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Decomposition of audio stream into different sound sources

Central task in digital signal processing

“Cocktail party effect”
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Source Separation

Decomposition of audio stream into different sound sources

Central task in digital signal processing

“Cocktail party effect”

Several input signals

Sources are assumed to be statistically independent
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Source Separation (Music)

Main melody, accompaniment, drum track

Instrumental voices

Individual note events

Only mono or stereo l

Time

— 7 N\~

Sources are often highly dependent
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Source Separation (Singing Voice)

B g Reference
e SP
Original recordin A he
g g Singing
> W DL
B Reference
> \
b IS
_ B oo - SP
Accompaniment
> B | \; DL
DL-Based Source Separation = Reference: Best possible result
Stoter, Uhlich Luitkus, Mitsufuji: Open- = SP: Traditional Signal processing
Unmix — A Reference Implementation for )
Music Source Separation. JOSS, 2019. = DL: Deep Learning
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Prior Knowledge

Score-Informed Source Separation Ewert, Pardo, Miller. Plumbley:

Score-Informed Source Separation
for Musical Audio Recordings.

Exploit musical score to support EEE SPM 31(3), 2014.
decomposition process

Musical Audio
Information Signal
Time
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Score-Informed Source Separation

Exploit musical score to support
decomposition process

Prior Knowledge

Ewert, Pardo, Muller, Plumbley:
Score-Informed Source Separation
for Musical Audio Recordings.
IEEE SPM 31(3), 2014.
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Score-Informed Source Separation

Exploit musical score to support
decomposition process

Prior Knowledge

Ewert, Pardo, Muller, Plumbley:
Score-Informed Source Separation
for Musical Audio Recordings.
IEEE SPM 31(3), 2014.
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Information Voices Signal Decomposition
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Score-Informed Audio Decomposition

—
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Score-Informed Audio Decomposition

D#5 ﬁl
| C#5
I B4 r
7 [ @ E@Ei A4 I
My — ?:4 ,—
4 1 2 3 4

Time (seconds)
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Score-Informed Audio Decomposition

o#s —
| CH#5
) B4 r
7:‘_%1 A4 I
My - ?:4 ,—
4 1 2 3 4

Time (seconds)

-~

—
| —
H =<|=EI 69[0>—|

Tutorial EUROGRAPHICS: » © AudioLabs, 2023 AUDIO
Learning with Music Signals Meinard Mller LABS



Score-Informed Audio Decomposition

Sheet music Piano roll
71j::::---------iE!!!!!illlllllllllllllllE!!!!!
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Score-Informed Audio Decomposition

Sheet music p =59 Piano roll

50 I

I S S S S T
=R ———— ——— 54:—_
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Score-Informed Audio Decomposition

Sheet music p=71 Piano roll
ﬂg 5 : = lF D lF . 71 T —— T ——
D =2 | | € 61— e——
3 I I S S I —— S ———— — g 54 T
0 1 1.5 2 25

Time (measures)
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Score-Informed Audio Decomposition

Sheet music p=71 Piano roll
04> = : E' . T ——
D 2 | | B —————————————————

j
Note number
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Score-Informed Audio Decomposition

Sheet music

p=71

Piano roll

50 I

Note number

54

N
Spectrogram
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Score-Informed Audio Decomposition

Sheet music p=71 Piano roll
A ﬂ 5 == r D lF 71 T —————— EEeeee——
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Score-Informed Audio Decomposition
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Nonnegative Matrix Factorization (NMF)

VERKXN WeR“R H e REGY
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Nonnegative Matrix Factorization (NMF)

N
N
K |74 >0IR
>0
Magnitude Spectrogram Templates Activations
Templates: Pitch + Timbre “How does it sound”

Activations: Onset time + Duration “When does it sound”

Tutorial EUROGRAPHICS: 0 © AudioLabs, 2023 AUDIO
Learning with Music Signals Meinard Mller LABS



Nonnegative Matrix Factorization (NMF)

>0
VeRKXN WER“R HGRRXN

Dimensionality reduction
= K, N typically much larger than R (maximal rank)

= Example: N =1000, K =500, R =20
K x N = 500,000, Kx R =10,000, R x N = 20,000
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Nonnegative Matrix Factorization (NMF)

>0
VeRKXN WER“R HGRRXN

Nonnegativity:
= Prevents mutual cancellation of template vectors
= Encourages semantically meaningful decomposition
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NMF Optimization

Optimization problem:

Given V € RIESN and rank parameter R minimize
2
IV —WH]

with respectto W & RI%R and H € R%N .

Optimization not easy:
= Nonnegativity constraints
= Nonconvexity when jointly optimizing W and H

Strategy: Iteratively optimize W and H via gradient descent

Tutorial EUROGRAPHICS: s © AudioLabs, 2023 AUDIO
Learning with Music Signals LABS

Meinard Mdiller




A
NMF Optimization
Computation of gradient with respect to H (fixed W)
D :=RN
(PW : RD
o" (H):=V-WH|

— R

Variables
H ¢ RExN
pe|l:R]
vell:N]
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NMF Optimization
Computation of gradient with respect to H (fixed W)

- 2

D :=RN acpw d (Zf:] 21::1 (an - Zf:l Wk?’Hm) )
W .mD —

o' RY— R aHpV aHpv

o" (H) =V -WH|?

Variables
H ¢ RExN
pe|l:R]
vell:N|
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NMF Optimization
Computation of gradient with respect to H (fixed W)

B 2
D :=RN a(PW d (Zle Eﬁ(:1 (an - Zf:l Wk?’Hm) )
0" :RP R OHpy JHpy

Wi — v _ 2 2
o (H) =V —WH] 9 (TK) (Ve — £y WerHi))

I dH,y

Variables Summand that does
H € RRxN not depend on Hpy
Hoy must be zero
pe|l:R]
vell:N]
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NMF Optimization
Computation of gradient with respect to H (fixed W)

B 2
D = RN aqow a (Zle Eﬁle (an - Zle WerrH) )
0" :RP R OHpy JHpy

114 o L 2 2
0" (H):=|V-WH]| 9 (T (Viw — X5 WerHi)?)
Variables = EfZIZ(Vkv —Z‘LWerrv) ' (—Wkp)
H ¢ RRXN I
Hpyy Apply chain rule
pell:R from calculus
vell:N]
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NMF Optimization
Computation of gradient with respect to H (fixed W)

D :=RN aq)w ():k YN (an —yr, Werm)z)
0" :RP 4R QHPV JHpy
o (H) = |V ~WH]* 0 (TX (Vi — 55 Wi o))
h JH,y
Variables = ):f:ﬂ(Vkv —Z‘lewerrv) (=Wip)
H ¢ RF*N
H - 2( YR WipWirHey — Y kaPVkV)
pEel:R I
vell:n] cummands
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NMF Optimization
Computation of gradient with respect to H (fixed W)

D:=RN Jo" (Zk 1 Xne (Ve — X058 Werm)z)
9" R >R QHPV dHpy
o (H) = |V ~WH]* 0 (TX (Vi — 55 Wi o))
a OH,y
Variables _ ):f:,z(vw —Z‘fZIWerrv) (—Wip)
H c RRxN
Hpv — 2( 1):.1( 1Wkakr rv — ):k IWkakv)
pe|l:R]
vell:N| 12( ():k ! ""W’”’) — i "Vk"')
Introduce

transposed W'
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NMF Optimization
Computation of gradient with respect to H (fixed W)

D:=RN . ():k Y (Vi — YR Werm)z)
¢" :R° >R QHPV dHpy
o (H) = |V ~WH]* 0 (TX (Vi — 55 Wi o))
- OH,y
Variables _ ):f:,z(vw —Z‘fZIWerrv) (—Wip)
H c RRXN
Hpv — 2( 1):.1( 1Wkakr rv — ):k IWkakv)
pe|l:R]
vell:N = 22 (B ) Hry — £ Wi )

= 2((W'WH)py —(W'V)py).
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NMF Optimization
Gradient descent

Initialization H(®) ¢ REXN

Iteration for ¢ =0,1.2,...
B — ) o) (W), — ),

with suitable learning rate %g;f) >0
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NMF Optimization
Gradient descent

Initialization H°) ¢ RE*N
lteration for (=0,1.2....

Hy ™ = H) =) (W TwHD) - (wTy) )
with suitable learning rate %g) >0

Issues:

= How to do the initialization?

= How to choose the learning rate?
= How to ensure nonnegativity?
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NMF Optimization Choose adaptive
Gradient descent learning rate:

(£)
iy . . ( H
Initialization H?) ¢ REXN W rn

. | (WTWHWO)
lterationfor /=0,1.2,... m
Hy ) =HY —- (WTwH") —wTv),)

o (W)

rn -

rn

(WTWH)

rn

Issues:

= How to do the initialization?

= How to choose the learning rate?
= How to ensure nonnegativity?
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NMF Optimization Choose adaptive
Gradient descent learning rate:

(£)

H,

. . (0) RxN (fj - rn
Initialization H'®) € R Vrn (WTWHO)

lterationfor ¢/ =0.1.2,.. /
Hy ™V =H)) —- (WTwH®) — W) )

rn

-
_ 0 W),
" (WTwHY)
( )”” = Update rule
ISSU@S: become
= How to do the initialization? multiplicative
= How to choose the learning rate? |= Nonnegative
= How to ensure nonnegativity? values stay
nonnegative

Tutorial EUROGRAPHICS: s © AudioLabs, 2023 AUDIO
Learning with Music Signals Meinard Mller LABS



NMF Optimization NMF Algorithm

Lee, Seung: Algorithms for Non-Negative
Matrix Factorization. Proc. NIPS, 2000.

Algorithm: NMF (V =~ WH)

Input: Nonnegative matrix V of size K x N
Rank parameter R € N
Threshold € used as stop criterion

Output: Nonnegative template matrix W of size K x R
Nonnegative activation matrix H of size R x N

Procedure: Define nonnegative matrices W and H© by some random or informed initial-
ization. Furthermore set / = 0. Apply the following update rules (written in matrix notation):

() HE) — g0 (((W{f‘))Tv)@((W(EJ)TW(EJH(@))
(2) w1 — wif) o ((V(H(F—l—]))—l_) % (W(E)H(E—l-l)(H{f—l—]))T))

(3) Increase ¢ by one.

Repeat the steps (1) to (3) until |[H'Y) —HE=D || < g and [W) —w=D|| < ¢ (or until some
other stop criterion is fulfilled). Finally, set H = H) and W = W),
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A
NMF-based Spectrogram Decomposition

Template initialization Activation initialization

Fm

II‘II gl le

"

\
‘HH| MH \HWW M“\IH

: H“" | |||||‘
| h’ '!|" M "M M ‘ |. ‘

54 55 57 59 63 64 71 72

Note number " Time

‘\w

> |||

Frequency
Note number

|

|
,

55

54

Random initialization
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A
NMF-based Spectrogram Decomposition

Template initialization Activation initialization
1500 (— — p—
== = ”nn M ||||||||\| H""""H ‘m
. ——— || I‘ ULV ‘
—————— |l ||||||| |
N — L ||”|| i |’
8 — . = c
——————— 959 I‘HII ||I||| I||
=———— 2| ||I ||| LA |
. J ” ‘ II | |
; s (LI |I||II|||I |||
54 57 59 63 64 71 72 0 6 8 10
Learnt templates Learnt activations
1500
CZ; 1000 é
o >
> [
8 o
L 500 §

0
54 55 o7 59 63 64 71 72

Note number

Random initialization — No semantic meaning
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|
Constrained NMF: Templates

Template initialization

1500

Frequency

500

0
54 55 57 59 63 64 71 72

Note number

Note number

Activation initialization

‘III

|J| |‘IIII |h II’II ||||::"”|| :Ilm

> ||| h’ |’ |I I| IW Il: I‘WI| M "‘ ’I |‘ ‘l ll‘lll

2 |l

IJI
Tlme

55

54

Enforce harmonic structure with zero-valued entries
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Constrained NMF: Templates

Template initialization

Frequency

54 55 57 59 63 64 71 72
Note number

Template constraint for p=55

Note number

Activation initialization

d |‘IIII II’II I||||||"||I IIV ||”|I|I|I III‘H

‘III

Ml I‘ I‘II |I||||‘|H|
||| |||I||H| |I‘||||

. |:J| i ’h"' ” i ”h m “‘ W

54 ||II|||| il

Tlme

Enforce harmonic structure with zero-valued entries
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Constrained NMF: Templates

Template initialization

Frequency

Frequency

Note number

Zero-valued entries remain zero-valued entries!

Note number

Note number

Activation initialization

(

* ||| ||| Al ” I|‘\;HI"I‘:{“

|| ”III |||II IIW| M
IJI II’ ‘
Learnt activations

8 10

54 |I||II|||| LI
6

Time
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Constrained NMF: Templates

Template initialization Activation initialization

H |‘IIII rt II’II I||||||"||I IIV ||HIIIII Ill‘nﬂlll

1500

—_
Q
Q
Q

I ;"il' il 'J

i

Frequency

500

Note number

\l‘lll

55

54 IJI I

|I||II|||| |I|I il
o 54 55 57 59 63 64 7 72 0 6 8 10
Learnt templates earnt activations
72
R
& 8 64
GCJ g 63
> c
8 o %
Lt g 57
55
54
54 55 57 59 63 64 71 72 0 2 4 6 8 10

Note number

Pitch templates misused to represent onsets
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|
Constrained NMF: Double Constraints

Template initialization Activation initialization

—_
Q
Q
Q

Frequency
Note number

500

0
54 55 57 59 63 64 71 72

Note number
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Constrained NMF: Double Constraints

Template initialization Activation initialization
1500 ——]
E
g 1000 g
3 c
s | 3
500 - - (ZD
I
I
0 57 59 63 64 71 0 2 4 . 6 8 10
Note number Time
Template constraint for p=55 Activation constraints for p=55
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Template initialization Activation initialization

> —
8 1000 8
S =
o o
s g
0
59 63 64 71 72
Note number
Template constraint for p=55 Activation constraints for p=55
Such information may come
from a synchronized score
Sheet music
71 T ——— Emm——
f 3
. —— . £  —
l , %iﬁ% : D 50 m— ——————
)2 o T
2= e e L S — Z 554 e
0 2 4 Time (geconds) 8 10
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N
Constrained NMF: Double Constraints

Template initialization Activation initialization

1500
72

71

9 5
GC) 1000 Qo 64 I
= 5
o c
I L
500 O
Z
. _
54
0 54 55 57 59 63 64 71 72 0 2 4 6 8 10
Learnt templates Learnt activations Original
1500
| I >
. nma
5 o g 10001
Q S | \
[
S o
L 500 (23
Model
’ >

54 55 57 59 63 64 71 72
Note number

Significant gain in structure, but onsets are missing 9
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|
Constrained NMF: Onset Templates

Template initialization Activation initialization
1500
E
1000
- g
D c
I L
500 O
Z
0 54 54 55 55 57 57 59 59 63 63 64 64 71 71 72 72 0 2 4 6 8 10
Learnt templates Learnt activations Original
>
- @
% 'g N
-]
-] [
o 2
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Onset

>

0
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Note number

‘ w \\'-.
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

1. Split activation matrix

(#ﬂ’ Ei = —

() W oanlressing ) ! I
FEEEREEE FRe e

T%_ e e I e e i i
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

1. Split activation matrix

(#ﬂ’ Ei = —

() W oanlressing ) ! I
FEEEREEE FRe e

T%_ e e I e e i i
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

1. Split activation matrix

(#{F =j' & — ]
LS o — = 2. Model spectrogram for left/right
> = IS
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

#{F — 1. Split activation matrix
(u i s e B T 2. Model spectrogram for left/right

I%Q_immiﬁéﬁéﬁﬁ 3. Separation masks for left/right

llllllllllllllll
||||||||
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

#{F — 1. Split activation matrix
(u S O T 2. Model spectrogram for left/right
v b
l%q_iiﬁiﬁii%ﬁﬁ 3. Separation masks for left/right
4. Estimated spectrograms > = E
B N : for left/right Yy
N\
S > > S
et

0
000000000000

0
000000000000
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

Chopin, Waltz Op. 64, No. 1

Molto Vivace

| H-‘—! e e e —1 |I\| |I|\ |.\| |I\1 Orlglnal > ‘*q\\
¢ leqgiero —_—]
31:. 5 - - - - = %
h X @im ﬁ
n T ohe &' 2o, . % £ re,
[} ; ; —
&t s& | £:| 33| 33 %
e e S e e et ==—==
Kav, * Do, & 9, & P, & G By &

Score-Informed Constraints

Ewert, Muller: Using Score-Informed Constraints for
NMF-based Source Separation. Proc. ICASSP, 2012.

Further results available at
http://www.mpi-inf.mpg.de/resources/MIR/ICASSP2012-ScorelnformedNMF/
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|
Score-Informed Audio Decompostion

Application: Separating left and right hands for piano

Chopin, Waltz Op. 64, No. 1

Molto Vivace

Original B N
Left/right hand _
Right hand _ I
Left hand L K

Score-Informed Constraints

Ewert, Muller: Using Score-Informed Constraints for
NMF-based Source Separation. Proc. ICASSP, 2012.

Further results available at
http://www.mpi-inf.mpg.de/resources/MIR/ICASSP2012-ScorelnformedNMF/
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NMF used for spectrogram decomposition

Multiplicative update rules make it easy to constrain NMF
model via zero initialization

Exploiting score information to guide separation process
(requires score—audio synchronization)

Application: Separation of arbitrary note groups from given
audio recording

Tutorial EUROGRAPHICS: " © AudioLabs, 2023
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Input X .m Output X

Specific type of neural network

Encoder: Compress input X into a low-dimensional code

Decoder: Reconstruct output X from code

Tutorial EUROGRAPHICS: . © AudioLabs, 2023
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Autoencoder

Input X .M Output X

Specific type of neural network

Encoder: Compress input X into a low-dimensional code

Decoder: Reconstruct output)? from code

Goal: Learn parameters for encoder and decoder such that output is
close to input with respect to some loss function:

L(X,)?) ~ (

Tutorial EUROGRAPHICS: - © AudioLabs, 2023 AUDIO
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Nonnegative Autoencoder

N M F a n d AU tOe n COd e r (AE ) Smaragdis, Venkataramani: A Neural

Network Alternative to Non-Negative
Audio Models, Proc. ICASSP 2017.

NMF

V~WH implies W*V ~ H with pseudoinverse W+*
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Nonnegative Autoencoder

N M F a n d AUtOe ﬂ COd e r (AE ) Smaragdis, Venkataramani: A Neural

Network Alternative to Non-Negative
Audio Models, Proc. ICASSP 2017.

NMF

V~WH implies W*V ~ H with pseudoinverse W+

AE
]

Encoder &£ Code Decoder D

1. Layerr H=W_,V
2. Layer:V =W,H
Tutorial EUROGRAPHICS: © AudioLabs, 2023 AUDIO
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Nonnegative Autoencoder

N M F a n d AUtOe ﬂ COd e r (AE ) Smaragdis, Venkataramani: A Neural

Network Alternative to Non-Negative
Audio Models, Proc. ICASSP 2017.

.
==
—

V ~WH implies@v ~ H with pseudoinverse W+

\

AE <
Q)] (Q W

Encoder &£ Code Decoder D

NMF

1. Layerr H=W_,V ail tod network

2 Layer: V= WD H ully connected networ
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Nonnegative Autoencoder

N M F a n d AUtOe n COd e r (AE ) Smaragdis, Venkataramani: A Neural

Network Alternative to Non-Negative
Audio Models, Proc. ICASSP 2017.

NMF

V~WH implies W*V ~ H with pseudoinverse W+

AE
=]

Encoder &£ Code Decoder D

1. Layer: H=WgV NMF: Learn H and W
2. Layer:V =W, H AE: Learn W, and W,
Tutorial EUROGRAPHICS: o © AudioLabs, 2023
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e

1. Layer H=W_,/V
2. Layer:V=W_,H

How can one adjust the AE to simulate NMF?
How can one achieve nonnegativity?

How can one incorporate musical knowledge?
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Nonnegative Autoencoder (NAE)

iD=l

1. Layer H=W_,V LV, V) =|V- I7||2
2. Layer:V =W, H

= Loss function: same as in NMF

Tutorial EUROGRAPHICS: - © AudioLabs, 2023 AUDIO
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Nonnegative Autoencoder (NAE)

1. Layer: H = max(W. V,0) Lv,7)=|v-7|
2. Layer: V = max(W, H,0)

= Loss function: same as in NMF

= Activation function (ReLU) makes H and V nonnegative
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Nonnegative Autoencoder (NAE)

ip=s il

1. Layer: H = max(W, V,0) c(v,0)=|v -7’
2. Layer: V = max(W, H,0)

0L
W, «<— max WD—yaW , 0
D

Loss function: same as in NMF
Activation function (ReLU) makes H and V nonnegative

Projected gradient descent can be used to
keep W, (and W) nonnegative

Tutorial EUROGRAPHICS: 4 © AudioLabs, 2023 AUDIO
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Musical Constraints

=

H = max(W. V,0)
V = max(W, H,0)

= Template constraints: Project certain entries in W,
to zero values (using projected gradient decent)

Tutorial EUROGRAPHICS: o © AudioLabs, 2023 AUDIO
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Ewert, Sandler: Structured Dropout for Weak Label and

M u S | Cal CO n Stra | ntS Multi-Instance Learning and Its Application to Score-

Informed Source Separation. Proc. ICASSP, 2017.

Eb==qEl

H =HQ My
V = max(W,H’,0)

Template constraints: Project certain entries in W,
to zero values (using projected gradient decent)

Activation constraints: Use structured dropout by
applying pointwise multiplication with binary mask My

Tutorial EUROGRAPHICS: 6 © AudioLabs, 2023 AUDIO
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NAE with Multiplicative Update Rules

= Multiplicative update rules in NMF:
= Preserve nonnegativity
= Lead to fast convergence

= Question: Can one introduce multiplicative update rules to
train network weights for NAE?

= Use in additive gradient descent

oL
T oW

a suitable (adaptive) learning rate 7.

Tutorial EUROGRAPHICS: - © AudioLabs, 2023 AUDIO
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NAE with Multiplicative Update Rules

= Encoder:
H=WsV

= Structured Dropout:
H =H6 Mg

= Decoder:
V:WDH’

NMF vs. NAE

Ozer, Hansen, Zunner, Miiller: Investigating
Nonnegative Autoencoders for Efficient Audio
Decomposition. Proc. EUSIPCO, 2022.

Tutorial EUROGRAPHICS: - © AudioLabs, 2023 AUDIO
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NAE with Multiplicative Update Rules

= Encoder:
(WEV) © My )VT
H=WsV +1 ¢ (( b .
2 Wi = Wi :
(((W,‘Dr WpH'®) © My ) VT)
rk
= Structured Dropout:
H =Ho Mg
0+1 ¢ (VH'T)
= Decoder: WD = kr
~ Diker Dkr (W(@HIHIT)
V=WpH ! P kr
Similar idea and NMF vs. NAE
. Ozer, H ,Z , Muller: | igati
computation as for NMF. Nonnegative Autoenagders for Efflent Audio
Decomposition. Proc. EUSIPCO, 2022.
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Ap p rOXI m atl O n LOSS ('r.;lzl\:r,FH::s.e:l,gEmer, Muller: Investigating

Nonnegative Autoencoders for Efficient Audio
Decomposition. Proc. EUSIPCO, 2022.

10° : : —— NMF Mult. |
“ ' —— NAE Mult.

‘% =;
e — NAE SGD
' — NAE ADAM
: NAE RMSprop

104
A
o 103
—
102 \ s"*:‘;:‘_}? “ — :_,i;-::;'i:_fr::f: —
0 100 101 102 103 10
lterations
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e
Approximation Loss NMF vs. NAE

Ozer, Hansen, Zunner, Mdiller: Investigating
Nonnegative Autoencoders for Efficient Audio
Decomposition. Proc. EUSIPCO, 2022.

10°; ~—— NAE Mult. -
' ---- NAE RMSprop (GPU)
—— NAE RMSprop (CPU)
104
(7))
(72]
o
—
103+
102_‘.‘

0 10° 10! 102 10° 104
Runtime (seconds)
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Simulation of NMF:
= Decoder corresponds to NMF templates
= Encoder learns a kind of pseudo-inverse
= Code corresponds to NMF activations

Nonnegativity can be achieved via
= activation function (ReLU)
= projected gradient descent
= multiplicative update rules

Musical knowledge can be integrated via
= removing network weights (template constraints)
= structured dropout (activation constraints)

Tutorial EUROGRAPHICS: 25 © AudiolLabs, 2023
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Outlook

= More complex networks
= Deeper networks (more layers)
= Different layer types (CNN, RNN, ...) and activation functions
= Modification of loss function and regularization terms

= Understanding encoder — decoder relationship
= Nonnegativity
= Pseudo-inverse

= Update rules
= Constraints and convergence issues
= Adaptive learning rates and projected gradient descent

Tutorial EUROGRAPHICS: - © AudioLabs, 2023 AUDIO
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Score-Informed Audio Decomposition

Audio mosaicing (style transfer)

Target signal: Beatles—Let it be Source signal: Bees

RAAA IS | & |0
/
272 2

Audio Mosaicing Vs

Driedger, Prétzlich, Miiller: Let Mosaic signal: Let it Bee
It Bee — Towards NMF-Inspired

Audio Mosaicing. ISMIR, 2015.
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Informed Drum-Sound Decomposition

. &P
. : l X
‘S (L
WY o | -
ddddd Y
| ¥ K
L | ‘
I >
' \
— Remix: >
Drum Decomposition IR
Dittmar, Muller: Reverse Engineering the Amen Break
— Score-Informed Separation and Restoration Applied
to Drum Recordings. IEEE/ACM TASLP 24(9), 2016.
Tutorial EUROGRAPHICS: © AudioLabs, 2023 AUDIO
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|
Score-Informed Audio Decomposition

Major challenge: Reconstructed sound events often have artifacts

Approaches:
= Resynthesize certain sound components

= Differentiable Digital Signal Processing (DDSP)
combines classical DSP and deep learning

= Generative adversarial networks may help to
reduce the artifacts

DDSP

Engel et al.: DDSP:
Differentiable Digital Signal
Processing. ICLR, 2020.
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Source Separation (Piano Concerto)

= Yigitcan Ozer
= PhD student in engineering
= Pianist

Tutorial EUROGRAPHICS: . © AudioLabs, 2023 AUDIO
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Source Separation (Piano Concerto)

= Yigitcan Ozer
= PhD student in engineering
= Pianist

Only Piano!

LIL]

Where is the
orchestra?

L
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Source Separation (Piano Concerto)
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Source Separation (Piano Concerto)
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Source Separation (Piano Concerto)

iy = e F 16 F =
@b - ? T : T .I- T I 3 T r \
; e e G
j AT ! % x5 [ L
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Source Separation (Piano Concerto)

Piano Source

Separation

Ozer, Miiller: Source
Separation of Piano
Concertos with Test-Time
Adaptation, ISMIR, 2022.

ST

>
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Daniel Lee and Sebastian Seung: Algorithms for Non-Negative Matrix
Factorization. Proc. NIPS, 2000.

Sebastian Ewert and Meinard Muller: Using Score-Informed Constraints for
NMF-Based Source Separation. Proc. ICASSP, 2012.

Paris Smaragdis and Shrikant Venkataramani: A Neural Network Alternative
to Non-Negative Audio Models. Proc. ICASSP, 2017.

Sebastian Ewert and Mark B. Sandler: Structured Dropout for Weak Label
and Multi-Instance Learning and Its Application to Score-Informed Source
Separation. Proc. ICASSP, 2017.

Yigitcan Ozer, Jonathan Hansen, Tim Zunner, and Meinard Mdiller:
Investigating Nonnegative Autoencoders for Efficient Audio Decomposition.
Proc. EUSIPCO, 2022.
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