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Source Separation

= Decomposition of audio stream into different sound sources
= Central task in digital signal processing

= “Cocktail party effect”
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Source Separation

Decomposition of audio stream into different sound sources

Central task in digital signal processing

“Cocktail party effect”

Several input signals

Sources are assumed to be statistically independent
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Source Separation (Music)
= Main melody, accompaniment, drum track
= Instrumental voices /
= Individual note events
L
= Only mono or stereo XE@
Time

Time

= Sources are often highly dependent
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Source Separation (Singing Voice)

H g Reference
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DL-Based Source Separation
Stoter, Uhlich Luitkus, Mitsufuji: Open-
Unmix — A Reference Implementation for
Music Source Separation. JOSS, 2019.

= Reference: Best possible result
= SP: Traditional signal processing
= DL: Deep Learning
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H Prior Knowledge
Score-Informed Source Separation Euven, Parde, Miller ptambiey:
Score-Informed Source Separation
for Musical Audio Recordings.
IEEE SPM 31(3), 2014.

Exploit musical score to support
decomposition process

Musical Audio
Information Signal
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Score-Informed Source Separation | Fricr Knowledge
Score-Informed Source Separation
for Musical Audio ReCDVdiﬂgS. ‘

EXplOit musical score to support |EEE SPM 31(3), 2014.
decomposition process

Musical Musical Audio
Information Voices Signal

Score-Informed Source Separation | Frier Knowledge .
core-Informed Source Separation
fsor Musical Audio Recordings. ‘

EXplOit musical score to SUppOf't IEEE SPM 31(3), 2014.
decomposition process

Musical Musical Audio Audio
Information Voices Signal Decomposition
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Score-Informed Audio Decomposition

Score-Informed Audio Decomposition
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Score-Informed Audio Decomposition Score-Informed Audio Decomposition
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Nonnegative Matrix Factorization (NMF)

Nonnegative Matrix Factorization (NMF)

N R N R
N N
K |4 ~ Kl W]|e H solR K "4 =~ K ° >0|R
=20 20 =20 0
KXN KxR RxN Magnitude Spectrogram T lat Activations
vV e R W € RES H e REY gnitude Spectrog emplates
Templates: Pitch + Timbre “How does it sound”
Activations: Onset time + Duration “When does it sound”
Leaming wi Masic Sinal " O enars i Leaming wi Mosic Sinal ] O eiar ier
Nonnegative Matrix Factorization (NMF) Nonnegative Matrix Factorization (NMF)
N R N R
N N
K |4 ~KlW]|e H solR K Vv ~ Kl W]|e H solR
=20 20 >0 >0
KxN KR RXN KxN KxR RxN
VeRS] WeRS HeR3 VeRS] WeRS, HeR3)
Dimensionality reduction Nonnegativity:

= K, N typically much larger than R (maximal rank)
= Example: N = 1000, K = 500, R = 20
Kx N=500000, KxR=10,000, RxN=20000
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= Prevents mutual cancellation of template vectors
= Encourages semantically meaningful decomposition
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NMF Optimization

Optimization problem:

Given V € RgéN and rank parameter R minimize
2
IV -WH|

with respectto W € RE;® and H € REG".

Optimization not easy:

= Nonnegativity constraints

= Nonconvexity when jointly optimizing Wand H
Strategy: lteratively optimize W and H via gradient descent
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NMF Optimization

Computation of gradient with respect to H (fixed W)
D :=RN

oV :RP SR

oV (H):= ||V - WH|?

Variables
H € RPN
Hpy

pe(l:R]
ve([l:N]
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NMF Optimization

Computation of gradient with respect to H (fixed W)
D:=RN a(PW B J (Zl’f:l Z:Y:l (an - Zf:] Werrn)2>
(pW:RDH]R 3Hpv = aHpv

oV (H):= |V - WH]|?

Variables
Hc RRXN
Hpy

pe(l:R]
ve([l:N]
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NMF Optimization
Computation of gradient with respect to H (fixed W)

B 2
D:=RN PPN (Zle Lot (Vi = X721 WerHyn) )
W.mD =
oV :RP =R 9Hpy JdHpy
W |V — 2 2
o (1) i |V - WH]| 2 (2£) (o~ X2 WirHn))
T JdHpy
Variables Summand that does
H e RRN not depend on Hyy
H must be zero
pv
pell:R]
veE[l:N]
e - i

NMF Optimization
Computation of gradient with respect to H (fixed W)

DRy apW 9 (Zle Y (Vi —XE Wk,H,.n)z)
PRI R dHpy - JdHpy
0" (H):=|v-WH|? 5 (Zi—(:l (Vkvf):,’;ka,-Hrv)z)
N Tty
Variables = 25:12(‘4-‘, - ):{?ZIWA.,AH,.V) (=Wip)
H € RRXN I
Hpy Apply chain rule
pell:R] from calculus
veE[l:N]
Loaming wi Masic Sinal o @ i 2

NMF Optimization
Computation of gradient with respect to H (fixed W)

- 2
D:=RN a(pw d (Zl-(:l ny’:l (an - Zf:] Werrn) )
W .mD =
9" :RT=R JHpy 9Hpy
w o 2
9" (H):= |V -WH| d (Zi‘:l (Viw — X8 WerrV)z)
- 9Hpy
Variables —yK, z(vkv - ):L%Hrv) (= Wip)
H ¢ RN
=2(XR YK Wi, Wi Hey — YK WiV
Hpy = r=12Lk=1"kpWkrfirv k=1"kp Vkv
pe(l:R]
vel:N Rearrange
summands
- g R

NMF Optimization
Computation of gradient with respect to H (fixed W)

— 2
D:=RN a(pw J (Zl’f:l nylzl (an - Zf:] Werrn) )
W.mnD =
9" :RT=R JHpy 9Hpy
w T 2 2
¢ (H) '_ ”V WHH d (Zf:] (Vkv 725:1 Wkr'Hrv) )
B JHpy
Variables = 2812 (Vi = T Wi iy ) - (W)
Hc RRXN
=2(XR YK Wi, Wi Hey — YK WiV
Hyy r=12Lk=1"kpWkrfirv k=1""kp Vkv
pe(l:R]
R K K
vel[l:N = Z(Zrzl (Zk:lWJ(Wkr)Hrv *Zkzlprkav)
Introduce
transposed W
S

NMF Optimization
Computation of gradient with respect to H (fixed W)

., 2
D:=RN a(pw J (Zl-(:l ny’:l (an - Zf:] Werrn) )

W . oD -
¢":R° =R OHpy 9Hpy

Wi oy 2 5
oV (H) = [V —WH]| P) ():{;1 (Vey— ¥R, Wk,H,V)°)

B JHpy

Variables = Zf:l Z(VkV - ):f:karHrv) : (_Wkp)
Hc RRXN
Hpy = 2(25:]2{-(:]Wkpwerrv — Y& Wip Vkv>
pe(l:R] .
ve(l:N = 2():5:1 (ZkK:leTkar)Hrv *):k:IWkaVkV)

| =2(WTWH)py = (WTV)py). |
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NMF Optimization
Gradient descent

Initialization H®) e RE*N
lteration for ¢ =0,1,2,...

H =) o) (WTwHO), - (W),

with suitable learning rate Yéﬁ)
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NMF Optimization
Gradient descent

Initialization H®) e RR*N
Iteration for ¢ =0,1,2,...

H = 1 ) (WTwH ), - (WTY),,)
with suitable learning rate Y%)

Issues:

= How to do the initialization?

= How to choose the learning rate?
= How to ensure nonnegativity?
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NMF Optimization Choose adaptive
Gradient descent learning rate:
(f)
e s . (0) RXN (-/) . m
Initialization H") € R Yin WTwHO)
lteration for ¢ =0,1,2,... "

i = ) ) (W)~ vy )

o W),

m -

NMF Optimization Choose adaptive
Gradient descent learning rate:
(€)
s s . (0) RXN (-/) o mn
Initialization H\Y) € R Yo' - (WTWH(/))
Iteration for ¢ =0,1,2,... "

i = ) ) (w0~ vy )

oo W),

m -

WTWH®) WTWH®O
( )rn ( )’" = Update rule
Issues: Issues: become
= How to do the initialization? = How to do the initialization? multiplicative
= How to choose the learning rate? = How to choose the learning rate? |= Nonnegative
= How to ensure nonnegativity? = How to ensure nonnegativity? values stay
nonnegative
Loaming i s Snal ® O o oler Loaming i Muse Snal “ N e ioter
NMF Optimization NMF Algorithm NMF-based Spectrogram Decomposition

Lee, Seung: Algorithms for Non-Negative
Matrix Factorization. Proc. NIPS, 2000.

Algorithm: NMF (V ~ WH)

Input:  Nonnegative matrix V of size K x N
Rank parameter R € N
Threshold € used as stop criterion

Output: Nonnegative template matrix W of size K x R
Nonnegative activation matrix H of size R x N

Procedure: Define nonnegative matrices W) and H(©) by some random or informed initial-
ization. Furthermore set £ = 0. Apply the following update rules (written in matrix notation):

() HEY =gOo (((W(f))Tv)@((w(f))Tw(f)H(f)))
@ WED =wO o (VHED)T) o (WOHED (HED)T))

(3)  Increase ¢ by one.

Repeat the steps (1) to (3) until [H©) — HD | < g and [W) —W (=] < & (or until some
other stop criterion is fulfilled). Finally, set H = H) and W = w0,
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Activation initialization

) \W H‘\l\‘ll\"\ll‘\lHV\HHIHIH{H \II
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Note number Time*

Template initialization

Frequency
Note number

Random initialization
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NMF-based Spectrogram Decomposition Constrained NMF: Templates
Template initialization Activation initialization Template initialization Activation initialization
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Constrained NMF: Double Constraints

Template initialization Activation initialization

H
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S los] 5 @ e e 7172
Note number

Template constraint for p=55
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‘ Time ¢
Activation constraints for p=55

Constrained NMF: Double Constraints

Template initialization Activation initialization

H

1
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o] 5 & e 7 72
Note number

Template constraint for p=55

Activation constraints for p=55

Such information may come
from a synchronized score

Sheet music
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Constrained NMF: Double Constraints Constrained NMF: Onset Templates
Template initialization Activation initialization Template initialization Activation initialization
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Score-Informed Audio Decompostion Score-Informed Audio Decompostion
Application: Separating left and right hands for piano Application: Separating left and right hands for piano
P— 1. Split activation matrix P— 1. Split activation matrix
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

1. Split activation matrix
2. Model spectrogram for left/right

Tutorial EUROGRAPHICS: "
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano
1. Split activation matrix

‘é‘ e ir 2. Model spectrogram for left/right
3. Separation masks for left/right
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

1. Split activation matrix
Model spectrogram for left/right
Separation masks for left/right

Estimated spectrograms | 2 q:
for left/right S

WD
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

Chopin, Waltz Op. 64, No. 1

Original > 9q:

Score-Informed Constraints

Ewert, Miiller: Using Score-Informed Constraints for

NMF-based Source Separation. Proc. ICASSP, 2012.

Further results available at

http://www.mpi-inf.mpg. ASSP2012-
Tutorial EUROGRAPHICS: © AudioLabs, 2023 AUDIO
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

Original » 9q:
Left/right hand B «:
Right hand B «:
Left hand _

Score-Informed Constraints
Ewert, Miiller: Using Score-Informed Constraints for
NMF-based Source Separation. Proc. ICASSP, 2012.

Further results available at
http://www.mpi-inf.mpg. ASSP2012-
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Conclusions (NMF)

= NMF used for spectrogram decomposition

= Multiplicative update rules make it easy to constrain NMF
model via zero initialization

= Exploiting score information to guide separation process
(requires score—audio synchronization)

= Application: Separation of arbitrary note groups from given
audio recording
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Autoencoder

Input X . Decoder D ||Output X

= Specific type of neural network

= Encoder: Compress input X into a low-dimensional code

= Decoder: Reconstruct output X from code

Tutorial EUROGRAPHICS:
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Autoencoder

Input X . Decoder D ||Output £

= Specific type of neural network

= Encoder: Compress input X into a low-dimensional code
= Decoder: Reconstruct output)? from code

Goal: Learn parameters for encoder and decoder such that output is
close to input with respect to some loss function:

L(X,)?) =~ 0

Tutorial EUROGRAPHICS: .
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Nonnegative Autoencoder
Smaragdis, Venkataramani: A Neural
Network Alternative to Non-Negative

Audio Models, Proc. ICASSP 2017.

NMF and Autoencoder (AE)

NMF

v zH-= v

V ~WH implies W*V ~ H with pseudoinverse W+

Tutorial EUROGRAPHICS: ,
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Nonnegative Autoencoder
Smaragdis, Venkataramani: A Neural
Network Alternative to Non-Negative
Audio Models, Proc. ICASSP 2017.

NMF and Autoencoder (AE)

NMF

v zH-= v

V ~WH implies W*V ~ H with pseudoinverse W+

==

Encoder ¢ Code Decoder D
1. Layer H=W_.V
2. Layer: V=W, H

Tutorial EUROGRAPHICS: .
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Nonnegative Autoencoder
Smaragdis, Venkataramani: A Neural
Network Alternative to Non-Negative

Audio Models, Proc. ICASSP 2017.

e J=| v

V ~WH implies@/ ~ H with pseudoinverse W+

\

i ‘ v

Encoder ¢ Code Decoder D

1. Layer H=W_.V
2. Layer: 7 =W, H ’Fully connected network ‘

©AudioLabs, 2023 [ENVIIIG)
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NMF and Autoencoder (AE)

NMF

Tutorial EUROGRAPHICS: N
Learning with Music Signals o

Nonnegative Autoencoder
Smaragdis, Venkataramani: A Neural
Network Alternative to Non-Negative
Audio Models, Proc. ICASSP 2017.

v zH-= v

NMF and Autoencoder (AE)

NMF

V ~WH implies W*V ~ H with pseudoinverse W+

==

Encoder ¢  Code Decoder D

1. Layer H=W,V NMF: Learn H and W
2. LayerrV=W,H AE: Learn W, and W,

Learning with Music Signals 0
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Nonnegative Autoencoder (NAE)

v v

1. Layer H=W_.V
2. Layer:V=Wy,H

= How can one adjust the AE to simulate NMF?
= How can one achieve nonnegativity?
= How can one incorporate musical knowledge?

Tutorial EULROGRAPHICS: o © Audiolabs, 2023 AUDIO
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Nonnegative Autoencoder (NAE)

" A2
1. Layerr H=W_,V L(v,7)=|v-7|
2. Layer:V=W,H
= Loss function: same as in NMF
Tutorial EUROGRAPHICS: o © AudioLabs, 2023 AUDIO
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Learning with Music Signals

Nonnegative Autoencoder (NAE)

1. Layer: H = max(Wg v,0) (V 7 =|v-7|
2. Layer: V = max(W, H, 0)

= Loss function: same as in NMF
= Activation function (RelLU) makes H and V nonnegative

Nonnegative Autoencoder (NAE)

~ ~An2
v, 9) = -7

oL
WD «— max WD_}/W’O
D

1. Layer: H = max(W, V,0)
2. Layer: V = max(Wy H, 0)

= Loss function: same as in NMF
= Activation function (ReLU) makes H and V nonnegative

= Projected gradient descent can be used to
keep W, (and W) nonnegative
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Musical Constraints Musical Constraints Wt nsance Loaming and e pplaton s Scor.
Informed Source Separation. Proc. ICASSP, 2017.
M
H = max(W. V,0) =HQO® My
V = max(Wy H, 0) V =max(WpH',0)
= Template constraints: Project certain entries in W, = Template constraints: Project certain entries in W,
to zero values (using projected gradient decent) to zero values (using projected gradient decent)
= Activation constraints: Use structured dropout by
applying pointwise multiplication with binary mask My
Tutorial EUROGRAPHICS: 5 © AudioLabs, 2023 AUDIO Tutorial EUROGRAPHICS: o © AudioLabs, 2023 AUDIO
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Learning with Music Signals
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NAE with Multiplicative Update Rules

= Multiplicative update rules in NMF:
= Preserve nonnegativity
= Lead to fast convergence

= Question: Can one introduce multiplicative update rules to
train network weights for NAE?

= Use in additive gradient descent

WD = @ . 0L

a suitable (adaptive) learning rate Y.
Tutorial EUROGRAPHICS:
Learning with Music Signals
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|
NAE with Multiplicative Update Rules

= Encoder:

H=WsV

= Structured Dropout:

H =H® My

= Decoder:

V =WpH'

NMF vs. NAE
Ozer, Hansen, Zunner, Miiller: Investigating
Nonnegative Autoencoders for Efficient Audio
Decomposition. Proc. EUSIPCO, 2022.
© AudioLabs, AUDIO utori © Auc AUDIO
At [ Eoeenes At
NAE with Multiplicative Update Rules Approximation Loss NMF vs. NAE
p p p p Ozer, Hansen, Zunner, Miiller: Investigating
Nonnegative Autoencoders for Efficient Audio
Decomposition. Proc. EUSIPCO, 2022.
= Encoder:
T T 10° —— NMF Mult.
H=W:V 041 0 (((WDV) GMH)V ) —— NAE Mult.
- e Wé,sc = W‘&(,Zk . 2k NAE SGD
((ovgworo) o a)v7) ERriran
rk
= Structured Dropout: 10f
!
H =HGo Mg
[}
§ 10°
1T
: @ _ g0 (VHET),
. DecAoder. Wit =Wph, - W“’H'H'TT
U — Wl (W),
102
Similar idea and NMF vs. NAE
. Ozer, Hansen, Zunner, Miiller: Investigating
computation as for NMF. N;nnegativeAutZenwdeurs for Effcient Audio o ! o b 10t
Decomposition. Proc. EUSIPCO, 2022. Iterations
[ i [ L i
; ; NMF vs. NAE :
ApprOXImatlon LOSS Ozer, Hansen, Zunner, Miiller: Investigating COI’]C'USIOI’\S (NAE)
Nonnegative Autoencoders for Efficient Audio
Decomposition. Proc. EUSIPCO, 2022.
= Simulation of NMF:
10° ~—— NAE Mult.
== AR RMSPOB (G = Decoder corresponds to NMF templates
\ """"""" —— NAE RMSprop (CPU) = Encoder learns a kind of pseudo-inverse
\ N = Code corresponds to NMF activations
\
10* ‘\
\ . . .
\ = Nonnegativity can be achieved via
§ \ = activation function (ReLU)
- e \\ = projected gradient descent
\ = multiplicative update rules
\
\
—
10?
0 10° 10* 10? 10°

Tutorial EUROGRAPHICS:
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= Musical knowledge can be integrated via

= removing network weights (template constraints)
= structured dropout (activation constraints)

© AudioLabs, 2023
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Meinard Miller LABS




Outlook

= More complex networks
= Deeper networks (more layers)
= Different layer types (CNN, RNN, ...) and activation functions
= Modification of loss function and regularization terms

= Understanding encoder — decoder relationship
= Nonnegativity
= Pseudo-inverse

= Update rules
= Constraints and convergence issues
= Adaptive learning rates and projected gradient descent

Tutorial EUROGRAPHICS: . © AudioLabs, 2023 AUDIO
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Score-Informed Audio Decomposition

Audio mosaicing (style transfer)

Target signal: Beatles—Let it be Source signal: Bees

KAAL < | & |<
///’

DD

Audio Mosaicing L 3 S

Driedger, Pratzlich, Miller: Let Mosaic signal: Let it Bee

It Bee — Towards NMF-Inspired

Audio Mosaicing. ISMIR, 2015.
Tutorial EUROGRAPHICS: ;) © AudioLabs, 2023
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Score-Informed Audio Decomposition

Informed Drum-Sound Decomposition

Score-Informed Audio Decomposition

Major challenge: Reconstructed sound events often have artifacts

Approaches:

= Resynthesize certain sound components

>
>
> = Differentiable Digital Signal Processing (DDSP)
Sy combines classical DSP and deep learning
>
>
= Generative adversarial networks may help to
s E reduce the artifacts
Remix: >
Drum Decomposition > DDsP
Dittmar, Miiller: Reverse Engineering the Amen Break Engel et al.: DDSP:
_ o ion and ion Applied Differentiable Digital Signal
to Drum Recordings. IEEE/ACM TASLP 24(9), 2016. Processing. ICLR, 2020.
) © AudioLabs. AUDIO AUDIO
Lo :
Source Separation (Piano Concerto) Source Separation (Piano Concerto)
= Yigitcan Ozer = Yigitcan Ozer
= PhD student in engineering = PhD student in engineering
= Pianist = Pianist
Only Piano!
Where is the
orchestra?
utorial . © AudioLabs, AUDIO utorial © AudioLabs, AUDIO
Lo :




Source Separation (Piano Concerto)

%&1- 9q:
=N
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Source Separation (Piano Concerto)

%&-I- Q:
= | >
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Source Separation (Piano Concerto)

%-I- Q:
| >

Tutorial EUROGRAPHICS: . © AudioLabs, 2023 AUDIO
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Source Separation (Piano Concerto)

Piano Source
Separation
Ozer, Miiller: Source
Separation of Piano
Concertos with Test-Time
Adaptation, ISMIR, 2022.
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