



Tutorial T3, EUROGRAPHICS Saarbrücken, May 8, 2023



## **Learning with Music Signals: Technology Meets Education**

**Music Retrieval** 

#### Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de





#### Music Representations





#### Music Representations















Literature (Text)





Dance (Mocap)



Film (Video)



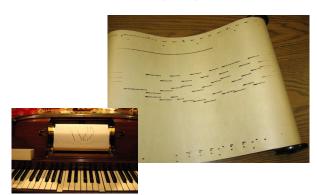
MusicXML (Symbolic) <pitch>

<step>E</step>
<alter>-1</alt</pre>

Tutorial EUROGRAPHICS Learning with Music Signal



#### Piano Roll Representation (1900)

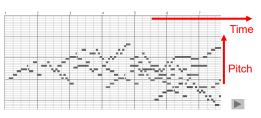




#### Piano Roll Representation

J.S. Bach, C-Major Fuge (Well Tempered Piano, BWV 846)







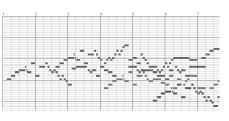
#### Piano Roll Representation

Query:

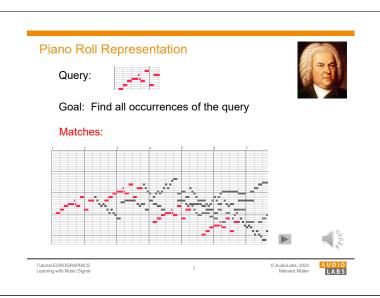


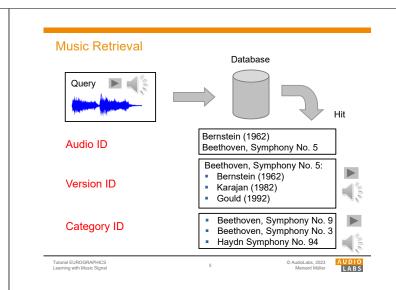
Goal: Find all occurrences of the query

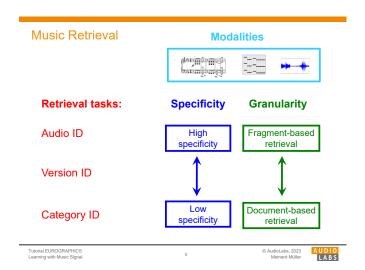


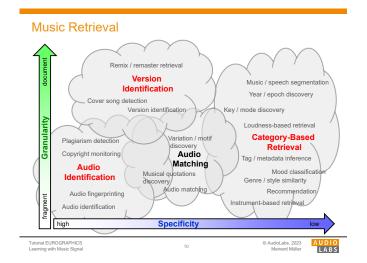


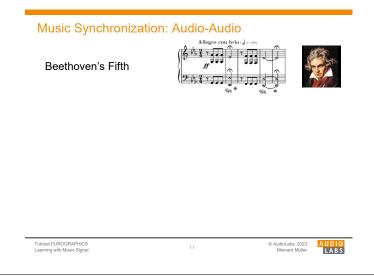


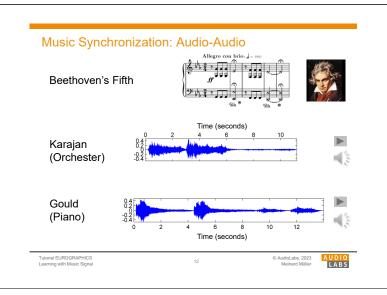


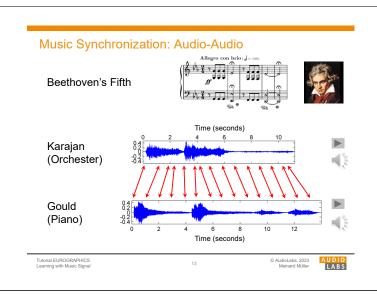


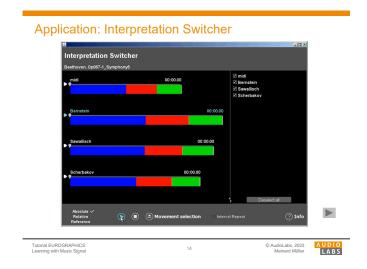












#### Music Synchronization: Audio-Audio

#### Task

**Given:** Two different audio recordings (two versions) of the same underlying piece of music.

Goal: Find for each position in one audio recording

the musically corresponding position

in the other audio recording.

#### Music Synchronization: Audio-Audio

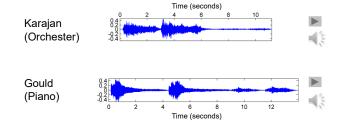
#### Traditional Engineering Approach:

- 1.) Feature extraction
  - Robust to variations (e.g., instrumentation, timbre, dynamics)
  - Discriminative (e.g., capturing harmonic, melodic, tonal aspects)
    - Chroma features
- 2.) Temporal alignment
  - Capturing local and global tempo variations
  - Trade-off: Robustness vs. accuracy
  - Efficiency
    - Dynamic time warping (DTW)

LABS

# Music Synchronization: Audio-Audio

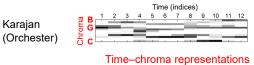
#### Beethoven's Fifth



# LABS

# Music Synchronization: Audio-Audio

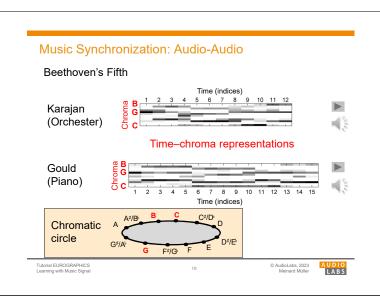
#### Beethoven's Fifth

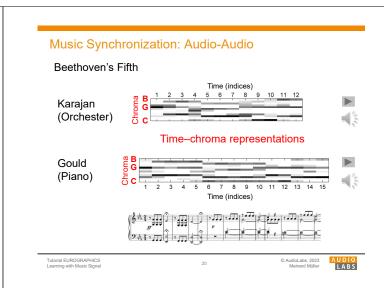


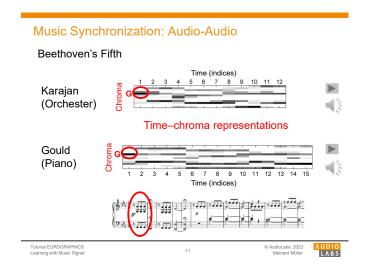
Gould (Piano) Time (indices)

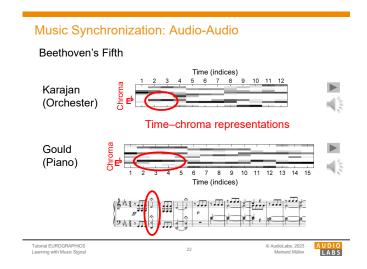
Tutorial EUROGRAPHICS Learning with Music Signal

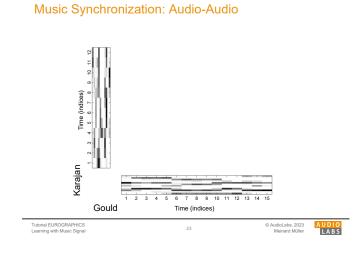


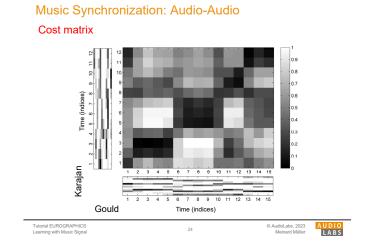












# Music Synchronization: Audio-Audio Cost matrix Gould Time (indices) LABS

# Music Synchronization: Audio-Audio Cost-minimizing warping path

Time (indices)

Music Synchronization: Audio-Audio Cost-minimizing warping path = Optimal alignment Time (indices) 5 6 7 8 Karajan (Orchester) Gould (Piano) 10 11 12 13 14 8 9 Time (indices)

Music Synchronization: Audio-Audio **Deep Learning Approaches** 

· Learn audio features from data

Gould

- Should be robust to performance variations
- Should yield high alignment accuracy
- Should have musical relevance
- Alignment problem
  - Pre-aligned data for training
  - Part of loss function → differentiability?

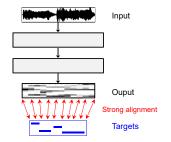
CTC-Loss
Graves et al.: Connectionist
Temporal Classification:
Labelling Unsegmented
Sequence Data with Recurrent
Neural Networks. ICML, 2006

Soft-DTW Cuturi, Blondel: Soft-DTW: A Differentiable Loss Function for Time-Series. ICML, 2017



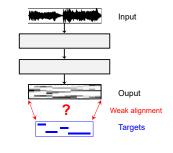
LABS

#### **Feature Learning**



- Task: Learn audio features using a neural network
- Loss: Binary cross-entropy
  - framewise loss
  - requires strongly aligned targets
  - hard to obtain

#### **Feature Learning**



- Task: Learn audio features using a neural network
- Loss: Binary cross-entropy
  - framewise loss
  - requires strongly aligned targets
  - hard to obtain
- Alignment as part of loss function
  - requires only weakly aligned targets
  - needs to be differentiable
- Problem: DTW is not differentiable

Tutorial EUROGRAPHICS Learning with Music Signal

© AudioLabs, 2023 Meinard Müller LABS



#### Dynamic Time Warping (DTW)

$$X := (x_1, x_2, \dots, x_N)$$

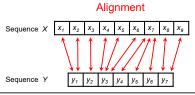
$$Y := (y_1, y_2, \dots, y_M)$$

$$x_n, y_m \in \mathcal{F}, n \in [1:N], m \in [1:M]$$

 $\mathcal{F}$  = Feature space

# Alignment matrix $A \in \left\{0,1\right\}^{N \times M}$

Set of all possible alignment matrices  $\mathcal{A}_{N,M} \subset \left\{0,1\right\}^{N \times M}$ 





I EUROGRAPHICS ng with Music Signal

31

LABS

#### Dynamic Time Warping (DTW)

$$X := (x_1, x_2, \dots, x_N)$$

$$Y := (y_1, y_2, \dots, y_M)$$

$$x_n, y_m \in \mathcal{F}, n \in [1:N], m \in [1:M]$$

 $\mathcal{F}$  = Feature space

Alignment matrix  $A \in \{0,1\}^{N \times M}$ 

Set of all possible alignment matrices 
$$\mathcal{A}_{N,M} \subset \left\{0,1\right\}^{N \times M}$$

Cost measure:  $c: \mathcal{F} \times \mathcal{F} \to \mathbb{R}_{\geq 0}$ 

Cost matrix:  $C \in \mathbb{R}^{N \times M}$  with  $C(n,m) := c(x_n,y_m)$ 

Cost of alignment:  $\langle A, C \rangle$ 

Tutorial EUROGRAPHICS

© AudioLabs, 202 Meinard Mülle



#### Dynamic Time Warping (DTW)

DTW cost:  $DTW(C) = \min \left( \left\{ \langle A, C \rangle \mid A \in \mathcal{A}_{N,M} \right\} \right)$ 

• Efficient computation via Bellman's recursion in O(*NM*)  $D(n,m)=\min\{D(n-1,m),D(n,m-1),D(n,m)\}+C(n,m)$  for n>1 and m>1 and suitable initialization.

$$\mathrm{DTW}(C) = D(N, M)$$

- Problem: DTW(C) is not differentiable with regard to C
- Idea: Replace min-function by a smooth version

$$\min^{\gamma}(\mathcal{S}) = -\gamma \log \sum_{s \in \mathcal{S}} \exp(-s/\gamma)$$

for set  $\, \mathcal{S} \subset \mathbb{R} \,$  and temperature parameter  $\, \gamma \in \mathbb{R} \,$ 

Tutorial EUROGRAPHICS

AudioLabs, 202 Meinard Müll



#### Soft Dynamic Time Warping (SDTW)

SDTW cost:  $\mathrm{SDTW}^{\gamma}(C) = \min^{\gamma}\left(\{\langle A,C\rangle \mid A \in \mathcal{A}_{N,M}\}\right)$ 

• Efficient computation via Bellman's recursion in O(*NM*) still works:  $D^{\gamma}(n,m)=\min^{\gamma}\{D^{\gamma}(n-1,m),D^{\gamma}(n,m-1),D^{\gamma}(n,m)\}+C(n,m)$  for n>1 and m>1 and suitable initialization.

$$\mathrm{SDTW}^{\gamma}(C) = D^{\gamma}(N,M)$$

- Limit case:  $SDTW^{\gamma}(C) \xrightarrow{\gamma \to 0} DTW(C)$
- SDTW(C) is differentiable with regard to C
- Questions:
  - How does the gradient look like?
  - Can it be computed efficiently?
  - How does SDTW generalize the alignment concept?

Tutorial EUROGRAPHICS Learning with Music Signa © AudioLabs, 2023 Meinard Müller



#### Soft Dynamic Time Warping (SDTW)

SDTW cost:  $\mathrm{SDTW}^{\gamma}(C) = \min^{\gamma} \left( \left\{ \left\langle A, C \right\rangle \ \middle| \ A \in \mathcal{A}_{N,M} \right\} \right)$ 

- Define  $p^{\gamma}(C)$  as the following "probability" distribution over  $\mathcal{A}_{N,M}$ :

$$p^{\gamma}(C)_{A} = \frac{\exp\left(-\langle A, C \rangle / \gamma\right)}{\sum_{A' \in \mathcal{A}_{N,M}} \exp\left(-\langle A', C \rangle / \gamma\right)} \quad \text{for } A \in \mathcal{A}_{N,M}$$

- The expected alignment with respect to  $\,p^{\gamma}(C)\,$  is given by:

$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

• The gradient is given by:

$$\nabla_C \mathrm{SDTW}^{\gamma}(C) = E^{\gamma}(C)$$

 The gradient can be computed efficiently in O(NM) via a recursive algorithm. Soft-DTW
Cuturi, Blondel: Soft-DTW: A
Differentiable Loss Function
for Time-Series. ICML, 2017

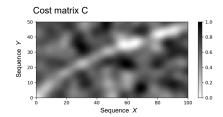
© AudioLabs, 2023

LABS

#### Soft Dynamic Time Warping (SDTW)

 $\text{Expected alignment}: \quad E^{\gamma}(C) = \sum\nolimits_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \quad \in \mathbb{R}^{N \times M}$ 

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter  $\gamma$

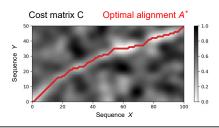


Tutorial EUROGRAPHICS Learning with Music Signal © AudioLabs, 2023

#### Soft Dynamic Time Warping (SDTW)

Expected alignment :  $E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \quad \in \mathbb{R}^{N \times M}$ 

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter  $\gamma$



Tutorial EUROGRAPHICS

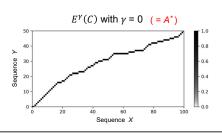
© AudioLab

LABS

#### Soft Dynamic Time Warping (SDTW)

 $\text{Expected alignment}: \quad E^{\gamma}(C) = \sum\nolimits_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \quad \in \mathbb{R}^{N \times M}$ 

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter  $\gamma$



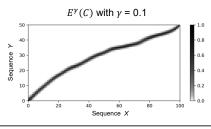
Tutorial EUROGRAPHICS Learning with Music Signal © AudioLabs, 2023

LABS

#### Soft Dynamic Time Warping (SDTW)

 $\text{Expected alignment}: \quad E^{\gamma}(C) = \sum\nolimits_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \quad \in \mathbb{R}^{N \times M}$ 

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter  $\gamma$

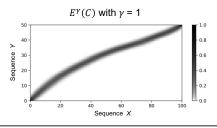


Tutorial EUROGRAPHICS Learning with Music Signal AudioLabs, 2023 Meinard Müller AUDIO

#### Soft Dynamic Time Warping (SDTW)

 $\text{Expected alignment}: \quad E^{\gamma}(C) = \sum\nolimits_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \quad \in \mathbb{R}^{N \times M}$ 

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter  $\gamma$

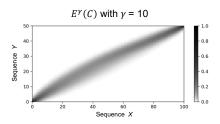


Tutorial EUROGRAPHICS Learning with Music Signal © AudioLabs, 2023 Meinard Mülle AUDIO

## Soft Dynamic Time Warping (SDTW)

 $\text{Expected alignment}: \quad E^{\gamma}(C) = \sum\nolimits_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \quad \in \mathbb{R}^{N \times M}$ 

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter  $\gamma$



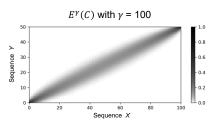
Tutorial EUROGRAPHICS Learning with Music Signal © AudioLabs, 202

LABS

## Soft Dynamic Time Warping (SDTW)

 $\text{Expected alignment}: \quad E^{\gamma}(C) = \sum\nolimits_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \quad \in \mathbb{R}^{N \times M}$ 

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter  $\gamma$



Tutorial EUROGRAPHICS Learning with Music Signal © AudioLabs, 2

## Soft Dynamic Time Warping (SDTW) Conclusions

- Direct generalization of DTW (replacing min by smooth variant)
- Gradient is given by expected alignment
- Fast forward algorithm: O(NM)
- Fast gradient computation: O(NM)
- SDTW yields a (typically) poor lower bound for DTW
- Can be used as loss function to learn from weakly aligned sequences

© AudioLabs, 2023
Meinard Müller

AUDIO
LABS



#### Soft Dynamic Time Warping (SDTW)

#### References

- Marco Cuturi, Mathieu Blondel: Soft-DTW: A Differentiable Loss Function for Time-Series. ICML, pages 894-903, 2017.
- Mathieu Blondel, Arthur Mensch, Jean-Philippe Vert: Differentiable Divergences Between Time Series. AISTATS, pages 3853 3861, 2021.
- Michael Krause, Christof Weiß, Meinard Müller: Soft Dynamic Time Warping for Multi-Pitch Estimation and Beyond. IEEE ICASSP, 2023.

Thanks:

Michale Krause (Ph.D. 2023) Johannes Zeitler (Ph.D.)

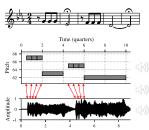




#### Theme-Based Audio Retrieval

## Theme-Based Audio Retrieval Barlow & Morgenstern (1949): A Dictionary of Musical Themes





- 2067 themes by 54 different composers
- Recordings (1126 recordings, ~ 120 hours)
- Theme occurences (~ 5 hours)





#### Theme-Based Audio Retrieval Barlow & Morgenstern (1949): A Dictionary of Musical Themes

# Query: Musical theme الراس المرجوب

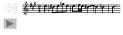
# Database: Audio recordings

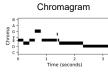
#### Challenges

- **Cross-modality** Symbolic vs. audio data
- Deviations from standard tuning Transposition
- Played key vs. written key
- Tempo Local & global tempo deviations
- Polyphony Monophonic query vs. polyphonic audio

Theme-Based Audio Retrieval Monophony-Polyphony Challenge

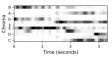
Monophonic symbolic musical theme





Audio recording of polyphonic music

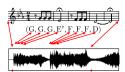




Goal: Compute "enhanced" chromagram from polyphonic audio recording that better matches the symbolic monophonic theme

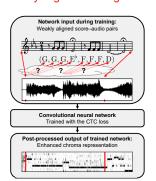


#### Theme-Based Audio Retrieval Strongly Aligned Training Data



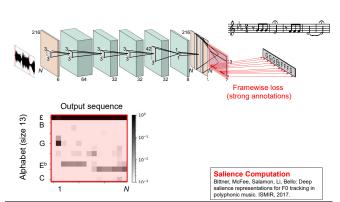


#### Theme-Based Audio Retrieval Weakly Aligned Training Data





#### Theme-Based Audio Retrieval

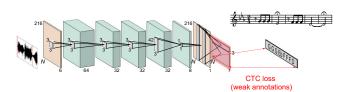


Tutorial EUROGRAPHICS Learning with Music Signal



LABS

#### Theme-Based Audio Retrieval

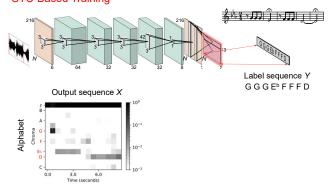


- Idea of CTC loss similar to SDTW
- Theme is given as label sequence over finite alphabet (size 13 including blank symbol)
- Expand label sequence to match audio feature sequence → valid alignment
- CTC loss considers probability over **all** valid alignments  $\rightarrow$  differentiable

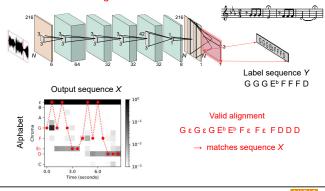
CTC Loss
Graves, Fernández, Gomez, Schmidhuber: Connectionist
temporal classification: Labelling unsegmented sequence
data with recurrent neural networks. ICML, 2006.



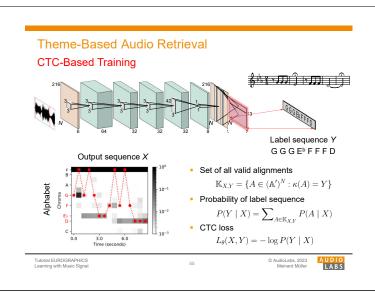
## Theme-Based Audio Retrieval **CTC-Based Training**

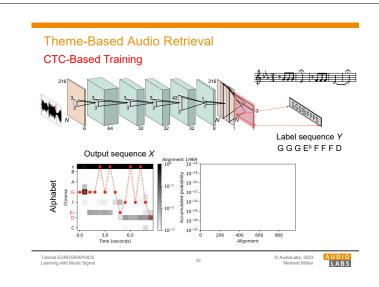


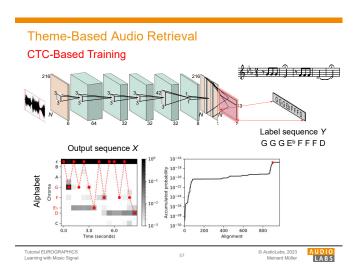
#### Theme-Based Audio Retrieval **CTC-Based Training**

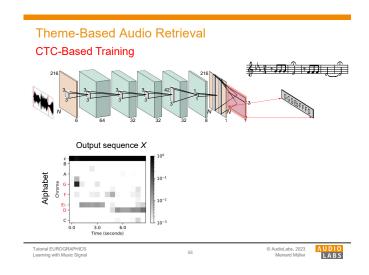


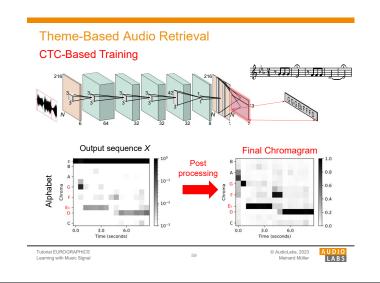


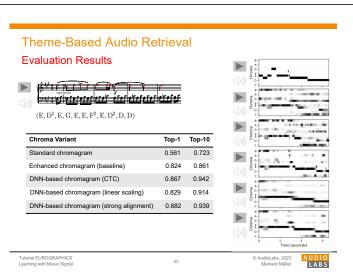












#### Theme-Based Audio Retrieval

#### References

- R. Bittner, B. McFee, J. Salamon, P. Li, and J. Bello: Deep salience representations for F0 tracking in polyphonic music. Proc. ISMIR, pages 63–70, 2017.
- A. Graves, S. Fernández, F. J. Gomez, and J. Schmidhuber: Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks. ICML, 2006.
- F. Zalkow, S. Balke, V. Arifi-Müller, and M. Müller. MTD: A multimodal dataset of musical themes for MIR research. TISMIR, 3(1), 2020.
- F. Zalkow, S. Balke, and M. Müller. Evaluating salience representations for cross-modal retrieval of Western classical music recordings. Proc. ICASSP, 2019.
- F. Zalkow and M. Müller. CTC-based learning of deep chroma features for score-audio music retrieval. 2021. IEEE/ACM Trans. on Audio, Speech, and Language Processing, 29, pages 2957–2971, 2021.

Thanks:

Frank Zalkow (Ph.D. 2021) Stefan Balke (Ph.D. 2018)

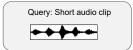




#### **Audio Matching**

#### Task

Given a short query audio clip, find corresponding audio clips of similar musical content.





#### Challenges

- Similarity measure
  - Different performances
  - Instrumentation may change
  - Similar harmonic progression
- Local comparison
  - Query is short
  - Database recordings are long
- Efficiency
  - Database may be huge



© AudioLabs, 2023 Meinard Müller

LABS

#### **Audio Matching**

#### Task

Query:



Database: Matches



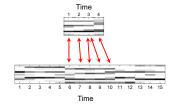
LABS

#### **Audio Matching**

#### Task

Query: Sequence X

Database: Sequence Y



Subsequence matching

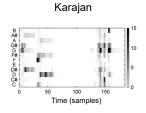


#### **Audio Features**

#### Example: Beethoven's Fifth

Bernstein

# Time (samples)



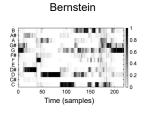
#### Chroma representation (10 Hz)

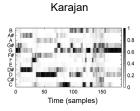
Chroma Features Müller, Kurth, Clausen: Audio Matching via Chroma-Based Statistical Features. ISMIR, 2005

LABS

#### **Audio Features**

Example: Beethoven's Fifth



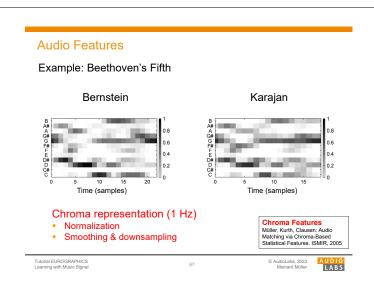


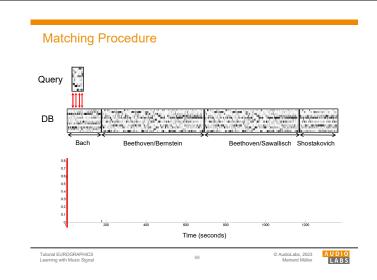
Chroma representation (10 Hz)

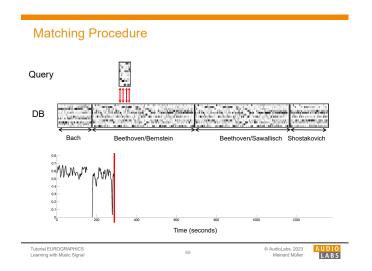
Normalization

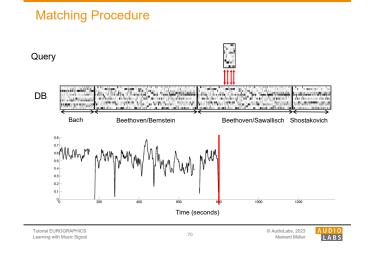
Chroma Features Müller, Kurth, Clausen: Audio Matching via Chroma-Based Statistical Features. ISMIR, 2005

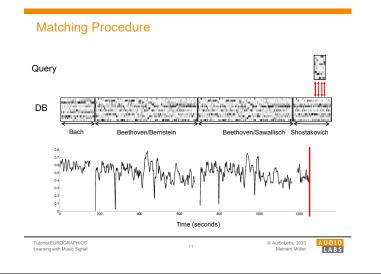


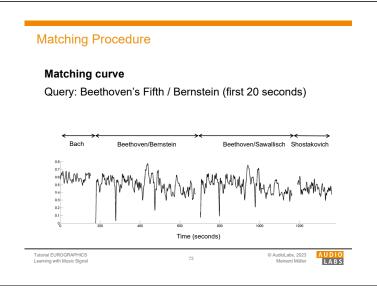


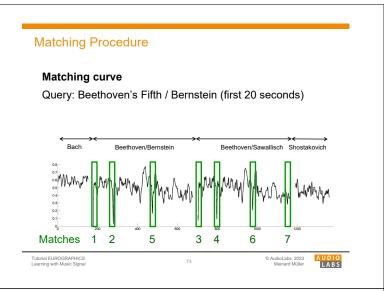


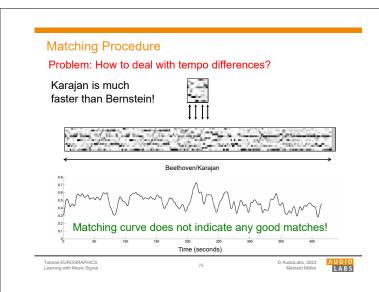


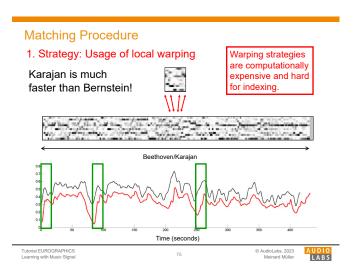


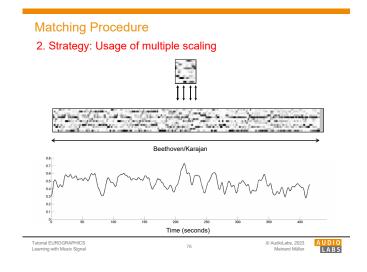


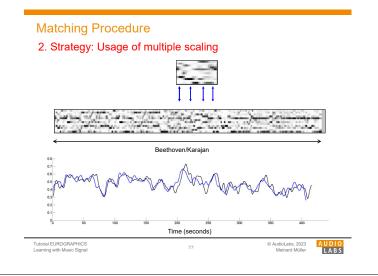


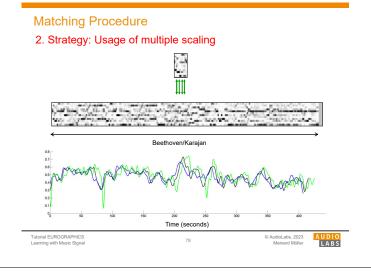








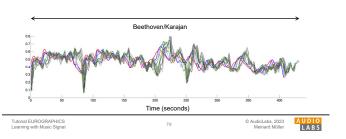




#### **Matching Procedure**

#### 2. Strategy: Usage of multiple scaling

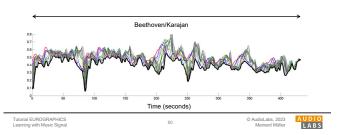
Query resampling simulates tempo changes



#### **Matching Procedure**

#### 2. Strategy: Usage of multiple scaling

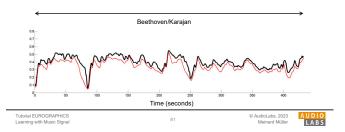
- Query resampling simulates tempo changes
- Minimize over all curves



#### **Matching Procedure**

#### 2. Strategy: Usage of multiple scaling

- Query resampling simulates tempo changes
- Minimize over all curves
- Resulting curve is similar to warping curve



#### **Audio Matching**

Query: Beethoven's Fifth / Bernstein (first 20 seconds)

| Rank | Piece                        | Position  |                  | ĺ |
|------|------------------------------|-----------|------------------|---|
| 1    | Beethoven's Fifth/Bernstein  | 0 - 21    | $\triangleright$ |   |
| 2    | Beethoven's Fifth/Bernstein  | 101- 122  | $\triangleright$ |   |
| 3    | Beethoven's Fifth/Karajan    | 86 - 103  | $\triangleright$ |   |
| :    | :                            | :         | :                |   |
| :    | :                            | :         | :                |   |
| 10   | Beethoven's Fifth/Karajan    | 252 - 271 | $\triangleright$ | ĺ |
| 11   | Beethoven's Fifth/Scherbakov | 0 - 19    | $\triangleright$ |   |
| 12   | Beethoven's Fifth/Sawallisch | 275 - 296 | <b> </b>         |   |
| 13   | Beethoven's Fifth/Scherbakov | 86 - 103  | <b></b>          |   |
| 14   | Schumann Op. 97,1/Levine     | 28 - 43   | <b></b>          |   |



#### **Audio Matching**

#### Strategy: Handle variations at various levels

- Chroma
- invariance to timbre
- Normalization
- invariance to dynamics invariance to local time deviations
- Smoothing Multiple queries
- invariance to global tempo

#### Notes:

- There is no "standard" chroma feature.
  - → Variants can make a huge difference!
- Learn invariance from examples → "Deep Chroma"
- Temporal warping makes problem hard

Efficiency

Audio Matching Müller, Kurth, Clausen: Audio Matching via Chroma-Based Statistical Features. ISMIR, 2005

Deep Chroma
Korzeniowski, Widmer: Feature
Learning for Chord Recognition: The
Deep Chroma Extractor. ISMIR, 2016

LABS

# Shingle-Based Retrieval

#### Idea

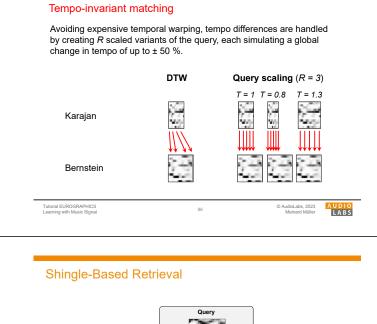
- Query and database are split up into small overlapping shingles that consist of short feature subsequences.
- Shingles can be matched using efficient nearest neighbor retrieval.
- Trade-off:
  - Large shingles have high musical relevance
  - High shingle dimensionality makes indexing difficult



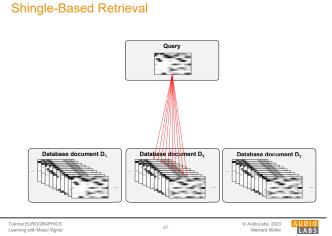
# Shingle-Based Retrieval Database Chroma sequence Chroma shingles Retrieval (index-based) Query Chroma sequence (ca. 10 to 30 seconds)

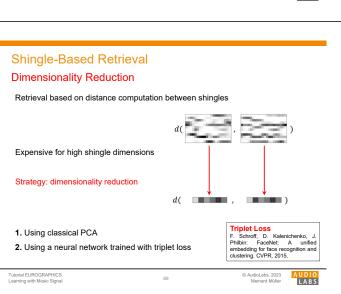
LABS

Tutorial EUROGRAPHICS Learning with Music Signal

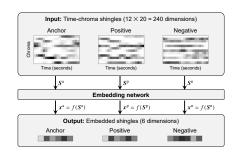


Shingle-Based Retrieval









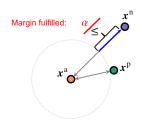
Database document D<sub>1</sub>
 Database document D<sub>3</sub>
 Database document D<sub>2</sub>

Tutorial EUROGRAPHICS Learning with Music Signal

© AudioLabs, 2023 Meinard Mülle LABS

#### Shingle-Based Retrieval Triplet Loss





© AudioLabs, 2023 Meinard Müller LABS

#### Shingle-Based Retrieval **Triplet Loss**

$$\mathcal{L}(X) = \max\left(0, d(\boldsymbol{x}^{\mathbf{a}}, \boldsymbol{x}^{\mathbf{p}}) - d(\boldsymbol{x}^{\mathbf{a}}, \boldsymbol{x}^{\mathbf{n}}) + \boldsymbol{\alpha}\right)$$



Loss tries to

- push  $x^n$  from anchor  $x^a$
- pull  $x^p$  towards anchor  $x^a$

until margin lpha is fulfilled

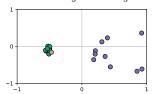


# Shingle-Based Retrieval

Triplet Loss

$$\mathcal{L}(X) = \max \left(0, d(\mathbf{x}^{\mathbf{a}}, \mathbf{x}^{\mathbf{p}}) - d(\mathbf{x}^{\mathbf{a}}, \mathbf{x}^{\mathbf{n}}) + \alpha\right)$$

#### Embeddings after training





#### Shingle-Based Retrieval

#### Experiment

- Training set: 357 recordings of different pieces by Beethoven, Chopin, and Vivaldi (~ 19 hours)
- Test set: 330 different recordings of different pieces by the same composers (~ 16 hours)

| Shingle Reduction | Dimensionality | Retrieva<br>P@1 | I Quality<br>MAP | Retrieval Time (seconds) |
|-------------------|----------------|-----------------|------------------|--------------------------|
| No reduction      | 240            | 0.996           | 0.972            | 23.0                     |
| DNN               | 30             | 0.981           | 0.959            | 3.4                      |
| DNN               | 12             | 0.964           | 0.928            | 1.8                      |
| DNN               | 6              | 0.890           | 0.856            | 1.2                      |



# Shingle-Based Retrieval

Nearest Neighbor Search



Shingle-Based Retrieval Nearest Neighbor Search

Strategies

Brute force



Tutorial EUROGRAPHICS Learning with Music Signal

© AudioLabs, 2023 Meinard Müller LABS



## Shingle-Based Retrieval Nearest Neighbor Search

#### **Strategies**

- Brute force
- K-D trees
- HNSW graphs



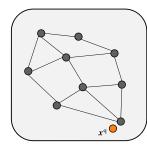
HNSW Graphs
Y. Malkov and D. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on PAMI, 2020.



#### Shingle-Based Retrieval Graph-Based Nearest Neighbor Search

Initial situation

Given: query node x<sup>q</sup>



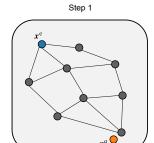
HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.



LABS

# Shingle-Based Retrieval

# Graph-Based Nearest Neighbor Search



Given: query node  $x^{
m q}$ 

Start with (random) entry node  $x^e$ 

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on PAMI, 2020.



#### Shingle-Based Retrieval Graph-Based Nearest Neighbor Search





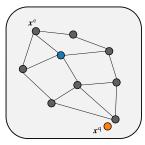
- Given: query node x<sup>q</sup>
- Start with (random) entry node  $x^e$
- Traverse graph along edges and compare nodes with  $\, {m x}^{
  m q} \,$

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.



## Shingle-Based Retrieval Graph-Based Nearest Neighbor Search

#### Step 2



- Given: query node  $x^{
  m q}$
- Start with (random) entry node  $\,x^{\mathrm{e}}$
- Traverse graph along edges and compare nodes with  $\,x^{
  m q}$
- Continue with closest node

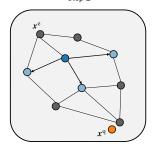
HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

Tutorial EUROGRAPHICS Learning with Music Signal

101

#### Shingle-Based Retrieval Graph-Based Nearest Neighbor Search

Step 2

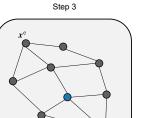


- Given: query node  $x^{
  m q}$
- Start with (random) entry node  $\, {\it x}^{
  m e}$
- Traverse graph along edges and compare nodes with  $\,x^{
  m q}$
- Continue with closest node

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.



#### Shingle-Based Retrieval Graph-Based Nearest Neighbor Search



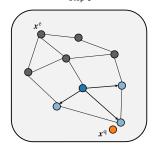
- Given: query node  $x^{
  m q}$
- Start with (random) entry node  $x^e$
- Traverse graph along edges and compare nodes with  $\,x^{
  m q}$
- Continue with closest node

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

# LABS

#### Shingle-Based Retrieval Graph-Based Nearest Neighbor Search

Step 3



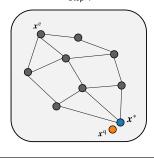
- Given: query node x<sup>q</sup>
- Start with (random) entry node  $x^e$
- Traverse graph along edges and compare nodes with  $\,x^{
  m q}$
- Continue with closest node

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.



# Shingle-Based Retrieval Graph-Based Nearest Neighbor Search

#### Step 4



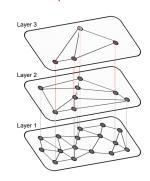
- Given: query node  $x^{\mathrm{q}}$
- Start with (random) entry node  $x^e$
- Traverse graph along edges and compare nodes with  $\,x^{
  m q}$
- Continue with closest node
- Stop when distances increase

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on PAMI, 2020.

107



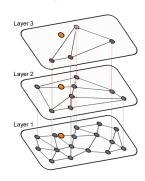
#### Shingle-Based Retrieval **HNSW Graphs**



HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.



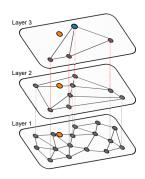
## Shingle-Based Retrieval **HNSW Graphs**



HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

Tutorial EUROGRAPHICS Learning with Music Signal

#### Shingle-Based Retrieval **HNSW Graphs**

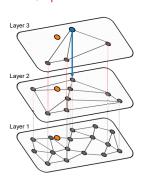


HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

Tutorial EUROGRAPHICS Learning with Music Signa

AUDIO

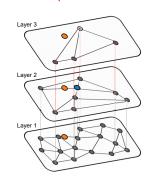
#### Shingle-Based Retrieval **HNSW Graphs**



HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

### LABS

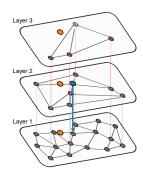
#### Shingle-Based Retrieval **HNSW Graphs**



HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.



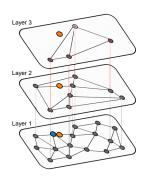
#### Shingle-Based Retrieval **HNSW Graphs**



HNSW Graphs
Y. Malkov and D. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on PAMI, 2020.



#### Shingle-Based Retrieval **HNSW Graphs**



#### **Properties**

- Approximate nearest neighbor
- Search runtime logarithmic in dataset size
- Works well with high dimensional data
- Efficient algorithm to build graph structure

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.



# Shingle-Based Retrieval

#### Experiment

- Approximate search yields nearly same results as exact search
- Dataset: Entire audio catalogue by Carus publisher (7115 recordings, ~ 390 hours, > 1,25 million shingles)
- Runtime for brute force approach: ~ 100 ms to 300 ms per query

| Search | Shingle Reduction | Dimensionality | Time (ms) |
|--------|-------------------|----------------|-----------|
| KD     | No reduction      | 240            | 772.95    |
| KD     | DNN               | 30             | 117.54    |
| KD     | DNN               | 12             | 7.24      |
| KD     | DNN               | 6              | 0.66      |
| HNSW   | No reduction      | 240            | 0.20      |
| HNSW   | DNN               | 30             | 0.08      |
| HNSW   | DNN               | 12             | 0.06      |
| HNSW   | DNN               | 6              | 0.06      |



#### Shingle-Based Retrieval

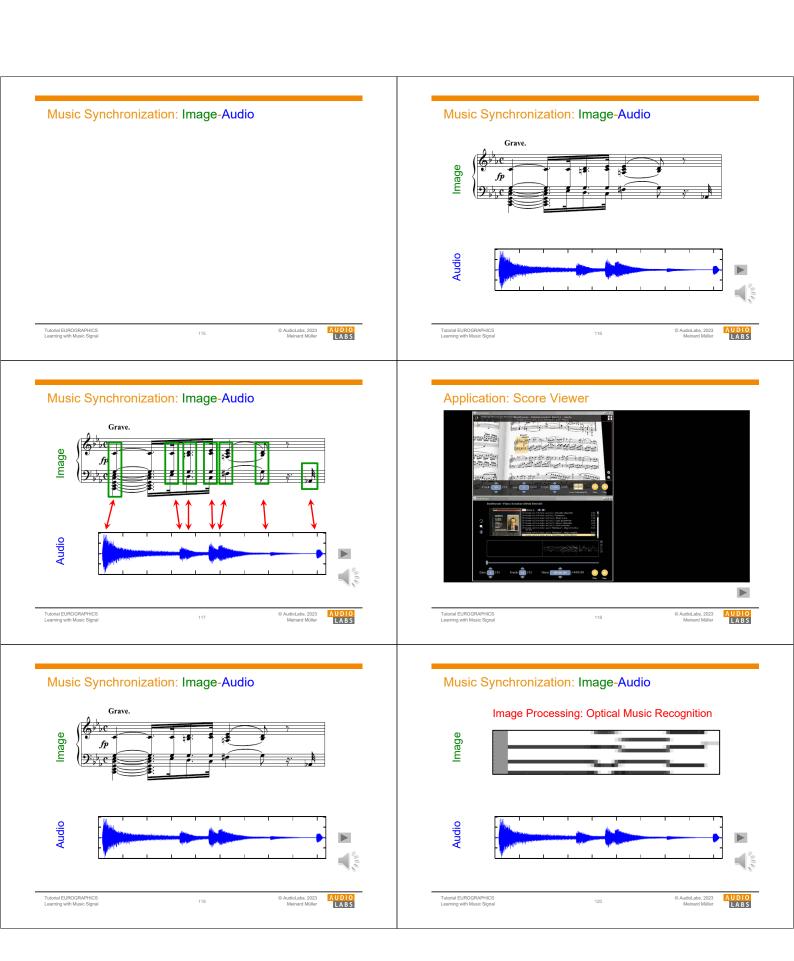
#### References

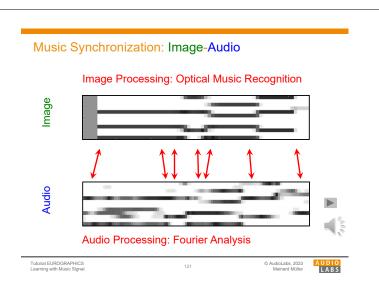
- P. Grosche, M. Müller: Toward characteristic audio shingles for efficient cross-version music retrieval. IEEE ICASSP, pages 473-476, 2012
- Y. Malkov and D. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on PAMI, 2020.
- F. Schroff, D. Kalenichenko, J. Philbin: FaceNet: A unified embedding for face recognition and clustering. CVPR, 2015.
- F. Zalkow and M. Müller: Learning low-dimensional embeddings of audio shingles for cross-version retrieval of classical music. Applied Sciences, 10(1), 2020.
- F. Zalkow, J. Brandner, and M. Müller: Efficient retrieval of music recordings using graph-based index structures. Signals, 2(2), 2021.

Thanks: Frank Zalkow (Ph.D. 2021)









# 

LABS

# WIKEPEDIA Sumphony No. 5 (Beethoven) Non repe Committee of the description of the descri

123

Learning with Music Signal

Meinard Müll