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Music Representations
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Music Representations
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Sheet Music (Image)
Recording (Audio)

MusicXML (Symbolic)

Film (Video)

Dance (Mocap)

Piano Roll (MIDI)

Literature (Text)Singing (Audio)

MUSIC
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Piano Roll Representation (1900)
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Piano Roll Representation

Time

Pitch

J.S. Bach, C-Major Fuge 

(Well Tempered Piano, BWV 846)
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Piano Roll Representation

Query: 

Goal:  Find all occurrences of the query
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Piano Roll Representation

Matches: 

Query: 

Goal:  Find all occurrences of the query
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Music Retrieval

Query

Database

Hit

Bernstein (1962) 
Beethoven, Symphony No. 5

Beethoven, Symphony No. 5:
 Bernstein (1962) 
 Karajan (1982) 
 Gould (1992)

 Beethoven, Symphony No. 9
 Beethoven, Symphony No. 3
 Haydn Symphony No. 94

Audio ID

Version ID

Category ID
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Music Retrieval

Retrieval tasks:

High
specificity

Low
specificity

Fragment-based 
retrieval 

Document-based 
retrieval

Specificity Granularity

Audio ID

Version ID

Category ID

Modalities
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Music Retrieval

Audio identification

Audio fingerprinting

Plagiarism detection

Copyright monitoring

Audio matching

Remix / remaster retrieval

Cover song detection
Version identification

Variation / motif
discovery

Musical quotations 
discovery

Year / epoch discovery

Key / mode discovery

Loudness-based retrieval

Tag / metadata inference 

Mood classification
Genre / style similarity

Instrument-based retrieval

Music / speech segmentation

Recommendation

Category-Based 
Retrieval

Audio 
Matching

Specificity lowhigh
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en

t

Version
Identification

Audio
Identification
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Music Synchronization: Audio-Audio

Beethoven’s Fifth
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Music Synchronization: Audio-Audio

Beethoven’s Fifth

Time (seconds)

Time (seconds)

Karajan
(Orchester)

Gould
(Piano)
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Music Synchronization: Audio-Audio

Beethoven’s Fifth

Karajan
(Orchester)

Gould
(Piano)

Time (seconds)

Time (seconds)
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Application: Interpretation Switcher
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Music Synchronization: Audio-Audio

Given: Two different audio recordings (two versions) of
the same underlying piece of music.

Goal: Find for each position in one audio recording
the musically corresponding position 
in the other audio recording.

Task
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Music Synchronization: Audio-Audio

Traditional Engineering Approach:

 Robust to variations (e.g., instrumentation, timbre, dynamics)
 Discriminative (e.g., capturing harmonic, melodic, tonal aspects)

1.)  Feature extraction

 Capturing local and global tempo variations
 Trade-off: Robustness vs. accuracy
 Efficiency

2.)   Temporal alignment

Chroma features

Dynamic time warping (DTW)
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Music Synchronization: Audio-Audio

Beethoven’s Fifth

Time (seconds)

Time (seconds)

Karajan
(Orchester)

Gould
(Piano)
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Music Synchronization: Audio-Audio

Beethoven’s Fifth

Time (indices)

Time (indices)

Time–chroma representations

Karajan
(Orchester)

Gould
(Piano)

C
hr

om
a

C
hr

om
a

G

G

C

C

B

B
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Music Synchronization: Audio-Audio

Beethoven’s Fifth

Time (indices)

Time (indices)

Time–chroma representations

Karajan
(Orchester)

Gould
(Piano)

C
hr

om
a

C
hr

om
a

G

G

C

C

B

B

A
C C♯/D♭

D

EFG

B

G♯/A♭

A♯/B♭

D♯/E♭
F♯/G♭

Chromatic
circle
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Music Synchronization: Audio-Audio

Beethoven’s Fifth

Time (indices)

Time (indices)

Time–chroma representations

Karajan
(Orchester)

Gould
(Piano)

C
hr

om
a

C
hr

om
a

G

G

C

C

B

B
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Music Synchronization: Audio-Audio

Beethoven’s Fifth

Time (indices)

Time (indices)

Time–chroma representations

Karajan
(Orchester)

Gould
(Piano)

C
hr

om
a

C
hr

om
a

G

G
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Music Synchronization: Audio-Audio

Beethoven’s Fifth

Time (indices)

Time (indices)

Time–chroma representations

E♭

E♭

Karajan
(Orchester)

Gould
(Piano)

C
hr

om
a

C
hr

om
a
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Music Synchronization: Audio-Audio

Time (indices)

Ti
m

e 
(in

di
ce

s)
Ka

ra
ja

n

Gould
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Music Synchronization: Audio-Audio
Cost matrix

Time (indices)

Ti
m

e 
(in

di
ce

s)
Ka

ra
ja

n

Gould
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Music Synchronization: Audio-Audio
Cost matrix

Time (indices)

Ti
m

e 
(in
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s)
Ka
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ja

n

Gould
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Music Synchronization: Audio-Audio
Cost-minimizing warping path

Time (indices)

Ti
m

e 
(in

di
ce

s)
Ka

ra
ja

n

Gould
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Music Synchronization: Audio-Audio

Time (indices)

Time (indices)

Cost-minimizing warping path = Optimal alignment

Karajan
(Orchester)

Gould
(Piano)
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Music Synchronization: Audio-Audio
Deep Learning Approaches

 Learn audio features from data
 Should be robust to performance variations
 Should yield high alignment accuracy
 Should have musical relevance

 Alignment problem
 Pre-aligned data for training
 Part of loss function → differentiability?

Soft-DTW
Cuturi, Blondel: Soft-DTW: A 
Differentiable Loss Function
for Time-Series. ICML, 2017

CTC-Loss
Graves et al.: Connectionist 
Temporal Classification: 
Labelling Unsegmented 
Sequence Data with Recurrent 
Neural Networks. ICML, 2006
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Feature Learning

29

Strong alignment

 Task: Learn audio features using a 
neural network

 Loss: Binary cross-entropy 
 framewise loss
 requires strongly aligned targets
 hard to obtain

Input

Ouput

Targets

Tutorial ISMIR
Learning with Music Signals

© AudioLabs, 2023
Meinard Müller

Feature Learning
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Weak alignment

Input

Ouput

Targets

 Task: Learn audio features using a 
neural network

 Loss: Binary cross-entropy 
 framewise loss
 requires strongly aligned targets
 hard to obtain

 Alignment as part of loss function
 requires only weakly aligned targets
 needs to be differentiable

 Problem: DTW is not differentiable
→ Soft DTW

?
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Dynamic Time Warping (DTW)
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Sequence X

Sequence Y

x1 x2 x3 x4 x5 x6 x7 x8 x9

y1 y2 y3 y4 y5 y6 y7

Alignment

1 2 3 4 5 6 7
1
2
3
4
5
6
7
8
9

Sequence Y

Se
qu

en
ce

X

Alignment matrix

Set of all possible 
alignment matrices

=  Feature space
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Dynamic Time Warping (DTW)
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Alignment matrix

=  Feature space

Cost measure:

Cost matrix:

Cost of alignment:

DTW cost:

with

Set of all possible 
alignment matrices

Optimal alignment:
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Dynamic Time Warping (DTW)
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DTW cost:

 Efficient computation via Bellman’s recursion in O(NM)

 Problem: DTW(C) is not differentiable with regard to C

 Idea: Replace min-function by a smooth version

for set                 and temperature parameter 

for n>1 and m>1 and suitable initialization.  
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Soft Dynamic Time Warping (SDTW)
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SDTW cost:

 Efficient computation via Bellman’s recursion in O(NM) still works:

 Limit case:

 Questions:
‒ How does the gradient look like?
‒ Can it be computed efficiently?
‒ How does SDTW generalize the alignment concept?

for n>1 and m>1 and suitable initialization.  

 SDTW(C) is differentiable with regard to C
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Soft Dynamic Time Warping (SDTW)
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SDTW cost:

 Define              as the following “probability” distribution over            : 

for

 The expected alignment with respect to             is given by:

 The gradient is given by: 

Soft-DTW
Cuturi, Blondel: Soft-DTW: A 
Differentiable Loss Function
for Time-Series. ICML, 2017

 The gradient can be computed efficiently in 
O(NM) via a recursive algorithm.
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Soft Dynamic Time Warping (SDTW)
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Se
qu

en
ce

Y

Sequence X

Expected alignment :

Cost matrix C

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 
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Soft Dynamic Time Warping (SDTW)
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Se
qu

en
ce

Y

Sequence X

Expected alignment :

Cost matrix C

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 

Optimal alignment A*
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Soft Dynamic Time Warping (SDTW)
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Se
qu

en
ce

Y

Sequence X

Expected alignment :

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 

𝐸 𝐶 with 𝛾 = 0 ( = A* )
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Soft Dynamic Time Warping (SDTW)
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Expected alignment :

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 

𝐸 𝐶 with 𝛾 = 0.1

Se
qu

en
ce

Y

Sequence X
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Soft Dynamic Time Warping (SDTW)
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Expected alignment :

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 

𝐸 𝐶 with 𝛾 = 1

Se
qu

en
ce

Y

Sequence X
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Soft Dynamic Time Warping (SDTW)
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Expected alignment :

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 

𝐸 𝐶 with 𝛾 = 10

Se
qu

en
ce

Y

Sequence X
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Soft Dynamic Time Warping (SDTW)
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Expected alignment :

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 

𝐸 𝐶 with 𝛾 = 100

Se
qu

en
ce

Y

Sequence X
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Soft Dynamic Time Warping (SDTW)
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Conclusions

 Direct generalization of DTW (replacing min by smooth variant)

 Gradient is given by expected alignment

 Fast forward algorithm: O(NM)

 Fast gradient computation: O(NM)

 SDTW yields a (typically) poor lower bound for DTW

 Can be used as loss function to learn from weakly aligned sequences  
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Thanks:
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Soft Dynamic Time Warping (SDTW)
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Theme-Based Audio Retrieval
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Theme-Based Audio Retrieval
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 2067 themes by 54 different composers
 Recordings (1126 recordings, ~ 120 hours)
 Theme occurences (~ 5 hours)

Barlow & Morgenstern (1949): A Dictionary of Musical Themes
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Theme-Based Audio Retrieval

47

Barlow & Morgenstern (1949): A Dictionary of Musical Themes

Database: Audio recordings

Query: Musical theme

Challenges

 Cross-modality
Symbolic vs. audio data

 Tuning
Deviations from standard tuning

 Transposition
Played key vs. written key

 Tempo
Local & global tempo deviations

 Polyphony
Monophonic query vs. 
polyphonic audio

Tutorial ISMIR
Learning with Music Signals

© AudioLabs, 2023
Meinard Müller

Theme-Based Audio Retrieval
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Monophony–Polyphony Challenge

Monophonic symbolic musical theme

Goal: Compute “enhanced” chromagram from polyphonic audio recording  
that better matches the symbolic monophonic theme

Audio recording of polyphonic music

Chromagram
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Theme-Based Audio Retrieval
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Strongly Aligned Training Data
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Theme-Based Audio Retrieval
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Weakly Aligned Training Data

Network input during training:
Weakly aligned score–audio pairs

Post-processed output of trained network:
Enhanced chroma representation

?          ?          ?

Convolutional neural network
Trained with the CTC loss
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Theme-Based Audio Retrieval
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216 216
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1
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13

NN N

Framewise loss 
(strong annotations)

Salience Computation
Bittner, McFee, Salamon, Li, Bello: Deep 
salience representations for F0 tracking in 
polyphonic music. ISMIR, 2017.

Output sequence
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Theme-Based Audio Retrieval
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216 216
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NN N

CTC loss 
(weak annotations)

CTC Loss
Graves, Fernández, Gomez, Schmidhuber: Connectionist
temporal classification: Labelling unsegmented sequence
data with recurrent neural networks. ICML, 2006.

 Idea of CTC loss similar to SDTW
 Theme is given as label sequence over finite alphabet 

(size 13 including blank symbol) 
 Expand label sequence to match audio feature sequence → valid alignment
 CTC loss considers probability over all valid alignments → differentiable  
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Theme-Based Audio Retrieval
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CTC-Based Training
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G G G Eb F F F DOutput sequence X
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Theme-Based Audio Retrieval
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Theme-Based Audio Retrieval
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CTC-Based Training

Al
ph
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 Set of all valid alignments

 Probability of label sequence

 CTC loss

Label sequence Y
G G G Eb F F F DOutput sequence X
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Theme-Based Audio Retrieval
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Theme-Based Audio Retrieval
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Theme-Based Audio Retrieval
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Theme-Based Audio Retrieval
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CTC-Based Training

Final Chromagram
Post

processing
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Output sequence X
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Theme-Based Audio Retrieval
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Chroma Variant Top-1 Top-10

Standard chromagram 0.561 0.723

Evaluation Results

Enhanced chromagram (baseline)                       0.824       0.861

DNN-based chromagram (CTC)                          0.867       0.942

DNN-based chromagram (linear scaling)            0.829       0.914

DNN-based chromagram (strong alignment)       0.882       0.939
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Theme-Based Audio Retrieval
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Audio Matching

62

Database: Audio recordings

Query: Short audio clip

Given a short query audio clip, 
find corresponding audio clips 
of similar musical content.

Challenges
 Similarity measure

– Different performances
– Instrumentation may change
– Similar harmonic progression

 Local comparison
– Query is short
– Database recordings are long

 Efficiency
– Database may be huge

Task
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Audio Matching
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Ludwig van Beethoven
Symphony No. 5

I. Allegro con brio

Bernstein

Karajan

Scherbakov

1:41

1:25

1:26

Interpretation
Switcher

Query:

Database: Matches

Task
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Audio Matching
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Query: Sequence X

Database: Sequence Y

Time

Time
1 2 3 4

Subsequence matching

Task
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Audio Features
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Example: Beethoven’s Fifth

Chroma representation (10 Hz)

Time (samples) Time (samples)

Bernstein Karajan

Chroma Features
Müller, Kurth, Clausen: Audio 
Matching via Chroma-Based 
Statistical Features. ISMIR, 2005
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Audio Features

66

Chroma representation (10 Hz)
 Normalization

Time (samples) Time (samples)

Bernstein Karajan

Example: Beethoven’s Fifth

Chroma Features
Müller, Kurth, Clausen: Audio 
Matching via Chroma-Based 
Statistical Features. ISMIR, 2005
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Audio Features

67

Time (samples) Time (samples)

Bernstein Karajan

Chroma representation (1 Hz)
 Normalization
 Smoothing & downsampling

Example: Beethoven’s Fifth

Chroma Features
Müller, Kurth, Clausen: Audio 
Matching via Chroma-Based 
Statistical Features. ISMIR, 2005
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Matching Procedure
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Query

DB

Bach Beethoven/Bernstein ShostakovichBeethoven/Sawallisch

Time (seconds)
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Matching Procedure
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Query

DB

Bach Beethoven/Bernstein ShostakovichBeethoven/Sawallisch

Time (seconds)
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Matching Procedure
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Query

DB

Bach Beethoven/Bernstein ShostakovichBeethoven/Sawallisch

Time (seconds)
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Matching Procedure
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Query

DB

Bach Beethoven/Bernstein ShostakovichBeethoven/Sawallisch

Time (seconds)
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Matching Procedure
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Query: Beethoven’s Fifth / Bernstein (first 20 seconds)

Bach Beethoven/Bernstein ShostakovichBeethoven/Sawallisch

Matching curve

Time (seconds)
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Matching Procedure
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Query: Beethoven’s Fifth / Bernstein (first 20 seconds)

Bach Beethoven/Bernstein ShostakovichBeethoven/Sawallisch

1 2 5 3 4 6 7Matches

Matching curve
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Matching Procedure

74

Time (seconds)

Problem: How to deal with tempo differences?

Karajan is much
faster than Bernstein!

Matching curve does not indicate any good matches!

Beethoven/Karajan
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Matching Procedure
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1. Strategy: Usage of local warping 

Karajan is much
faster than Bernstein!

Beethoven/Karajan

Warping strategies
are computationally
expensive and hard
for indexing.

Time (seconds)
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2. Strategy: Usage of multiple scaling

Beethoven/Karajan

Time (seconds)
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2. Strategy: Usage of multiple scaling

Beethoven/Karajan

Time (seconds)
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2. Strategy: Usage of multiple scaling

Beethoven/Karajan

Time (seconds)



Tutorial ISMIR
Learning with Music Signals

© AudioLabs, 2023
Meinard Müller

Matching Procedure

79

2. Strategy: Usage of multiple scaling

Beethoven/Karajan

Time (seconds)

 Query resampling simulates tempo changes
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2. Strategy: Usage of multiple scaling

Beethoven/Karajan

Time (seconds)

 Minimize over all curves

 Query resampling simulates tempo changes
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2. Strategy: Usage of multiple scaling

 Minimize over all curves

Beethoven/Karajan

 Query resampling simulates tempo changes

 Resulting curve is similar to warping curve

Time (seconds)
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Rank Piece Position
1 Beethoven’s Fifth/Bernstein 0 - 21
2 Beethoven’s Fifth/Bernstein 101- 122
3 Beethoven’s Fifth/Karajan 86 - 103

10 Beethoven’s Fifth/Karajan 252 - 271
11 Beethoven’s Fifth/Scherbakov 0 - 19
12 Beethoven’s Fifth/Sawallisch 275 - 296
13 Beethoven’s Fifth/Scherbakov 86 - 103
14 Schumann Op. 97,1/Levine 28 - 43

…
…

…
…

…
…

…
…

Query: Beethoven’s Fifth / Bernstein (first 20 seconds)
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 Chroma → invariance to timbre
 Normalization → invariance to dynamics
 Smoothing →    invariance to local time deviations
 Multiple queries →    invariance to global tempo

Notes:  
 There is no “standard” chroma feature. 

→ Variants can make a huge difference!
 Learn invariance from examples

→ “Deep Chroma”
 Temporal warping makes problem hard
 Efficiency

Deep Chroma
Korzeniowski, Widmer: Feature 
Learning for Chord Recognition: The 
Deep Chroma Extractor. ISMIR, 2016

Audio Matching
Müller, Kurth, Clausen: Audio 
Matching via Chroma-Based 
Statistical Features. ISMIR, 2005
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 Query and database are split up into small overlapping 
shingles that consist of short feature subsequences.

 Shingles can be matched using efficient nearest 
neighbor retrieval.

 Trade-off: 
‒ Large shingles have high musical relevance 
‒ High shingle dimensionality makes indexing difficult

Idea
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Chroma shingles

Retrieval
(index-based)

Database
Chroma sequence

Query
Chroma sequence
(ca. 10 to 30 seconds)
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DTW Query scaling (R = 3)

Bernstein

Karajan

T = 1 T = 0.8 T = 1.3

Avoiding expensive temporal warping, tempo differences are handled 
by creating R scaled variants of the query, each simulating a global 
change in tempo of up to ± 50 %.

Tempo-invariant matching
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Database document D2

⋯
⋯

Shingle-Based Retrieval
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Query

Database document D3

⋯
⋯

Database document D1

⋯
⋯
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Database document D2

⋯
⋯

Database document D3

⋯

Query

⋯

distance 0.001 distance  0.651 distance  0.289 
Database document D1

⋯
⋯

Ranked list

1. Database document D1
2. Database document D3
3. Database document D2
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Dimensionality Reduction

1. Using classical PCA

2. Using a neural network trained with triplet loss

Retrieval based on distance computation between shingles

𝑑                             ,                      
Expensive for high shingle dimensions

Strategy: dimensionality reduction 𝑑                             ,                    
Triplet Loss
F. Schroff, D. Kalenichenko, J.
Philbin: FaceNet: A unified
embedding for face recognition and
clustering. CVPR, 2015.
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Triplet-Based Embedding

Input: Time-chroma shingles (12 ✕ 20 = 240 dimensions)

Output: Embedded shingles (6 dimensions)

Embedding network

Anchor Positive Negative

Anchor Positive Negative

C
hr

om
a

Time (seconds) Time (seconds) Time (seconds)
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Triplet Loss

Margin fulfilled:
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Triplet Loss

Loss tries to

 push from anchor 

 pull towards anchor 

until margin      is fulfilled

Margin not fulfilled:
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Triplet Loss

Embeddings after training
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Experiment

 Training set: 357 recordings of different pieces by Beethoven, Chopin, 
and Vivaldi (~ 19 hours)

 Test set: 330 different recordings of different pieces by the same 
composers (~ 16 hours)

Shingle Reduction Dimensionality
P@1 MAP

Retrieval Time 
(seconds)

No reduction 240 0.996 0.972 23.0   

DNN 30 0.981 0.959 3.4

DNN 12 0.964 0.928 1.8

DNN 6 0.890 0.856 1.2

Retrieval Quality
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Nearest Neighbor Search
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Nearest Neighbor Search Strategies

 Brute force
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Nearest Neighbor Search

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient and robust
approximate nearest neighbor search using
hierarchical navigable small world graphs. IEEE
Transactions on PAMI, 2020.

 Brute force

 K-D trees

 HNSW graphs

Strategies
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Graph-Based Nearest Neighbor Search

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

 Given: query nodeInitial situation
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Graph-Based Nearest Neighbor Search

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

Step 1  Given: query node

 Start with (random) entry node 
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Graph-Based Nearest Neighbor Search

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

Step 1  Given: query node

 Start with (random) entry node 

 Traverse graph along edges

and compare nodes with 
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Graph-Based Nearest Neighbor Search

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

Step 2  Given: query node

 Start with (random) entry node 

 Traverse graph along edges

and compare nodes with 

 Continue with closest node
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Graph-Based Nearest Neighbor Search

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

Step 2  Given: query node

 Start with (random) entry node 

 Traverse graph along edges

and compare nodes with 

 Continue with closest node
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Graph-Based Nearest Neighbor Search

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

Step 3  Given: query node

 Start with (random) entry node 

 Traverse graph along edges

and compare nodes with 

 Continue with closest node
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Graph-Based Nearest Neighbor Search

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

Step 3  Given: query node

 Start with (random) entry node 

 Traverse graph along edges

and compare nodes with 

 Continue with closest node
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Graph-Based Nearest Neighbor Search

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

Step 4  Given: query node

 Start with (random) entry node 

 Traverse graph along edges

and compare nodes with 

 Continue with closest node

 Stop when distances increase
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HNSW Graphs

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

Layer 1

Layer 2

Layer 3
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HNSW Graphs

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

Layer 1

Layer 2

Layer 3
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HNSW Graphs

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

Layer 1

Layer 2

Layer 3
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HNSW Graphs

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

Layer 1

Layer 2

Layer 3
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HNSW Graphs

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

Layer 1

Layer 2

Layer 3
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HNSW Graphs

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

Layer 1

Layer 2

Layer 3
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HNSW Graphs

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

Layer 1

Layer 2

Layer 3

Properties

 Approximate nearest neighbor 
search

 Search runtime logarithmic in 
dataset size

 Works well with high 
dimensional data

 Efficient algorithm to build 
graph structure
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Experiment

 Approximate search yields nearly same results as exact search
 Dataset: Entire audio catalogue by Carus publisher

(7115 recordings, ~ 390 hours, > 1,25 million shingles)
 Runtime for brute force approach: ~ 100 ms to 300 ms per query

Search Shingle Reduction Dimensionality Time (ms)
KD No reduction 240 772.95 
KD DNN 30 117.54  
KD DNN 12 7.24 
KD DNN 6 0.66 

HNSW No reduction 240 0.20 
HNSW DNN 30 0.08  
HNSW DNN 12 0.06 
HNSW DNN 6 0.06 
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Application: Score Viewer
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Image Processing: Optical Music Recognition
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 Representation learning

 Embedding techniques

 Weak annotations

 Loss functions

 …

Cross-Modal Retrieval
Dorfer et al.: End-to-End Cross-Modality
Retrieval with CCA Projections and Pairwise
Ranking Loss. International Journal of
Multimedia Information Retrieval, 2018.

Sheet � Audio  A

Ranking Loss

Embedding Layer
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