter Estimation Using DDSP and Spectral Optimal Transport. Proc. ICASSP, 2024
- Schwär, Müller: Multi-Scale Spectral Loss Revisited. IEEE Signal Processing Letters, 30: 1712–1716, 2023.

Meinard Müller

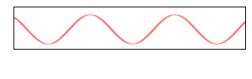
Sinusoid with target frequency: $f_{
m tgt} = 1000~{
m Hz}$

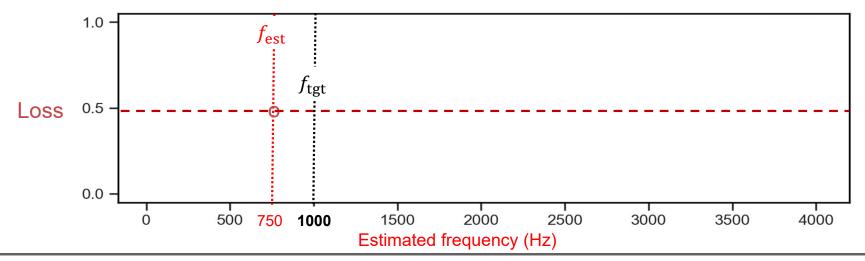


Sinusoid with target frequency: $f_{\rm tgt} = 1000~{\rm Hz}$

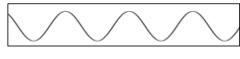


Sinusoid with estimated frequency: $f_{\rm est} = 750 \; {\rm Hz}$

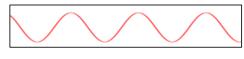




Sinusoid with target frequency: $f_{
m tgt} = 1000~{
m Hz}$



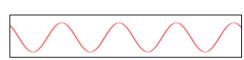
Sinusoid with estimated frequency: $f_{\rm est} = 972 \; {\rm Hz}$

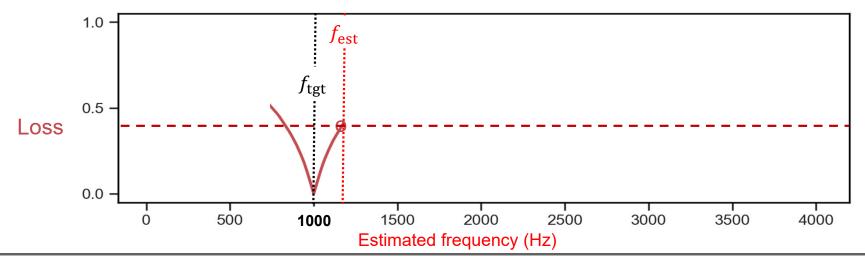




Sinusoid with target frequency: $f_{\rm tgt} = 1000~{\rm Hz}$

Sinusoid with estimated frequency: $f_{\rm est} = 1100~{\rm Hz}$

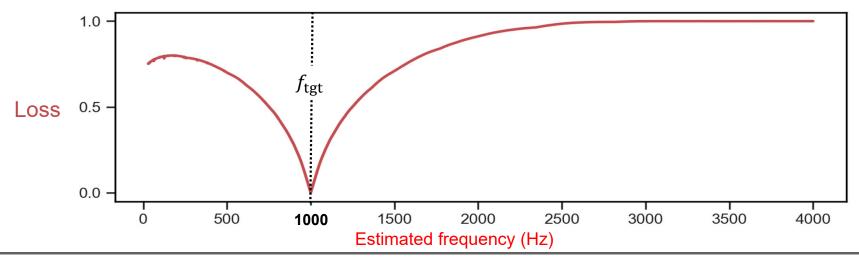




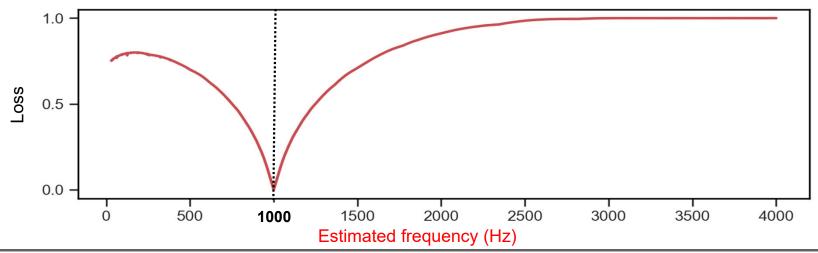
Sinusoid with target frequency: $f_{\rm tgt} = 1000~{\rm Hz}$

Sinusoidal sweep of estimated frequencies $f_{\rm est}$

Loss landscape over **estimates** for a given **target**

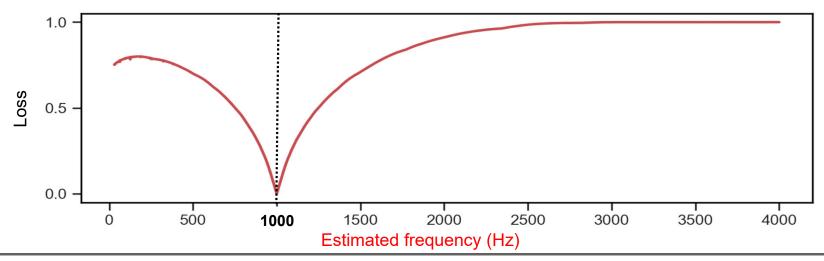


Loss landscape depends a lot on the chosen loss function to compare **estimated** and **target** signal



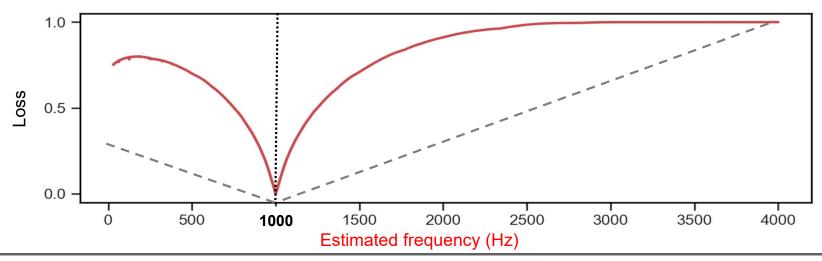
Loss landscape depends a lot on the chosen loss function to compare **estimated** and **target** signal

Loss function discussed later



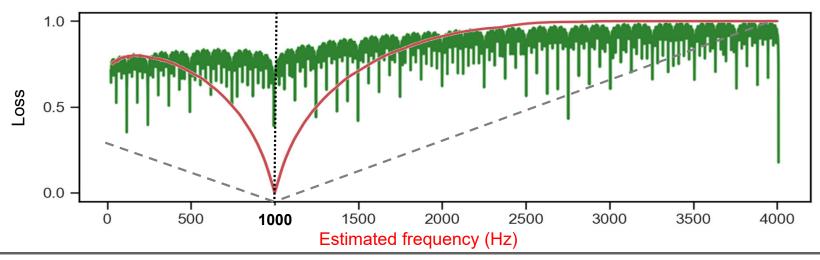
Loss landscape depends a lot on the chosen loss function to compare **estimated** and **target** signal

- Loss function discussed later
- Ideal convex loss



Loss landscape depends a lot on the chosen loss function to compare **estimated** and **target** signal

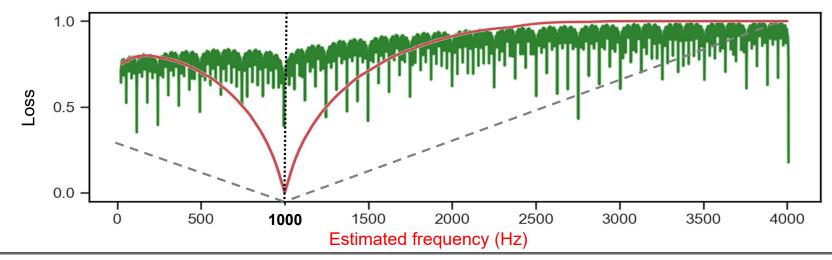
- Loss function discussed later
- Ideal convex loss
- Multi-Scale Spectral (MSS) loss with standard settings



Loss landscape depends a lot on the chosen loss function to compare **estimated** and **target** signal

- Loss function discussed later
- Ideal convex loss
- Multi-Scale Spectral (MSS) loss with standard settings

The MSS loss is what we widely use in audio processing (e.g., DDSP)



- x input signal
- N window size
- H hop size
- w window function
- p compression function
- d distance function
- ullet $\mathcal N$ set of window sizes
- \mathcal{P} set of compression function

Configuration	Value	Description
	WR	Rectangular window
Window Type	WH	Hann window
	WF	Flat Top window
	S1	$\mathcal{N} = \{64\}$
Window	S2	$\mathcal{N} = \{512\}$
Size(s)	S3	$\mathcal{N} = \{2048\}$
Size(s)	S4	$\mathcal{N} = \{64, 128, 256, 512, 1024, 2048\}$
	S5	$\mathcal{N} = \{67, 127, 257, 509, 1021, 2053\}$
	C0	$\mathcal{P} = \{x\}$
Magnituda	C1	$\mathcal{P} = \{\log(x + \varepsilon)\}, \varepsilon = 10^{-7}$
Magnitude Compression	C2	$\mathcal{P} = \{\log(1 + \gamma x)\}, \gamma = 1$
Compression	С3	$\mathcal{P} = \{20\log_{10}(x+\varepsilon)\}, \varepsilon = 10^{-7}$
	C4	$\mathcal{P} = \{x, \log(x + \varepsilon)\}, \ \varepsilon = 10^{-7}$
Matrix	D1	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _1$
Distance	D2	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _2^2$

Spectrum
$$\mathcal{Y}_{w,N,p}(m,k) = p\left(\left|\sum_{n=0}^{N-1} x[n+mH]w[n]\exp\left(\frac{-i2\pi kn}{N}\right)\right|\right)$$

$$\mathsf{MSS} \; \mathsf{loss} \qquad \qquad \mathcal{L}_{\mathsf{MSS}}(x, \hat{x}) := \sum_{N \in \mathcal{N}} \sum_{p \in \mathcal{P}} d(\mathcal{Y}_{w,N,p}, \hat{\mathcal{Y}}_{w,N,p})$$

٠	x	input signal

- N window size
- H hop size
- w window function
- p compression function
- d distance function
- ullet $\mathcal N$ set of window sizes
- \mathcal{P} set of compression function

Configuration	Value	Description
	WR	Rectangular window
Window Type	WH	Hann window
	WF	Flat Top window
	S1	$\mathcal{N} = \{64\}$
Window	S2	$\mathcal{N} = \{512\}$
Size(s)	S3	$\mathcal{N} = \{2048\}$
5120(3)	S4	$\mathcal{N} = \{64, 128, 256, 512, 1024, 2048\}$
	S5	$\mathcal{N} = \{67, 127, 257, 509, 1021, 2053\}$
	C0	$\mathcal{P} = \{x\}$
Magnituda	C1	$\mathcal{P} = \{\log(x + \varepsilon)\}, \varepsilon = 10^{-7}$
Magnitude Compression	C2	$\mathcal{P} = \{\log(1 + \gamma x)\}, \gamma = 1$
Compression	С3	$\mathcal{P} = \{20\log_{10}(x+\varepsilon)\}, \varepsilon = 10^{-7}$
	C4	$\mathcal{P} = \{x, \log(x+\varepsilon)\}, \varepsilon = 10^{-7}$
Matrix	D1	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _1$
Distance	D2	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _2^2$

Spectrum
$$\mathcal{Y}_{w,N,p}(m,k) = p\left(\left|\sum_{n=0}^{N-1} x n + mH\right]w[n] \exp\left(\frac{-i2\pi kn}{N}\right)\right|\right)$$

$$\mathsf{MSS} \; \mathsf{loss} \qquad \qquad \mathcal{L}_{\mathsf{MSS}}(x, \hat{x}) := \sum_{N \in \mathcal{N}} \sum_{p \in \mathcal{P}} d(\mathcal{Y}_{w,N,p}, \hat{\mathcal{Y}}_{w,N,p})$$

- x input signal
- N window size
- H hop size
- w window function
- p compression function
- d distance function
- ${\cal N}$ set of window sizes
- \mathcal{P} set of compression function

Configurat	tion Value	Description
	WR	Rectangular window
Window Ty	уре WH	Hann window
	WF	Flat Top window
	S1	$\mathcal{N} = \{64\}$
Window	S2	$\mathcal{N} = \{512\}$
Size(s)	S3	$\mathcal{N} = \{2048\}$
Size(s)	S4	$\mathcal{N} = \{04, 128, 256, 512, 1024, 2048\}$
	S5	$\mathcal{N} = \{67, 127, 257, 509, 1021, 2053\}$
	C0	$\mathcal{P} = \{x\}$
Moonitude	C1	$\mathcal{P} = \{\log(x + \varepsilon)\}, \ \varepsilon = 10^{-7}$
Magnitude Compressi	(12	$\mathcal{P} = \{\log(1 + \gamma x)\}, \gamma = 1$
Compressi	C3	$\mathcal{P} = \{20 \log_{10}(x+\varepsilon)\}, \varepsilon = 10^{-7}$
	C4	$\mathcal{P} = \{x, \log(x + \varepsilon)\}, \varepsilon = 10^{-7}$
Matrix	D1	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _1$
Distance	D2	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _2^2$

Spectrum
$$\mathcal{Y}_{w,N,p}(m,k) = p\left(\sum_{n=0}^{N-1} x[n+mHw[n]\exp\left(\frac{-i2\pi kn}{N}\right)]\right)$$

$$\mathsf{MSS} \; \mathsf{loss} \qquad \qquad \mathcal{L}_{\mathsf{MSS}}(x, \hat{x}) := \sum_{N \in \mathcal{N}} \sum_{p \in \mathcal{P}} d(\mathcal{Y}_{w,N,p}, \hat{\mathcal{Y}}_{w,N,p})$$

- x input signal
- N window size
- H hop size
- w window function
- p compression function
- d distance function
- N set of window sizes
- \mathcal{P} set of compression function

Configuration	Value	Description
	WR	Rectangular window
Window Type	WH	Hann window
	WF	Flat Top window
	S1	$\mathcal{N} = \{64\}$
Window	S2	$\mathcal{N} = \{512\}$
Size(s)	S3	$\mathcal{N} = \{2048\}$
Size(s)	S4	$\mathcal{N} = \{64, 128, 256, 512, 1024, 2048\}$
	S5	$\mathcal{N} = \{67, 127, 257, 509, 1021, 2053\}$
	C0	$\mathcal{P} = \{x\}$
Magnituda	C1	$\mathcal{P} = \{\log(x + \varepsilon)\}, \ \varepsilon = 10^{-7}$
Magnitude Compression	C2	$\mathcal{P} = \{\log(1 + \gamma x)\}, \ \gamma = 1$
Compression	С3	$\mathcal{P} = \{20 \log_{10}(x + \varepsilon)\}, \ \varepsilon = 10^{-7}$
	C4	$\mathcal{P} = \{x, \log(x + \varepsilon)\}, \ \varepsilon = 10^{-7}$
Matrix	D1	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _1$
Distance	D2	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _2^2$

Spectrum
$$\mathcal{Y}_{w,N,p}(m,k) = p\left(\left|\sum_{n=0}^{N-1} x[n+mHw]n] \exp\left(\frac{-i2\pi kn}{N}\right)\right|\right)$$

$$\mathsf{MSS} \; \mathsf{loss} \qquad \qquad \mathcal{L}_{\mathsf{MSS}}(x, \hat{x}) := \sum_{N \in \mathcal{N}} \sum_{p \in \mathcal{P}} d(\mathcal{Y}_{w,N,p}, \hat{\mathcal{Y}}_{w,N,p})$$

- x input signal
- N window size
- H hop size
- w window function
- *p* compression function
- d distance function
- N set of window sizes
- \mathcal{P} set of compression function

Configuration	Value	Description
	WR	Rectangular window
Window Type	WH	Hann window
	WF	Flat Top window
	S1	$\mathcal{N} = \{64\}$
Window	S2	$\mathcal{N} = \{512\}$
Window Size(s)	S3	$\mathcal{N} = \{2048\}$
	S4	$\mathcal{N} = \{64, 128, 256, 512, 1024, 2048\}$
	S5	$\mathcal{N} = \{67, 127, 257, 509, 1021, 2053\}$
	С0	$\mathcal{P} = \{x\}$
Magnituda	C1	$\mathcal{P} = \{\log(x + \varepsilon)\}, \varepsilon = 10^{-7}$
Magnitude Compression	C2	$\mathcal{P} = \{\log(1 + \gamma x)\}, \gamma = 1$
Compression	С3	$\mathcal{P} = \{20\log_{10}(x+\varepsilon)\}, \varepsilon = 10^{-7}$
	C4	$\mathcal{P} = \{x, \log(x+\varepsilon)\}, \varepsilon = 10^{-7}$
Matrix	D1	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _1$
Distance	D2	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _2^2$
	D2	

Spectrum
$$\mathcal{Y}_{w,N,p}(m,k) = p \left(\left| \sum_{n=0}^{N-1} x[n+mH]w[n] \exp\left(\frac{-i2\pi kn}{N}\right) \right| \right)$$

$$\mathsf{MSS} \; \mathsf{loss} \qquad \qquad \mathcal{L}_{\mathsf{MSS}}(x, \hat{x}) := \sum_{N \in \mathcal{N}} \sum_{p \in \mathcal{P}} d(\mathcal{Y}_{w,N,p}, \hat{\mathcal{Y}}_{w,N,p})$$

- x input signal
- N window size
- H hop size
- w window function
- p compression function
- d distance function
- N set of window sizes
- \mathcal{P} set of compression function

Configuration	Value	Description
	WR	Rectangular window
Window Type	WH	Hann window
	WF	Flat Top window
	S1	$\mathcal{N} = \{64\}$
Window	S2	$\mathcal{N} = \{512\}$
Size(s)	S3	$\mathcal{N} = \{2048\}$
5120(8)	S4	$\mathcal{N} = \{64, 128, 256, 512, 1024, 2048\}$
	S5	$\mathcal{N} = \{67, 127, 257, 509, 1021, 2053\}$
	C0	$\mathcal{P} = \{x\}$
Magnituda	C1	$\mathcal{P} = \{\log(x + \varepsilon)\}, \varepsilon = 10^{-7}$
Magnitude Compression	C2	$\mathcal{P} = \{\log(1 + \gamma x)\}, \gamma = 1$
Compression	C3	$\mathcal{P} = \{20\log_{10}(x+\varepsilon)\}, \varepsilon = 10^{-7}$
	С4	$\mathcal{P} = \{x, \log(x+\varepsilon)\}, \ \varepsilon = 10^{-7}$
Matrix	D1	$d(\mathcal{Y},\hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _1$
Distance	D2	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _2^2$

Spectrum
$$\mathcal{Y}_{w,N,p}(m,k) = p\left(\left|\sum_{n=0}^{N-1} x[n+mH]w[n]\exp\left(\frac{-i2\pi kn}{N}\right)\right|\right)$$

$$\mathsf{MSS} \; \mathsf{loss} \qquad \qquad \mathcal{L}_{\mathsf{MSS}}(x, \hat{x}) := \sum_{N \in \mathcal{N}} \sum_{p \in \mathcal{P}} d(\mathcal{Y}_{w,N,p}, \hat{\mathcal{Y}}_{w,N,p})$$

- x input signal
- N window size
- H hop size
- w window function
- p compression function
- d distance function
- ${\mathcal N}$ set of window sizes
- \mathcal{P} set of compression function

Configuration	Value	Description
	WR	Rectangular window
Window Type	WH	Hann window
	WF	Flat Top window
	S1	$\mathcal{N} = \{64\}$
Window	S2	$\mathcal{N} = \{512\}$
Size(s)	S3	$\mathcal{N} = \{2048\}$
312e(8)	S4	$\mathcal{N} = \{64, 128, 256, 512, 1024, 2048\}$
	S5	$\mathcal{N} = \{67, 127, 257, 509, 1021, 2053\}$
	C0	$\mathcal{P} = \{x\}$
Magnituda	C1	$\mathcal{P} = \{\log(x + \varepsilon)\}, \varepsilon = 10^{-7}$
Magnitude Compression	C2	$\mathcal{P} = \{\log(1 + \gamma x)\}, \gamma = 1$
	С3	$\mathcal{P} = \{20\log_{10}(x+\varepsilon)\}, \varepsilon = 10^{-7}$
	C4	$\mathcal{P} = \{x, \log(x+\varepsilon)\}, \varepsilon = 10^{-7}$
Matrix	D1	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _1$
Distance	D2	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _2^2$

Spectrum
$$\mathcal{Y}_{w,N,p}(m,k) = p\left(\left|\sum_{n=0}^{N-1} x[n+mH]w[n]\exp\left(\frac{-i2\pi kn}{N}\right)\right|\right)$$

MSS loss
$$\mathcal{L}_{\mathrm{MSS}}(x,\hat{x}) := \sum_{N \in \mathcal{N}} \sum_{p \in \mathcal{P}} d(\mathcal{Y}_{w,N,p})$$

- x input signal
- N window size
- H hop size
- w window function
- p compression function
- d distance function
- ${\cal N}$ set of window sizes
- ${\mathcal P}$ set of compression function

Configuration	Value	Description
	WR	Rectangular window
Window Type	WH	Hann window
	WF	Flat Top window
	S1	$\mathcal{N} = \{64\}$
Window	S2	$\mathcal{N} = \{512\}$
Size(s)	S3	$\mathcal{N} = \{2048\}$
Size(s)	S4	$\mathcal{N} = \{64, 128, 256, 512, 1024, 2048\}$
	S5	$\mathcal{N} = \{67, 127, 257, 509, 1021, 2053\}$
	C0	$\mathcal{P} = \{x\}$
Magnituda	C1	$\mathcal{P} = \{\log(x + \varepsilon)\}, \varepsilon = 10^{-7}$
Magnitude Compression	C2	$\mathcal{P} = \{\log(1 + \gamma x)\}, \ \gamma = 1$
Compression	С3	$\mathcal{P} = \{20\log_{10}(x+\varepsilon)\}, \varepsilon = 10^{-7}$
	C4	$\mathcal{P} = \{x, \log(x + \varepsilon)\}, \varepsilon = 10^{-7}$
Matrix	D1	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _1$
Distance	D2	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _2^2$

Spectrum
$$\mathcal{Y}_{w,N,p}(m,k) = p\left(\left|\sum_{n=0}^{N-1} x[n+mH]w[n]\exp\left(\frac{-i2\pi kn}{N}\right)\right|\right)$$

MSS loss
$$\mathcal{L}_{\mathrm{MSS}}(x,\hat{x}) := \sum_{N \in \mathcal{N}} \int_{p \in \mathcal{P}} d(\mathcal{Y}_{w,N,p}, \hat{\mathcal{Y}}_{w,N,p}) d(\mathcal{Y}_{w,N,p}, \hat{\mathcal{Y}}_{w,N,p}) d(\mathcal{Y}_{w,N,p}, \hat{\mathcal{Y}}_{w,N,p}, \hat{\mathcal{Y}}_{w,N,p}) d(\mathcal{Y}_{w,N,p}, \hat{\mathcal{Y}}_{w,N,p}, \hat{\mathcal{Y}}_{w,N,p}, \hat{\mathcal{Y}}_{w,N,p}, \hat{\mathcal{Y}}_{w,N,p}) d(\mathcal{Y}_{w,N,p}, \hat{\mathcal{Y}}_{w,N,p}, \hat{\mathcal{Y}}_{w,N,p},$$

	* X	input signa
--	-----	-------------

N window size

H hop size

w window function

p compression function

d distance function

ullet ${\cal N}$ set of window sizes

• \mathcal{P} set of compression function

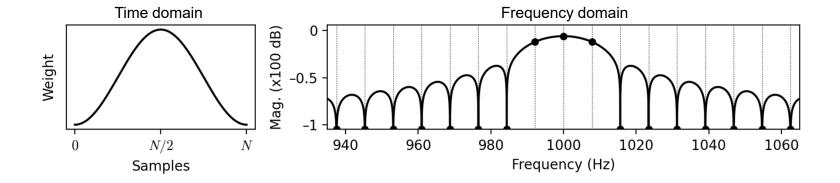
MSS loss with standard settings: (WH, S4, C4, D1)

Configuration	Value	Description
	WR	Rectangular window
Window Type	WH	Hann window
	WF	Flat Top window
	S1	$\mathcal{N} = \{64\}$
Window	S2	$\mathcal{N} = \{512\}$
Window Size(s)	S3	$\mathcal{N} = \{2048\}$
	S4	$\mathcal{N} = \{64, 128, 256, 512, 1024, 2048\}$
	S5	$\mathcal{N} = \{67, 127, 257, 509, 1021, 2053\}$
	C0	$\mathcal{P} = \{x\}$
Magnitude	C1	$\mathcal{P} = \{\log(x + \varepsilon)\}, \varepsilon = 10^{-7}$
Compression	C2	$\mathcal{P} = \{\log(1 + \gamma x)\}, \ \gamma = 1$
	С3	$\mathcal{P} = \{20 \log_{10}(x+\varepsilon)\}, \ \varepsilon = 10^{-7}$
	C4	$\mathcal{P} = \{x, \log(x+\varepsilon)\}, \varepsilon = 10^{-7}$
Matrix	D1	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _1$
Distance	D2	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _2^2$

Spectrum
$$\mathcal{Y}_{w,N,p}(m,k) = p\left(\left|\sum_{n=0}^{N-1} x[n+mH]w[n]\exp\left(\frac{-i2\pi kn}{N}\right)\right|\right)$$

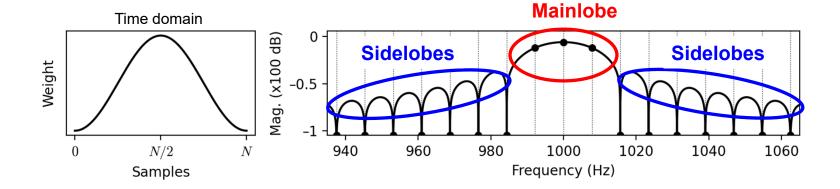
$$\mathsf{MSS} \; \mathsf{loss} \qquad \qquad \mathcal{L}_{\mathsf{MSS}}(x, \hat{x}) := \sum_{N \in \mathcal{N}} \sum_{p \in \mathcal{P}} d(\mathcal{Y}_{w,N,p}, \hat{\mathcal{Y}}_{w,N,p})$$

Hann window



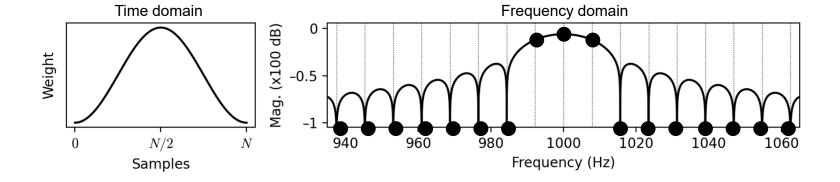
Input signal: Sinusoid with frequency f = 1000 Hz

Hann window



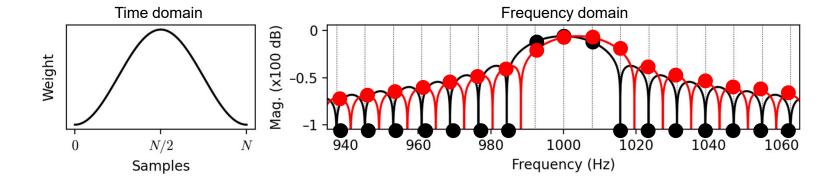
- Input signal: Sinusoid with frequency f = 1000 Hz
- STFT → Spectral leakage due to windowing

Hann window



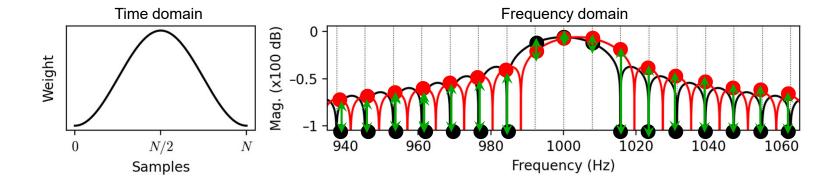
- Input signal: Sinusoid with frequency f = 1000 Hz
- STFT → Spectral leakage due to windowing
- Discrete STFT → Frequency grid

Hann window



- Input signal: Sinusoid with frequency f = 1000 Hz
- STFT → Spectral leakage due to windowing
- Discrete STFT → Frequency grid
- Second signal: Sinusoid with frequency f = 1003.9 Hz

Hann window

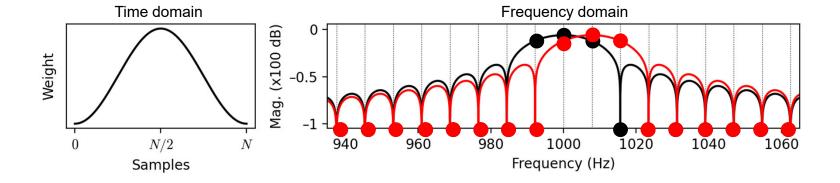


- Input signal: Sinusoid with frequency f = 1000 Hz
- STFT → Spectral leakage due to windowing
- Discrete STFT → Frequency grid
- Second signal: Sinusoid with frequency f = 1003.9 Hz

Distance depends on

- Grid sampling
- Mainlobe & sidelobes
- Window type
- STFT parameters

Hann window



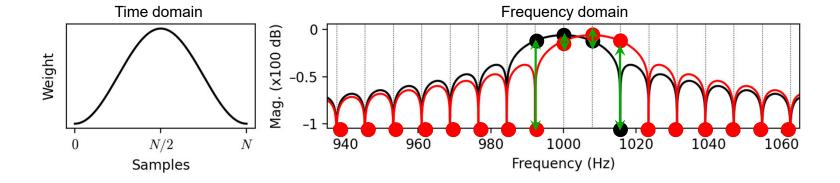
- Input signal: Sinusoid with frequency f = 1000 Hz
- STFT → Spectral leakage due to windowing
- Discrete STFT → Frequency grid
- Second signal: Sinusoid with frequency f = 1007.8 Hz

Distance depends on

- Grid sampling
- Mainlobe & sidelobes
- Window type
- STFT parameters

Spectrum-Based Distance

Hann window



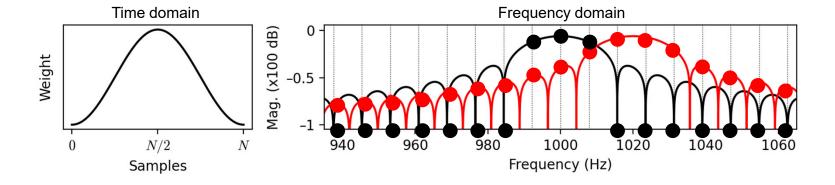
- Input signal: Sinusoid with frequency f = 1000 Hz
- STFT → Spectral leakage due to windowing
- Discrete STFT → Frequency grid
- Second signal: Sinusoid with frequency f = 1007.8 Hz

Distance depends on

- Grid sampling
- Mainlobe & sidelobes
- Window type
- STFT parameters

Spectrum-Based Distance

Hann window



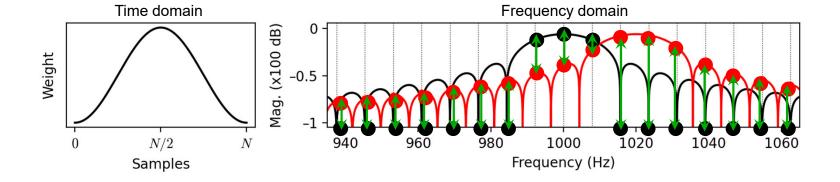
- Input signal: Sinusoid with frequency f = 1000 Hz
- STFT → Spectral leakage due to windowing
- Discrete STFT → Frequency grid
- Second signal: Sinusoid with frequency f = 1020 Hz

Distance depends on

- Grid sampling
- Mainlobe & sidelobes
- Window type
- STFT parameters

Spectrum-Based Distance

Hann window

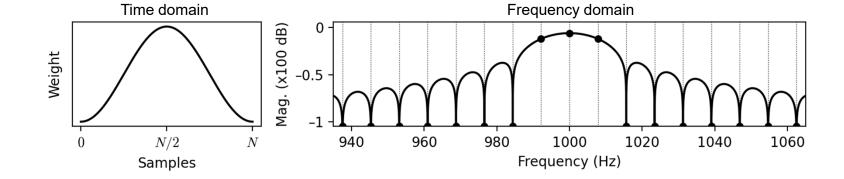


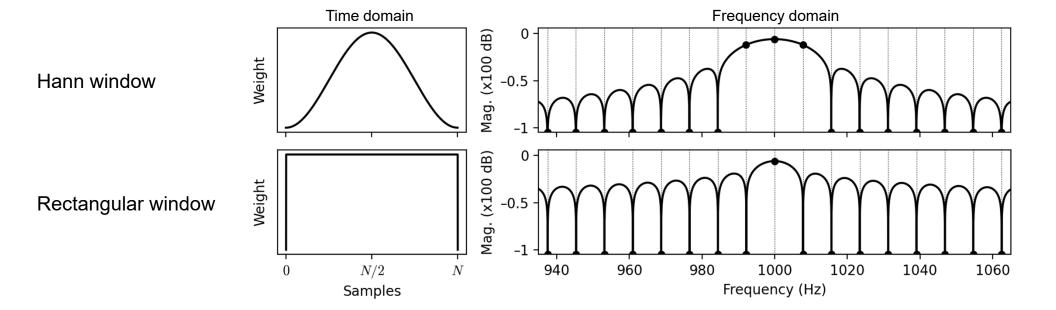
- Input signal: Sinusoid with frequency f = 1000 Hz
- STFT → Spectral leakage due to windowing
- Discrete STFT → Frequency grid
- Second signal: Sinusoid with frequency f = 1020 Hz

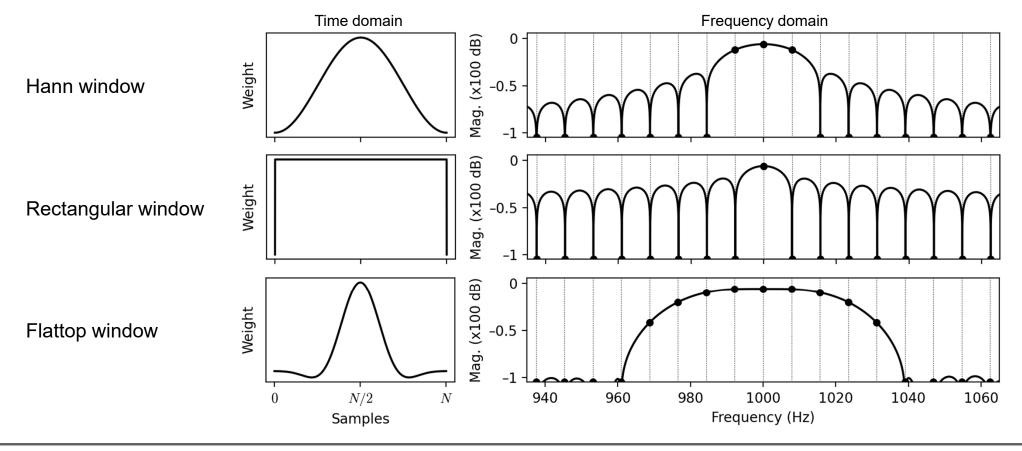
Distance depends on

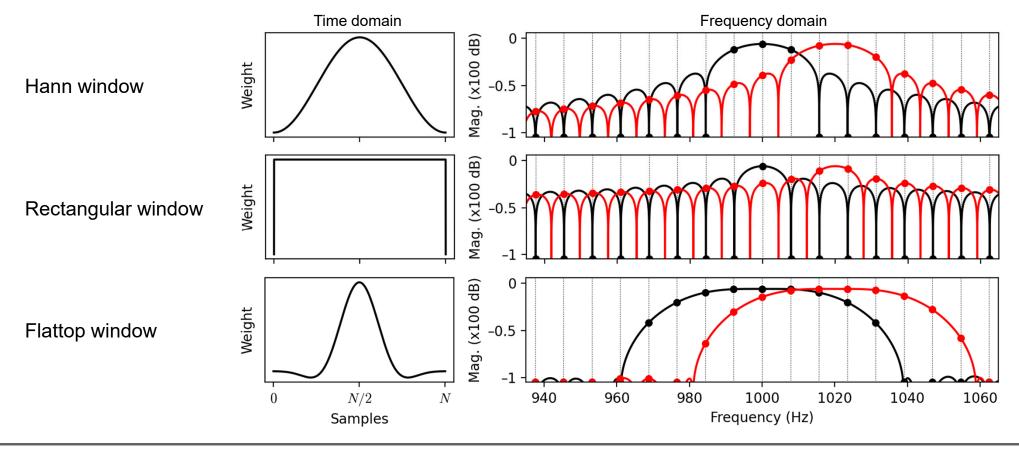
- Grid sampling
- Mainlobe & sidelobes
- Window type
- STFT parameters

Hann window

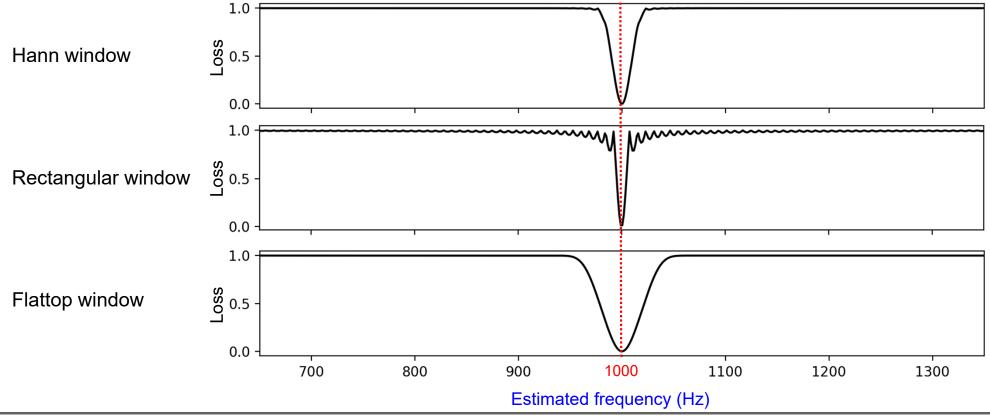








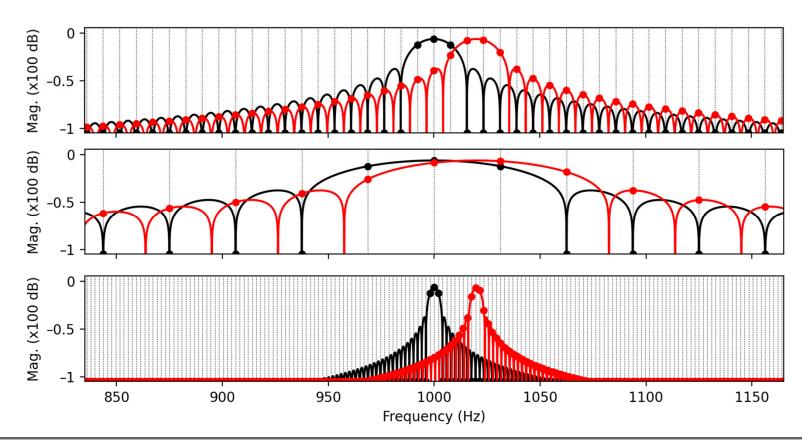
Loss landscape over estimates for a given target



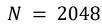
Dependency: Window Size

$$N = 512$$

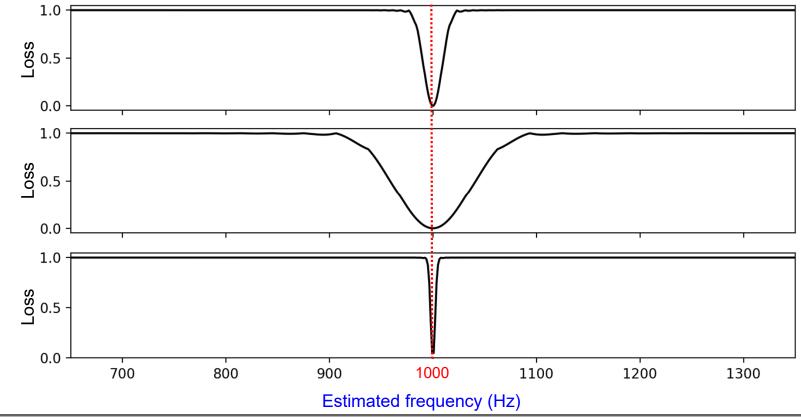
$$N = 8192$$



Dependency: Window Size



$$N = 8192$$

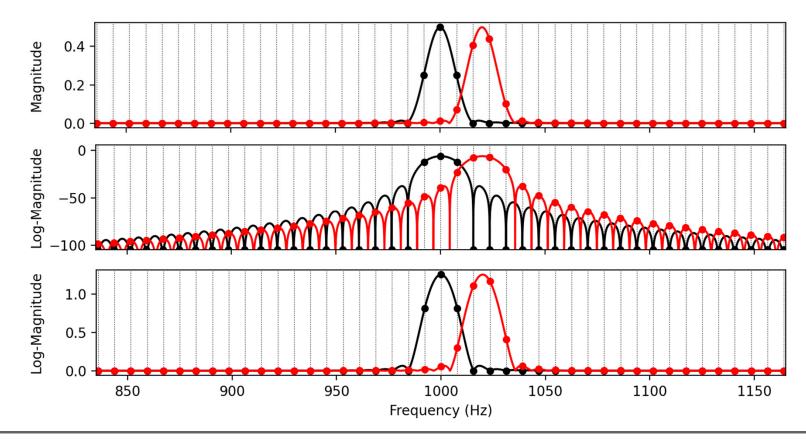


Dependency: Magnitude Compression

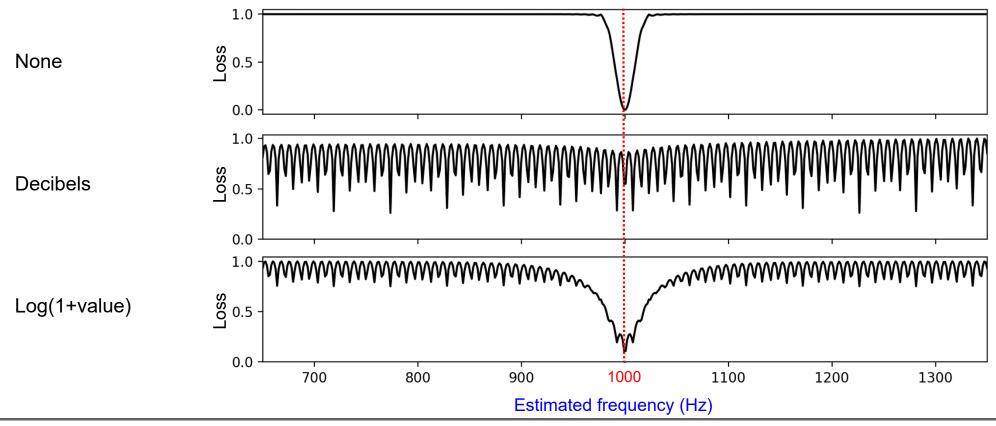
None

Decibels

Log(1+value)



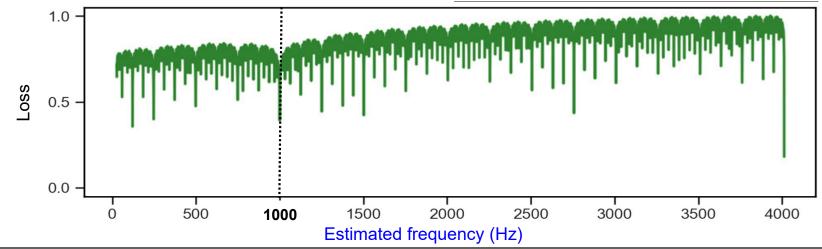
Dependency: Magnitude Compression



MSS loss with standard settings

(WH, S4, C4, D1)

Configuration	Value	Description			
Window Type	WR	Rectangular window			
	WH	Hann window			
	WF	Flat Top window			
Window Size(s)	S1	$\mathcal{N} = \{64\}$			
	S2	$\mathcal{N} = \{512\}$			
	S3	$\mathcal{N} = \{2048\}$			
	S4	$\mathcal{N} = \{64, 128, 256, 512, 1024, 2048\}$			
	S5	$\mathcal{N} = \{67, 127, 257, 509, 1021, 2053\}$			
Magnitude Compression	C0	$\mathcal{P} = \{x\}$			
	C1	$\mathcal{P} = \{\log(x + \varepsilon)\}, \varepsilon = 10^{-7}$			
	C2	$\mathcal{P} = \{\log(1 + \gamma x)\}, \ \gamma = 1$			
	C3	$\mathcal{P} = \{20 \log_{10}(x+\varepsilon)\}, \ \varepsilon = 10^{-7}$			
	C4	$\mathcal{P} = \{x, \log(x+\varepsilon)\}, \varepsilon = 10^{-7}$			
Matrix Distance	D1	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _1$			
	D2	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _2^2$			



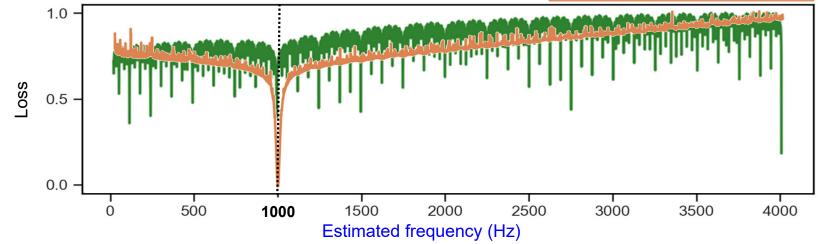
MSS loss with standard settings

Modified Hann MSS

(WH, S4, C4, D1)

(WH, S5, C4, D2)

Configuration	Value	Description			
Window Type	WR	Rectangular window			
	WH	Hann window			
	WF	Flat Top window			
Window Size(s)	S1	$\mathcal{N} = \{64\}$			
	S2	$\mathcal{N} = \{512\}$			
	s3	$\mathcal{N} = \{2048\}$			
	S4	$\mathcal{N} = \{64, 128, 256, 512, 1024, 2048\}$			
	S5	$\mathcal{N} = \{67, 127, 257, 509, 1021, 2053\}$			
Magnitude Compression	C0	$\mathcal{P} = \{x\}$			
	C1	$\mathcal{P} = \{\log(x + \varepsilon)\}, \varepsilon = 10^{-7}$			
	C2	$\mathcal{P} = \{\log(1 + \gamma x)\}, \gamma = 1$			
	С3	$\mathcal{P} = \{20\log_{10}(x+\varepsilon)\}, \ \varepsilon = 10^{-7}$			
	C4	$\mathcal{P} = \{x, \log(x + \varepsilon)\}, \varepsilon = 10^{-7}$			
Matrix Distance	D1	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _1$			
	D2	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _2^2$			



MSS loss with standard settings

Modified Hann MSS

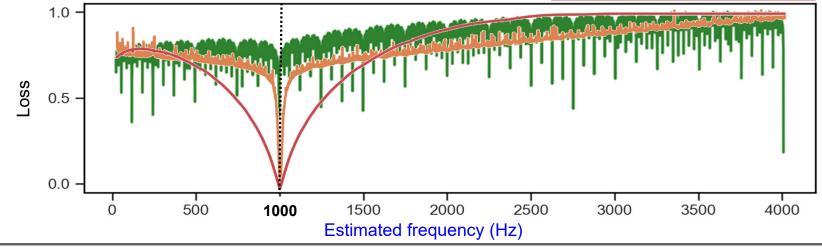
Smooth MSS

(WH, S4, C4, D1)

(WH, S5, C4, D2)

(WF, S5, C2, D2)

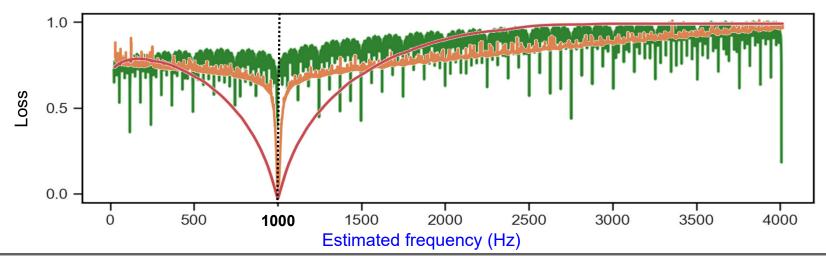
Configuration	Value	Description			
Window Type	WR	Rectangular window			
	WH	Hann window			
	WF	Flat Top window			
Window Size(s)	S1	$\mathcal{N} = \{64\}$			
	S2	$\mathcal{N} = \{512\}$			
	S3	$\mathcal{N} = \{2048\}$			
	S4	$\mathcal{N} = \{64, 128, 256, 512, 1024, 2048\}$			
	S5	$\mathcal{N} = \{67, 127, 257, 509, 1021, 2053\}$			
Magnitude Compression	C0	$\mathcal{P} = \{x\}$			
	C1	$\mathcal{P} = \{\log(x+\varepsilon)\}, \ \varepsilon = 10^{-7}$			
	C2	$\mathcal{P} = \{\log(1 + \gamma x)\}, \gamma = 1$			
	С3	$\mathcal{P} = \{20 \log_{10}(x+\varepsilon)\}, \ \varepsilon = 10^{-\tau}$			
	C4	$\mathcal{P} = \{x, \log(x + \varepsilon)\}, \varepsilon = 10^{-7}$			
Matrix	D1	$d(\mathcal{Y},\hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _1$			
Distance	D2	$d(\mathcal{Y}, \hat{\mathcal{Y}}) = \ \mathcal{Y} - \hat{\mathcal{Y}}\ _2^2$			



GRA (Gradient-Sign Ranking Accuracy)

- Measures how often the loss gradient points in the correct direction.
- Step size distinguishes local gradient behavior from global trend.

Configuration	GRA				
Step Size	0.3 ct.	3 ct.	30 ct.	300 ct.	
Standard MSS	0.523	0.529	0.573	0.775	
Modified Hann MSS	0.613	0.635	0.708	0.923	
Smooth MSS	0.999	0.993	0.952	0.860	



Overview

- Multi-Scale Spectral Loss
 Knowledge Source: Signal Representations
- Hierarchical Classification Loss
 Knowledge Source: Musical Hierarchies
- Differentiable Alignment Loss
 Knowledge Source: Temporal Coherence

Simon Schwär

Michael Krause

Johannes Zeitle

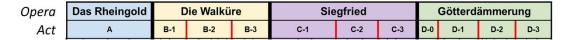
Literature

- Silla, Freitas: A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery, 22(1-29: 31–72, 2011.
- Wehrmann, Cerri, Barros: Hierarchical multi-label classification networks. Proc. ICML, 2018.
- Krause, Müller: Hierarchical Classification for Singing Activity, Gender, and Type in Complex Music Recordings. Proc. ICASSP, 2022.
- **Krause**, Müller: Hierarchical Classification for Instrument Activity Detection in Orchestral Music Recordings. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 31: 2567–2578, 2023.
- Weiß, Arifi-Müller, Krause, Zalkow, Klauk, Kleinertz, Müller: Wagner Ring Dataset: A Complex Opera Scenario for Music Processing and Computational Musicology. Transaction of the International Society for Music Information Retrieval (TISMIR), 6(1): 135–149, 2023.

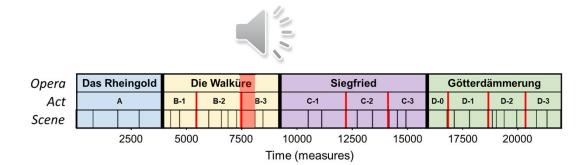
Tetralogy (four operas)

Dera Das Rheingold Die Walküre Siegfried Götterdämmerung

- Tetralogy (four operas)
- 11 Acts

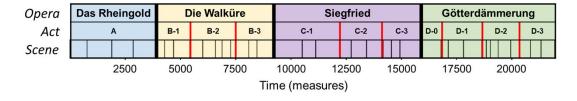


- Tetralogy (four operas)
- 11 Acts
- 21,939 measures



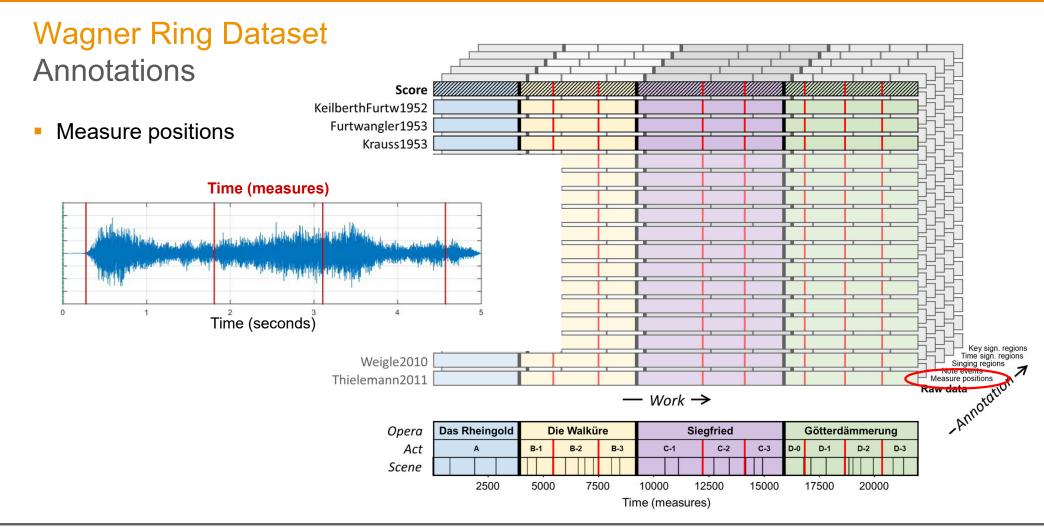
Raw Data

- Symbolic score:
 - Piano reduction
 - 822 pages



Raw Data

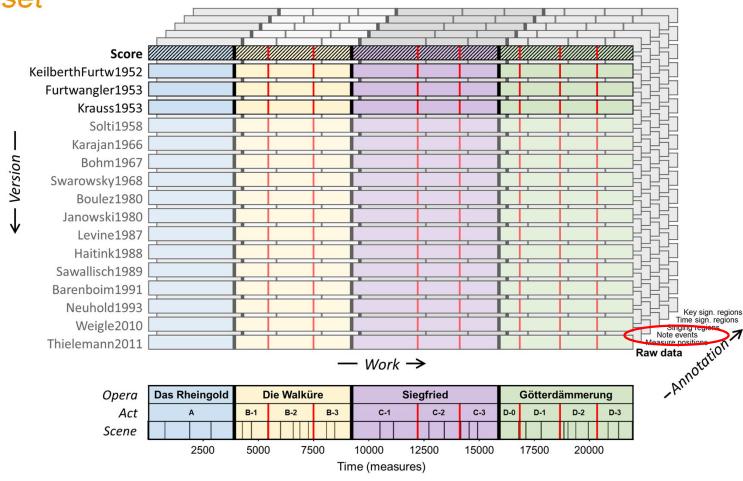
- Symbolic score:
 - Piano reduction
 - 822 pages
- Audio recordings:
 - 16 performances
 - 232 hours
 - 3 performances in Public Domain (EU)



Annotations

Measure positions

Note events

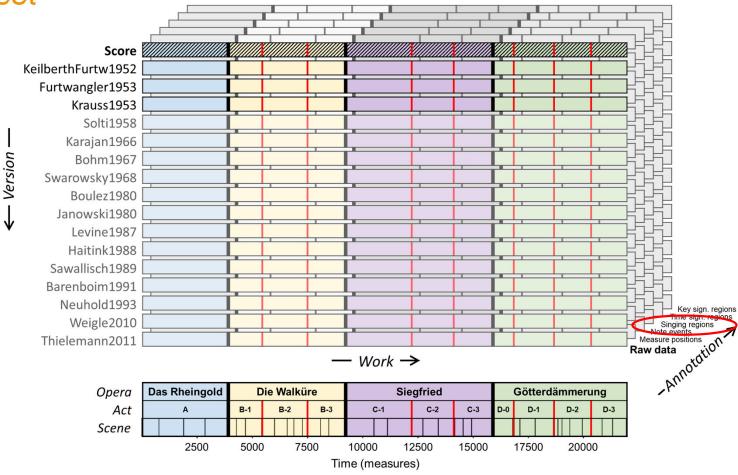


Annotations

Measure positions

Note events

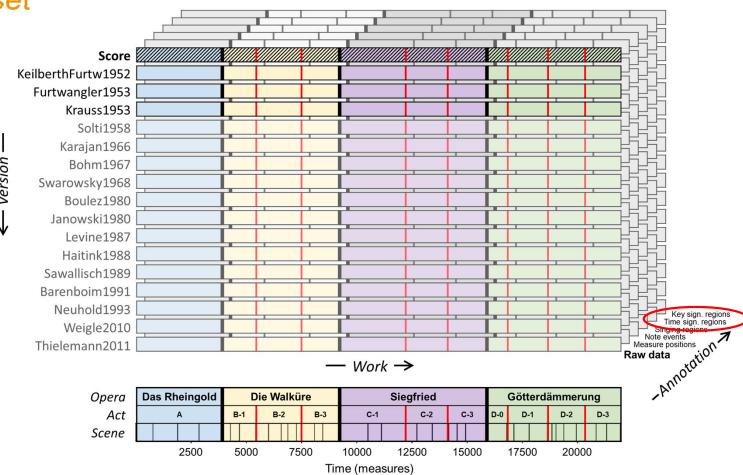
Singing regions



Annotations

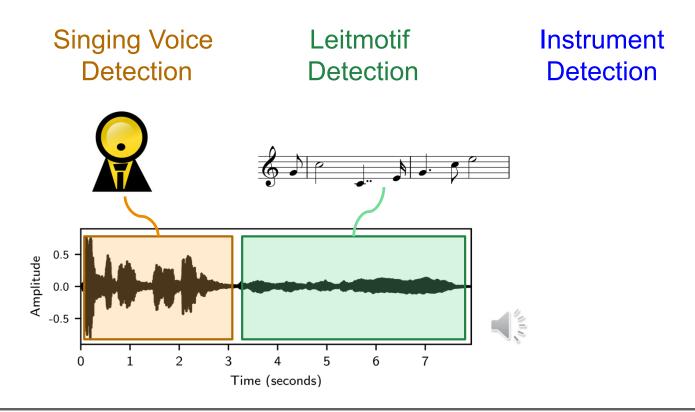
Measure positions

- Note events
- Singing regions
- Time signatures
- Key signatures



PhD Thesis by Michael Krause (2023)

Activity Detection for Sound Events in Orchestral Music Recordings



Hierarchical Classification Singing Voice Detection

Levels

Singing activity

Activity

Hierarchical Classification Singing Voice Detection

Levels

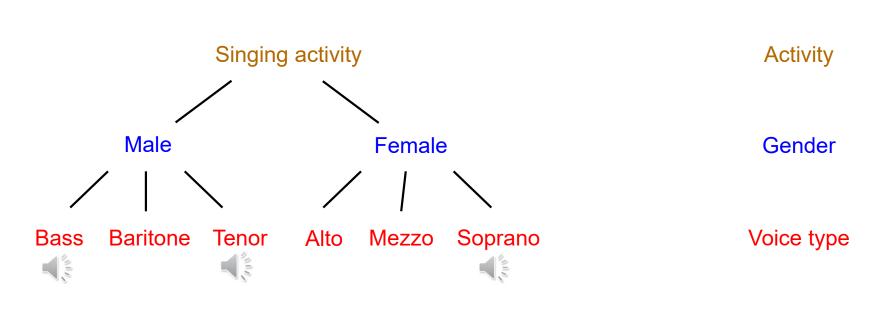
Singing activity

Male Female

Activity

Gender

Hierarchical Classification Singing Voice Detection



Levels

- Strategy A: Independent Decisions
- Strategy B: Bottom-Up Aggregation
- Strategy C: Top-Down Divide-and-Conquer
- Strategy D: Joint Classification
- Strategy D^{α,β}: Joint Classification with Consistency Losses

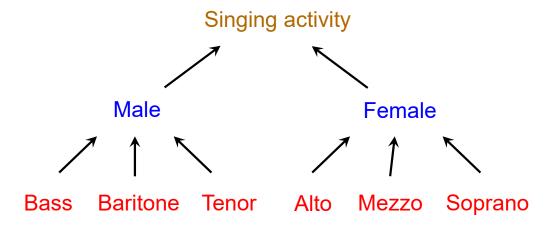
Hierarchical Strategies for Activity Detection Strategy A: Independent Decisions

- Train and evaluate separate models for each hierarchy level
 - Activity classifier
 - Gender classifier
 - Voice type classifier

Hierarchical Strategies for Activity Detection Strategy A: Independent Decisions

- Train and evaluate separate models for each hierarchy level
 - Activity classifier
 - Gender classifier
 - Voice type classifier
- Outputs may be inconsistent

Strategy B: Bottom-Up Aggregation



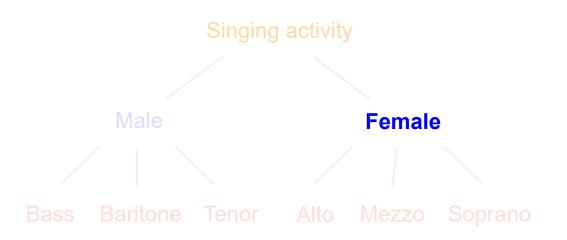
- Train and evaluate a single model for the lowest hierarchy level
 - Voice type classifier
- Aggregate results from lower levels
- Consistency is trivially fulfilled
- May cause poor predictions on upper levels due to error propagation

Strategy D: Joint Classification

- Train and evaluate a single model for all classes
 - → Multi-task model
- Need additional loss terms to promote consistent predictions

Strategy $D^{\alpha,\beta}$: Joint Classification with Consistency Losses

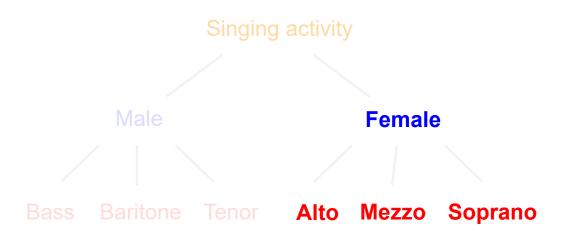
Strategy $D^{\alpha,\beta}$: Joint Classification with Consistency Losses



Notation:

- c: a class
- p_c : probability of c

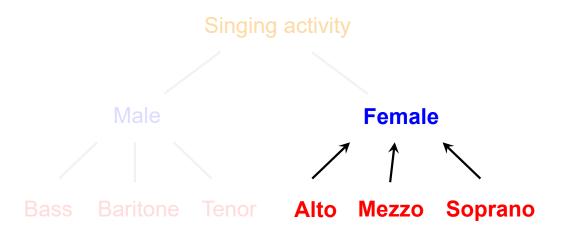
Strategy $D^{\alpha,\beta}$: Joint Classification with Consistency Losses



Notation:

- c: a class
- p_c : probability of c
- c↓: child classes of c

Strategy $D^{\alpha,\beta}$: Joint Classification with Consistency Losses



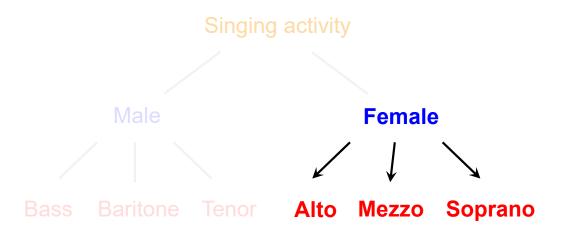
- Notation:
 - c: a class
 - p_c : probability of c
 - c↓: child classes of c
- For bottom-up consistency, minimize

$$\sum_{c' \in c \downarrow} \max\{0, p_{c'} - p_c\}^2$$

 p_c should be at least as high as any $p_{c'}$

 \rightarrow penalty for every $p_{c'} > p_c$

Strategy D^{α,β}: Joint Classification with Consistency Losses



- Notation:
 - c: a class
 - p_c : probability of c
 - c↓: child classes of c
- For **top-down** consistency, minimize

$$\max\{0, p_c - \max_{c' \in c \downarrow} p_{c'}\}^2$$

 p_c should not be above largest $p_{c'}$

Strategy $D^{\alpha,\beta}$: Joint Classification with Consistency Losses

Bottom-up loss term:

$$\mathcal{L}_{\uparrow} = rac{1}{|\mathbf{C} \setminus \mathbf{C}^H|} \sum_{h=2}^H \sum_{c \in \mathbf{C}^h} \sum_{c' \in c \downarrow} \max\{0, p_{c'} - p_c\}^2$$

Top-down loss term:

$$\mathcal{L}_{\downarrow} = rac{1}{|\mathbf{C} \setminus \mathbf{C}^1|} \sum_{h=2}^{H} \sum_{c \in \mathbf{C}^h} \max\{0, p_c - \max_{c' \in c \downarrow} p_{c'}\}^2$$

Joint loss term:

$$\mathcal{L} = \mathcal{L}_{\mathsf{BCE}} + \alpha \mathcal{L}_{\downarrow} + \beta \mathcal{L}_{\uparrow}$$

Notation

C All classes

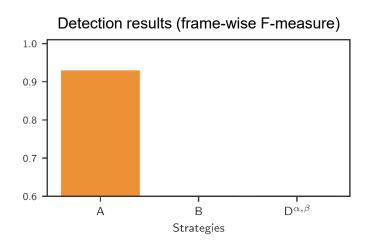
Ch Classes at level h

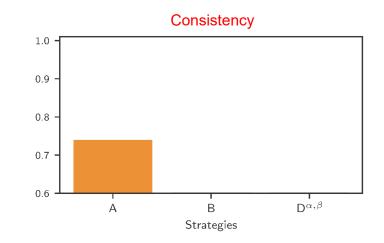
H Number of levels

 $c\downarrow$ Children of c

pc Probability for c

Results: Female Singing





Consistency

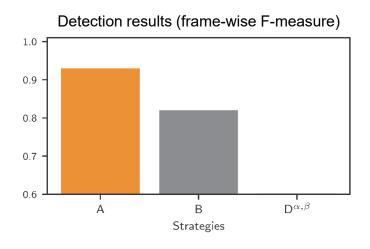
 $\mathcal{I}_c^{ ext{Est}}$ Frames predicted as c

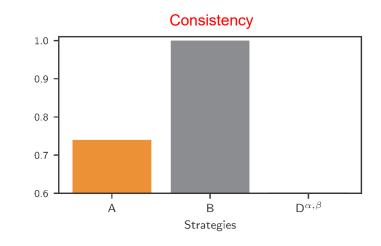
 $\mathcal{I}_{c\downarrow}^{\mathrm{Est}}$ Frames predicted as child of c

$$\gamma_c = \frac{|\mathcal{I}_c^{\text{Est}} \cap \mathcal{I}_{c\downarrow}^{\text{Est}}|}{|\mathcal{I}_c^{\text{Est}} \cup \mathcal{I}_{c\downarrow}^{\text{Est}}|}$$

Strategy A (Independent Decisions) yields good but inconsistent results

Results: Female Singing





Consistency

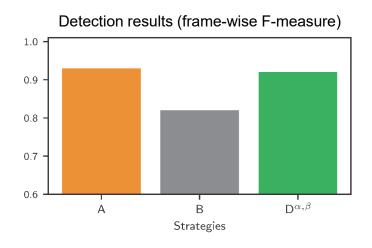
 $\mathcal{I}_c^{ ext{Est}}$ Frames predicted as c

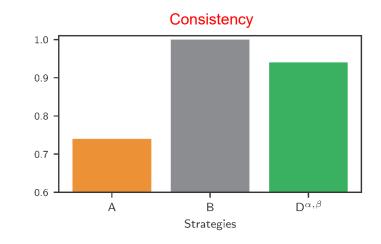
 $\mathcal{I}_{c\downarrow}^{\mathrm{Est}}$ Frames predicted as child of c

$$\gamma_c = \frac{|\mathcal{I}_c^{\text{Est}} \cap \mathcal{I}_{c\downarrow}^{\text{Est}}|}{|\mathcal{I}_c^{\text{Est}} \cup \mathcal{I}_{c\downarrow}^{\text{Est}}|}$$

- Strategy A (Independent Decisions) yields good but inconsistent results
- Strategy B (Bottom-Up Aggregation) gives worse but consistent results

Results: Female Singing





Consistency

 $\mathcal{I}_c^{ ext{Est}}$ Frames predicted as c

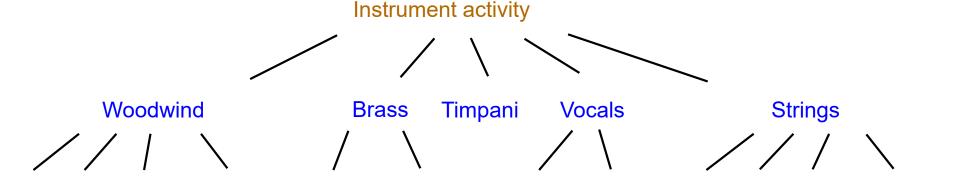
 $\mathcal{I}_{c\downarrow}^{\mathrm{Est}}$ Frames predicted as child of c

$$\gamma_c = \frac{|\mathcal{I}_c^{\text{Est}} \cap \mathcal{I}_{c\downarrow}^{\text{Est}}|}{|\mathcal{I}_c^{\text{Est}} \cup \mathcal{I}_{c\downarrow}^{\text{Est}}|}$$

- Strategy A (Independent Decisions) yields good but inconsistent results
- Strategy B (Bottom-Up Aggregation) gives worse but consistent results
- Strategy D^{α,β} (Joint with Consistency Losses) provides good trade-off

Scenario: Hierarchical Instrument Classification

Musical instruments can naturally be arranged into hierarchies



Flute Oboe Clarinet Bassoon French Horn Trumpet Female Male Violin Viola Cello Contrabass

Instrument-level annotations hard to obtain

Overview

- Multi-Scale Spectral Loss
 Knowledge Source: Signal Representations
- Hierarchical Classification Loss
 Knowledge Source: Musical Hierarchies
- Differentiable Alignment Loss
 Knowledge Source: Temporal Coherence

Simon Schwär

Michael Krause

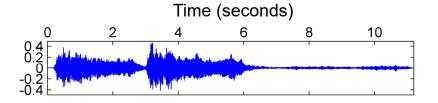
Johannes Zeitler

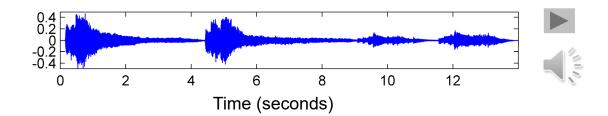
Literature

- Cuturi, Blondel: Soft-DTW: A Differentiable Loss Function for Time-Series. ICML, 2017.
- Blondel, Mensch, Vert: Differentiable Divergences Between Time Series. AISTATS, 2021.
- Krause, Weiß, Müller: Soft Dynamic Time Warping For Multi Pitch Estimation And Beyond. Proc. ICASSP, 2023.
- **Zeitler**, Deniffel, **Krause**, Müller: Stabilizing Training with Soft Dynamic Time Warping: A Case Study for Pitch Class Estimation with Weakly Aligned Targets. Proc. ISMIR, 2023.
- Zeitler, Krause, Müller: Soft Dynamic Time Warping with Variable Step Weights. Proc. ICASSP, 2024.

Beethoven's Fifth

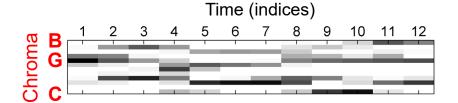
Karajan (Orchester)



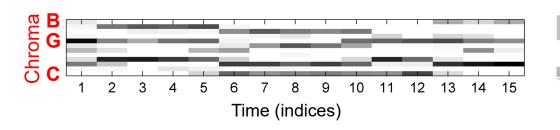


Beethoven's Fifth

Karajan (Orchester)

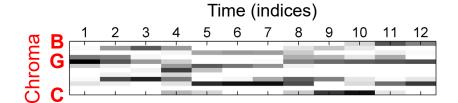


Time—chroma representations

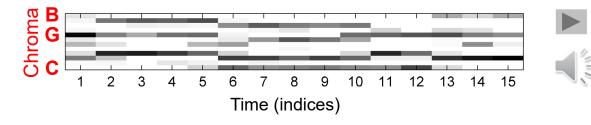


Beethoven's Fifth

Karajan (Orchester)

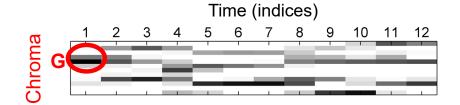


Time—chroma representations

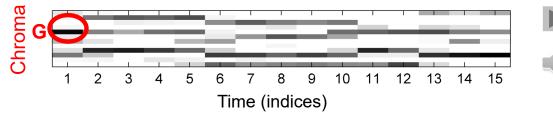


Beethoven's Fifth

Karajan (Orchester)

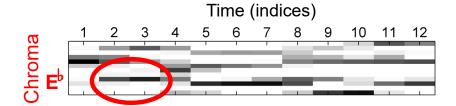


Time—chroma representations

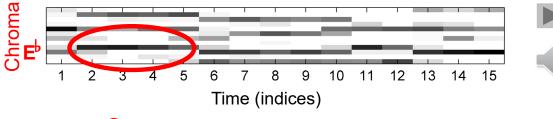


Beethoven's Fifth

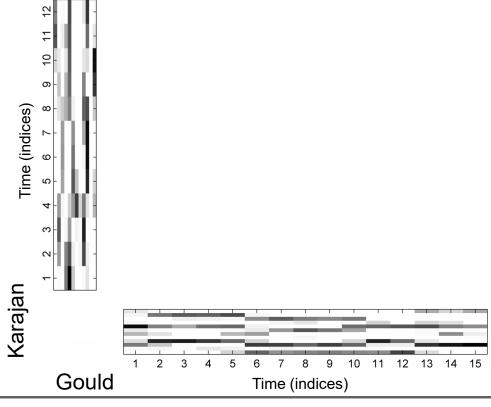
Karajan (Orchester)



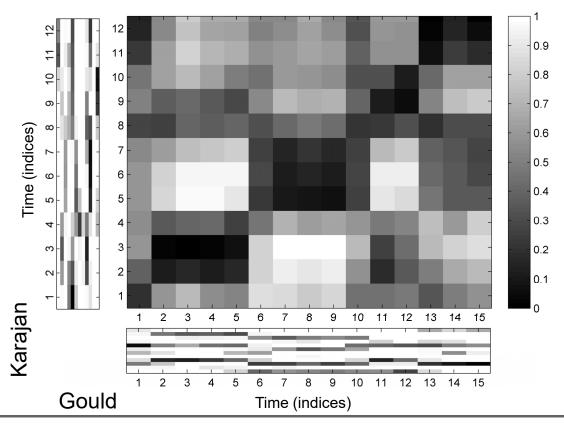
Time—chroma representations



Motivation: Audio-Audio Alignment Beethoven's Fifth

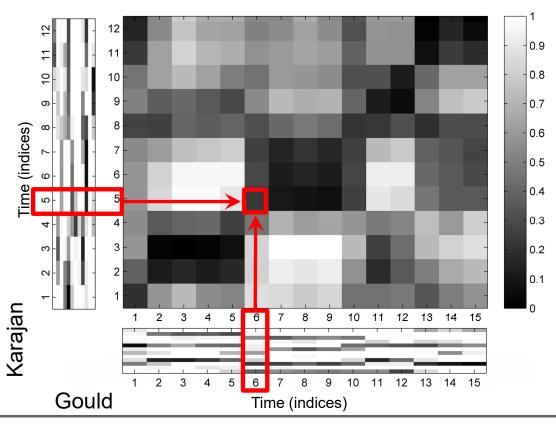


Beethoven's Fifth



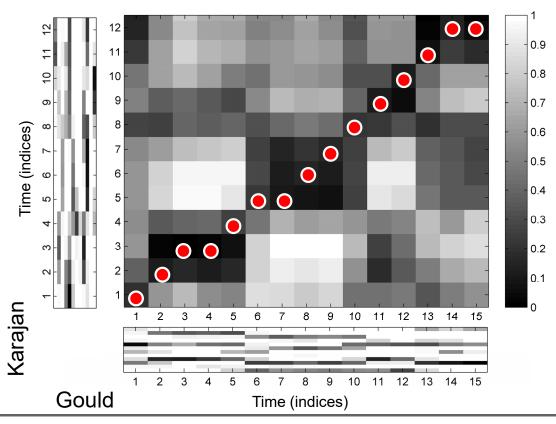
Cost matrix

Beethoven's Fifth



Cost matrix

Beethoven's Fifth

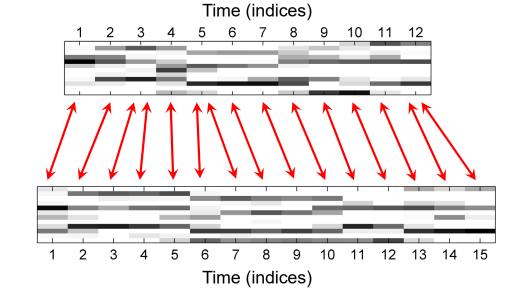


Cost-minimizing warping path

Beethoven's Fifth

Karajan (Orchester)

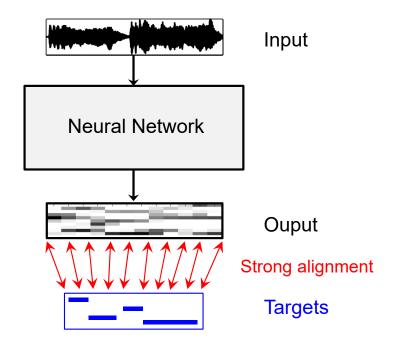
Gould (Piano)



Cost-minimizing warping path

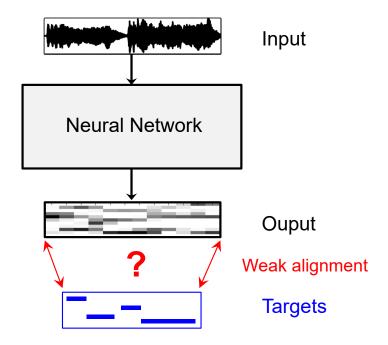
→ Strong alignment

Feature Learning



- Task: Learn audio features using a neural network
- Loss: Binary cross-entropy
 - framewise loss
 - requires strongly aligned targets
 - hard to obtain

Feature Learning



- Task: Learn audio features using a neural network
- Loss: Binary cross-entropy
 - framewise loss
 - requires strongly aligned targets
 - hard to obtain
- Alignment as part of loss function
 - requires only weakly aligned targets
 - needs to be differentiable
- Problem: DTW is not differentiable
 - → Soft DTW

Dynamic Time Warping (DTW)

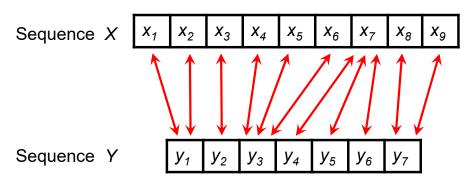
$$X := (x_1, x_2, \dots, x_N)$$

$$Y := (y_1, y_2, \dots, y_M)$$

$$x_n, y_m \in \mathcal{F}, n \in [1:N], m \in [1:M]$$

 \mathcal{F} = Feature space

Alignment

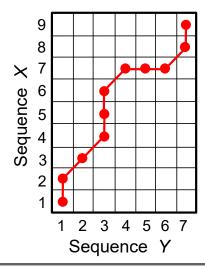


Alignment matrix

$$A \in \{0, 1\}^{N \times M}$$

Set of all possible alignment matrices

$$\mathcal{A}_{N,M} \subset \{0,1\}^{N \times M}$$



Dynamic Time Warping (DTW)

$$X := (x_1, x_2, \dots, x_N)$$

$$Y:=(y_1,y_2,\ldots,y_M)$$

$$x_n, y_m \in \mathcal{F}, n \in [1:N], m \in [1:M]$$

$$\mathcal{F}$$
 = Feature space

Alignment matrix

$$A \in \{0, 1\}^{N \times M}$$

Set of all possible alignment matrices

$$\mathcal{A}_{N,M} \subset \{0,1\}^{N \times M}$$

Cost measure:
$$c: \mathcal{F} \times \mathcal{F} \to \mathbb{R}_{\geq 0}$$

Cost matrix:
$$C \in \mathbb{R}^{N \times M}$$
 with $C(n, m) := c(x_n, y_m)$

Cost of alignment:
$$\langle A, C \rangle$$

DTW cost:
$$DTW(C) = \min \left(\{ \langle A, C \rangle \mid A \in \mathcal{A}_{N,M} \} \right)$$

Optimal alignment:
$$A^* = \operatorname{argmin} (\{\langle A, C \rangle \mid A \in \mathcal{A}_{N,M}\})$$

Dynamic Time Warping (DTW)

DTW cost:
$$DTW(C) = \min \left(\{ \langle A, C \rangle \mid A \in \mathcal{A}_{N,M} \} \right)$$

Efficient computation via Bellman's recursion in O(NM)

$$D(n,m) = \min\{D(n-1,m), D(n,m-1), D(n,m)\} + C(n,m)$$

for *n*>1 and *m*>1 and suitable initialization.

$$DTW(C) = D(N, M)$$

- Problem: DTW(C) is not differentiable with regard to C
- Idea: Replace min-function by a smooth version

$$\min^{\gamma} (S) = -\gamma \log \sum_{s \in S} \exp(-s/\gamma)$$

for set $\,\mathcal{S}\subset\mathbb{R}\,$ and temperature parameter $\,\gamma\in\mathbb{R}\,$

SDTW cost:
$$SDTW^{\gamma}(C) = \min^{\gamma} (\{\langle A, C \rangle \mid A \in \mathcal{A}_{N,M}\})$$

• Efficient computation via Bellman's recursion in O(*NM*) still works:

$$D^{\gamma}(n,m) = \min^{\gamma} \{D^{\gamma}(n-1,m), D^{\gamma}(n,m-1), D^{\gamma}(n,m)\} + C(n,m)$$

for *n*>1 and *m*>1 and suitable initialization.

$$SDTW^{\gamma}(C) = D^{\gamma}(N, M)$$

- Limit case: $\mathrm{SDTW}^{\gamma}(C) \xrightarrow{\gamma \to 0} \mathrm{DTW}(C)$
- SDTW(C) is differentiable with regard to C
- Questions:
 - How does the gradient look like?
 - Can it be computed efficiently?
 - How does SDTW generalize the alignment concept?

Soft-DTW

Cuturi, Blondel: Soft-DTW: A Differentiable Loss Function for Time-Series. ICML, 2017

SDTW cost:
$$SDTW^{\gamma}(C) = \min^{\gamma} (\{\langle A, C \rangle \mid A \in \mathcal{A}_{N,M}\})$$

• Define $p^{\gamma}(C)$ as the following "probability" distribution over $\mathcal{A}_{N,M}$:

$$p^{\gamma}(C)_{A} = \frac{\exp\left(-\langle A, C \rangle / \gamma\right)}{\sum_{A' \in \mathcal{A}_{N,M}} \exp\left(-\langle A', C \rangle / \gamma\right)} \quad \text{for } A \in \mathcal{A}_{N,M}$$

- The expected alignment with respect to $p^{\gamma}(C)$ is given by:

$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

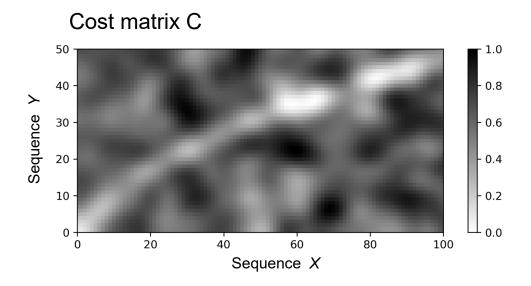
The gradient is given by:

$$\nabla_C \mathrm{SDTW}^{\gamma}(C) = E^{\gamma}(C)$$

The gradient can be computed efficiently in O(NM) via a recursive algorithm.

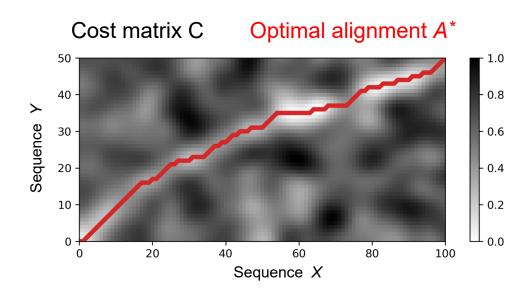
Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



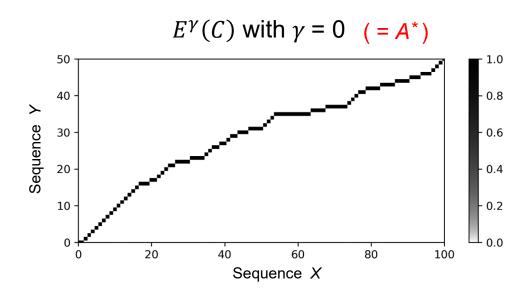
Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



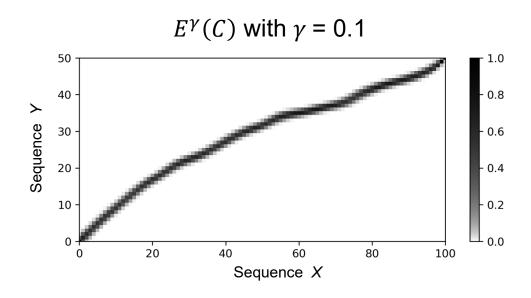
Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



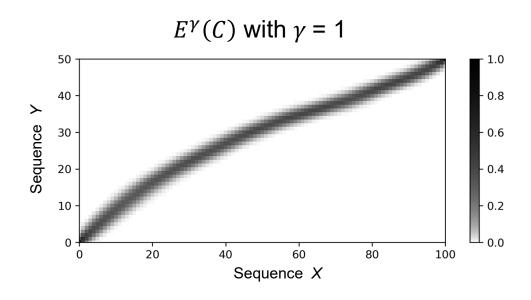
Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



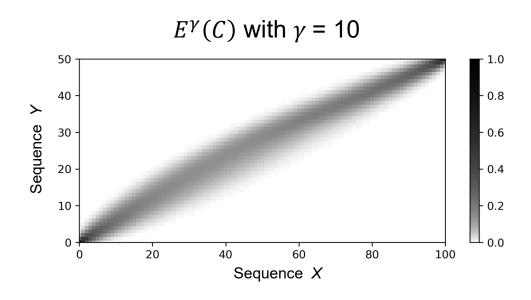
Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



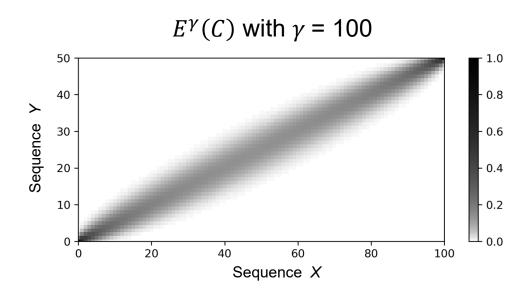
Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ

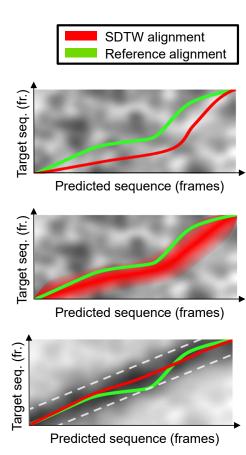


Soft Dynamic Time Warping (SDTW) Conclusions

- Direct generalization of DTW (replacing min by smooth variant)
- Gradient is given by expected alignment
- Fast forward algorithm: O(NM)
- Fast gradient computation: O(NM)
- SDTW yields a (typically) poor lower bound for DTW
- Can be used as loss function to learn from weakly aligned sequences

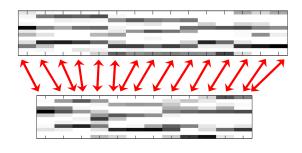
Soft Dynamic Time Warping (SDTW) Stabilizing Training

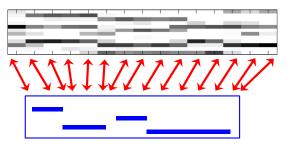
- Standard SDTW often unstable
 - Unstable training in early stages
 - Degenerate output alignment
- Hyperparameter adjustment
 - High temperature to smooth alignments
 - Temperature annealing
- Diagonal prior
- Modified step size condition



Soft Dynamic Time Warping (SDTW) Representation Learning

- Symmetric application
 - Learn representation of both sequences
 - Needs a contrastive loss term
- Assymmetric application
 - Use fixed (e.g., binary) encoding of target
 - Learn representation of only one sequences
 - No contrastive loss term need
- Simulation of CTC-loss using SDTW possible
- Many DTW variants also possible for SDTW





Conclusions

- Multi-Scale Spectral Loss
 Knowledge Source: Signal Representations
- Hierarchical Classification Loss
 Knowledge Source: Musical Hierarchies
- Differentiable Alignment Loss
 Knowledge Source: Temporal Coherence

Simon Schwär

Michael Krause

Johannes Zeitler

Conclusions

- Multi-Scale Spectral Loss
 Knowledge Source: Signal Representations
- Hierarchical Classification Loss
 Knowledge Source: Musical Hierarchies
- Differentiable Alignment Loss
 Knowledge Source: Temporal Coherence

Michael Krause

Johannes Zeitler

Müller, Zeitler: **2025 ISMIR Tutorial**Differentiable Alignment Techniques for Music Processing: Techniques and Applications

