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Source Separation

 Decomposition of audio stream into different sound sources

 Central task in digital signal processing

 “Cocktail party effect”
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Source Separation

 Decomposition of audio stream into different sound sources

 Central task in digital signal processing

 “Cocktail party effect”

 Several input signals

 Sources are assumed to be statistically independent
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Source Separation (Music)

 Main melody, accompaniment, drum track

 Instrumental voices

 Individual note events

 Only mono or stereo

 Sources are often highly dependent

Time

Time
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Singing

Accompaniment

Original recording

Reference

SP

DL

Reference

SP

DL

Source Separation (Singing Voice)

DL-Based Source Separation
Stöter, Uhlich Luitkus, Mitsufuji: Open-
Unmix – A Reference Implementation for 
Music Source Separation. JOSS, 2019. 

 Reference: Best possible result
 SP: Traditional signal processing
 DL: Deep Learning
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Score-Informed Source Separation

Musical 
Information

Audio
Signal

Time

Exploit musical score to support 
decomposition process

Prior Knowledge
Ewert, Pardo, Müller, Plumbley: 
Score-Informed Source Separation 
for Musical Audio Recordings.
IEEE SPM 31(3), 2014.
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Score-Informed Source Separation
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Prior Knowledge
Ewert, Pardo, Müller, Plumbley: 
Score-Informed Source Separation 
for Musical Audio Recordings.
IEEE SPM 31(3), 2014.
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Score-Informed Source Separation
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Exploit musical score to support 
decomposition process

Prior Knowledge
Ewert, Pardo, Müller, Plumbley: 
Score-Informed Source Separation 
for Musical Audio Recordings.
IEEE SPM 31(3), 2014.
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Score-Informed Audio Decomposition
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Score-Informed Audio Decomposition

Time (seconds)
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Score-Informed Audio Decomposition

Time (seconds)

=
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Score-Informed Audio Decomposition

Sheet music
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Time (measures)
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Score-Informed Audio Decomposition

Sheet music
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Time (measures)
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Score-Informed Audio Decomposition

Sheet music
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Time (measures)
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Score-Informed Audio Decomposition
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Score-Informed Audio Decomposition
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Score-Informed Audio Decomposition
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Score-Informed Audio Decomposition
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Nonnegative Matrix Factorization (NMF)

≈K

R

R

N

W HV

≥ 0 ≥ 0

≥ 0K

N
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Nonnegative Matrix Factorization (NMF)

Templates:     Pitch + Timbre

Activations:  Onset time + Duration

“How does it sound”

“When does it sound”

Templates ActivationsMagnitude Spectrogram

R

R

N

W H

≥ 0

≥ 0K≈K V

≥ 0

N
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Nonnegative Matrix Factorization (NMF)

K

N R

R

N

W HV

Dimensionality reduction
 K, N typically much larger than R (maximal rank)
 Example: N = 1000, K = 500, R = 20

K x N = 500,000,      K x R = 10,000,      R x N = 20,000

≥ 0 ≥ 0

≥ 0≈ K

21
Tutorial EUROGRAPHICS:
Learning with Music Signals

© AudioLabs, 2023
Meinard Müller

Nonnegative Matrix Factorization (NMF)

Nonnegativity:
 Prevents mutual cancellation of template vectors 
 Encourages semantically meaningful decomposition

K

N R

R

N

W HV

≥ 0 ≥ 0

≥ 0≈ K
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Optimization problem:

Given                         and rank parameter  R minimize

with respect to                        and                       .   

NMF Optimization

Optimization not easy:
 Nonnegativity constraints
 Nonconvexity when jointly optimizing W and H

Strategy: Iteratively optimize W and H via gradient descent
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NMF Optimization
Computation of gradient with respect to H (fixed W)

Variables
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NMF Optimization
Computation of gradient with respect to H (fixed W)

Variables
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NMF Optimization
Computation of gradient with respect to H (fixed W)

Variables Summand that does 
not depend on 
must be zero
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NMF Optimization
Computation of gradient with respect to H (fixed W)

Variables

Apply chain rule 
from calculus
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NMF Optimization
Computation of gradient with respect to H (fixed W)

Variables

Rearrange 
summands

28

Tutorial EUROGRAPHICS:
Learning with Music Signals

© AudioLabs, 2023
Meinard Müller

NMF Optimization
Computation of gradient with respect to H (fixed W)

Variables

Introduce 
transposed 
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NMF Optimization
Computation of gradient with respect to H (fixed W)

Variables

30
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NMF Optimization
Gradient descent

Initialization
Iteration for 

with suitable learning rate
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NMF Optimization
Gradient descent

Initialization
Iteration for 

with suitable learning rate

Issues:
 How to do the initialization?
 How to choose the learning rate?
 How to ensure nonnegativity?
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NMF Optimization
Gradient descent

Initialization
Iteration for 

Issues:
 How to do the initialization?
 How to choose the learning rate?
 How to ensure nonnegativity?

Choose adaptive 
learning rate:
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NMF Optimization
Gradient descent

Initialization
Iteration for 

Issues:
 How to do the initialization?
 How to choose the learning rate?
 How to ensure nonnegativity?

 Update rule 
become 
multiplicative

 Nonnegative 
values stay 
nonnegative

Choose adaptive 
learning rate:
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NMF Optimization NMF Algorithm
Lee, Seung: Algorithms for Non-Negative 
Matrix Factorization.  Proc. NIPS, 2000.
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NMF-based Spectrogram Decomposition
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Random initialization
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NMF-based Spectrogram Decomposition
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Template initialization Activation initialization

Random initialization →  No semantic meaning
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Constrained NMF: Templates
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Template initialization Activation initialization

Enforce harmonic structure with zero-valued entries
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Constrained NMF: Templates
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Template initialization Activation initialization

Enforce harmonic structure with zero-valued entries

Template constraint for p=55 
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Constrained NMF: Templates
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Zero-valued entries remain zero-valued entries!
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Constrained NMF: Templates
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Pitch templates misused to represent onsets

Template initialization Activation initialization
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Constrained NMF: Double Constraints

N
ot

e 
nu

m
be

r

Fr
eq

ue
nc

y

Note number Time

Template initialization Activation initialization

42



Tutorial EUROGRAPHICS:
Learning with Music Signals

© AudioLabs, 2023
Meinard Müller

Constrained NMF: Double Constraints
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Template constraint for p=55 Activation constraints for p=55

43
Tutorial EUROGRAPHICS:
Learning with Music Signals

© AudioLabs, 2023
Meinard Müller

Constrained NMF: Double Constraints
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Such information may come
from a synchronized score
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Constrained NMF: Double Constraints

Significant gain in structure, but onsets are missing
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Constrained NMF: Onset Templates
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Score-Informed Audio Decompostion

1. Split activation matrix
Application: Separating left and right hands for piano

𝐻𝐻
𝐻
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Score-Informed Audio Decompostion

1. Split activation matrix
Application: Separating left and right hands for piano

𝐻
𝐻
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Score-Informed Audio Decompostion

1. Split activation matrix
2. Model spectrogram for left/right

Application: Separating left and right hands for piano

𝐻
𝐻

𝑊𝐻
𝑊𝐻

49
Tutorial EUROGRAPHICS:
Learning with Music Signals

© AudioLabs, 2023
Meinard Müller

Score-Informed Audio Decompostion

1. Split activation matrix
2. Model spectrogram for left/right
3. Separation masks for left/right

Application: Separating left and right hands for piano

𝐻
𝐻

𝑊𝐻
𝑊𝐻

𝑀
𝑀
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Score-Informed Audio Decompostion

1. Split activation matrix
2. Model spectrogram for left/right
3. Separation masks for left/right
4. Estimated spectrograms

for left/right

Application: Separating left and right hands for piano

𝐻
𝐻

𝑊𝐻
𝑊𝐻

𝑀
𝑀

𝑀 𝑋
𝑀 𝑋
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

Chopin, Waltz Op. 64, No. 1

Original

Further results available at
http://www.mpi-inf.mpg.de/resources/MIR/ICASSP2012-ScoreInformedNMF/

Score-Informed Constraints
Ewert, Müller: Using Score-Informed Constraints for 
NMF-based Source Separation. Proc. ICASSP, 2012.
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

Chopin, Waltz Op. 64, No. 1

Original

Left/right hand

Right hand

Left hand

Further results available at
http://www.mpi-inf.mpg.de/resources/MIR/ICASSP2012-ScoreInformedNMF/

Score-Informed Constraints
Ewert, Müller: Using Score-Informed Constraints for 
NMF-based Source Separation. Proc. ICASSP, 2012.
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Conclusions (NMF)

 NMF used for spectrogram decomposition

 Multiplicative update rules make it easy to constrain NMF 
model via zero initialization

 Exploiting score information to guide separation process
(requires score–audio synchronization)

 Application: Separation of arbitrary note groups from given
audio recording
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Autoencoder

CodeEncoder ℰ Decoder 𝒟
 Specific type of neural network

 Encoder: Compress input 𝑋 into a low-dimensional code 

 Decoder: Reconstruct output 𝑋 from code

Input 𝑋 Output 𝑋
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Autoencoder

CodeEncoder ℰ Decoder 𝒟
 Specific type of neural network

 Encoder: Compress input 𝑋 into a low-dimensional code 

 Decoder: Reconstruct output 𝑋 from code

 Goal: Learn parameters for encoder and decoder such that output is 
close to input with respect to some loss function:

Input 𝑋 Output 𝑋
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NMF and Autoencoder (AE)

≈ = 𝑉𝑉 𝑊 𝐻
𝑉 𝑊𝐻 implies   𝑊 𝑉 𝐻 with pseudoinverse  𝑊
NMF

Nonnegative Autoencoder
Smaragdis, Venkataramani: A Neural 
Network Alternative to Non-Negative 
Audio Models, Proc. ICASSP 2017.
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NMF and Autoencoder (AE)

≈ = 𝑉

𝑉
Encoder ℰ Decoder 𝒟

𝑉

𝑉

𝑊 𝐻

𝑊ℰ 𝐻 𝑊𝒟
Code

𝑉 𝑊𝐻 implies   𝑊 𝑉 𝐻 with pseudoinverse  𝑊
NMF

AE

1. Layer: 𝐻 𝑊ℰ  𝑉
2. Layer: 𝑉 𝑊𝒟 𝐻

Nonnegative Autoencoder
Smaragdis, Venkataramani: A Neural 
Network Alternative to Non-Negative 
Audio Models, Proc. ICASSP 2017.
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NMF and Autoencoder (AE)

≈ = 𝑉

𝑉
Encoder ℰ Decoder 𝒟

𝑉

𝑉

𝑊 𝐻

𝑊ℰ 𝐻 𝑊𝒟
Code

𝑉 𝑊𝐻 implies   𝑊 𝑉 𝐻 with pseudoinverse  𝑊
NMF

AE

1. Layer: 𝐻 𝑊ℰ  𝑉
2. Layer: 𝑉 𝑊𝒟 𝐻 Fully connected network

Nonnegative Autoencoder
Smaragdis, Venkataramani: A Neural 
Network Alternative to Non-Negative 
Audio Models, Proc. ICASSP 2017.
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NMF and Autoencoder (AE)

≈ = 𝑉

𝑉
Encoder ℰ Decoder 𝒟

𝑉

𝑉

𝑊 𝐻

𝑊ℰ 𝐻 𝑊𝒟
Code

𝑉 𝑊𝐻 implies   𝑊 𝑉 𝐻 with pseudoinverse  𝑊
NMF

AE

1. Layer: 𝐻 𝑊ℰ  𝑉
2. Layer: 𝑉 𝑊𝒟 𝐻 NMF: Learn 𝐻 and  𝑊

AE:    Learn 𝑊ℰ and 𝑊𝒟

Nonnegative Autoencoder
Smaragdis, Venkataramani: A Neural 
Network Alternative to Non-Negative 
Audio Models, Proc. ICASSP 2017.
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Nonnegative Autoencoder (NAE)

𝑉𝑉 𝑊ℰ 𝐻 𝑊𝒟
1. Layer: 𝐻 𝑊ℰ  𝑉
2. Layer: 𝑉 𝑊𝒟 𝐻
 How can one adjust the AE to simulate NMF?
 How can one achieve nonnegativity?
 How can one incorporate musical knowledge?
 …
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Nonnegative Autoencoder (NAE)

1. Layer: 𝐻 𝑊ℰ  𝑉
2. Layer: 𝑉 𝑊𝒟 𝐻
 Loss function: same as in NMF

ℒ 𝑉,𝑉 𝑉 𝑉
𝑉𝑉 𝑊ℰ 𝐻 𝑊𝒟
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Nonnegative Autoencoder (NAE)

1. Layer: 𝐻 max 𝑊ℰ  𝑉, 0
2. Layer: 𝑉 max 𝑊𝒟 𝐻, 0
 Loss function: same as in NMF

 Activation function (ReLU) makes 𝐻 and 𝑉  nonnegative

ℒ 𝑉,𝑉 𝑉 𝑉
𝑉𝑉 𝑊ℰ 𝐻 𝑊𝒟
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Nonnegative Autoencoder (NAE)

1. Layer: 𝐻 max 𝑊ℰ  𝑉, 0
2. Layer: 𝑉 max 𝑊𝒟 𝐻, 0
 Loss function: same as in NMF

 Activation function (ReLU) makes 𝐻 and 𝑉  nonnegative
 Projected gradient descent can be used to 

keep 𝑊𝒟  
(and 𝑊ℰ ) nonnegative

ℒ 𝑉,𝑉 𝑉 𝑉
𝑉𝑉 𝑊ℰ 𝐻 𝑊𝒟

𝑊𝒟 ⟵ max 𝑊𝒟 𝛾 𝜕ℒ𝜕𝑊𝒟 
, 0
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Musical Constraints

 Template constraints: Project certain entries in  𝑊𝒟  
to zero values (using projected gradient decent)

𝑉𝑉 𝑊ℰ 𝐻 𝑊𝒟
𝐻 max 𝑊ℰ  𝑉, 0𝑉 max 𝑊𝒟 𝐻, 0
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Musical Constraints

 Template constraints: Project certain entries in  𝑊𝒟  
to zero values (using projected gradient decent)

 Activation constraints: Use structured dropout by
applying pointwise multiplication with binary mask 𝑀

𝑉𝑉 𝑊ℰ 𝐻 𝑊𝒟
𝐻′ 𝐻 ⊙  𝑀𝑉  max 𝑊𝒟 𝐻′, 0 𝑀

Ewert, Sandler: Structured Dropout for Weak Label and 
Multi-Instance Learning and Its Application to Score-
Informed Source Separation. Proc. ICASSP, 2017.
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NAE with Multiplicative Update Rules

 Multiplicative update rules in NMF:
 Preserve nonnegativity
 Lead to fast convergence

 Question: Can one introduce multiplicative update rules to
train network weights for NAE?

 Use in additive gradient descent

a suitable (adaptive) learning rate      .
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NAE with Multiplicative Update Rules

 Encoder:

 Structured Dropout:

 Decoder:

NMF vs. NAE
Özer, Hansen, Zunner, Müller: Investigating 
Nonnegative Autoencoders for Efficient Audio 
Decomposition. Proc. EUSIPCO, 2022.
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NAE with Multiplicative Update Rules

 Encoder:

 Structured Dropout:

 Decoder:

Similar idea and 
computation as for NMF.

NMF vs. NAE
Özer, Hansen, Zunner, Müller: Investigating 
Nonnegative Autoencoders for Efficient Audio 
Decomposition. Proc. EUSIPCO, 2022.
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Approximation Loss

Lo
ss

Lo
ss

Iterations

NMF vs. NAE
Özer, Hansen, Zunner, Müller: Investigating 
Nonnegative Autoencoders for Efficient Audio 
Decomposition. Proc. EUSIPCO, 2022.
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Approximation Loss

Runtime (seconds)

Lo
ss

NMF vs. NAE
Özer, Hansen, Zunner, Müller: Investigating 
Nonnegative Autoencoders for Efficient Audio 
Decomposition. Proc. EUSIPCO, 2022.
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Conclusions (NAE)

 Simulation of NMF:
 Decoder corresponds to NMF templates
 Encoder learns a kind of pseudo-inverse 
 Code corresponds to NMF activations

 Nonnegativity can be achieved via
 activation function (ReLU)
 projected gradient descent
 multiplicative update rules

 Musical knowledge can be integrated via
 removing network weights (template constraints)
 structured dropout (activation constraints)
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Outlook

 More complex networks 
 Deeper networks (more layers)
 Different layer types (CNN, RNN, …) and activation functions
 Modification of loss function and regularization terms

 Understanding encoder – decoder relationship
 Nonnegativity
 Pseudo-inverse

 Update rules
 Constraints and convergence issues
 Adaptive learning rates and projected gradient descent 
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Score-Informed Audio Decomposition
Audio mosaicing (style transfer)

Source signal: BeesTarget signal: Beatles–Let it be

Mosaic signal: Let it Bee
Audio Mosaicing
Driedger, Prätzlich, Müller:  Let 
It Bee – Towards NMF-Inspired 
Audio Mosaicing. ISMIR, 2015.
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Score-Informed Audio Decomposition
Informed Drum-Sound Decomposition

Remix:
Drum Decomposition
Dittmar, Müller: Reverse Engineering the Amen Break 
– Score-Informed Separation and Restoration Applied 
to Drum Recordings. IEEE/ACM TASLP 24(9), 2016.
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Score-Informed Audio Decomposition
Major challenge: Reconstructed sound events often have artifacts

Approaches:

 Resynthesize certain sound components

 Differentiable Digital Signal Processing (DDSP) 
combines classical DSP and deep learning 

 Generative adversarial networks may help to
reduce the artifacts

DDSP
Engel et al.: DDSP: 
Differentiable Digital Signal 
Processing. ICLR, 2020.
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 Yigitcan Özer
 PhD student in engineering
 Pianist

Source Separation (Piano Concerto)
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Only Piano!

Where is the
orchestra?

 Yigitcan Özer
 PhD student in engineering
 Pianist

Source Separation (Piano Concerto)
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Source Separation (Piano Concerto)
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Source Separation (Piano Concerto)
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Source Separation (Piano Concerto)
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Source Separation (Piano Concerto)

Piano Source 
Separation
Özer, Müller: Source 
Separation of Piano 
Concertos with Test-Time 
Adaptation, ISMIR, 2022.
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