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Piano Roll Representation (1900)

Music Representations
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Piano Roll Representation

Query: =
==

Goal: Find all occurrences of the query
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Music Retrieval
Database

Query B

W‘_\; :> Hit

) Bernstein (1962)
Audio ID Beethoven, Symphony No. 5
Beethoven, Symphony No. 5:
_ - Bernstein (1962) >
Version ID = Karajan (1982) 3
= Gould (1992) S
= Beethoven, Symphony No. 9 »
Category ID = Beethoven, Symphony No. 3
= Haydn Symphony No. 94 L IS
: e

Music Retrieval

Retrieval tasks:

Modalities

Specificity Granularity

Audio ID High Fragment-based
specificity retrieval
Version ID
Low Document-based
Category ID specificity retrieval
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Music Retrieval

%

é Remix / remaster retrieval
= N
] Vers.'on. Music / speech segmentation
Identification )
Year / epoch discovery
Cover song detection
Version identification Key / mode discovery
>
= Loudness-based retrieval
]
2|  Plagiarism detection Categor_V'Based
sl . Retrieval
ght monitori
o opyright monitoring Tag / metadata inference
Al.'“.jlo . M Mood classificatign
Identification dis Genre / style similarity
£ Audio fingerprinting
o
E|  Audio identification
g
L_[[high Specificity
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Music Synchronization: Audio-Audio

Beethoven’s Fifth

Allegro con brio(J - 105)
, ~
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Music Synchronization: Audio-Audio

Allegro con brio(J - 105)
, ~
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Beethoven’s Fifth T A == A
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Interpretation Switcher

Beethoven, 0p0§7-1_Symphonys
@ midi
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Absolute v
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Task

Given: Two different audio recordings (two versions) of
the same underlying piece of music.

Goal: Find for each position in one audio recording
the musically corresponding position
in the other audio recording.

Traditional Engineering Approach:

1.) Feature extraction
Robust to variations (e.g., instrumentation, timbre, dynamics)
Discriminative (e.g., capturing harmonic, melodic, tonal aspects)

=) Chroma features

2.) Temporal alignment

Capturing local and global tempo variations
Trade-off: Robustness vs. accuracy
Efficiency

=) Dynamic time warping (DTW)
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Beethoven’s Fifth

Time (seconds)
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Beethoven’s Fifth

Time (indices)
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Music Synchronization: Audio-Audio

Beethoven’s Fifth

Time (indices)
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Time—chroma representations
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Time (indices)

. A B c cHD
Chromatic A D
circle o —bie

Tutorial ISMIR o
Learning with Music Signals A

©AudioLabs, 2023 [[NUDIT0)
Meinard Miller LABS

Music Synchronization: Audio-Audio

Beethoven’s Fifth

Time (indices)
) o B 1 2 3 4 5 6 7 8 9 10 11 12
Karajan £ G| ‘ J >
(Orchester) 5 cf . oz
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Music Synchronization: Audio-Audio

Beethoven’s Fifth
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Music Synchronization: Audio-Audio

Beethoven’s Fifth
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Music Synchronization: Audio-Audio
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Music Synchronization: Audio-Audio

Cost matrix

5 6 7 8 9 10 11 12

Time (indices)

Karajan
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Music Synchronization: Audio-Audio

Cost matrix
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Music Synchronization: Audio-Audio

Cost-minimizing warping path
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Music Synchronization: Audio-Audio

Cost-minimizing warping path = Optimal alignment
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Music Synchronization: Audio-Audio

Deep Learning Approaches

= Learn audio features from data

= Should be robust to performance variations

= Should yield high alignment accuracy
= Should have musical relevance

= Alignment problem
= Pre-aligned data for training
= Part of loss function — differentiability?

CTC-Loss

Graves et al.: Connectionist
Temporal Classification:
Labelling Unsegmented
Sequence Data with Recurrent
Neural Networks. ICML, 2006

Soft-DTW

Cuturi, Blondel: Soft-DTW: A
Differentiable Loss Function
for Time-Series. ICML, 2017
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Feature Learning

L 1

1

= Task: Learn audio features using a
neural network

= Loss: Binary cross-entropy
= framewise loss
= requires strongly aligned targets
= hard to obtain

Feature Learning

L 1

Task: Learn audio features using a
neural network

Loss: Binary cross-entropy

l = framewise loss
= requires strongly aligned targets
= hard to obtain

Ouput

x ? f Weak alignment

Alignment as part of loss function
= requires only weakly aligned targets
= needs to be differentiable

Problem: DTW is not differentiable
— Soft DTW

Ouput
\:&41 szffff Strong alignment
o © Audi y AUDIO
v
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Dynamic Time Warping (DTW)

Alignment matrix
A 0, 1}

Set of all possible
alignment matrices

-AN,ILI c {O,l}NXAI

X = (21,22,...,2N)

Y= (y1, 2, yM)
TnyYm € F,nE[1: N, me[l:M]

Dynamic Time Warping (DTW)

Alignment matrix
A 0, 1}

Set of all possible
alignment matrices

-AN,ILI c {O,l}NXAI

X = (x1,29,...,2N)

Y= (y1, 2, yM)

TnYm €EF, n€[1: N, me[l:M]

F = Feature space F = Feature space
. 2 Cost measure: c: FxF—=Rxg
Allgnment ; ol T
:f 6 Cost matrix: C e RVM with C(n,m) := c(2n, Ym)
S X |x x x x x x x x x e
eauere ¢ [x [re [ [ [ [ [ [ [ g j . Cost of alignment: (4, C)
o
&b 3
f I DTW cost: DTW(C) = min ({(A,C) | A€ Axn})
sequence Y [y [y [vs [va [vs [v6 [ | 1234567 Optimal alignment:  A* = argmin ({({4,C) | A€ Axvu})
Sequence Y
Dynamic Time Warping (DTW) Soft Dynamic Time Warping (SDTW)
DTW cost: DTW(C) = min ({(A,C) | A€ Ay u}) SDTW cost:  SDTW?(C) = min” ({{A,C) | A € Ayar})

= Efficient computation via Bellman’s recursion in O(NM)
D(n,m) = min{D(n — 1,m), D(n,m — 1), D(n,m)} + C(n,m)
for n>1 and m>1 and suitable initialization.
DTW(C) = D(N, M)

= Problem: DTW(C) is not differentiable with regard to C

= ldea: Replace min-function by a smooth version

min” (§) = —ylog E exp —s/v)
forset S C R and temperature parameter 7 € R
o i © AudoLabs, AUDIO
Lesming with Musi Signsls ® A i e

Efficient computation via Bellman’s recursion in O(NM) still works:
DY(n,m) = min’{D"(n—1,m), D (n,m—1), D?(n, m)}+C(n,m)
for n>1 and m>1 and suitable initialization.

SDTW(C) = D?(N, M)

Limit case:  SDTW?(C) =% DTW/(C)

SDTW(C) is differentiable with regard to C

Questions:
— How does the gradient look like?
— Can it be computed efficiently?
— How does SDTW generalize the alignment concept?

Tutorial ISMIR I © AudioLabs, 2023 AUDIO
Learning with Music Signals o Meinard Miiller LABS

Soft Dynamic Time Warping (SDTW)

SDTW cost:  SDTW7?(C') = min” ({(A,C) | A € Avm})
= Define p’(C) as the following “probability” distribution over A,

exp ({4, C)/7)
S tetnn P (—(4,CY /)

= The expected alignment with respect to p?(C) is given by:

EN(C) = ZAEAN M PiCad € R

pW(C)A = for A e AN,M

= The gradient is given by:
VeSDTW(C) = EY(C)

= The gradient can be computed efficiently in
O(NM) via a recursive algorithm.

Soft-DTW

Cuturi, Blondel: Soft-DTW: A
Differentiable Loss Function
for Time-Series. ICML, 2017

Tutorial ISMIR N © Audiolabs, 2023 AUDIO
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Soft Dynamic Time Warping (SDTW)

Expected alignment: E7(C) = ZAEA p(C)aA e RVM
N.M

= Can be interpreted as a smoothed version of an alignment
= Degree of smoothing depends on temperature parameter y

Cost matrix C

1.0
0.8
0.6
0.4
0.2
0.0
0 20 40 60 80 100

Sequence X

Sequence Y
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Soft Dynamic Time Warping (SDTW)

Expected alignment: E7(C) = ZAeA P(C)aA e RVM
N.M

= Can be interpreted as a smoothed version of an alignment
= Degree of smoothing depends on temperature parameter y

Cost matrix C Optimal alignment A*

50

40 = 0.8

Sequence Y

100

© AudioLabs, 2023 [ENVIDIT0)
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Sequence X
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Soft Dynamic Time Warping (SDTW)

Expected alignment: E7(C) = ZAeA p(C)aA e RVM
N.M

= Can be interpreted as a smoothed version of an alignment
= Degree of smoothing depends on temperature parameter y

EY(C)withy =0 (=A%)

50 10
40 08
>
8 30 0.6
<
El
& 20 0.4
@
@»
10 0.2
0 0.0
0 20 40 60 80 100
Sequence X
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Soft Dynamic Time Warping (SDTW)

Expected alignment: E7(C) = ZAeA P(C)aA e RVM
N.M

= Can be interpreted as a smoothed version of an alignment
= Degree of smoothing depends on temperature parameter y

EY(C) with y = 0.1

50 10
40 08
>
8 30 0.6
=
El
T 20 0.4
@
]
10 0.2
0 0.0
0 20 40 60 80 100
Sequence X
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Soft Dynamic Time Warping (SDTW)

Expected alignment: E7(C) = ZAeA p(C)aA e RVM
N.M

= Can be interpreted as a smoothed version of an alignment
= Degree of smoothing depends on temperature parameter y

EY(C) withy = 1

Sequence Y

0 20 40 60 80 100
Sequence X
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Soft Dynamic Time Warping (SDTW)

Expected alignment: E7(C) = ZAeA P(C)aA e RVM
N.M

= Can be interpreted as a smoothed version of an alignment
= Degree of smoothing depends on temperature parameter y

EY(C) with y = 10

50 1.0
40 08
>
8 30 0.6
2
El
T 20 04
@
0
10 02
° | 0.0
0 20 40 60 80 100
Sequence X
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Soft Dynamic Time Warping (SDTW)

Expected alignment: E7(C) = ZAeA p(C)aA e RVM
N.M

= Can be interpreted as a smoothed version of an alignment
= Degree of smoothing depends on temperature parameter y

E(C) with y = 100

50 1.0
40 08
>
8 30 0.6
2
El
& 20 04
@
]
10 02
° | 0.0
0 20 40 60 80 100
Sequence X
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Soft Dynamic Time Warping (SDTW)

Conclusions

= Direct generalization of DTW (replacing min by smooth variant)
= Gradient is given by expected alignment

= Fast forward algorithm: O(NM)

= Fast gradient computation: O(NM)

= SDTW yields a (typically) poor lower bound for DTW

= Can be used as loss function to learn from weakly aligned sequences

Tutorial ISMIR 4 © AudioLabs, 2023 AUDIO
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Soft Dynamic Time Warping (SDTW)
References
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Theme-Based Audio Retrieval

Theme-Based Audio Retrieval
Barlow & Morgenstern (1949): A Dictionary of Musical Themes

Amplitude

-1 T T T T

= 2067 themes by 54 different composers 0 2 . 4( . ;,
ime (seconds

= Recordings (1126 recordings, ~ 120 hours)

= Theme occurences (~ 5 hours)
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Theme-Based Audio Retrieval Theme-Based Audio Retrieval
Barlow & Morgenstern (1949): A Dictionary of Musical Themes Monophony—Polyphony Challenge
Challenges Chromagram
Query: Musical theme . Cross-modality Monophonic symbolic musical theme EE -
Symbolic vs. audio data oyt ! 2 P =
= Tuning i ¢ T T
Deviations from standard tuning > Time (seconds)
T~ = Transposition ) . ) )
Database: Audio recordings
¥/g Played key vs. written key Audio recordlng of polyphonlc music i — T T —
T B — e S . [
= Tempo EE m — |
Local & global tempo deviations AN Legie Lo ol e iore .l EME’E‘ S T -
- POIyphony > ¢ ]Twme (securfds)

~ Monophonic query vs.

polyphonic audio

Tutorial ISMIR - © AudioLabs, 2023 [ENVIDIT0)
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Goal: Compute “enhanced” chromagram from polyphonic audio recording
that better matches the symbolic monophonic theme
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Theme-Based Audio Retrieval
Strongly Aligned Training Data

(G,G.G.F F,F.F,

|y

p——

Tutorial ISMIR
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Theme-Based Audio Retrieval
Weakly Aligned Training Data

Network input during training: \
Weakly aligned score—audio pairs

(6,6, G,F’ F,EF.D) ,

M-

Convolutional neural network ]

Trained with the CTC loss
¥

Post-processed output of trained network: )
Enhanced chroma representation

J

Tutorial ISMIR o © AudioLabs, 2023 AUDIO
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Theme-Based Audio Retrieval

Theme-Based Audio Retrieval

Output sequence

Framewise loss
(strong annotations)

o
s € 10
- B
[
N 10
L G
T
o .
g Eb 102
o " .
< c Salience Computation
10-3 Bittner, McFee, Salamon, Li, Bello: Deep
1 N salience representations for FO tracking in
polyphonic music. ISMIR, 2017.
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CTC loss
(weak annotations)

= l|dea of CTC loss similar to SDTW

= Theme is given as label sequence over finite alphabet
(size 13 including blank symbol)

= Expand label sequence to match audio feature sequence — valid alignment
= CTC loss considers probability over all valid alignments — differentiable

CTC Loss

Graves, c] , Gomez, i Ce

temporal classification: Labelling unsegmented sequence
data with recurrent neural networks. ICML, 2006.

Tutorial ISMIR . © AudioLabs, 2023 AUDIO
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Theme-Based Audio Retrieval
CTC-Based Training

Theme-Based Audio Retrieval
CTC-Based Training

Output sequence X

Label sequence Y
GGGEPFFFD

e 10°
B
s A
2 107
® E°
c g
Q G F
< 1072
< &
)
C 10
0.0 30 6.0
Time (seconds)
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Label sequence Y
GGGEPFFFD

10°
5 Valid alignment
107!
o .
R GeGeGEPEPFe Fe FDDD
235 ~
< 10 — matches sequence X
1072
Time (seconds)
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Theme-Based Audio Retrieval
CTC-Based Training

Theme-Based Audio Retrieval

CTC-Based Training

Label sequence Y
GGGEPFFFD

o = Set of all valid alignments
3 - Kyy ={Ae (&) :5(4) =Y}
iz g = Probability of label sequence
< PY[X)=3, PA|X)
s = CTC loss
0 rime teconds) Ly(X,Y) = —log P(Y | X)

Tutorial ISMIR
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Time (seconds)

Alignment 1/969
10° 1071

Label sequence Y
GGGEPFFFD

>1078

200

400 600
Alignment

800
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Theme-Based Audio Retrieval
CTC-Based Training

Label sequence Y
GGGEPFFFD

100 107
Z107e J’J—
- 2 o
o] 100 310
8
8 ¢ g 0=
T 5 <
c B o
S 5 £ 10
= L, =
< 107 2 g
H
3
L2107
10 10%
00 30 6.0 200 400 600 800

Time (seconds) Alignment
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Theme-Based Audio Retrieval

CTC-Based Training

Output sequence X

e 10°
B
- A
|5 -1
§ go *
£ £
Q G F
s -2
< T 10
)
c 102
0.0

3. .
Time (seconds)
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Theme-Based Audio Retrieval
CTC-Based Training

Output sequence X

Final Chromagram

10° 1.0
: Post L
i 0.8
SO processing A
3 107 G
3z z 06
£ 2 £F
8 & . 5 04
< g 10 B
D D 0.2
c 102 c 0.0
0.0 30 6.0 00 3.0 6.0
Time (seconds) ‘Time (seconds)
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Theme-Based Audio Retrieval

Evaluation Results

(E,D%,E, G, E,E,F*, E, D!, D, D)

Chroma Variant Top-1  Top-10
Standard chromagram 0.561 0.723
Enhanced chromagram (baseline) 0.824  0.861
DNN-based chromagram (CTC) 0.867 0.942
DNN-based chromagram (linear scaling) 0.829 0.914
DNN-based chromagram (strong alignment) 0.882 0.939

Chroma Chroma Chroma Chroma Chroma

Chroma

‘-ll.—-'—_

T 7
Time (seconds)
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Theme-Based Audio Retrieval
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Western classical music recordings. Proc. ICASSP, 2019.

F. Zalkow and M. Miiller. CTC-based learning of deep chroma features for score-audio music retrieval.
2021. IEEE/ACM Trans. on Audio, Speech, and Language Processing, 29, pages 2957-2971, 2021.

Thanks:
Frank Zalkow (Ph.D. 2021) @
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Stefan Balke (Ph.D. 2018)
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Audio Matching

Task Challenges

Given a short query audio clip,
find corresponding audio clips
of similar musical content.

Query: Short audio clip
 Database: Audio recordings™

tabase: Audio recordings

v "

\—/

Similarity measure

— Different performances

— Instrumentation may change
— Similar harmonic progression

Local comparison
— Query is short
— Database recordings are long

Efficiency
— Database may be huge

Tutorial ISMIR o
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Audio Matching
Task

Query:

Database: Matches Interpretation

Switcher

Ludwig van Beethoven
Sympnoms o5 (QICIO)
1. Allegro con brio

Bernstein
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Audio Matching
Task

Query: Sequence X

—
I

Database: Sequence Y

' —

12 3

1
4 5 6 7 8 9 10 11 12 13 14 15

Time

Subsequence matching
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Audio Features

Example: Beethoven’s Fifth

Bernstein Karajan

15 B T 15
A#
&y Wi

10 10
i l
£

5 5
DD# o LU T I
C# l

o ¢ 1

0 50 100 150 200 0 50 100 150

Time (samples)

Time (samples)

Chroma representation (10 Hz)

Chroma Features

Milller, Kurth, Clausen: Audio
Matching via Chroma-Based
Statistical Features. ISMIR, 2005
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Audio Features

Example: Beethoven’s Fifth

Bernstein

WENT 7 1

0 50 100 150 200
Time (samples)

Chroma representation (10 Hz)
= Normalization

Karajan

T T 1

Time (samples)

Chroma Features

Miller, Kurth, Clausen: Audio
Matching via Chroma-Based
Statistical Features. ISMIR, 2005
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Audio Features

Example: Beethoven’s Fifth

Bernstein Karajan

B 1

Ak

A 08

o

Fit 08

£ 04

D#

D 02

c#

¢ 0

0 5 10 15 20
Time (samples) Time (samples)

Chroma representation (1 Hz)

oot Chroma Features
- Normahlzat'on . Miller, Kurth, Clausen: Audio
. Smoothmg & downsamplmg Matching via Chroma-Based
Statistical Features. ISMIR, 2005
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Matching Procedure

I

w1 s
DB |, ! il
[Pl P M R
Bach Beethoven/Bernstein Beethoven/Sawallisch  Shostakovich
og|
o7
o}
o3|
o4
03
02
o1
o ' , ,
S w0 &0 0 000 1200
Time (seconds)
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Matching Procedure

Query

DB

5 il
LR

Bach Beethoven/Bernstein Beetho! isch

, ,
% 20 w0 &0 0 000 1200

Time (seconds)
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Matching Procedure

Query

DB

il
il

Bach Beethoven/Bernstein Beethoven/Sawallisch  Shostakovich

o
o
"‘/WUWW
o
of
o
o
o
% 200 400 600 1000 5

1200

Time (seconds)
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Matching Procedure

Query

DB

i
LR

Bach Beethoven/Bernstein Beetho! isch

o
o

"‘ﬁWWW

o

of

o

o

o

o 2w @® £ aw

Time (seconds)

|
1000 1200
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Matching Procedure

Matching curve
Query: Beethoven'’s Fifth / Bernstein (first 20 seconds)

Bach Beethoven/Bernstein Beethoven/Sawallisch  Shostakovich

o8,

o7

"‘/WUWW

o3|

04

03

02

o1

% o Y 3 o o0 20
Time (seconds)
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Matching Procedure

Matching curve

Query: Beethoven'’s Fifth / Bernstein (first 20 seconds)

Bach Beethoven/Bernstein

Beetho isch

Matches 1 2 5 3 4 6 7

Learning with Music Signals

©AudioLabs, 2023 [[NUDIT0)
Meinard Miller LABS

Matching Procedure
Problem: How to deal with tempo differences?

Karajan is much
faster than Bernstein!

.',.._-_.,,'-?.-’T#.n_l. ru. "l"'""'fu—.. - .
i LT p—— -.d 1...,.. i T

-'-'-’

Beethoven/Karajan

- Matching curve does not indicate any good matches!

% E) 00 150 20 20 30 3% 00

Time (seconds)
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Matching Procedure
1. Strategy: Usage of local warping

Karajan is much
faster than Bernstein! e

Warping strategies
are computationally
expensive and hard
for indexing.

i

I-.I—|‘F:”Il |-.I—| n”ll- -;rpq,-ﬂr_- |h' ';

e S e T e R e

Beethoven/Karajan

Time (seconds)
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Matching Procedure
2. Strategy: Usage of multiple scaling

et L iy R
I-l‘l—‘:.Il’Il |_ln_|_; u.d.;rpq,.!“_- o o s
R R e b O e T -..__'_'_.'_."-F
Beethoven/Karajan

08

07

08

0s

04

03

02

o1

% 50 100 150 200 250 300 350 400

Time (seconds)
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Matching Procedure
2. Strategy: Usage of multiple scaling

I-.I—|‘F:”Il |-.I n’ll- o q 4 . =
A s e "'"“""., -
B e e R iy ey

Beethoven/Karajan

Matching Procedure
2. Strategy: Usage of multiple scaling

i

A A o
AP o B ki S W

Beethoven/Karajan

Time (seconds)
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Matching Procedure
2. Strategy: Usage of multiple scaling

= Query resampling simulates tempo changes

Beethoven/Karajan

|
Matching Procedure
2. Strategy: Usage of multiple scaling

= Query resampling simulates tempo changes

= Minimize over all curves

Beethoven/Karajan

Time (seconds)

Time (seconds)
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Matching Procedure Audio Matching
2. Strategy: Usage of multiple scaling Query: Beethoven'’s Fifth / Bernstein (first 20 seconds)
= Query resampling simulates tempo changes
o Rank Piece Position
* Minimize over all curves 1 Beethoven's Fifth/Bemstein 0-21 Ba| o>
= Resulting curve is similar to warping curve 2 Beethoven’s Fifth/Bernstein 101-122 | o
3 Beethoven'’s Fifth/Karajan 86-103 B | =
Beethoven/Karajan . : : :
08 10 Beethoven’s Fifth/Karajan 252-271 B | = -
b 11 Beethoven’s Fifth/Scherbakov 0-19 | «:
- 12 Beethoven’s Fifth/Sawallisch 275-296 | <
03 13 Beethoven'’s Fifth/Scherbakov 86-103 B | « .
o1 14 Schumann Op. 97,1/Levine 28-43 B |« -
Time (seconds)
Tutorial ISMIR o © AudioLabs, 2023 AUDIO Tutorial ISMIR 0 © AudioLabs, 2023 AUDIO
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Audio Matching Shingle-Based Retrieval
Strategy: Handle variations at various levels Idea
= Chroma — invariance to timbre . . .
N lizati o tod ) = Query and database are split up into small overlapping
ormalization — Invariance to dynamics shingles that consist of short feature subsequences.
= Smoothing — invariance to local time deviations
= Multiple queries — invariance to global tempo i . .
= Shingles can be matched using efficient nearest
Audio Matchin, H i
Miiller, Kurth, Clauseg: Audio ne|ghb0r retneval .
Notes: Matching via Chroma-Based
Statistical Features. ISMIR, 2005
= There is no “standard” chroma feature. = Trade-off:
i i !
- Vanlants 'can make a huge differencel Deep Chroma — Large shingles have high musical relevance
= Learn invariance from examples Korzeniowski, Widmer: Feature . . ) . . . . .
« » Learning for Chord Recognition: The — High shingle dimensionality makes indexing difficult
— “Deep Chroma Deep Chroma Extractor. ISMIR, 2016
= Temporal warping makes problem hard
.
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Shingle-Based Retrieval

Database
Chroma sequence

Chroma shingles

Retrieval
(index-based)

Query
Chroma sequence
(ca. 10 to 30 seconds)

(R
ol o TR

i
o L A

g wil® e wew ved'l e

BT

W

"
:
Mt
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Shingle-Based Retrieval
Tempo-invariant matching

Avoiding expensive temporal warping, tempo differences are handled
by creating R scaled variants of the query, each simulating a global
change in tempo of up to + 50 %.

DTW Query scaling (R = 3)
T=1T=08 T=13
g 5 i
. . 4 -
Karajan 2 v ety
Bernstein L K 0 e
-h.-_ --.. -h--— -hn-—
: e

Shingle-Based Retrieval

Shingle-Based Retrieval

distance ~ 0.001

Ranked list
1. Database document D,

2. Database document D,
3. Database document D,

distance ~ 0.651

distance ~ 0.289

Database document D,

Database D, ‘

D,

Tutorial ISMIR © AudioLabs, 2023 AUDIO Tutorial ISMIR © AudioLabs, 2023 AUDIO
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Shingle-Based Retrieval Shingle-Based Retrieval
Dimensionality Reduction Triplet-Based Embedding
Retrieval based on distance computation between shingles Input: Time-chroma shingles (12 X 20 = 240 dimensions)
— — = Anchor Positive Negative
[ Tupp— - — —— C—
d(f = , ) ) Tpp—_ R —
g T P e el - — =
o — & | —
_—
Expensive for high shingle dimensions Time (seconds) Time (seconds) Time (seconds)
Is Is ls
Strategy: dimensionality reduction Embedding[network |
lx“:f(S“) l,xp:f(s") lx":f(s")
d( ’ ) Output: Embedded shingles (6 dimensions)
Anchor Positive Negative
Triplet L
. . riplet Loss
1. Using classical PCA F. Schroff, D. Kalenichenko, J.
. . L Phibin: ~ FaceNet: A unified
2. Using a neural network trained with triplet loss embedding for face recognition and
clustering. CVPR, 2015.
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Shingle-Based Retrieval
Triplet Loss

L(X) = max (0,d(x* xP) = d(x* x") +a)

%Xi"

a xP

Margin fulfilled:

Tutorial ISMIR o © AudioLabs, 2023 AUDIO
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Shingle-Based Retrieval
Triplet Loss

L(X) = max (0,d(x* xP) = d(x* x") +a)

Margin not fulfilled: [V Loss tries to
> xn n a
= push X" from anchor X

= pull xPtowards anchor x*

x until margin « is fulfilled

Tutorial ISMIR 0 © AudioLabs, 2023 AUDIO
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Shingle-Based Retrieval
Triplet Loss

£L(X) = max (0,d(x*xP) - d(x*,x") +a)

Embeddings after training

Tutorial ISMIR o © AudioLabs, 2023 AUDIO
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Shingle-Based Retrieval

Experiment

= Training set: 357 recordings of different pieces by Beethoven, Chopin,
and Vivaldi (~ 19 hours)

= Test set: 330 different recordings of different pieces by the same
composers (~ 16 hours)

Shingle Reduction Dimensionality Retrieval Quality Retrieval Time
P@1 MAP (seconds)
No reduction 240 0.996 0.972 23.0
DNN 30 0.981 0.959 34
DNN 12 0.964 0.928 1.8
DNN 6 0.890 0.856 1.2 |
Loaming i usc Signal “ N e ioter

Shingle-Based Retrieval
Nearest Neighbor Search

® (] .: O:.
N :‘.°:° °
..0......... °®

e g0 )

Tutorial ISMIR o © AudioLabs, 2023 AUDIO
Learning with Music Signals v Meinard Miler LABS

Shingle-Based Retrieval
Nearest Neighbor Search Strategies

= Brute force
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Learning with Music Signals ¢ Meinard Miller LABS




I ———
Shingle-Based Retrieval
Nearest Neighbor Search Strategies

= Brute force
= K-D trees

= HNSW graphs

HNSW Graphs

Y. Malkov and D. Yashunin. Efficient and robust
approximate nearest neighbor search using
hierarchical navigable small world graphs. IEEE
Transactions on PAMI, 2020.
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Shingle-Based Retrieval
Graph-Based Nearest Neighbor Search

Initial situation = Given: query node x4

4 N

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient

. and robust approximate nearest
x4 neighbor search using hierarchical
navigable small world graphs. IEEE

Transactions on PAMI, 2020.
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Shingle-Based Retrieval
Graph-Based Nearest Neighbor Search

Step 1 = Given: query node x9

/ \ = Start with (random) entry node x¢
xe

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient

. and robust approximate nearest
x4 neighbor search using hierarchical
navigable small world graphs. IEEE

Transactions on PAMI, 2020.
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Shingle-Based Retrieval
Graph-Based Nearest Neighbor Search

Step 1 = Given: query node x4

/ \ = Start with (random) entry node x¢
xe

= Traverse graph along edges

and compare nodes with x4

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient

. and robust approximate nearest
x4 neighbor search using hierarchical
navigable small world graphs. IEEE

Transactions on PAMI, 2020.
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Shingle-Based Retrieval
Graph-Based Nearest Neighbor Search

Step 2 = Given: query node x9

/ \ = Start with (random) entry node x¢
xe

= Traverse graph along edges

and compare nodes with x4

= Continue with closest node

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient

. and robust approximate nearest
x4 neighbor search using hierarchical
navigable small world graphs. IEEE

Transactions on PAMI, 2020.
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Shingle-Based Retrieval
Graph-Based Nearest Neighbor Search

Step 2 = Given: query node x4

/ \ = Start with (random) entry node x¢
xe

= Traverse graph along edges

and compare nodes with x4

= Continue with closest node

HNSW Graphs
Y. Malkov and D. Yashunin. Efficient

. and robust approximate nearest
x4 neighbor search using hierarchical
navigable small world graphs. IEEE

Transactions on PAMI, 2020.
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Shingle-Based Retrieval

Graph-Based Nearest Neighbor Search

Step 3

Given: query node x4
Start with (random) entry node x©

Traverse graph along edges

and compare nodes with x4

Continue with closest node

HNSW Graphs

Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.
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Shingle-Based Retrieval

Graph-Based Nearest Neighbor Search

Step 3

Given: query node x4
Start with (random) entry node x°©

Traverse graph along edges

and compare nodes with x4

Continue with closest node

HNSW Graphs

Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.
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Shingle-Based Retrieval

Graph-Based Nearest Neighbor Search

[ N

)

Given: query node x4
Start with (random) entry node x©

Traverse graph along edges

and compare nodes with x4
Continue with closest node

Stop when distances increase

HNSW Graphs

Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.

Tutorial ISMIR
Learning with Music Signals

© AudioLabs, 2023 [ENVIDIT0)
Meinard Miller LABS

Shingle-Based Retrieval
HNSW Graphs

Layer 3

Layer2 \
—-

HNSW Graphs

Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.
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Shingle-Based Retrieval
HNSW Graphs

Layer 3

Layer 2

Layer 1

i

HNSW Graphs

Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.
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Shingle-Based Retrieval
HNSW Graphs

Layer 3

—-

HNSW Graphs

Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.
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Shingle-Based Retrieval
HNSW Graphs

Layer 1

HNSW Graphs

Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.
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Shingle-Based Retrieval
HNSW Graphs

Layer2 -
—-

Layer 1
HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE

Transactions on PAMI, 2020.
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Shingle-Based Retrieval
HNSW Graphs

HNSW Graphs

Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE
Transactions on PAMI, 2020.
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Shingle-Based Retrieval
HNSW Graphs Properties

= Approximate nearest neighbor
Laver3 search
S}
= Search runtime logarithmic in
dataset size
Layer 2 — = Works well with high
e dimensional data
VA—’ - Efficient algorithm to build

graph structure
Layer 1
HNSW Graphs
Y. Malkov and D. Yashunin. Efficient
and robust approximate nearest
neighbor search using hierarchical
navigable small world graphs. IEEE

Transactions on PAMI, 2020.
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Shingle-Based Retrieval
Experiment

= Approximate search yields nearly same results as exact search

= Dataset: Entire audio catalogue by Carus publisher
(7115 recordings, ~ 390 hours, > 1,25 million shingles)

= Runtime for brute force approach: ~ 100 ms to 300 ms per query

Search Shingle Reduction Dimensionality Time (ms)
| ko No reduction 240 772.95 |
KD DNN 30 17.54
[ o DNN 12 7.24|
KD DNN 6 0.66
[ Hnsw No reduction 240 0.20|
HNSW DNN 30 0.08
[ Hnsw DNN 12 0.06 |
HNSW DNN 6 0.06
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Shingle-Based Retrieval
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Frank Zalkow (Ph.D. 2021) @
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Music Synchronization: Image-Audio

Image Processing: Optical Music Recognition
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Audio Processing: Fourier Analysis

Music Synchronization: Image-Audio

[ Ranking Loss ] = Representation learning
Tx=fae, y=9(A06,)T
I Embedding Layer . .
: : = Embedding techniques
[ ] [ ] = Weak annotations
T T
l 5 l I 5 | = Loss functions
Sheet 1| | Audio A |
— Cross-Modal Retrieval
Dorfer et al.: End-to-End Cross-Modality
Retrieval with CCA Projections and Pairwise
Ranking Loss. International Journal of
Multimedia Information Retrieval, 2018.
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Music Retrieval

WikipepiA  Symphony No. 5 (Beethoven)
. =iy

From Wikpecls, the e encylpecls

Beethoven's Fify redirects hre. For the movie, see Bector
The Symphony lo. 5 i C minor of Ludwig van Besthoven, 0p.6
Vienna's Thesteran dr Wien 1808, e work achieved s prodd
percd,Becthoven's Fit Symphony s i four meverments

ot

Symphony no. 5 in C minor, op. 67

Violiso 1

~ Symphony
Viclizoll ST ieses Tags  Details  Edit
Recordings
Date Tile Attributes  Artist
[ periormance

Symphony No. 5 in C

i minor, Op. 67: T

All br o H H
w3 MusicBrainz
1I1. Scherzo. All
1V. Allegro

o Petrucci Music Library
Z
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