INTERNATIONAL AUDIO LABORATORIES ERLANGEN A joint institution of Fraunhofer IIS and Universität Erlangen-Nürnberg

Tutorial T3, EUROGRAPHICS Saarbrücken, May 8, 2023

Learning with Music Signals: Technology Meets Education

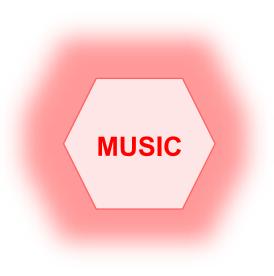
Music Retrieval

Meinard Müller

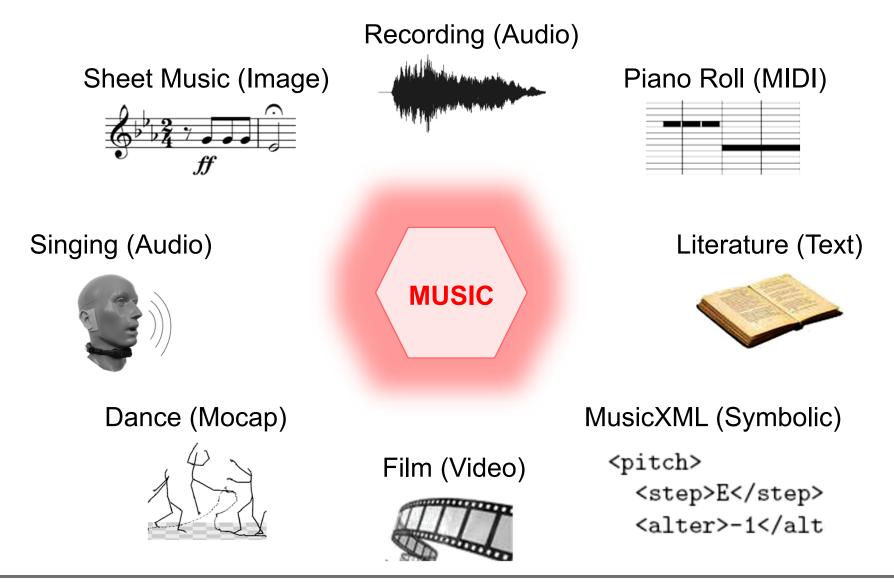
International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Friedrich-Alexander-Universität Erlangen-Nürnberg

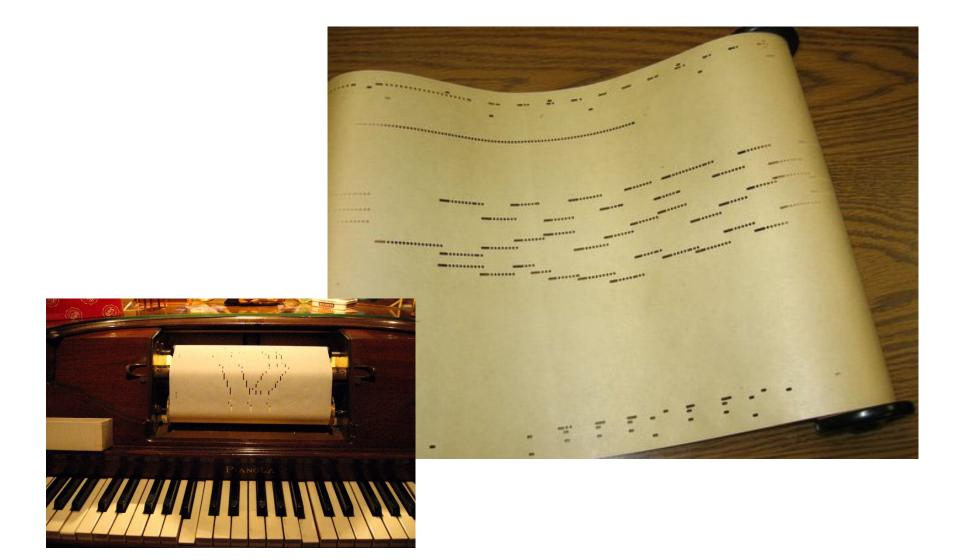
Music Representations



Music Representations

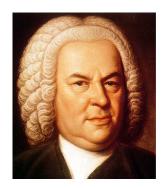


Piano Roll Representation (1900)



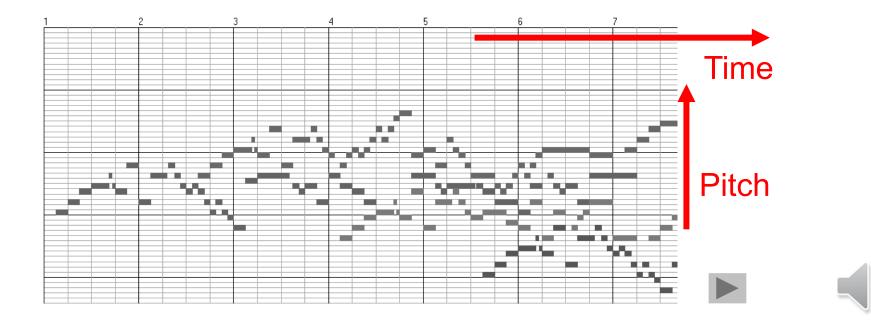
Piano Roll Representation

J.S. Bach, C-Major Fuge (Well Tempered Piano, BWV 846)



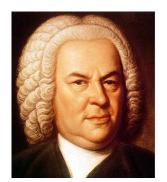
111

AUDIO

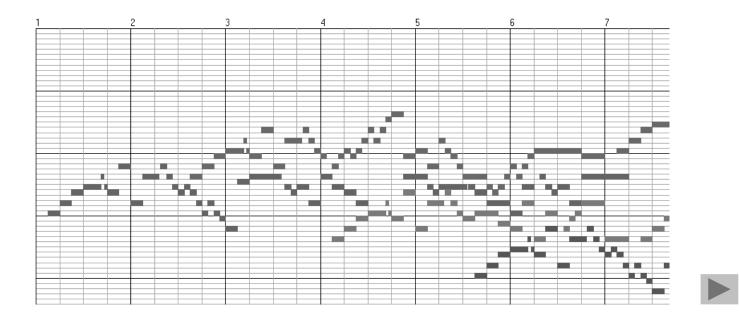


Piano Roll Representation

Query:



Goal: Find all occurrences of the query

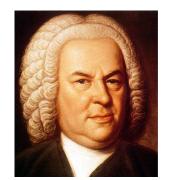


AUDIO

Piano Roll Representation

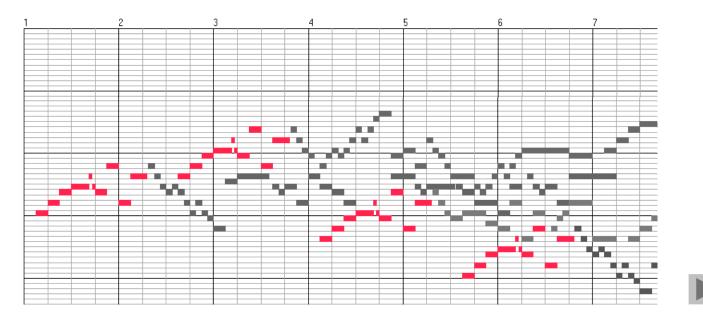
Query:

 	-	



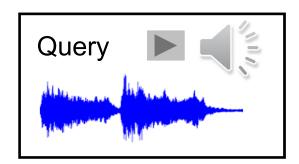
Goal: Find all occurrences of the query

Matches:



AUDIO

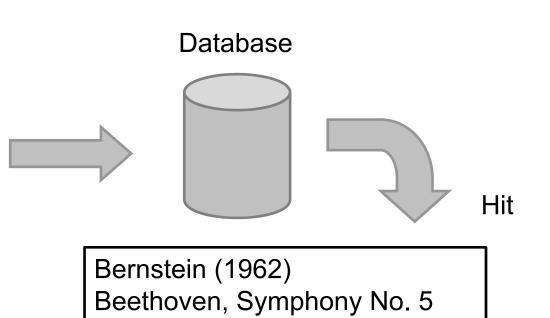
Music Retrieval



Audio ID

Version ID

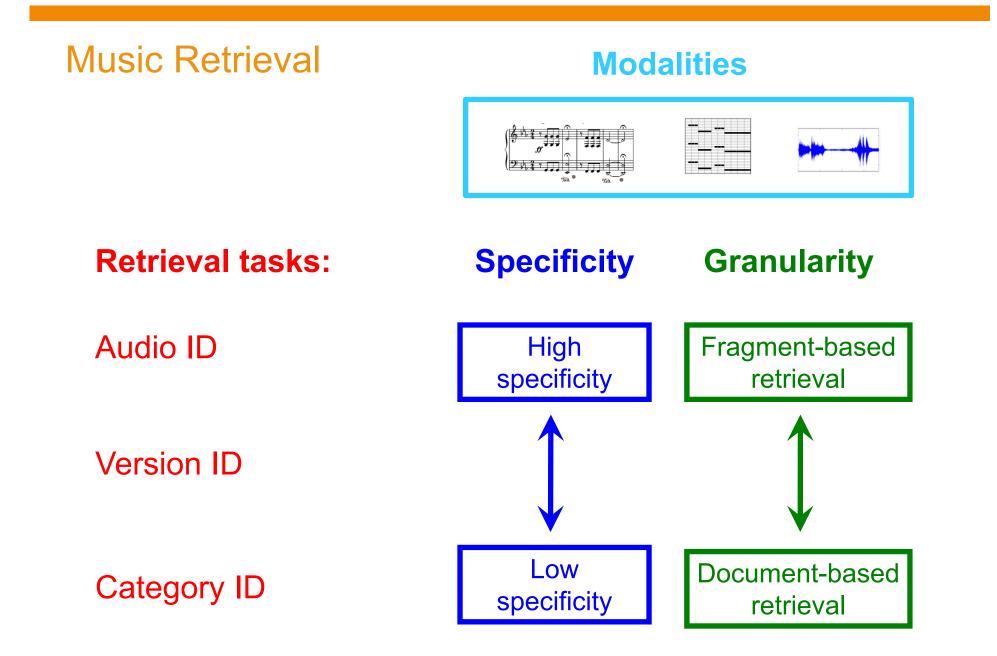
Category ID



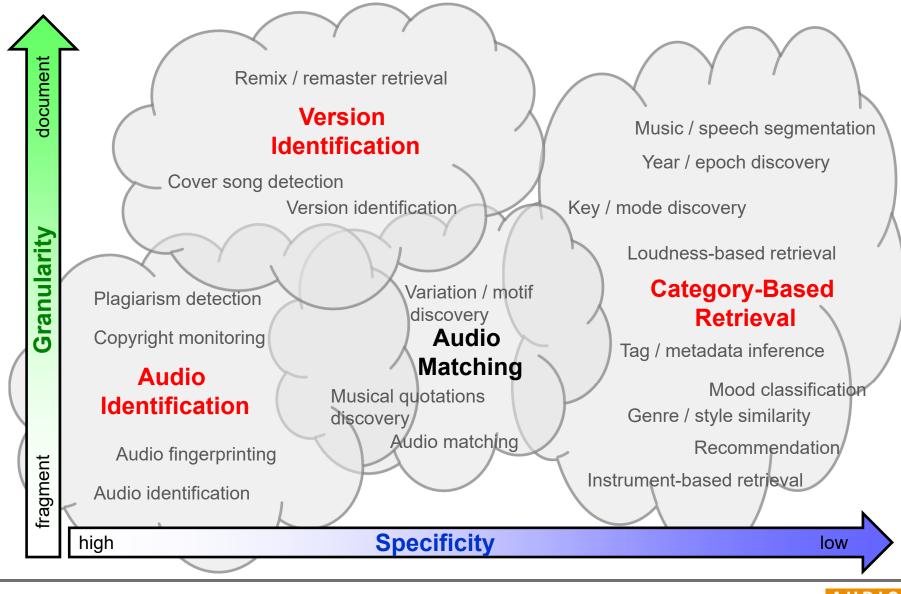
Beethoven, Symphony No. 5:

- Bernstein (1962)
- Karajan (1982)
- Gould (1992)
- Beethoven, Symphony No. 9
- Beethoven, Symphony No. 3
- Haydn Symphony No. 94

AUDIO

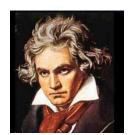


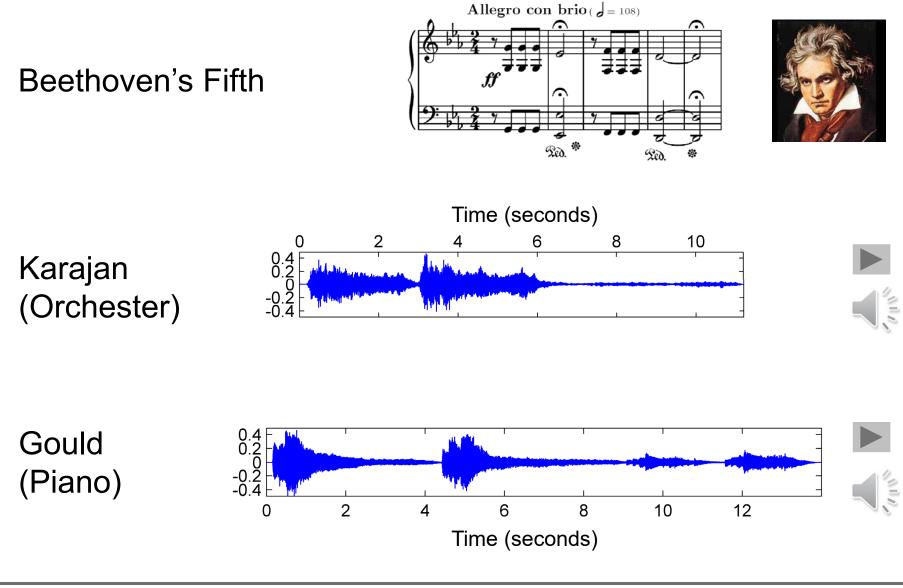
Music Retrieval

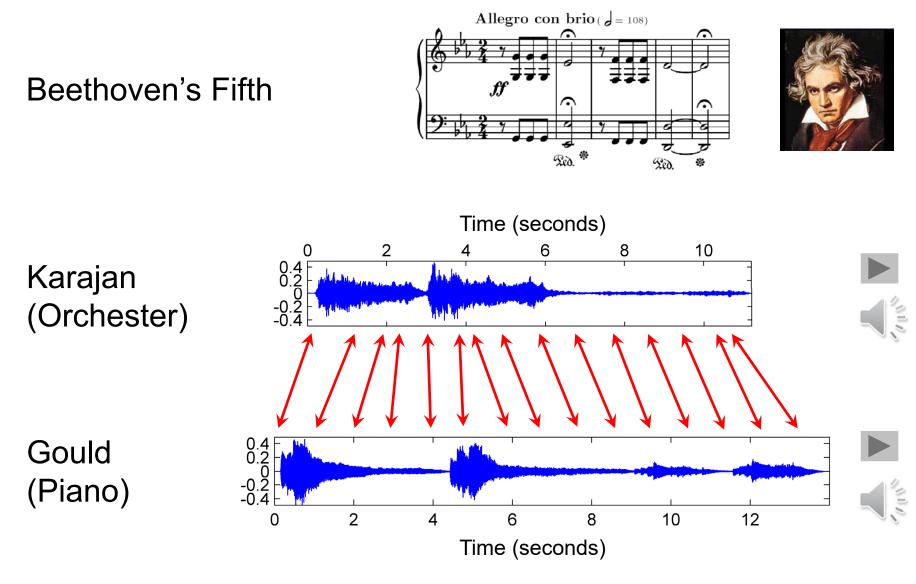


Tutorial EUROGRAPHICS Learning with Music Signal

Beethoven's Fifth







Application: Interpretation Switcher

Task

- **Given:** Two different audio recordings (two versions) of the same underlying piece of music.
- **Goal:** Find for each position in one audio recording the musically corresponding position in the other audio recording.

Traditional Engineering Approach:

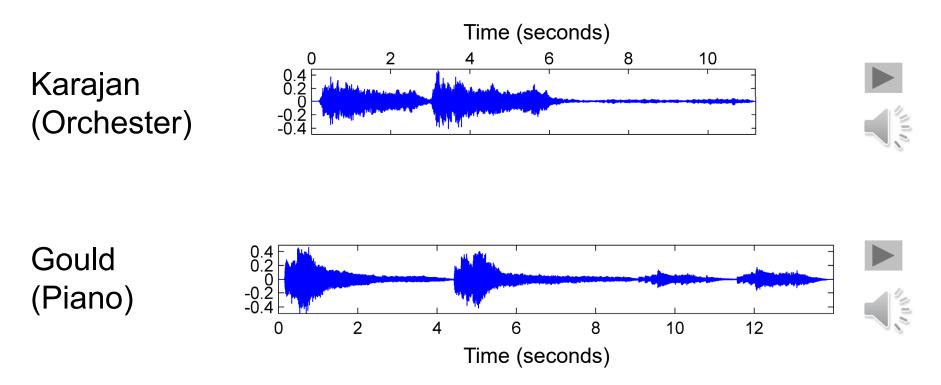
- 1.) Feature extraction
 - Robust to variations (e.g., instrumentation, timbre, dynamics)
 - Discriminative (e.g., capturing harmonic, melodic, tonal aspects)

Chroma features

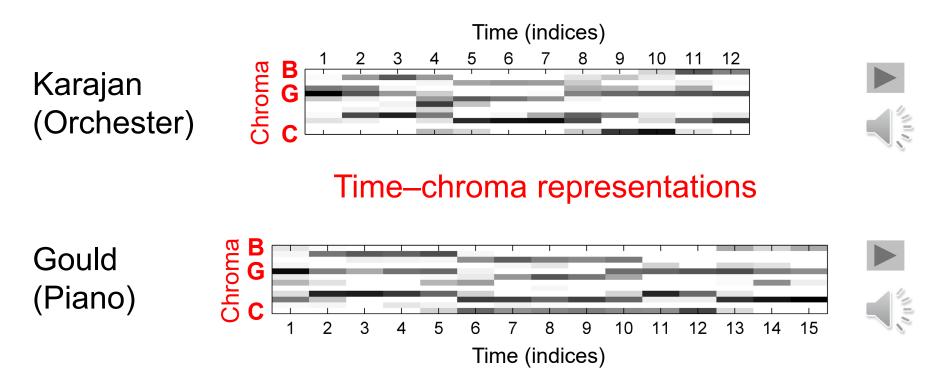
- 2.) Temporal alignment
 - Capturing local and global tempo variations
 - Trade-off: Robustness vs. accuracy
 - Efficiency

Dynamic time warping (DTW)

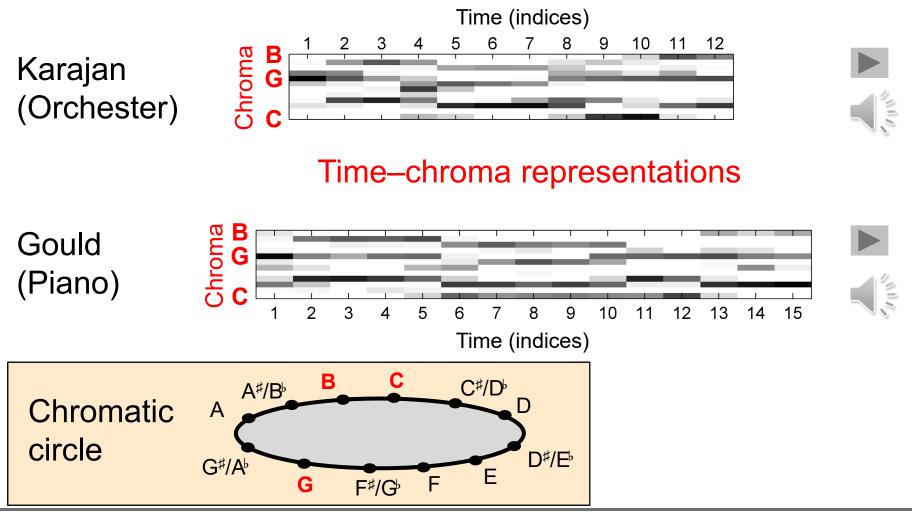
Beethoven's Fifth



Beethoven's Fifth

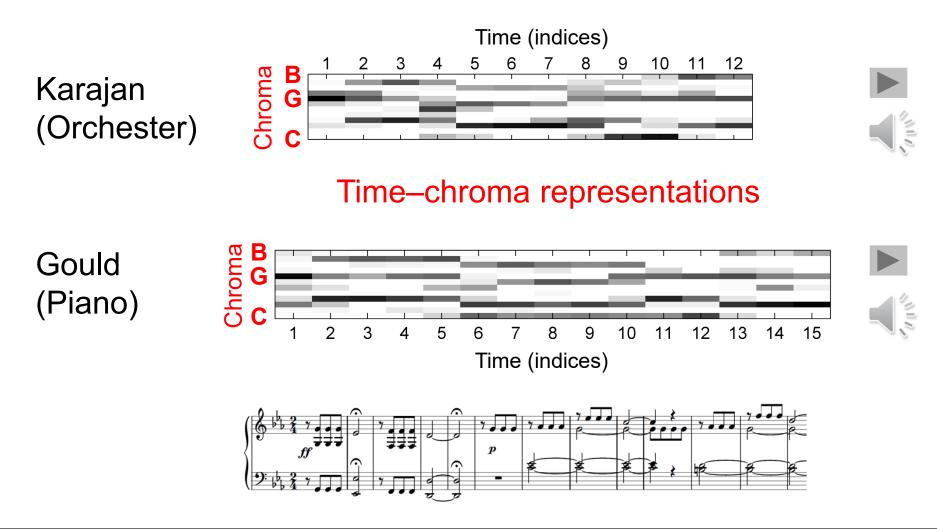


Beethoven's Fifth



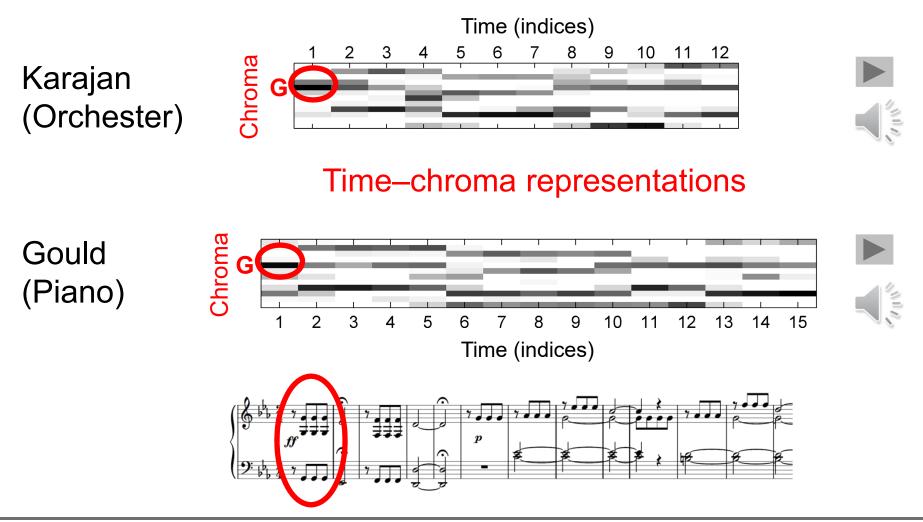
Tutorial EUROGRAPHICS Learning with Music Signal

Beethoven's Fifth

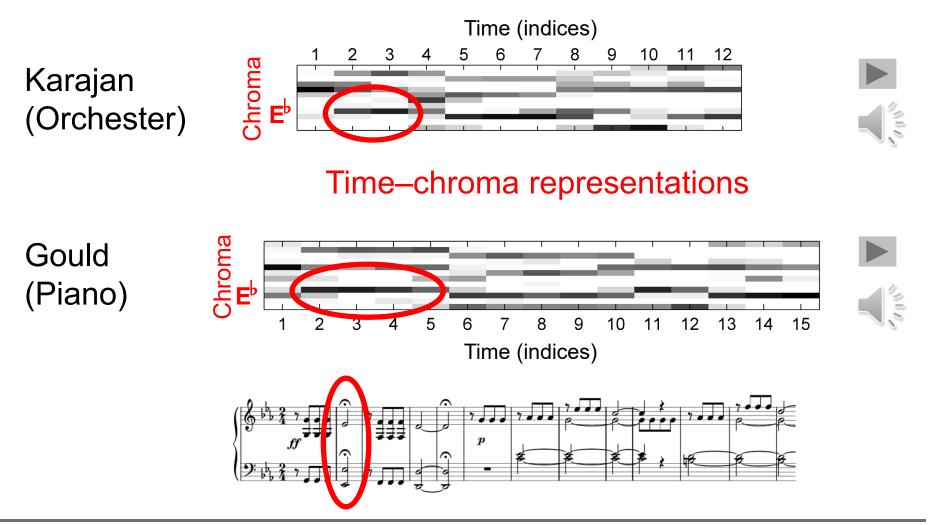


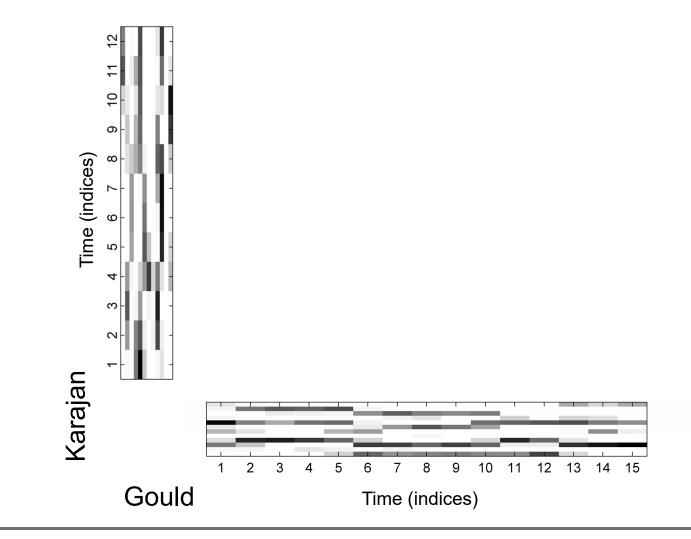
AUDIO

Beethoven's Fifth

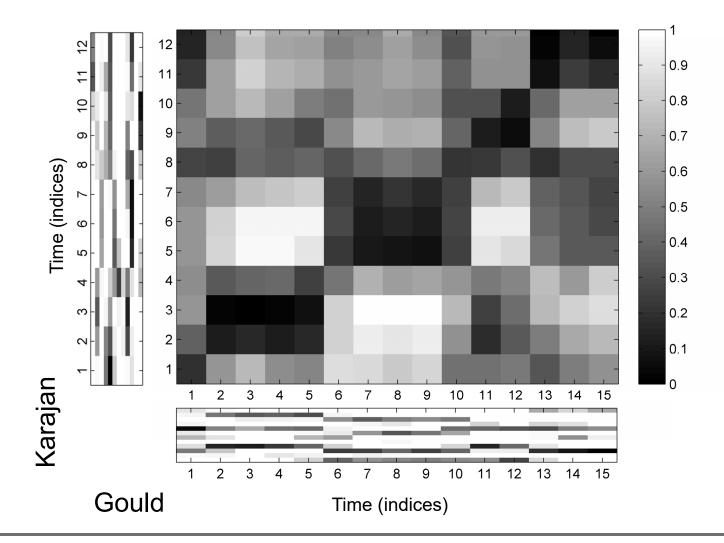


Beethoven's Fifth

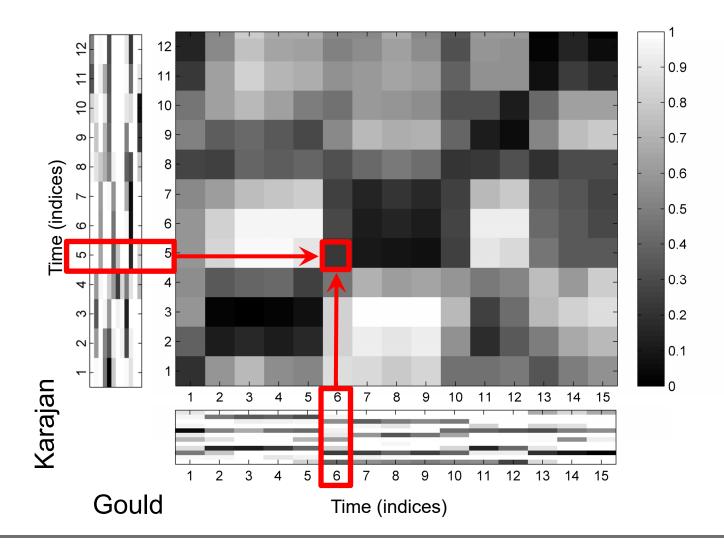




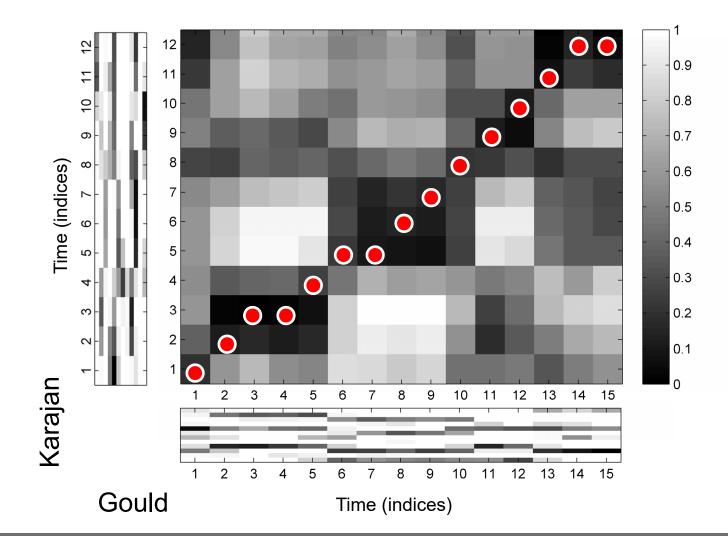
Cost matrix



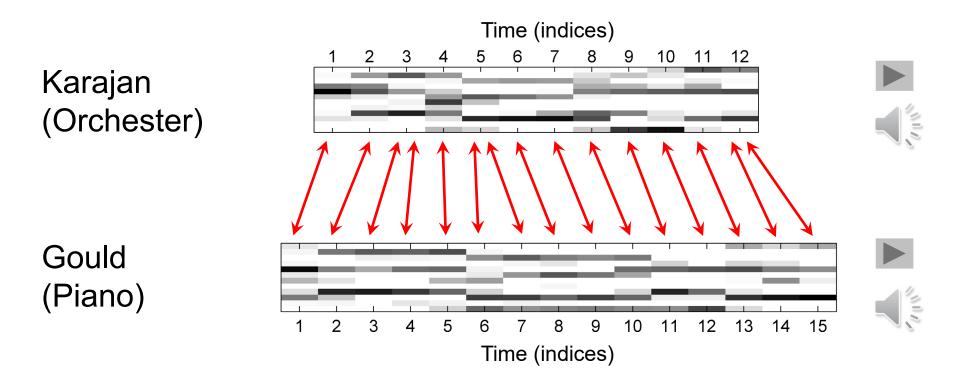
Cost matrix



Cost-minimizing warping path



Cost-minimizing warping path = Optimal alignment



Deep Learning Approaches

Learn audio features from data

- Should be robust to performance variations
- Should yield high alignment accuracy
- Should have musical relevance
- Alignment problem
 - Pre-aligned data for training
 - Part of loss function → differentiability?

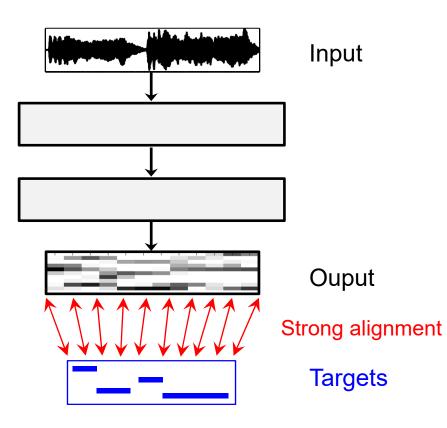
CTC-Loss

Graves et al.: Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks. ICML, 2006

Soft-DTW

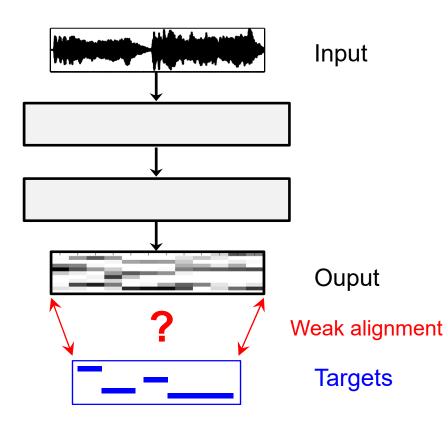
Cuturi, Blondel: Soft-DTW: A Differentiable Loss Function for Time-Series. ICML, 2017

Feature Learning



- Task: Learn audio features using a neural network
- Loss: Binary cross-entropy
 - framewise loss
 - requires strongly aligned targets
 - hard to obtain

Feature Learning



- Task: Learn audio features using a neural network
- Loss: Binary cross-entropy
 - framewise loss
 - requires strongly aligned targets
 - hard to obtain
- Alignment as part of loss function
 - requires only weakly aligned targets
 - needs to be differentiable
- Problem: DTW is not differentiable
 → Soft DTW

Dynamic Time Warping (DTW)

$$X := (x_1, x_2, \dots, x_N)$$

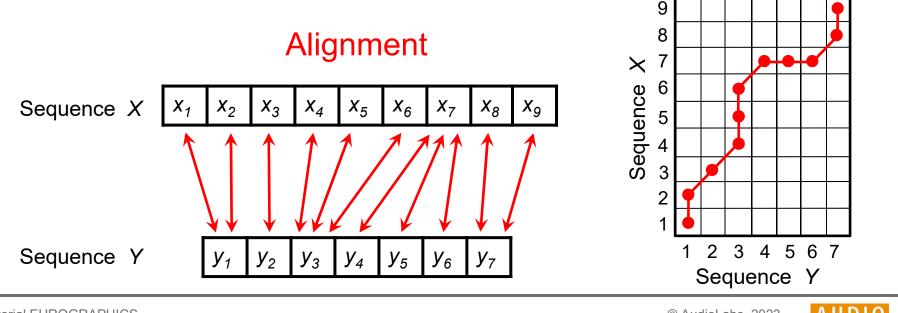
$$Y := (y_1, y_2, \dots, y_M)$$

$$x_n, y_m \in \mathcal{F}, \ n \in [1:N], \ m \in [1:M]$$

 \mathcal{F} = Feature space

Alignment matrix $A \in \{0, 1\}^{N \times M}$

Set of all possible alignment matrices $\mathcal{A}_{N,M} \subset \{0,1\}^{N \times M}$



Tutorial EUROGRAPHICS Learning with Music Signal

Dynamic Time Warping (DTW)

$$X := (x_1, x_2, \dots, x_N)$$

$$Y := (y_1, y_2, \dots, y_M)$$

$$x_n, y_m \in \mathcal{F}, n \in [1 : N], m \in [1 : M]$$

$$\mathcal{F} = \text{Feature space}$$

Alignment matrix $A \in \{0, 1\}^{N \times M}$

Set of all possible alignment matrices $\mathcal{A}_{N,M} \subset \{0,1\}^{N \times M}$

Cost measure: $c : \mathcal{F} \times \mathcal{F} \to \mathbb{R}_{\geq 0}$ Cost matrix: $C \in \mathbb{R}^{N \times M}$ with $C(n,m) := c(x_n, y_m)$ Cost of alignment: $\langle A, C \rangle$ DTW cost: $DTW(C) = \min(\{\langle A, C \rangle \mid A \in \mathcal{A}_{N,M}\})$ Optimal alignment: $A^* = \operatorname{argmin}(\{\langle A, C \rangle \mid A \in \mathcal{A}_{N,M}\})$

Tutorial EUROGRAPHICS Learning with Music Signal

Dynamic Time Warping (DTW)

DTW cost: DTW(C) = min ({ $\langle A, C \rangle \mid A \in \mathcal{A}_{N,M}$ })

Efficient computation via Bellman's recursion in O(NM)
 D(n,m) = min{D(n-1,m), D(n,m-1), D(n,m)} + C(n,m)
 for n>1 and m>1 and suitable initialization.

 $\mathrm{DTW}(C) = D(N,M)$

- Problem: DTW(C) is not differentiable with regard to C
- Idea: Replace min-function by a smooth version

$$\min^{\gamma}\left(\mathcal{S}\right) = -\gamma \log \sum\nolimits_{s \in \mathcal{S}} \exp\left(-s/\gamma\right)$$

for set $\ \mathcal{S} \subset \mathbb{R}$ and temperature parameter $\ \gamma \in \mathbb{R}$

Soft Dynamic Time Warping (SDTW)

SDTW cost: SDTW^{γ}(C) = min^{γ} ({ $\langle A, C \rangle \mid A \in \mathcal{A}_{N,M}$ })

• Efficient computation via Bellman's recursion in O(*NM*) still works: $D^{\gamma}(n,m) = \min^{\gamma} \{D^{\gamma}(n-1,m), D^{\gamma}(n,m-1), D^{\gamma}(n,m)\} + C(n,m)$

for n>1 and m>1 and suitable initialization.

 $\mathrm{SDTW}^{\gamma}(C) = D^{\gamma}(N, M)$

- Limit case: $SDTW^{\gamma}(C) \xrightarrow{\gamma \to 0} DTW(C)$
- SDTW(C) is differentiable with regard to C
- Questions:
 - How does the gradient look like?
 - Can it be computed efficiently?
 - How does SDTW generalize the alignment concept?

Soft Dynamic Time Warping (SDTW)

SDTW cost: SDTW^{γ}(C) = min^{γ} ({ $\langle A, C \rangle \mid A \in \mathcal{A}_{N,M}$ })

- Define $p^{\gamma}(C)$ as the following "probability" distribution over $\mathcal{A}_{N,M}$:

$$p^{\gamma}(C)_{A} = \frac{\exp\left(-\langle A, C \rangle / \gamma\right)}{\sum_{A' \in \mathcal{A}_{N,M}} \exp\left(-\langle A', C \rangle / \gamma\right)} \quad \text{for } A \in \mathcal{A}_{N,M}$$

- The expected alignment with respect to $p^{\gamma}(C)$ is given by:

$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \quad \in \mathbb{R}^{N \times M}$$

• The gradient is given by:

 $\nabla_C \mathrm{SDTW}^{\gamma}(C) = E^{\gamma}(C)$

The gradient can be computed efficiently in O(NM) via a recursive algorithm.

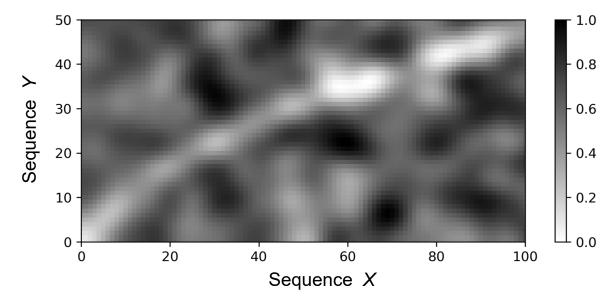
Soft-DTW

Cuturi, Blondel: Soft-DTW: A Differentiable Loss Function for Time-Series. ICML, 2017

Soft Dynamic Time Warping (SDTW)

Expected alignment : $E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$

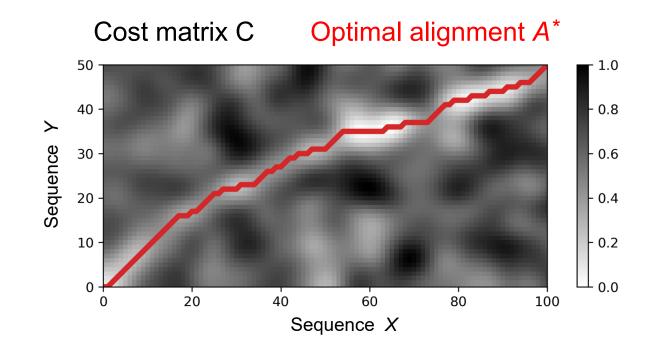
- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



Cost matrix C

Expected alignment : $E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$

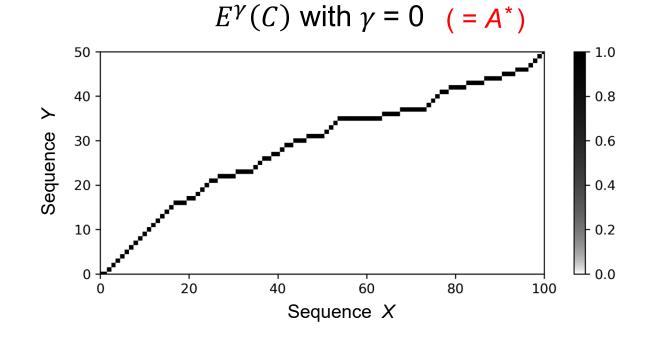
- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



AUDIO

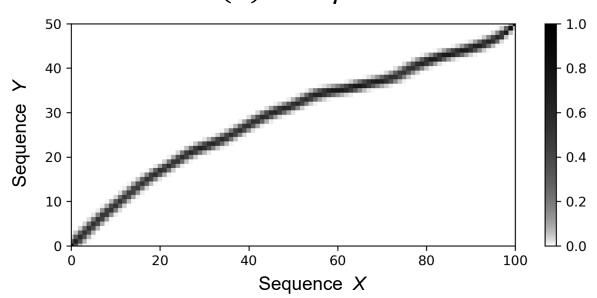
Expected alignment : $E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



Expected alignment : $E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$

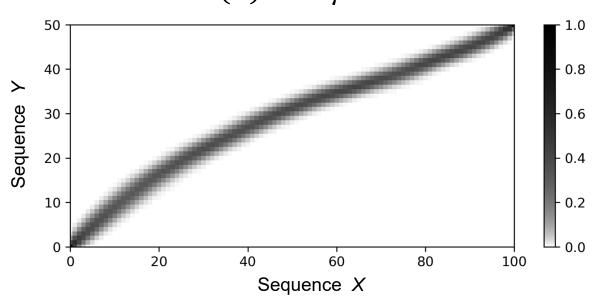
- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



$$E^{\gamma}(C)$$
 with $\gamma = 0.1$

Expected alignment : $E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



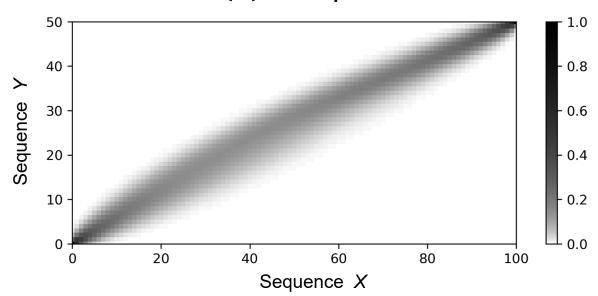
40

$E^{\gamma}(C)$ with $\gamma = 1$

AUDIO

 $\text{Expected alignment}: \quad E^{\gamma}(C) = \sum\nolimits_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \quad \in \mathbb{R}^{N \times M}$

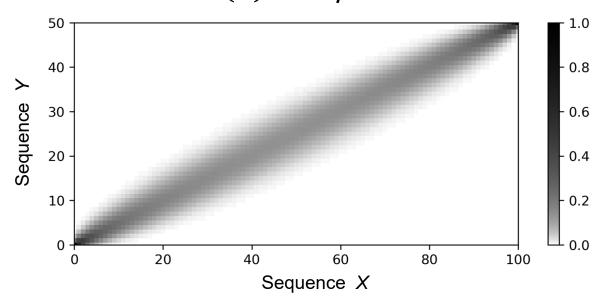
- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



$$E^{\gamma}(C)$$
 with $\gamma = 10$

Expected alignment : $E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



$$E^{\gamma}(C)$$
 with $\gamma = 100$

Soft Dynamic Time Warping (SDTW) Conclusions

- Direct generalization of DTW (replacing min by smooth variant)
- Gradient is given by expected alignment
- Fast forward algorithm: O(NM)
- Fast gradient computation: O(NM)
- SDTW yields a (typically) poor lower bound for DTW
- Can be used as loss function to learn from weakly aligned sequences

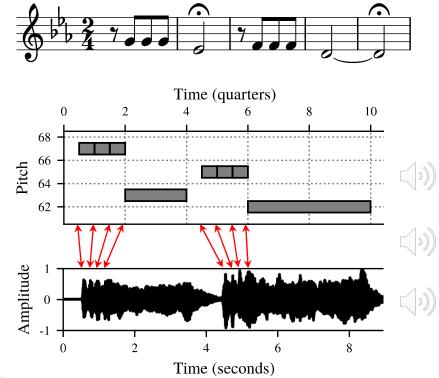
References

- Marco Cuturi, Mathieu Blondel: Soft-DTW: A Differentiable Loss Function for Time-Series. ICML, pages 894–903, 2017.
- Mathieu Blondel, Arthur Mensch, Jean-Philippe Vert: Differentiable Divergences Between Time Series. AISTATS, pages 3853 – 3861, 2021.
- Michael Krause, Christof Weiß, Meinard Müller: Soft Dynamic Time Warping for Multi-Pitch Estimation and Beyond. IEEE ICASSP, 2023.

Thanks:

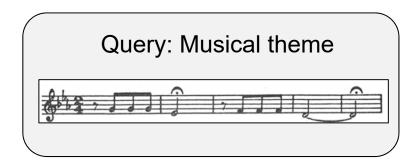
Michale Krause (Ph.D. 2023) Johannes Zeitler (Ph.D.)

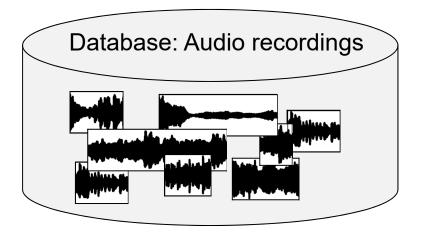
Barlow & Morgenstern (1949): A Dictionary of Musical Themes



- 2067 themes by 54 different composers
- Recordings (1126 recordings, ~ 120 hours)
- Theme occurences (~ 5 hours)

Barlow & Morgenstern (1949): A Dictionary of Musical Themes





Challenges

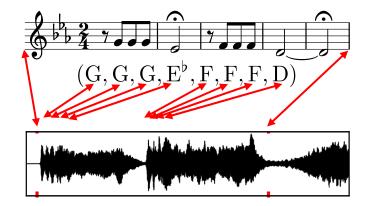
- Cross-modality
 Symbolic vs. audio data
- Tuning
 Deviations from standard tuning
- Transposition
 Played key vs. written key
- Tempo Local & global tempo deviations
- Polyphony
 Monophonic query vs.
 polyphonic audio

Theme-Based Audio Retrieval Monophony–Polyphony Challenge

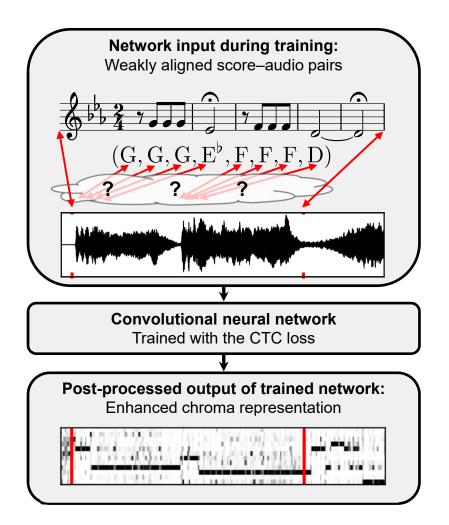


Goal: Compute "enhanced" chromagram from polyphonic audio recording that better matches the symbolic monophonic theme

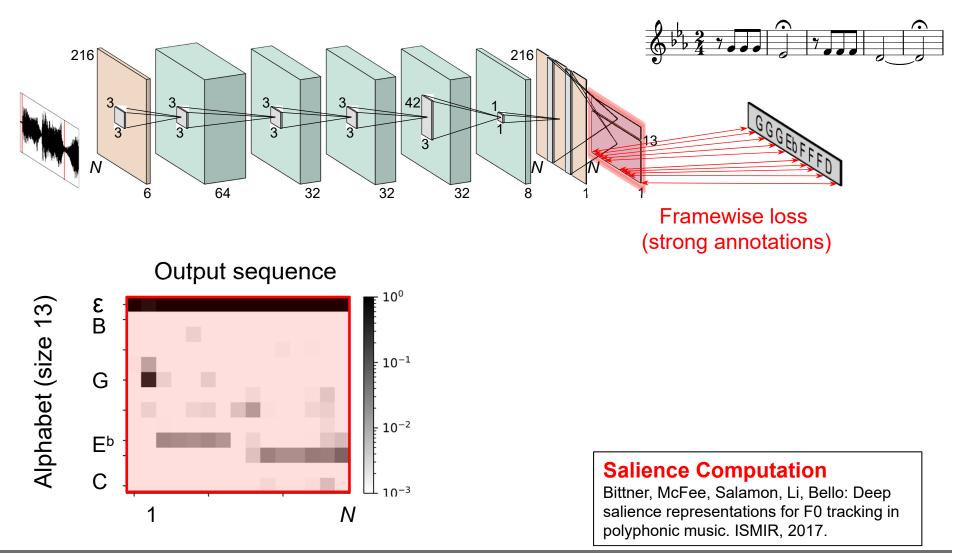
Strongly Aligned Training Data

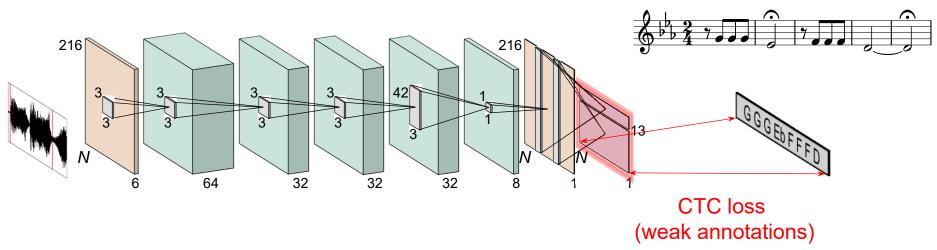


Weakly Aligned Training Data



Tutorial EUROGRAPHICS Learning with Music Signal



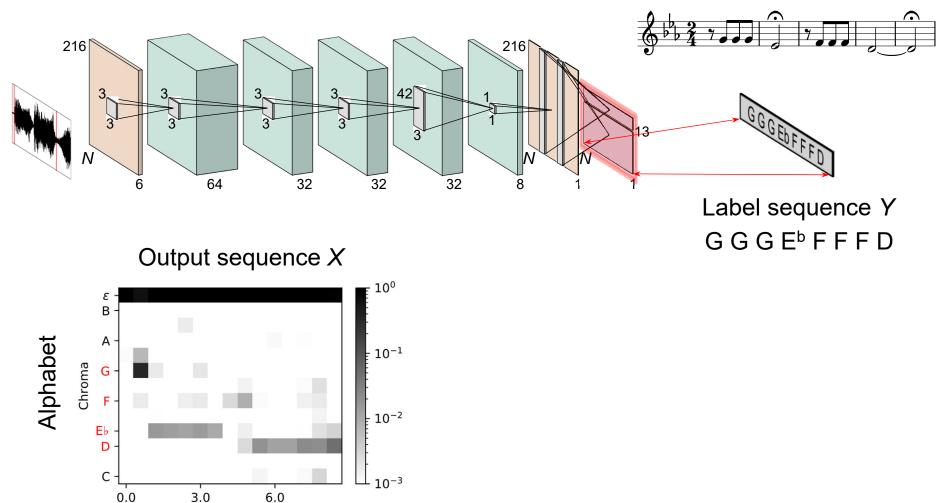


- Idea of CTC loss similar to SDTW
- Theme is given as label sequence over finite alphabet (size 13 including blank symbol)
- Expand label sequence to match audio feature sequence \rightarrow valid alignment
- CTC loss considers probability over all valid alignments → differentiable

CTC Loss

Graves, Fernández, Gomez, Schmidhuber: Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks. ICML, 2006.

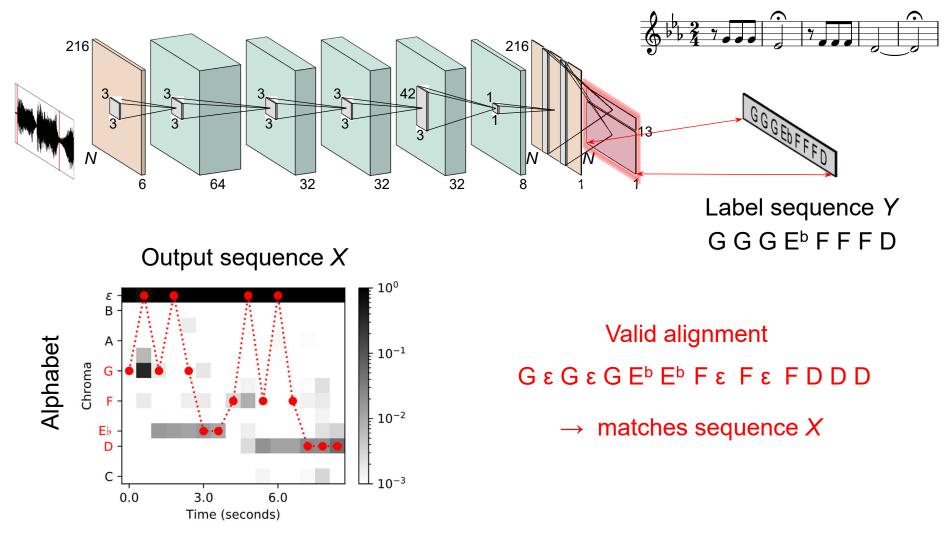
CTC-Based Training



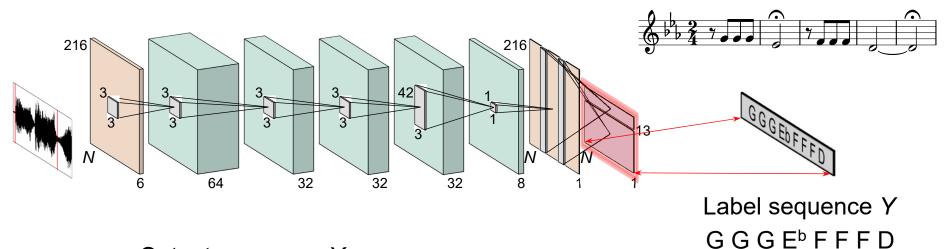
Tutorial EUROGRAPHICS Learning with Music Signal

Time (seconds)

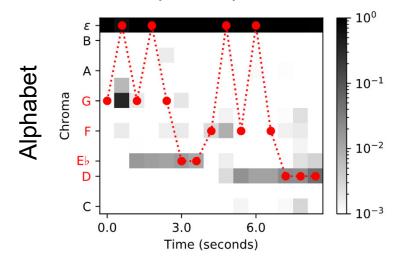
CTC-Based Training



CTC-Based Training



Output sequence X



Set of all valid alignments

$$\mathbb{K}_{X,Y} = \{A \in (\mathbb{A}')^N : \kappa(A) = Y\}$$

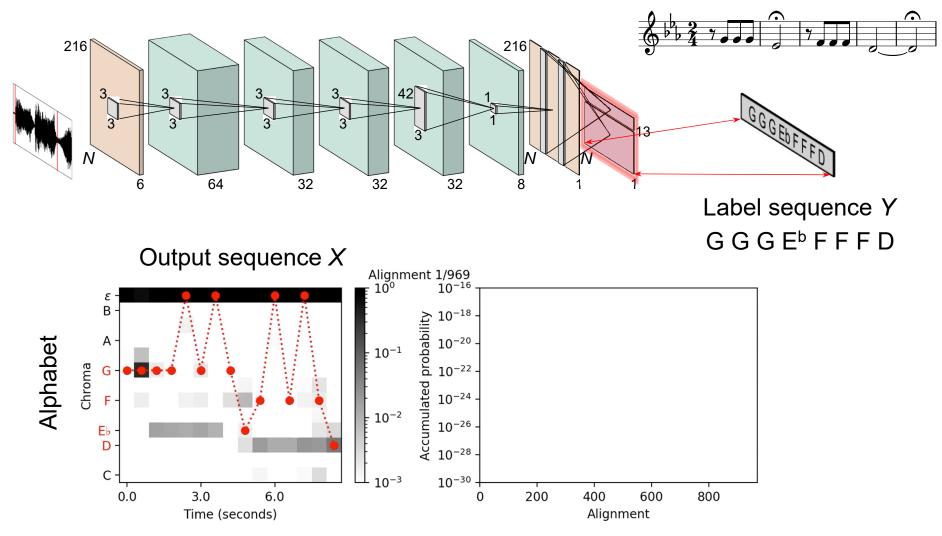
Probability of label sequence

$$P(Y \mid X) = \sum\nolimits_{A \in \mathbb{K}_{X,Y}} P(A \mid X)$$

CTC loss

$$L_{\theta}(X, Y) = -\log P(Y \mid X)$$

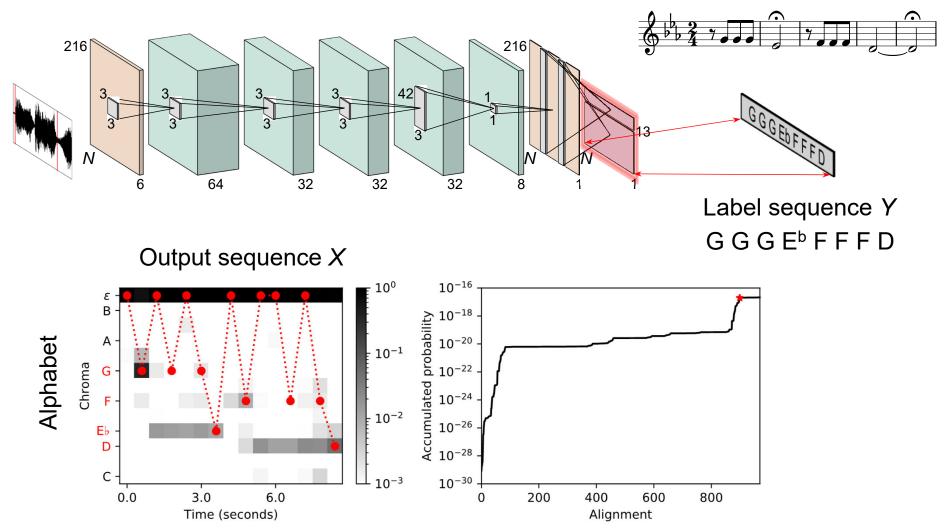
CTC-Based Training



Tutorial EUROGRAPHICS Learning with Music Signal AUDIO

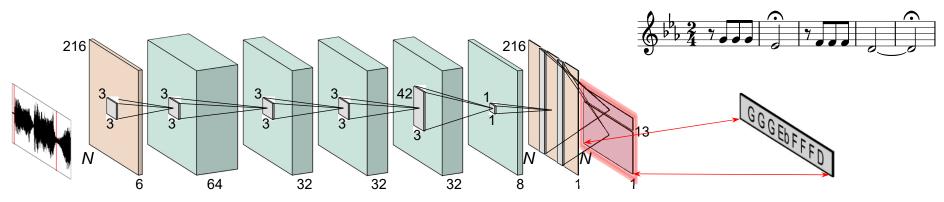
LABS

CTC-Based Training

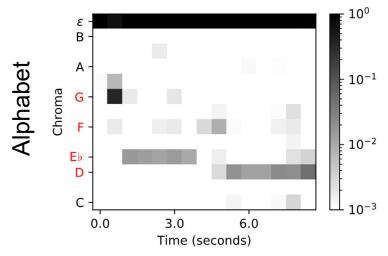


Tutorial EUROGRAPHICS Learning with Music Signal

CTC-Based Training

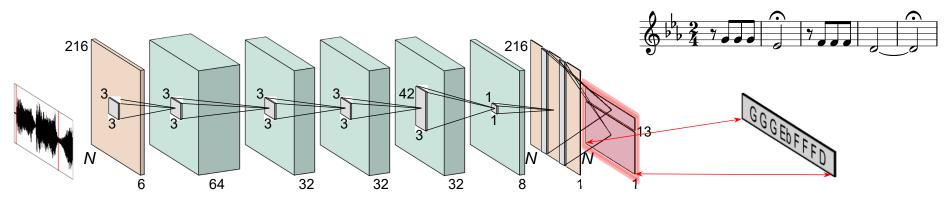


Output sequence X



Tutorial EUROGRAPHICS Learning with Music Signal

CTC-Based Training



Output sequence X **Final Chromagram** 100 1.0 ε Post В В processing - 0.8 А Alphabet А 10^{-1} G Chroma Chroma 0.6 G F F 0.4 ± 10^{−2} Eb Eb D 0.2 D С С 10-3 0.0 3.0 6.0 3.0 6.0 0.0 0.0 Time (seconds) Time (seconds)

Tutorial EUROGRAPHICS Learning with Music Signal

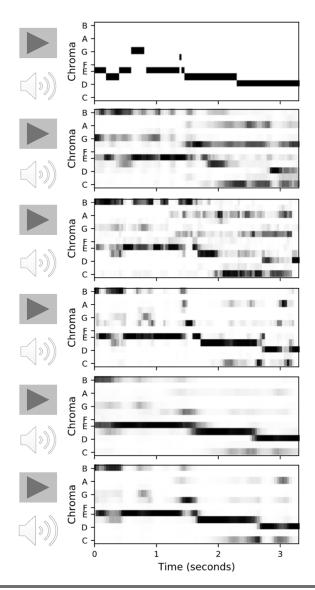
© AudioLabs, 2023

Meinard Müller

Evaluation Results

 $(E,D^{\sharp},E,G,E,E,F^{\sharp},E,D^{\sharp},D,D)$

Chroma Variant	Top-1	Top-10
Standard chromagram	0.561	0.723
Enhanced chromagram (baseline)	0.824	0.861
DNN-based chromagram (CTC)	0.867	0.942
DNN-based chromagram (linear scaling)	0.829	0.914
DNN-based chromagram (strong alignment)	0.882	0.939



References

- R. Bittner, B. McFee, J. Salamon, P. Li, and J. Bello: Deep salience representations for F0 tracking in polyphonic music. Proc. ISMIR, pages 63–70, 2017.
- A. Graves, S. Fernández, F. J. Gomez, and J. Schmidhuber: Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks. ICML, 2006.
- F. Zalkow, S. Balke, V. Arifi-Müller, and M. Müller. MTD: A multimodal dataset of musical themes for MIR research. TISMIR, 3(1), 2020.
- F. Zalkow, S. Balke, and M. Müller. Evaluating salience representations for cross-modal retrieval of Western classical music recordings. Proc. ICASSP, 2019.
- F. Zalkow and M. Müller. CTC-based learning of deep chroma features for score-audio music retrieval. 2021. IEEE/ACM Trans. on Audio, Speech, and Language Processing, 29, pages 2957–2971, 2021.

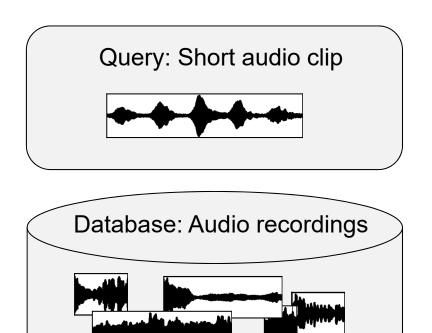
Thanks:

Frank Zalkow (Ph.D. 2021) Stefan Balke (Ph.D. 2018)

Audio Matching

Task

Given a short query audio clip, find corresponding audio clips of similar musical content.



Challenges

- Similarity measure
 - Different performances
 - Instrumentation may change
 - Similar harmonic progression
- Local comparison
 - Query is short
 - Database recordings are long
- Efficiency
 - Database may be huge

62

Audio Matching

Task

Query:

Database: Matches

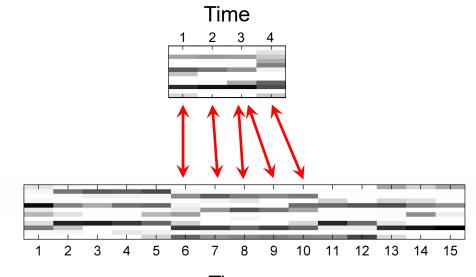


Audio Matching

Task

Query: Sequence X

Database: Sequence Y



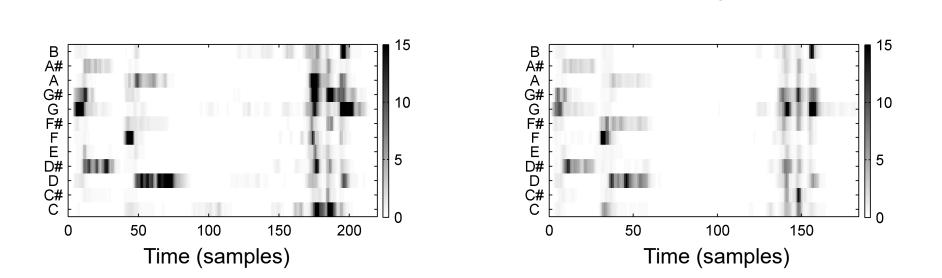
Time

Subsequence matching

Audio Features

Example: Beethoven's Fifth

Bernstein



Chroma representation (10 Hz)

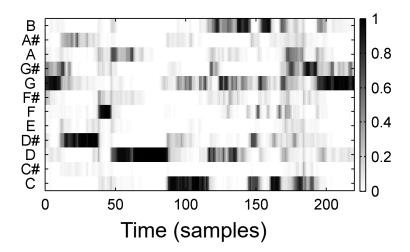
Chroma Features

Karajan

Müller, Kurth, Clausen: Audio Matching via Chroma-Based Statistical Features. ISMIR, 2005

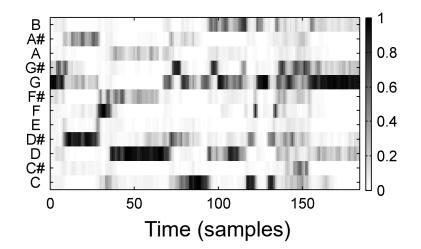
Audio Features

Example: Beethoven's Fifth



Bernstein

Karajan



Chroma representation (10 Hz)

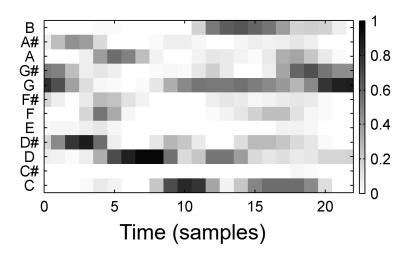
Normalization

Chroma Features

Müller, Kurth, Clausen: Audio Matching via Chroma-Based Statistical Features. ISMIR, 2005

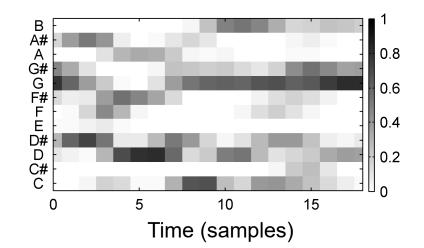
Audio Features

Example: Beethoven's Fifth



Bernstein

Karajan



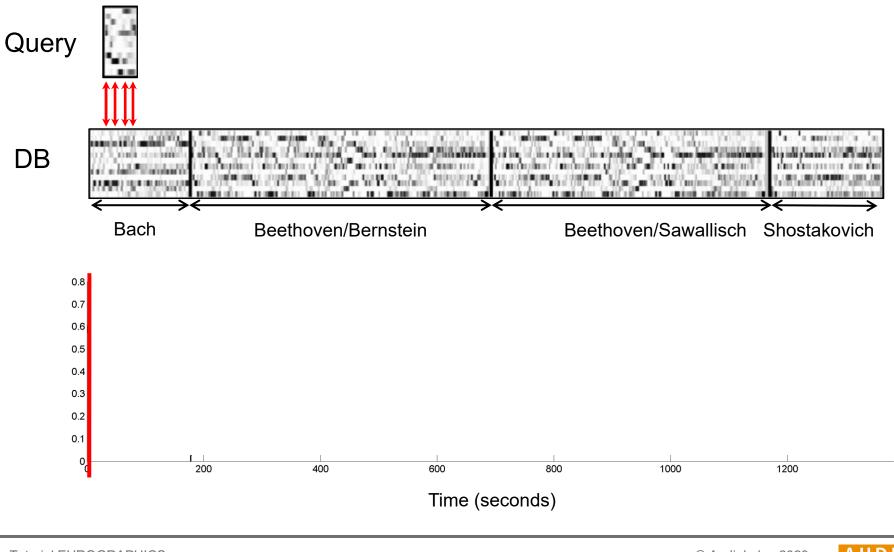
Chroma representation (1 Hz)

- Normalization
- Smoothing & downsampling

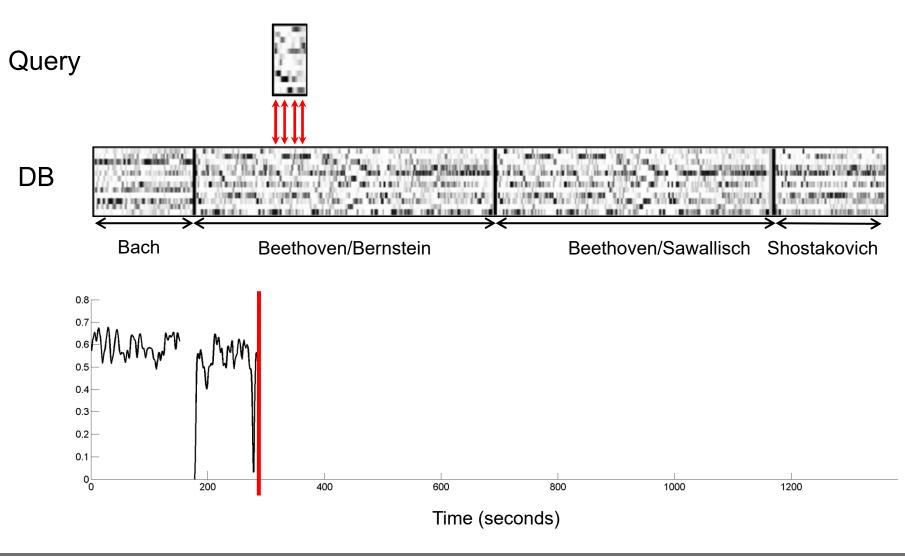
Chroma Features

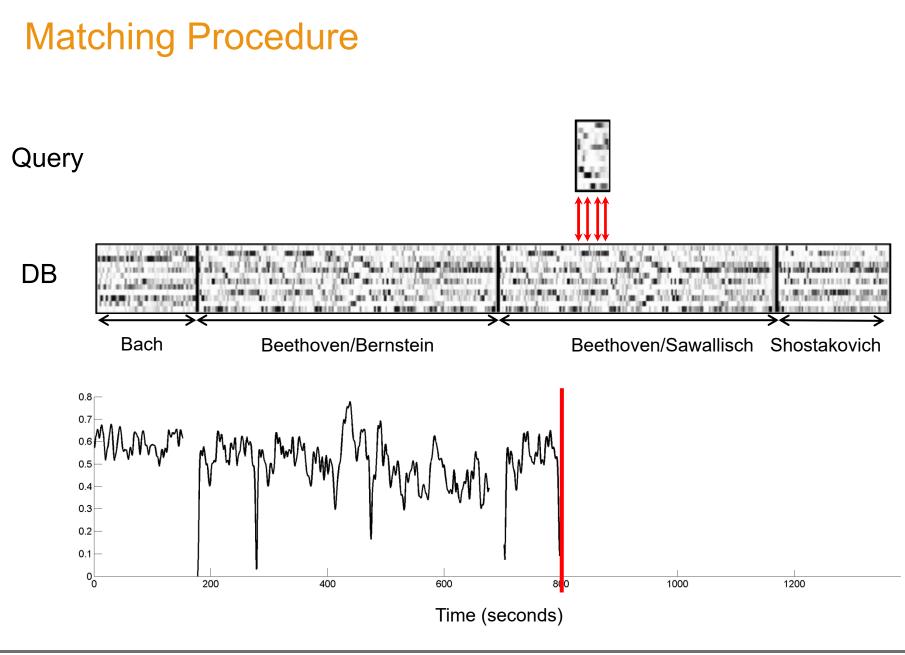
Müller, Kurth, Clausen: Audio Matching via Chroma-Based Statistical Features. ISMIR, 2005

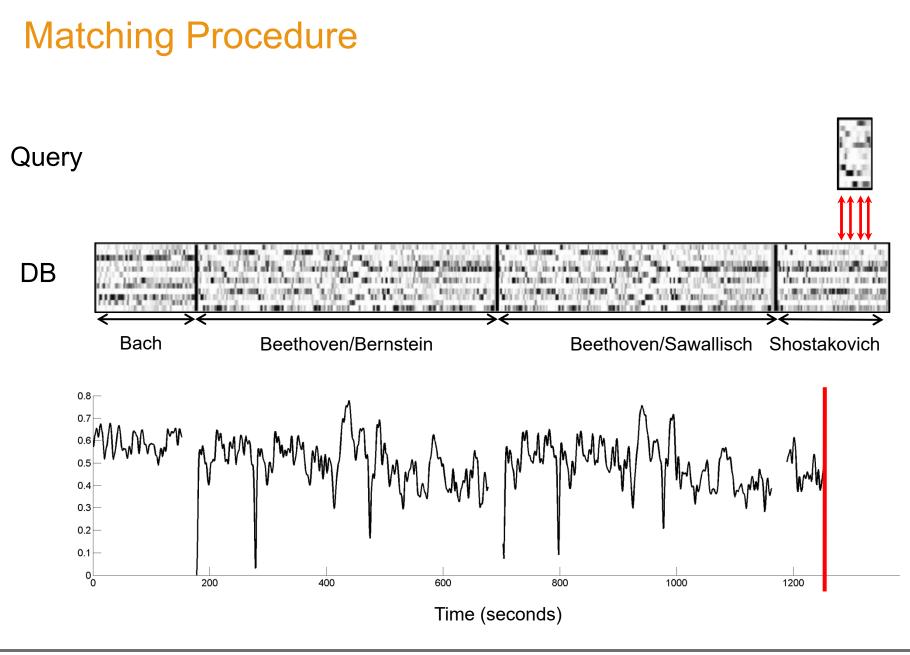
Matching Procedure



Matching Procedure



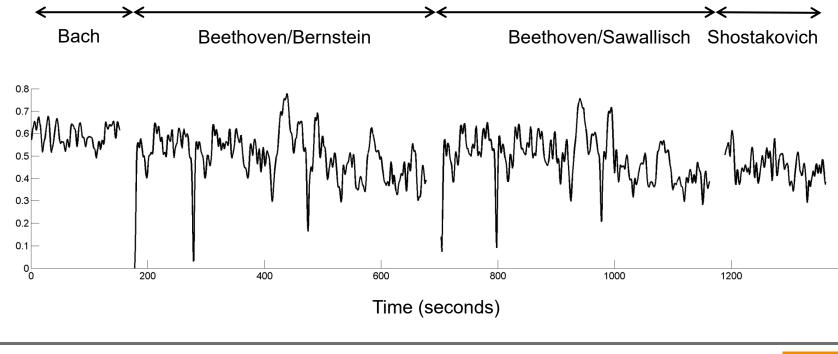




Matching Procedure

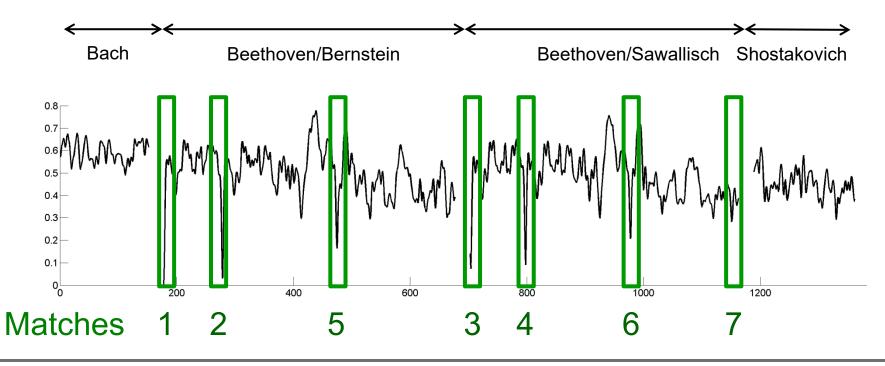
Matching curve

Query: Beethoven's Fifth / Bernstein (first 20 seconds)



Matching curve

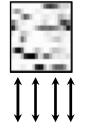
Query: Beethoven's Fifth / Bernstein (first 20 seconds)

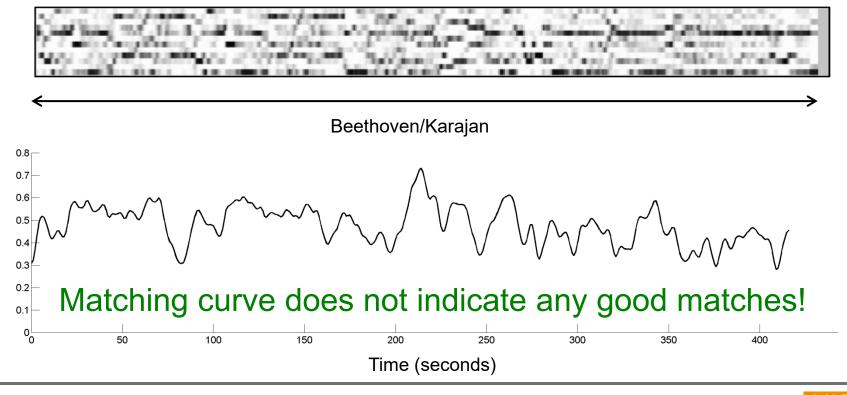


Tutorial EUROGRAPHICS Learning with Music Signal

Problem: How to deal with tempo differences?

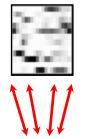
Karajan is much faster than Bernstein!



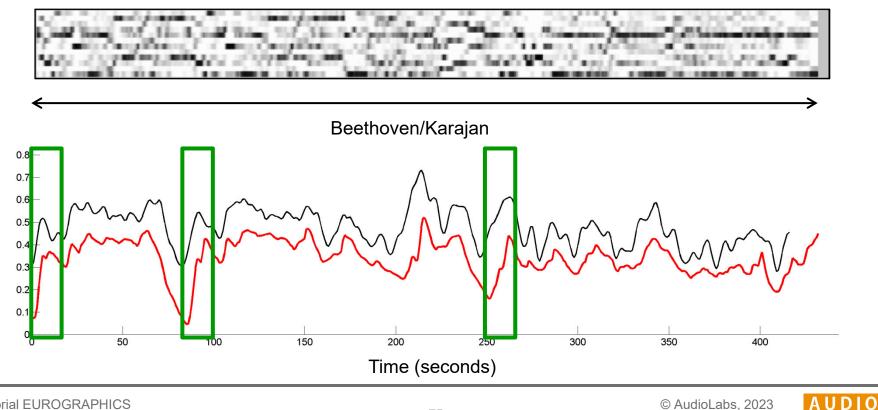


1. Strategy: Usage of local warping

Karajan is much faster than Bernstein!

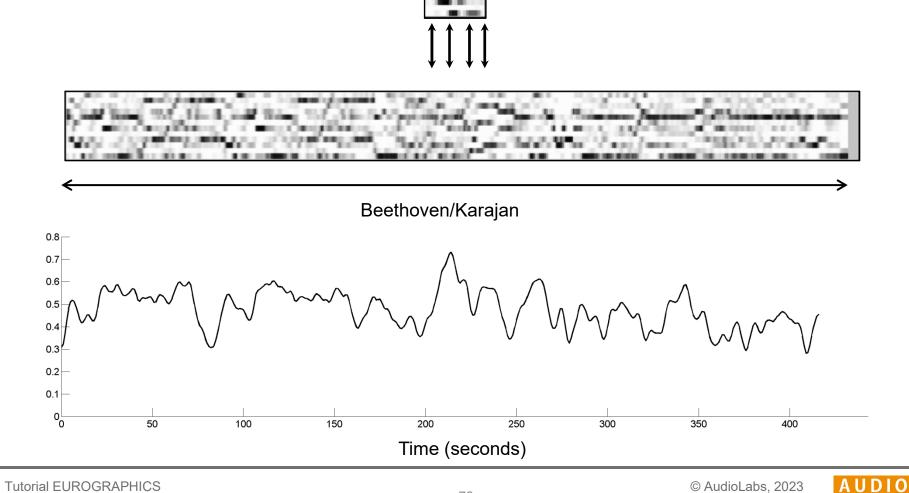


Warping strategies are computationally expensive and hard for indexing.



Tutorial EUROGRAPHICS Learning with Music Signal © AudioLabs, 2023 Meinard Müller

2. Strategy: Usage of multiple scaling

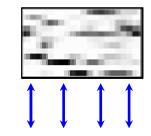


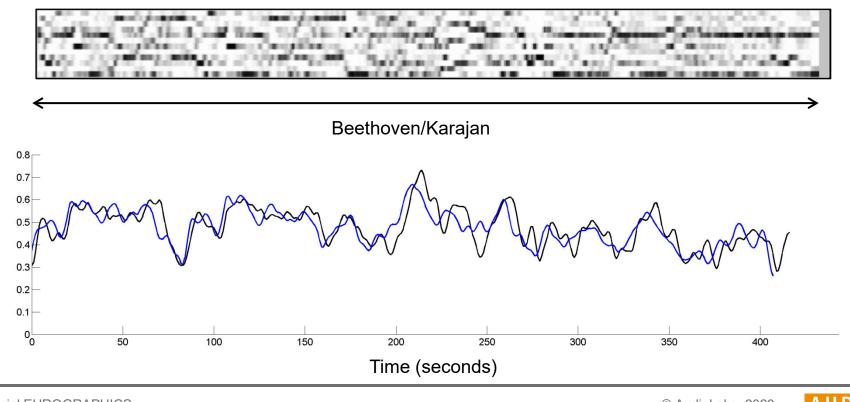
Learning with Music Signal

LABS

Meinard Müller

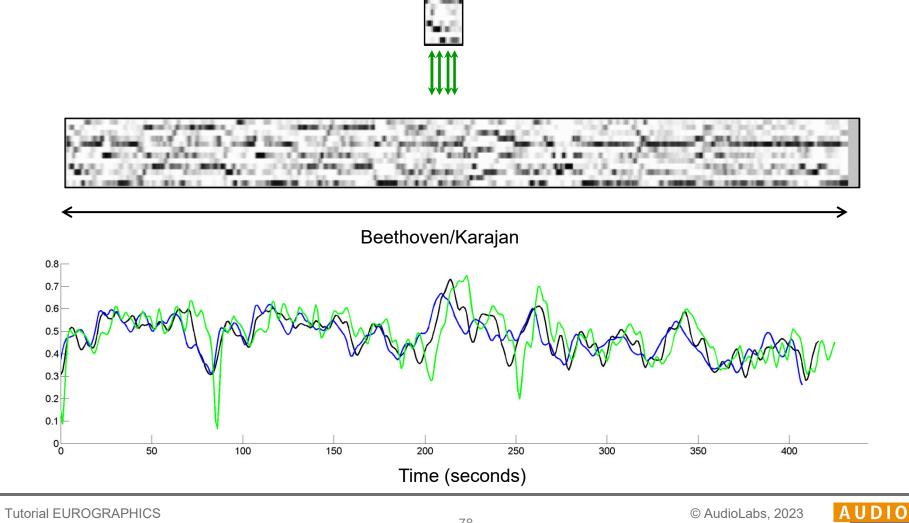
2. Strategy: Usage of multiple scaling





Tutorial EUROGRAPHICS Learning with Music Signal

2. Strategy: Usage of multiple scaling

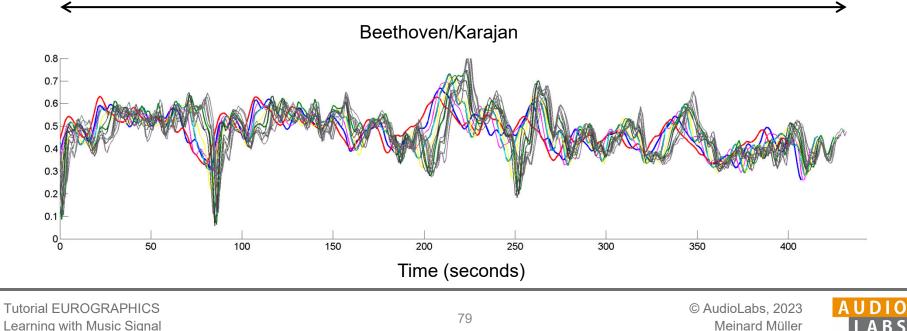


Learning with Music Signal

Meinard Müller

LABS

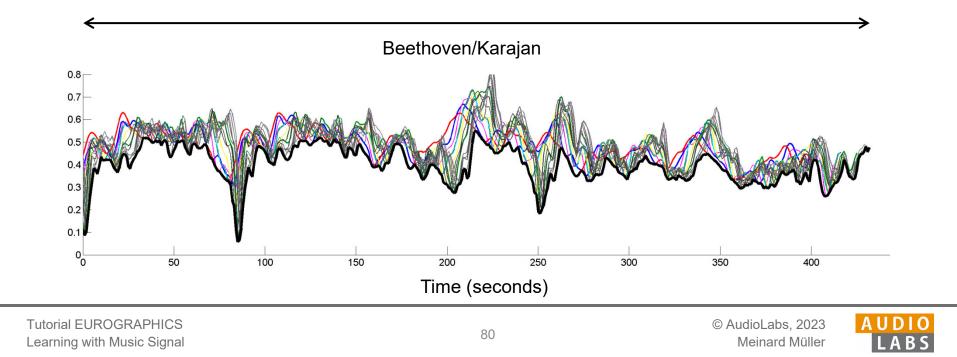
- 2. Strategy: Usage of multiple scaling
- Query resampling simulates tempo changes



Learning with Music Signal

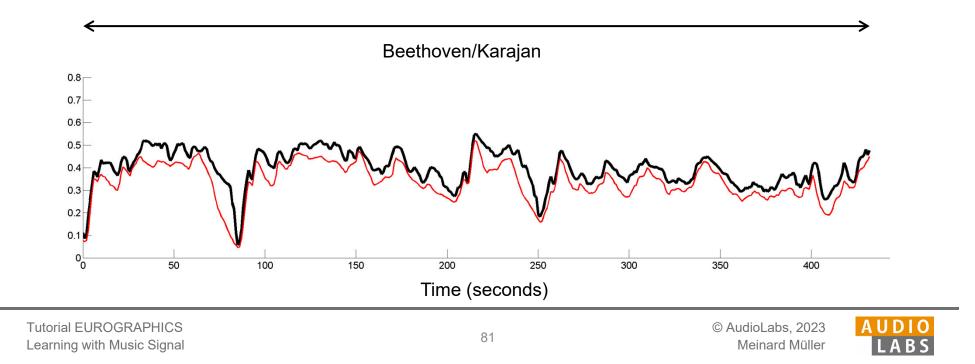
2. Strategy: Usage of multiple scaling

- Query resampling simulates tempo changes
- Minimize over all curves



2. Strategy: Usage of multiple scaling

- Query resampling simulates tempo changes
- Minimize over all curves
- Resulting curve is similar to warping curve



Audio Matching

Query: Beethoven's Fifth / Bernstein (first 20 seconds)

Rank	Piece	Position	
1	Beethoven's Fifth/Bernstein	0 - 21 🕨	
2	Beethoven's Fifth/Bernstein	101- 122 🕨	
3	Beethoven's Fifth/Karajan	86 - 103 🕨	
:	:	: :	
:	÷	: :]
10	Beethoven's Fifth/Karajan	252 - 271 🕨	
11	Beethoven's Fifth/Scherbakov	0 - 19 🕨	
12	Beethoven's Fifth/Sawallisch	275 - 296 🕨	
13	Beethoven's Fifth/Scherbakov	86 - 103 🕨	
14	Schumann Op. 97,1/Levine	28 - 43 🕨	

Audio Matching

Strategy: Handle variations at various levels

- Chroma → invariance to timbre
- Normalization \rightarrow invariance to dynamics
- Smoothing → invariance to local time deviations
 - Multiple queries
- \rightarrow invariance to global tempo

Notes:

- There is no "standard" chroma feature.
 → Variants can make a huge difference!
- Learn invariance from examples
 → "Deep Chroma"
- Temporal warping makes problem hard

Efficiency

Audio Matching

Müller, Kurth, Clausen: Audio Matching via Chroma-Based Statistical Features. ISMIR, 2005

Deep Chroma

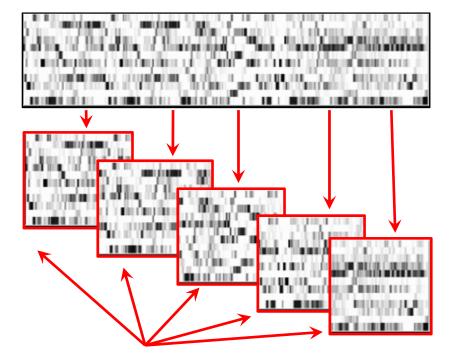
Korzeniowski, Widmer: Feature Learning for Chord Recognition: The Deep Chroma Extractor. ISMIR, 2016

- Query and database are split up into small overlapping shingles that consist of short feature subsequences.
- Shingles can be matched using efficient nearest neighbor retrieval.
- Trade-off:
 - Large shingles have high musical relevance
 - High shingle dimensionality makes indexing difficult

Database Chroma sequence

Chroma shingles

Retrieval (index-based)

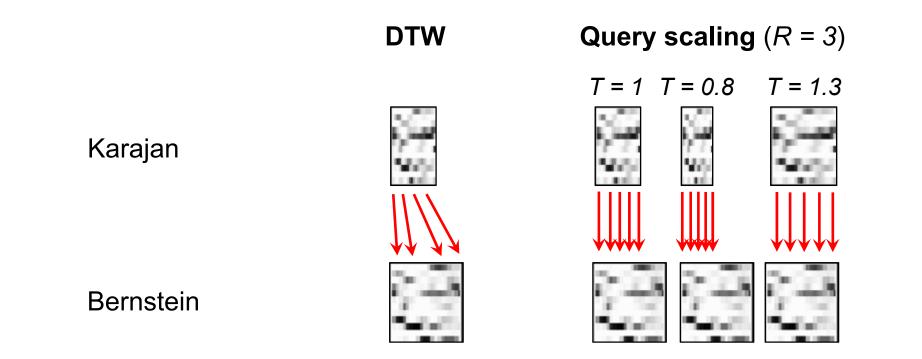


Query Chroma sequence (ca. 10 to 30 seconds)

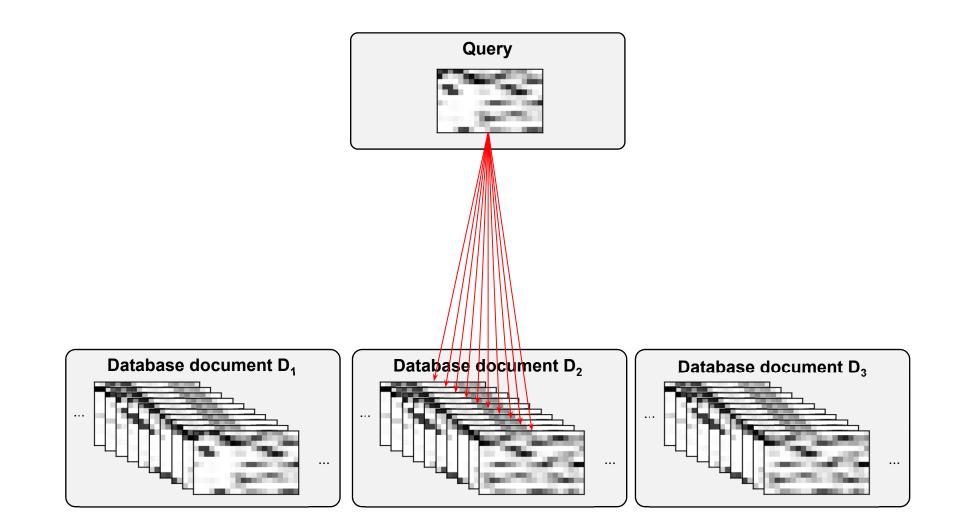
Tutorial EUROGRAPHICS Learning with Music Signal

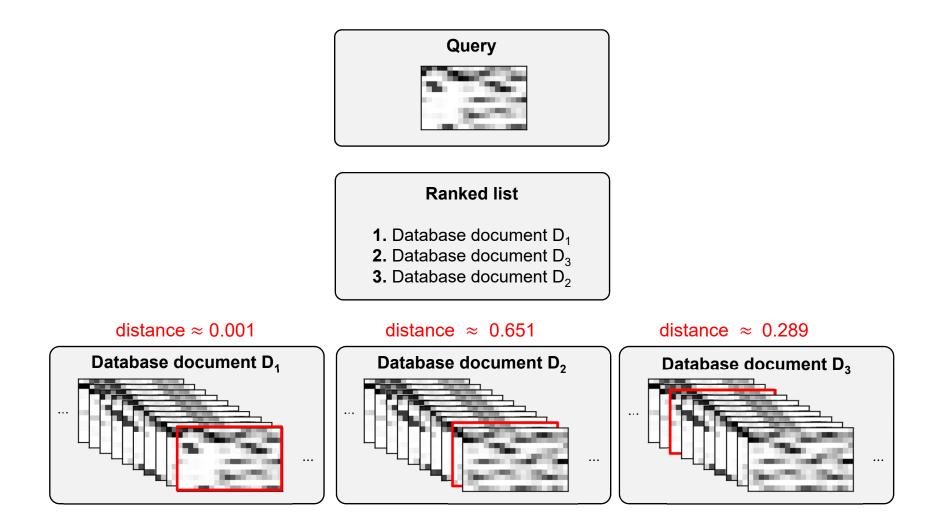
Tempo-invariant matching

Avoiding expensive temporal warping, tempo differences are handled by creating R scaled variants of the query, each simulating a global change in tempo of up to ± 50 %.



86



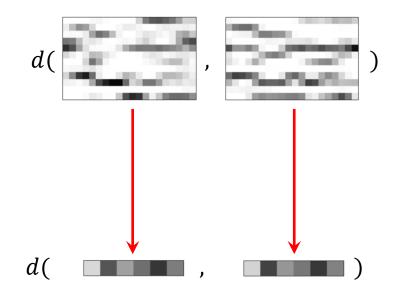


Shingle-Based Retrieval Dimensionality Reduction

Retrieval based on distance computation between shingles

Expensive for high shingle dimensions

Strategy: dimensionality reduction



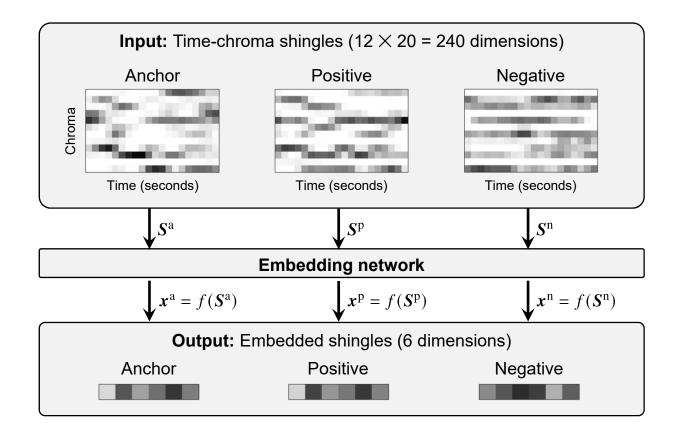
1. Using classical PCA

2. Using a neural network trained with triplet loss

Triplet Loss

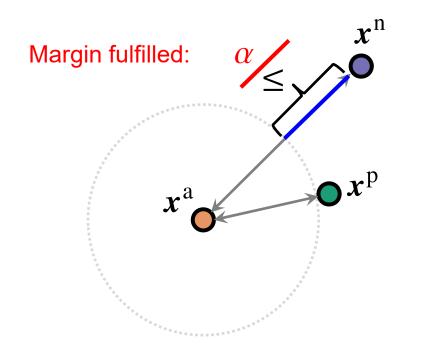
F. Schroff, D. Kalenichenko, J. Philbin: FaceNet: A unified embedding for face recognition and clustering. CVPR, 2015.

Shingle-Based Retrieval Triplet-Based Embedding



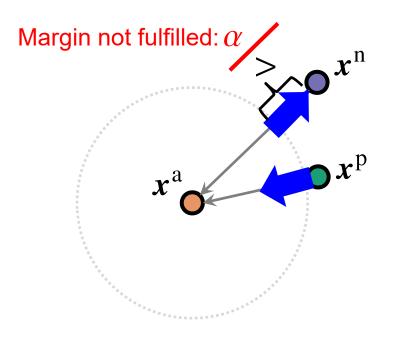
Shingle-Based Retrieval Triplet Loss

 $\mathcal{L}(\mathbf{X}) = \max\left(0, d(\mathbf{x}^{a}, \mathbf{x}^{p}) - d(\mathbf{x}^{a}, \mathbf{x}^{n}) + \alpha\right)$



Shingle-Based Retrieval Triplet Loss

 $\mathcal{L}(\boldsymbol{X}) = \max\left(0, d(\boldsymbol{x}^{a}, \boldsymbol{x}^{p}) - d(\boldsymbol{x}^{a}, \boldsymbol{x}^{n}) + \boldsymbol{\alpha}\right)$



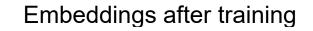
Loss tries to

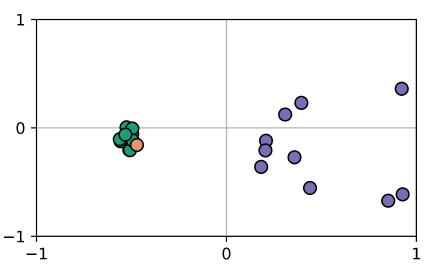
- **push** x^n from anchor x^a
- pull x^p towards anchor x^a

until margin α is fulfilled

Shingle-Based Retrieval Triplet Loss

$$\mathcal{L}(\boldsymbol{X}) = \max\left(0, d(\boldsymbol{x}^{\mathrm{a}}, \boldsymbol{x}^{\mathrm{p}}) - d(\boldsymbol{x}^{\mathrm{a}}, \boldsymbol{x}^{\mathrm{n}}) + \boldsymbol{\alpha}\right)$$



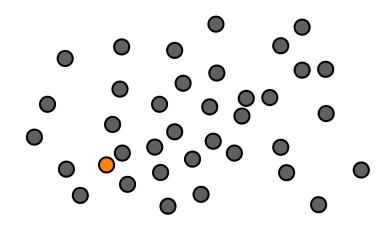


Experiment

- Training set: 357 recordings of different pieces by Beethoven, Chopin, and Vivaldi (~ 19 hours)
- Test set: 330 different recordings of different pieces by the same composers (~ 16 hours)

Shingle Reduction	Dimensionality	Retrieva P@1	l Quality MAP	Retrieval Time (seconds)
No reduction	240	0.996	0.972	23.0
DNN	30	0.981	0.959	3.4
DNN	12	0.964	0.928	1.8
DNN	6	0.890	0.856	1.2

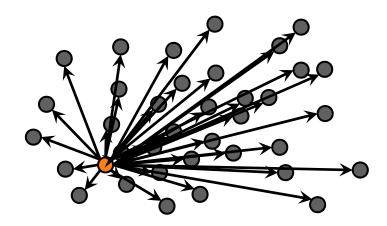
Shingle-Based Retrieval Nearest Neighbor Search



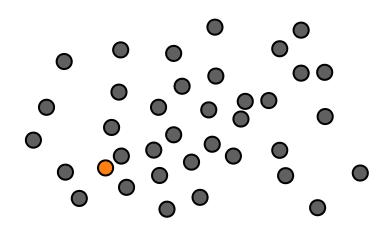
Shingle-Based Retrieval Nearest Neighbor Search

Strategies

Brute force



Shingle-Based Retrieval Nearest Neighbor Search

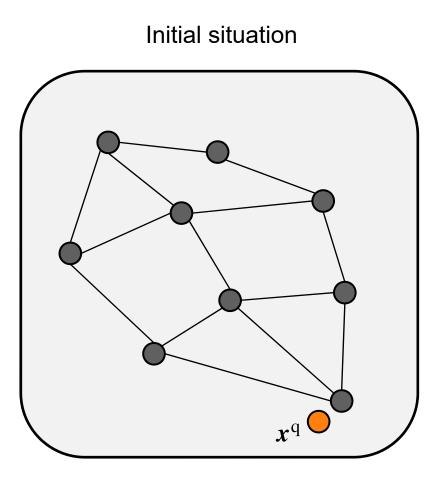


Strategies

- Brute force
- K-D trees
- HNSW graphs

HNSW Graphs

Graph-Based Nearest Neighbor Search



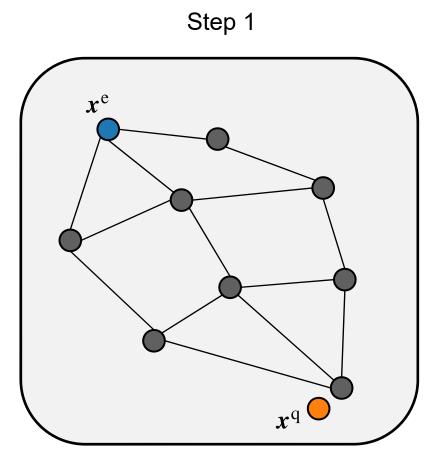
• Given: query node x^q

HNSW Graphs

Y. Malkov and D. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on PAMI, 2020.

Tutorial EUROGRAPHICS Learning with Music Signal

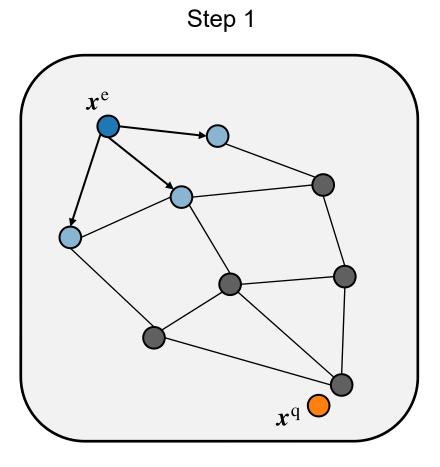
Graph-Based Nearest Neighbor Search



- Given: query node x^q
- Start with (random) entry node x^e

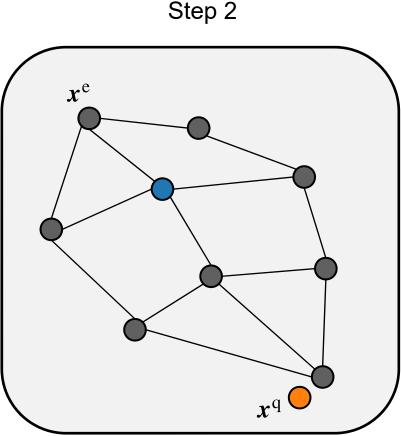
HNSW Graphs

Graph-Based Nearest Neighbor Search



- Given: query node x^q
- Start with (random) entry node x^e
- Traverse graph along edges and compare nodes with *x*^q

Graph-Based Nearest Neighbor Search



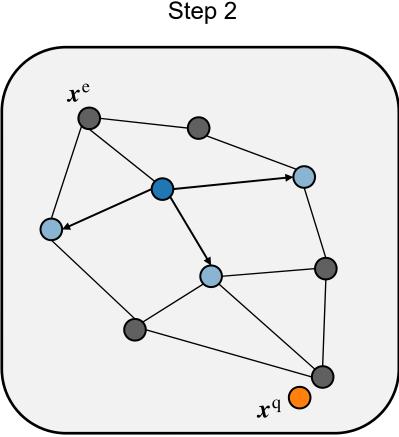
- Start with (random) entry node x^e
- Traverse graph along edges and compare nodes with x^q

Given: query node x^q

Continue with closest node

HNSW Graphs

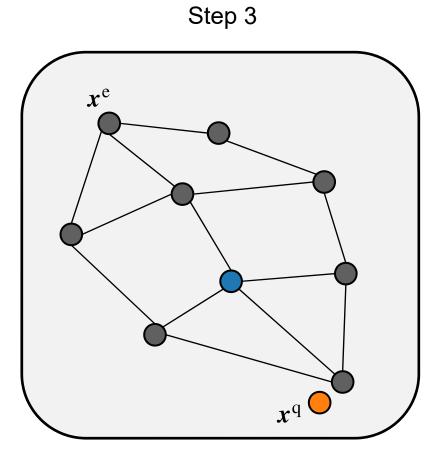
Graph-Based Nearest Neighbor Search



- Given: query node x^q
 - Start with (random) entry node x^e
 - Traverse graph along edges and compare nodes with x^q
 - Continue with closest node

HNSW Graphs

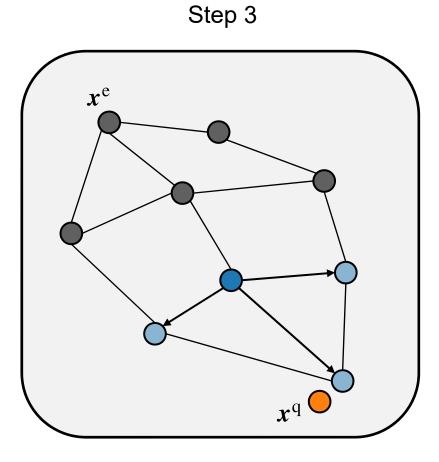
Graph-Based Nearest Neighbor Search



- Given: query node x^q
 - Start with (random) entry node x^e
 - Traverse graph along edges and compare nodes with x^q
 - Continue with closest node

HNSW Graphs

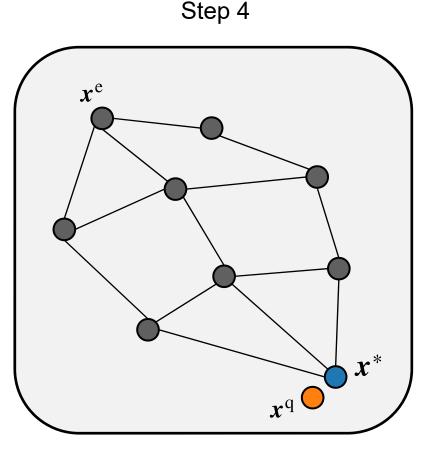
Graph-Based Nearest Neighbor Search



- Given: query node x^q
- Start with (random) entry node x^e
- Traverse graph along edges and compare nodes with x^q
- Continue with closest node

HNSW Graphs

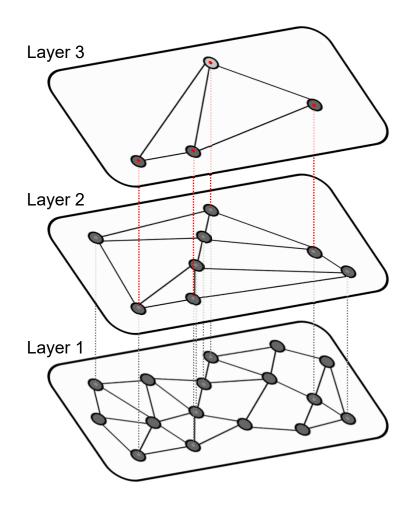
Graph-Based Nearest Neighbor Search



- Given: query node x^q
 - Start with (random) entry node x^e
 - Traverse graph along edges and compare nodes with x^q
 - Continue with closest node
 - Stop when distances increase

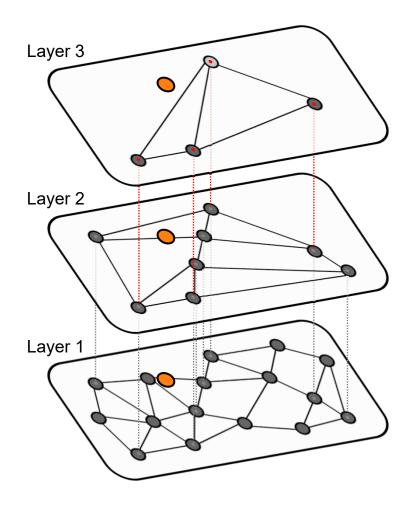
HNSW Graphs

Shingle-Based Retrieval HNSW Graphs



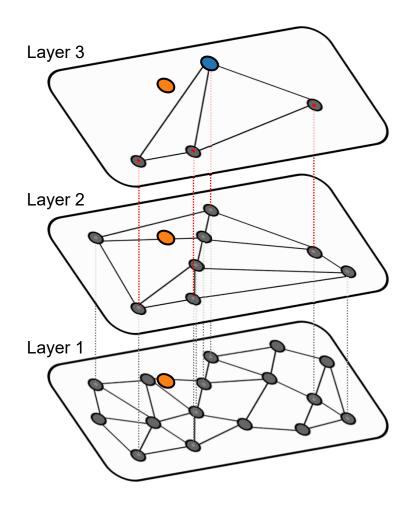
HNSW Graphs

Shingle-Based Retrieval HNSW Graphs

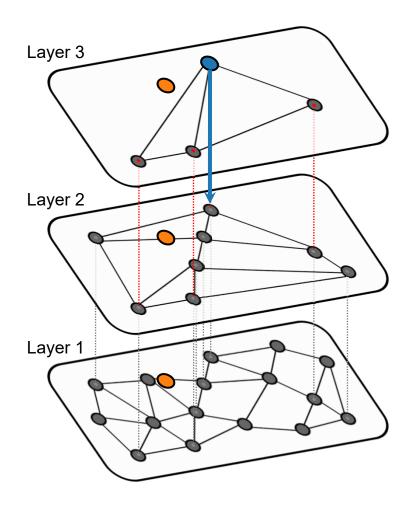


HNSW Graphs

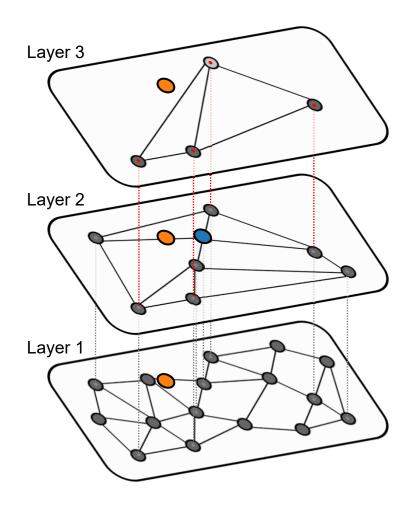
Shingle-Based Retrieval HNSW Graphs



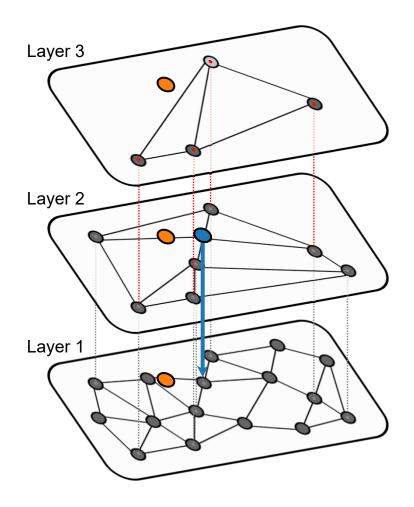
HNSW Graphs



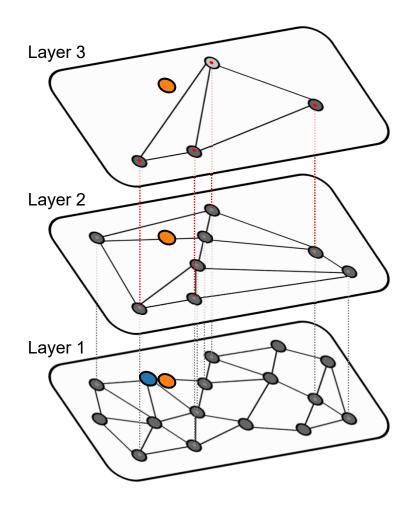
HNSW Graphs



HNSW Graphs



HNSW Graphs



Properties

- Approximate nearest neighbor search
- Search runtime logarithmic in dataset size
- Works well with high dimensional data
- Efficient algorithm to build graph structure

HNSW Graphs

Shingle-Based Retrieval

Experiment

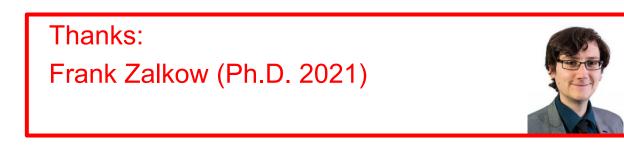
- Approximate search yields nearly same results as exact search
- Dataset: Entire audio catalogue by Carus publisher (7115 recordings, ~ 390 hours, > 1,25 million shingles)
- Runtime for brute force approach: ~ 100 ms to 300 ms per query

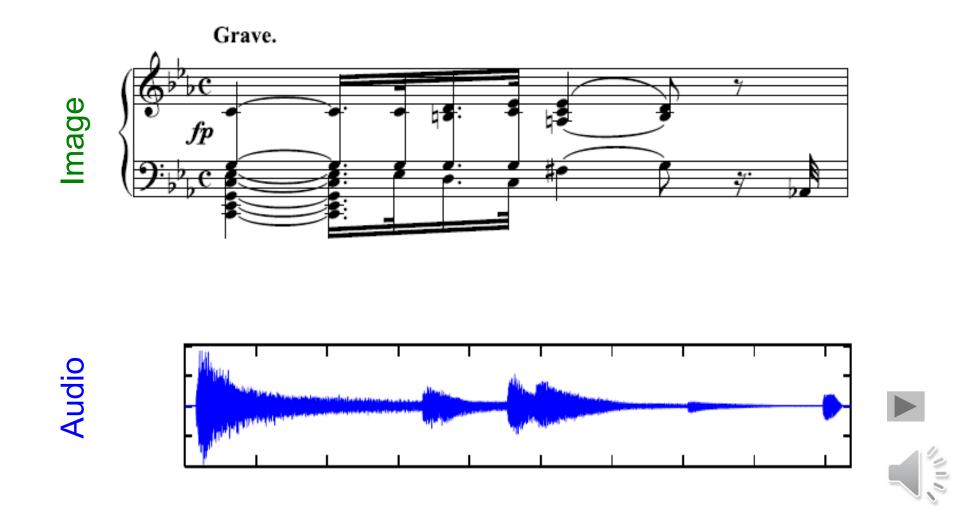
Search	Shingle Reduction	Dimensionality	Time (ms)
KD	No reduction	240	772.95
KD	DNN	30	117.54
KD	DNN	12	7.24
KD	DNN	6	0.66
HNSW	No reduction	240	0.20
HNSW	DNN	30	0.08
HNSW	DNN	12	0.06
HNSW	DNN	6	0.06

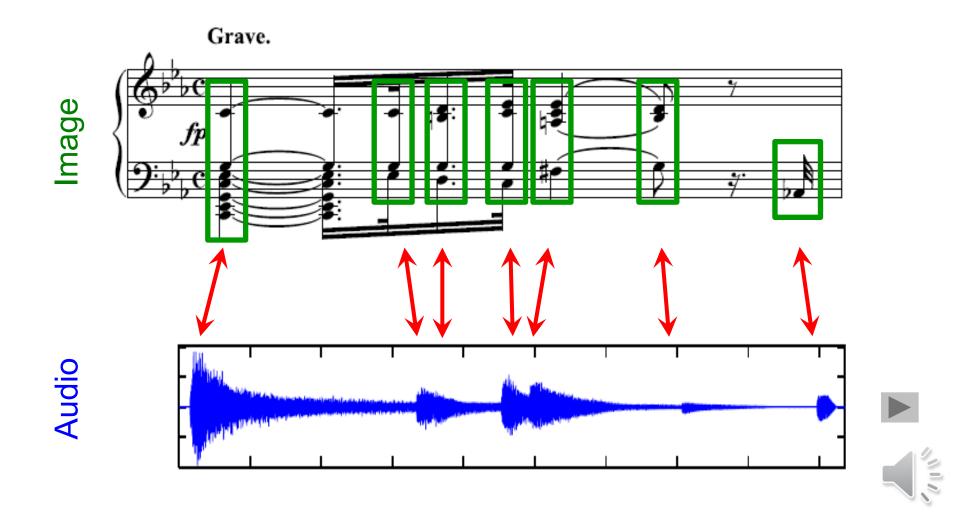
Shingle-Based Retrieval

References

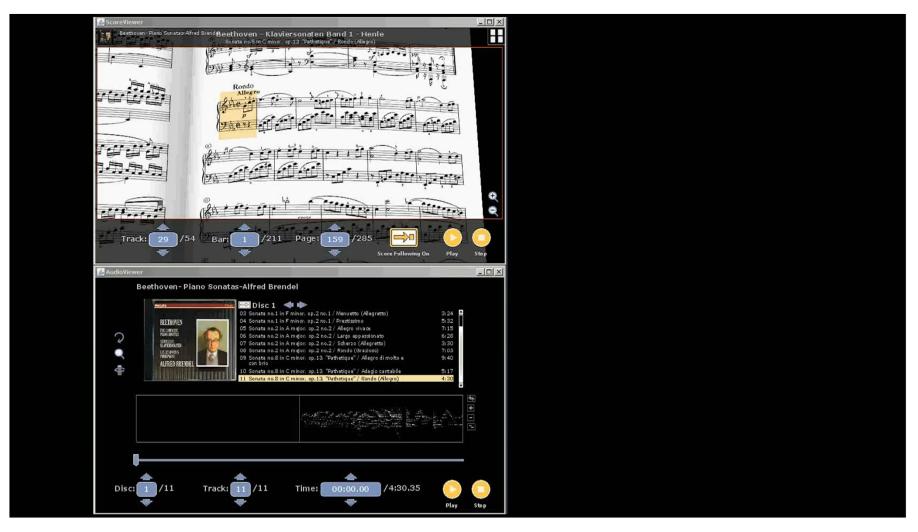
- P. Grosche, M. Müller: Toward characteristic audio shingles for efficient cross-version music retrieval. IEEE ICASSP, pages 473-476, 2012
- Y. Malkov and D. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on PAMI, 2020.
- F. Schroff, D. Kalenichenko, J. Philbin: FaceNet: A unified embedding for face recognition and clustering. CVPR, 2015.
- F. Zalkow and M. Müller: Learning low-dimensional embeddings of audio shingles for cross-version retrieval of classical music. Applied Sciences, 10(1), 2020.
- F. Zalkow, J. Brandner, and M. Müller: Efficient retrieval of music recordings using graph-based index structures. Signals, 2(2), 2021.







Application: Score Viewer



118

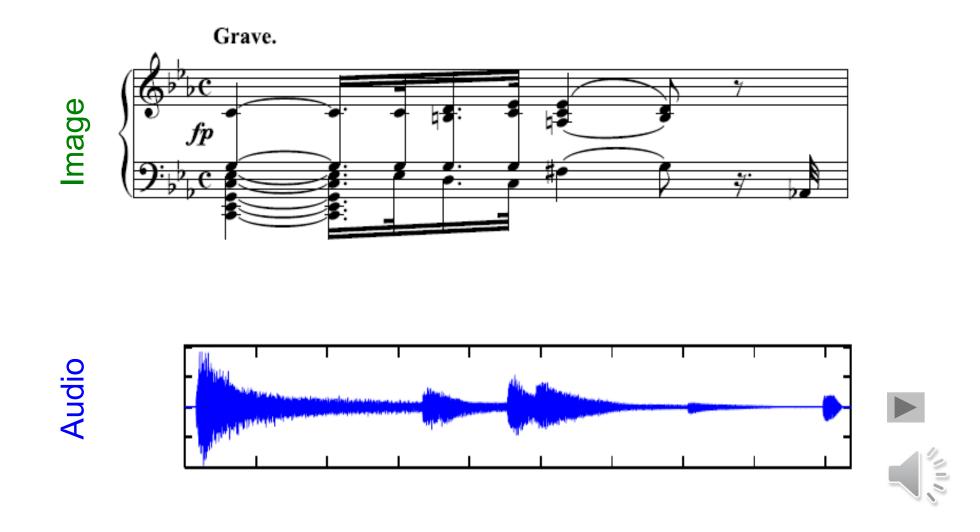


Image Processing: Optical Music Recognition

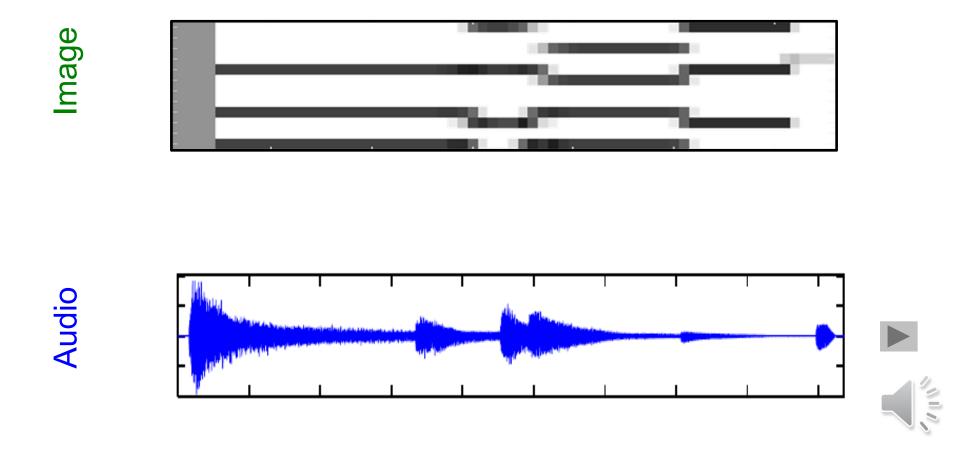
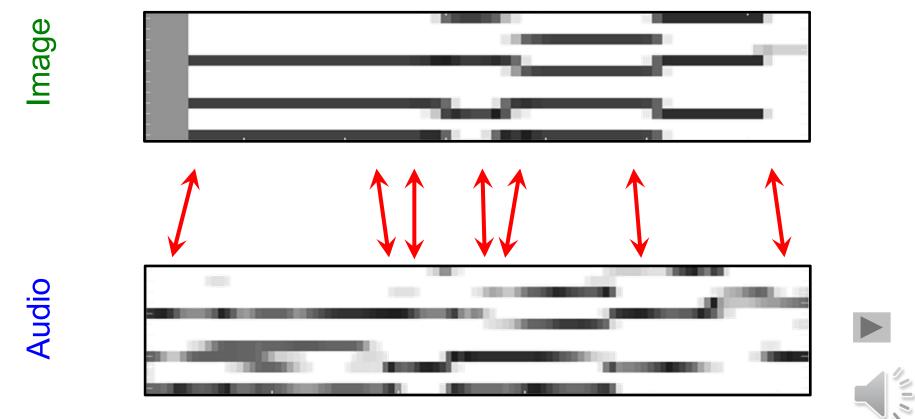
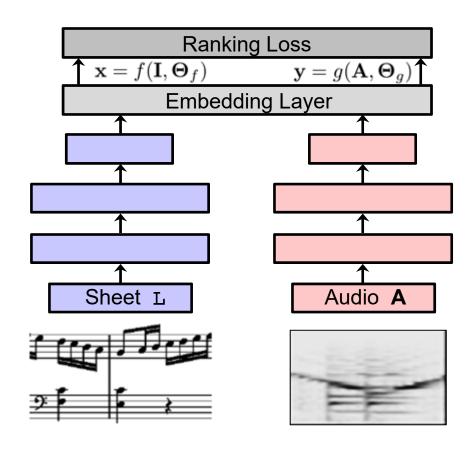


Image Processing: Optical Music Recognition



Audio Processing: Fourier Analysis



- Representation learning
- Embedding techniques
- Weak annotations
- Loss functions

Cross-Modal Retrieval

Dorfer et al.: End-to-End Cross-Modality Retrieval with CCA Projections and Pairwise Ranking Loss. International Journal of Multimedia Information Retrieval, 2018.

Music Retrieval

