INTERNATIONAL AUDIO LABORATORIES ERLANGEN

A joint institution of Fraunhofer IIS and Universität Erlangen-Nürnberg

Tutorial 5, ISMIR Milan, November 5, 2023

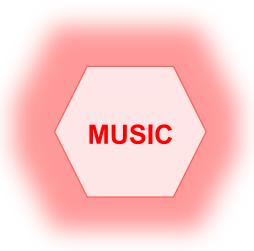
Learning with Music Signals: Technology Meets Education

Music Retrieval

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Music Representations



Music Representations

Sheet Music (Image)

Recording (Audio)

Piano Roll (MIDI)

Singing (Audio)

MUSIC

Literature (Text)

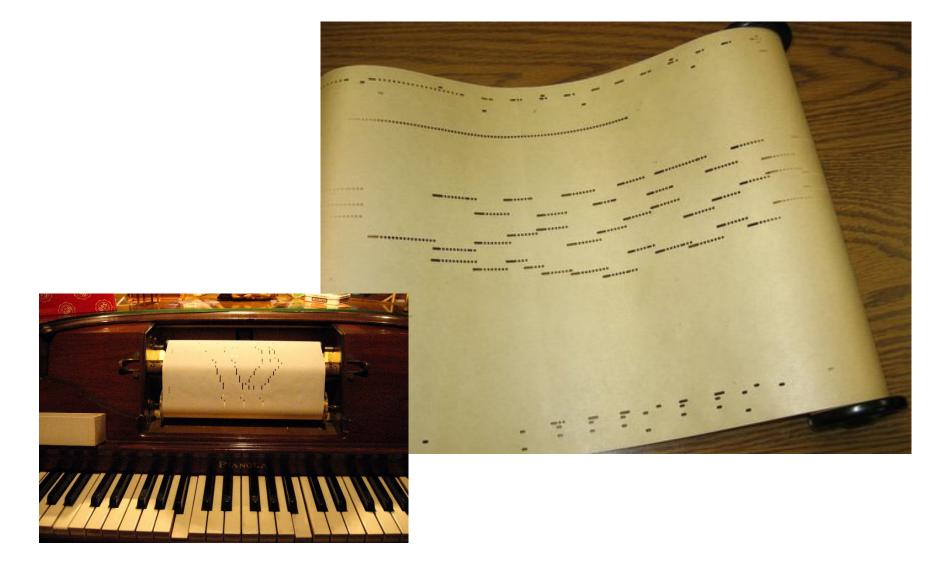
Dance (Mocap)

Film (Video)

MusicXML (Symbolic)

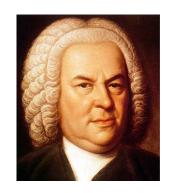
<pitch>
 <step>E</step>
 <alter>-1</alt
</pre>

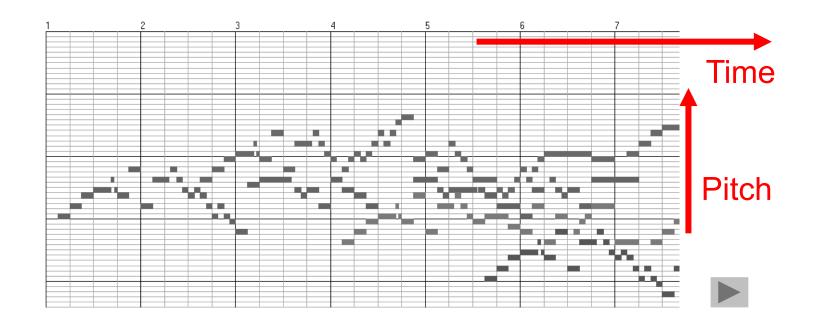
Piano Roll Representation (1900)



Piano Roll Representation

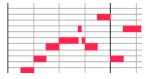
J.S. Bach, C-Major Fuge (Well Tempered Piano, BWV 846)



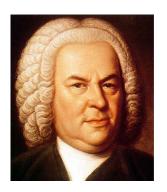


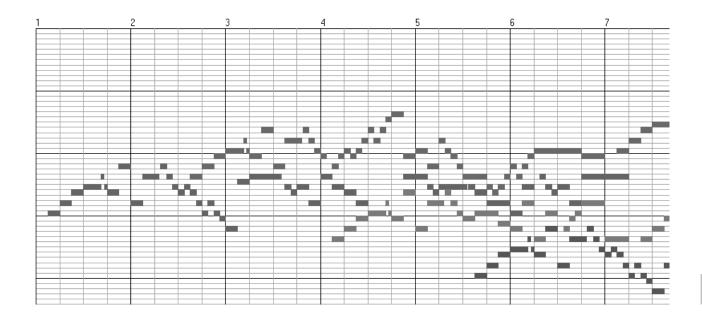
Piano Roll Representation

Query:



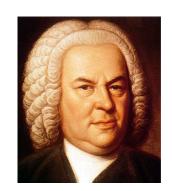
Goal: Find all occurrences of the query





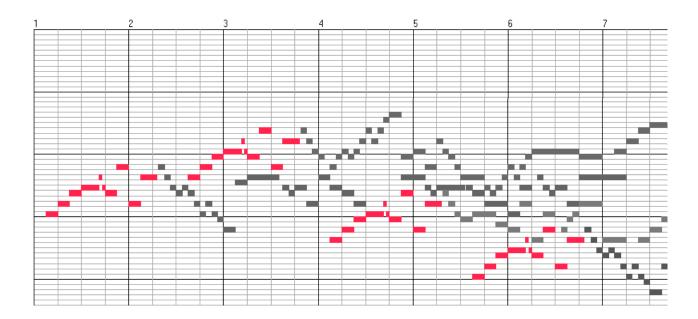
Piano Roll Representation

Query:

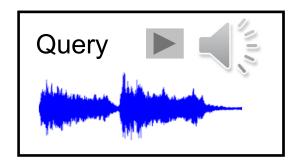


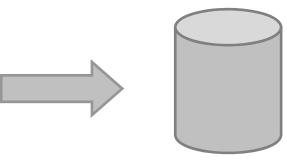
Goal: Find all occurrences of the query

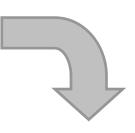
Matches:



Music Retrieval







Hit

Audio ID

Version ID

Category ID

Bernstein (1962) Beethoven, Symphony No. 5

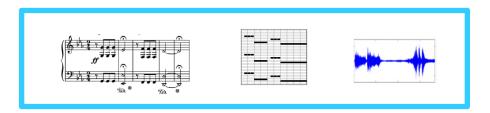
Beethoven, Symphony No. 5:

- Bernstein (1962)
- Karajan (1982)
- Gould (1992)

- Beethoven, Symphony No. 9
- Beethoven, Symphony No. 3
- Haydn Symphony No. 94

Music Retrieval

Modalities



Retrieval tasks:

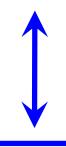
Audio ID

Version ID

Category ID

Specificity

High specificity



Low specificity

Granularity

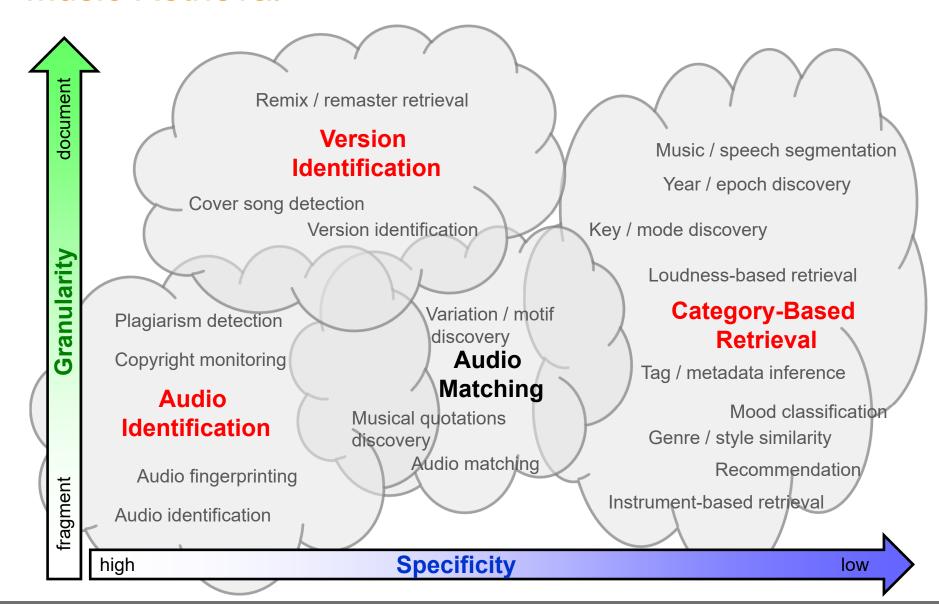
Fragment-based retrieval



Document-based retrieval

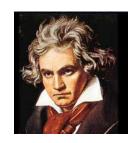
9

Music Retrieval

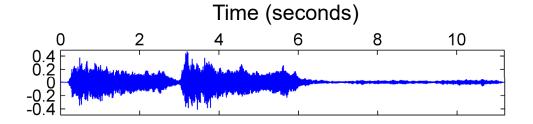


Beethoven's Fifth

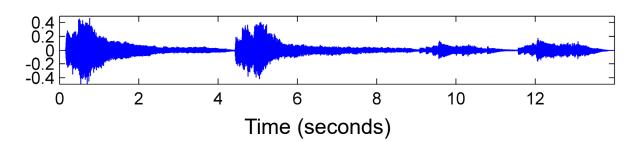
Beethoven's Fifth



Karajan (Orchester)



Gould (Piano)

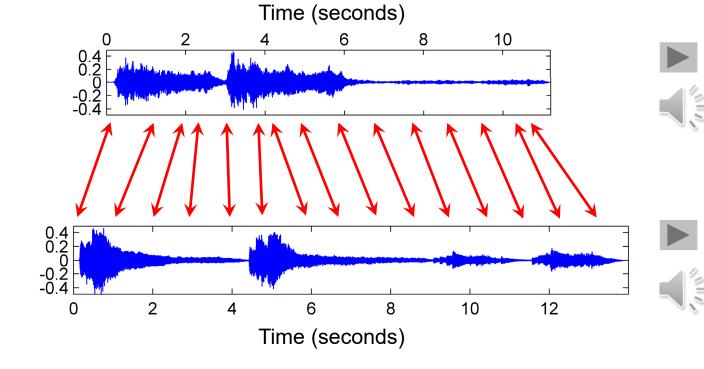


12

Beethoven's Fifth



Karajan (Orchester)



Application: Interpretation Switcher

Task

Given: Two different audio recordings (two versions) of the same underlying piece of music.

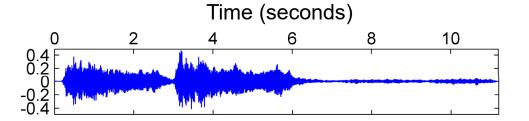
Goal: Find for each position in one audio recording the musically corresponding position in the other audio recording.

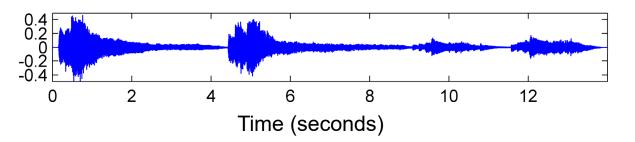
Traditional Engineering Approach:

- 1.) Feature extraction
 - Robust to variations (e.g., instrumentation, timbre, dynamics)
 - Discriminative (e.g., capturing harmonic, melodic, tonal aspects)
 - Chroma features
- 2.) Temporal alignment
 - Capturing local and global tempo variations
 - Trade-off: Robustness vs. accuracy
 - Efficiency
 - Dynamic time warping (DTW)

Beethoven's Fifth

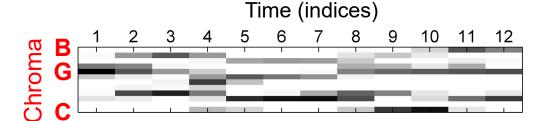
Karajan (Orchester)





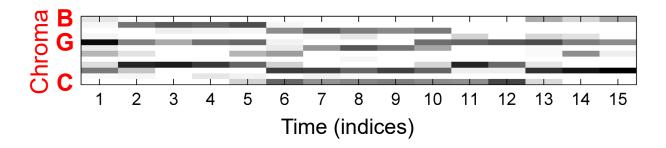
Beethoven's Fifth

Karajan (Orchester)



Time-chroma representations

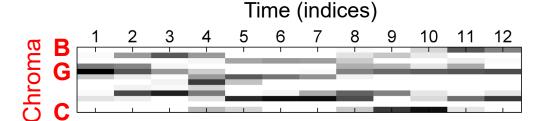
Gould (Piano)



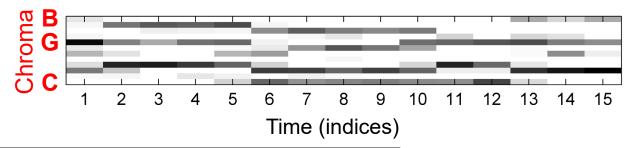
18

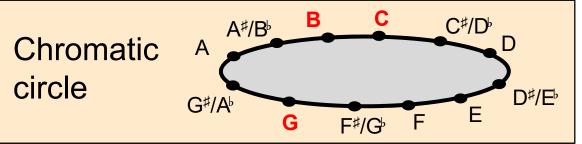
Beethoven's Fifth

Karajan (Orchester)



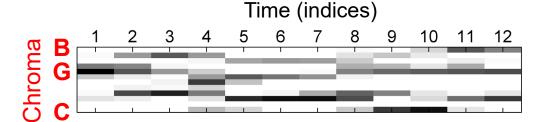
Time-chroma representations



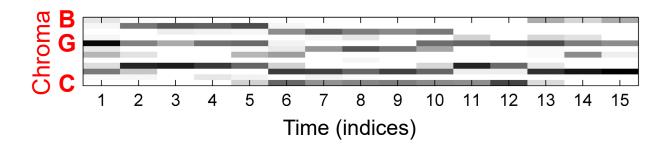


Beethoven's Fifth

Karajan (Orchester)



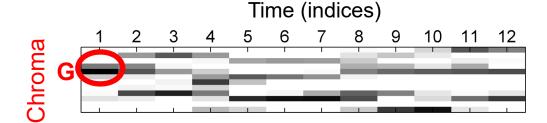
Time-chroma representations



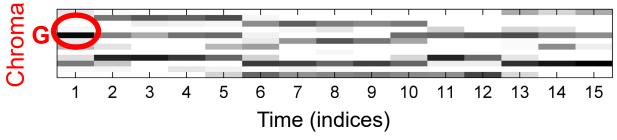


Beethoven's Fifth

Karajan (Orchester)

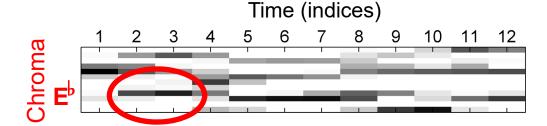


Time-chroma representations

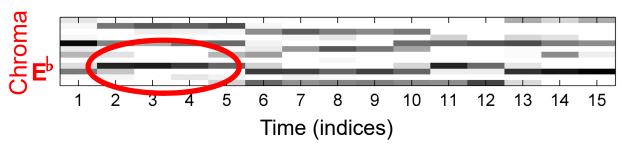


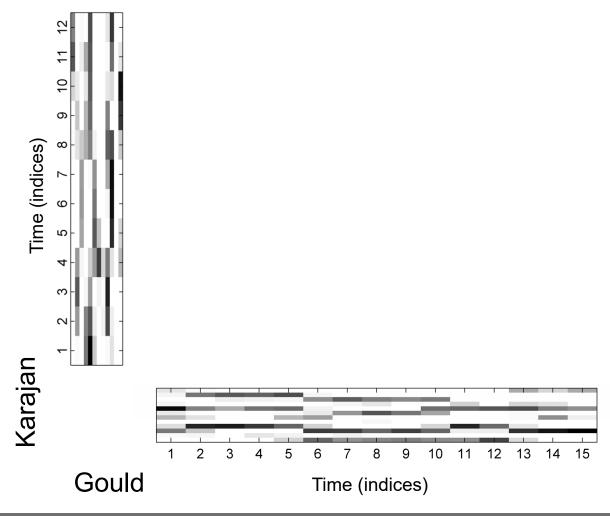
Beethoven's Fifth

Karajan (Orchester)

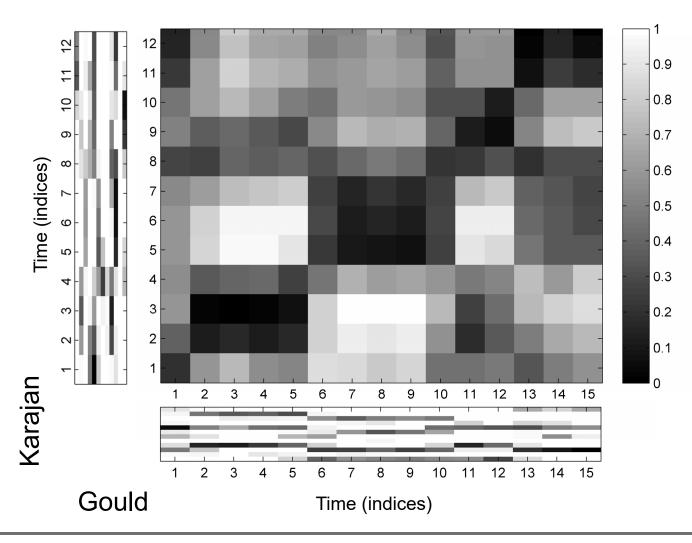


Time-chroma representations

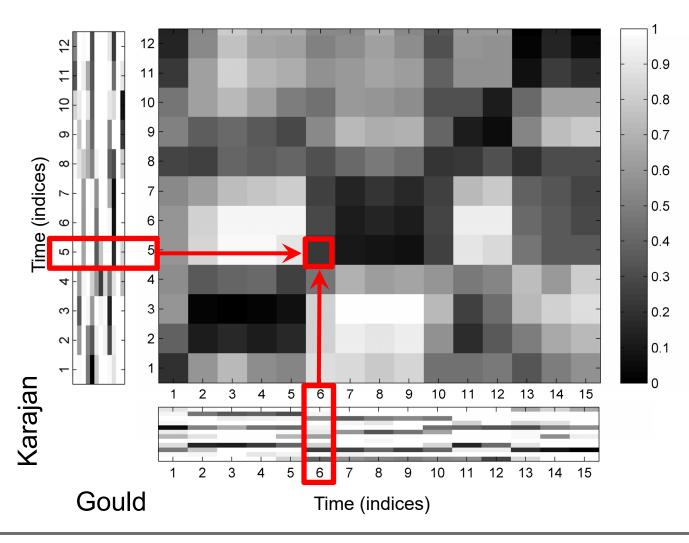




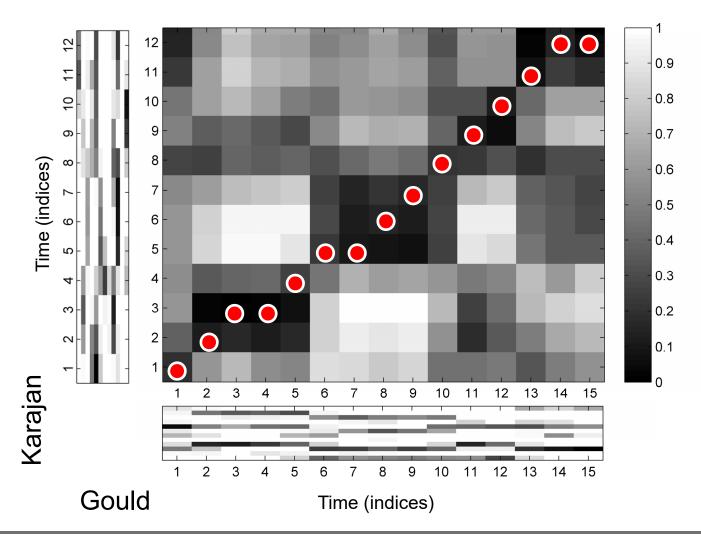
Cost matrix



Cost matrix



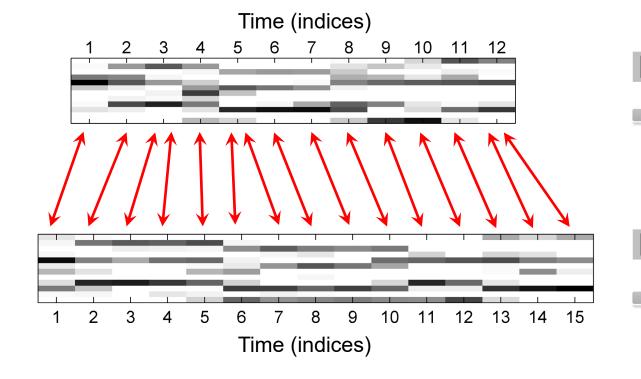
Cost-minimizing warping path



26

Cost-minimizing warping path = Optimal alignment

Karajan (Orchester)



Deep Learning Approaches

- Learn audio features from data
 - Should be robust to performance variations
 - Should yield high alignment accuracy
 - Should have musical relevance
- Alignment problem
 - Pre-aligned data for training
 - Part of loss function → differentiability?

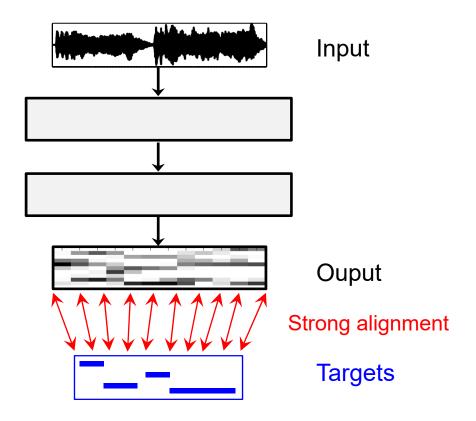
CTC-Loss

Graves et al.: Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks. ICML, 2006

Soft-DTW

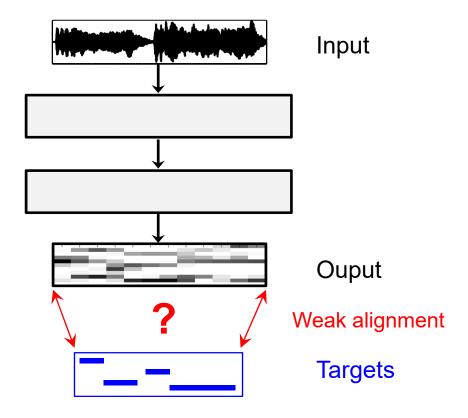
Cuturi, Blondel: Soft-DTW: A Differentiable Loss Function for Time-Series. ICML, 2017

Feature Learning



- Task: Learn audio features using a neural network
- Loss: Binary cross-entropy
 - framewise loss
 - requires strongly aligned targets
 - hard to obtain

Feature Learning



- Task: Learn audio features using a neural network
- Loss: Binary cross-entropy
 - framewise loss
 - requires strongly aligned targets
 - hard to obtain
- Alignment as part of loss function
 - requires only weakly aligned targets
 - needs to be differentiable
- Problem: DTW is not differentiable
 - → Soft DTW

Dynamic Time Warping (DTW)

$$X := (x_1, x_2, \dots, x_N)$$

$$Y := (y_1, y_2, \dots, y_M)$$

$$x_n, y_m \in \mathcal{F}, n \in [1:N], m \in [1:M]$$

$$\mathcal{F}$$
 = Feature space

Alignment matrix

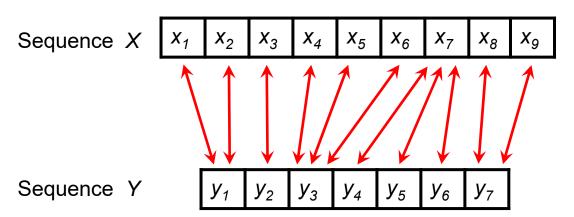
$$A \in \{0, 1\}^{N \times M}$$

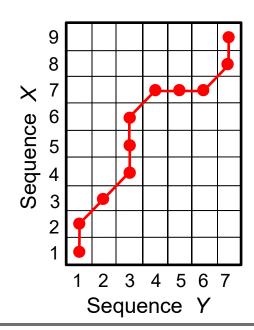
Set of all possible alignment matrices

$$\mathcal{A}_{N,M} \subset \{0,1\}^{N \times M}$$

Alignment

31





Dynamic Time Warping (DTW)

$$X := (x_1, x_2, \dots, x_N)$$

$$Y := (y_1, y_2, \dots, y_M)$$

$$x_n, y_m \in \mathcal{F}, n \in [1:N], m \in [1:M]$$

$$\mathcal{F}$$
 = Feature space

Alignment matrix

$$A \in \{0, 1\}^{N \times M}$$

Set of all possible alignment matrices

$$\mathcal{A}_{N,M} \subset \{0,1\}^{N \times M}$$

Cost measure: $c: \mathcal{F} \times \mathcal{F} \to \mathbb{R}_{\geq 0}$

Cost matrix: $C \in \mathbb{R}^{N \times M}$ with $C(n, m) := c(x_n, y_m)$

Cost of alignment: $\langle A, C \rangle$

DTW cost: $DTW(C) = \min \left(\{ \langle A, C \rangle \mid A \in \mathcal{A}_{N,M} \} \right)$

Optimal alignment: $A^* = \operatorname{argmin} (\{\langle A, C \rangle \mid A \in \mathcal{A}_{N,M}\})$

Dynamic Time Warping (DTW)

DTW cost:
$$DTW(C) = \min \left(\left\{ \langle A, C \rangle \mid A \in \mathcal{A}_{N,M} \right\} \right)$$

Efficient computation via Bellman's recursion in O(NM)

$$D(n,m) = \min\{D(n-1,m), D(n,m-1), D(n,m)\} + C(n,m)$$

for n>1 and m>1 and suitable initialization.

$$DTW(C) = D(N, M)$$

- Problem: DTW(C) is not differentiable with regard to C
- Idea: Replace min-function by a smooth version

$$\min^{\gamma} (\mathcal{S}) = -\gamma \log \sum_{s \in \mathcal{S}} \exp(-s/\gamma)$$

for set $\,\mathcal{S}\subset\mathbb{R}\,$ and temperature parameter $\,\gamma\in\mathbb{R}\,$

Soft Dynamic Time Warping (SDTW)

SDTW cost:
$$SDTW^{\gamma}(C) = \min^{\gamma} (\{\langle A, C \rangle \mid A \in \mathcal{A}_{N,M}\})$$

Efficient computation via Bellman's recursion in O(NM) still works:

$$D^{\gamma}(n,m) = \min^{\gamma} \{ D^{\gamma}(n-1,m), D^{\gamma}(n,m-1), D^{\gamma}(n,m) \} + C(n,m)$$

for n>1 and m>1 and suitable initialization.

$$SDTW^{\gamma}(C) = D^{\gamma}(N, M)$$

- Limit case: $\mathrm{SDTW}^{\gamma}(C) \xrightarrow{\gamma \to 0} \mathrm{DTW}(C)$
- SDTW(C) is differentiable with regard to C
- Questions:
 - How does the gradient look like?
 - Can it be computed efficiently?
 - How does SDTW generalize the alignment concept?

Soft Dynamic Time Warping (SDTW)

SDTW cost: SDTW
$$^{\gamma}(C) = \min^{\gamma} (\{\langle A, C \rangle \mid A \in \mathcal{A}_{N,M}\})$$

• Define $p^{\gamma}(C)$ as the following "probability" distribution over $\mathcal{A}_{N,M}$:

$$p^{\gamma}(C)_{A} = \frac{\exp\left(-\langle A, C \rangle / \gamma\right)}{\sum_{A' \in \mathcal{A}_{N,M}} \exp\left(-\langle A', C \rangle / \gamma\right)} \quad \text{for } A \in \mathcal{A}_{N,M}$$

- The expected alignment with respect to $p^{\gamma}(C)$ is given by:

$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{NM}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

The gradient is given by:

$$\nabla_C \mathrm{SDTW}^{\gamma}(C) = E^{\gamma}(C)$$

 The gradient can be computed efficiently in O(NM) via a recursive algorithm.

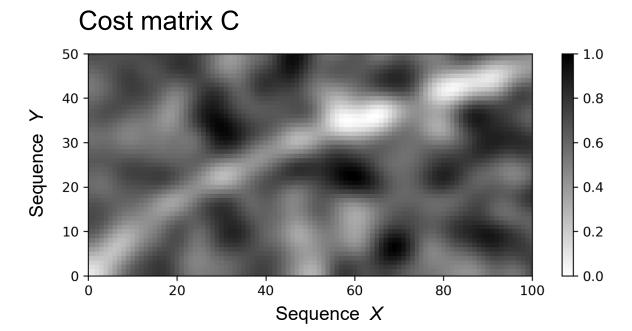
Soft-DTW

Cuturi, Blondel: Soft-DTW: A Differentiable Loss Function for Time-Series. ICML, 2017

Soft Dynamic Time Warping (SDTW)

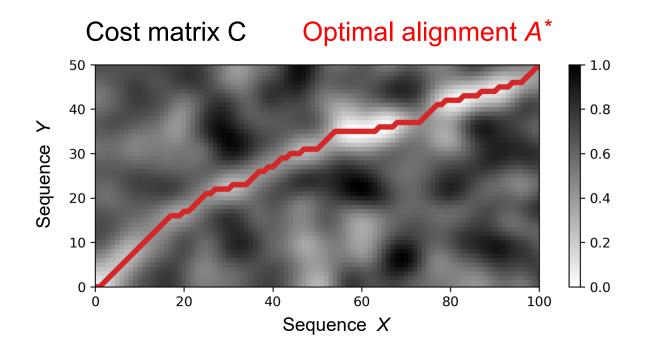
Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



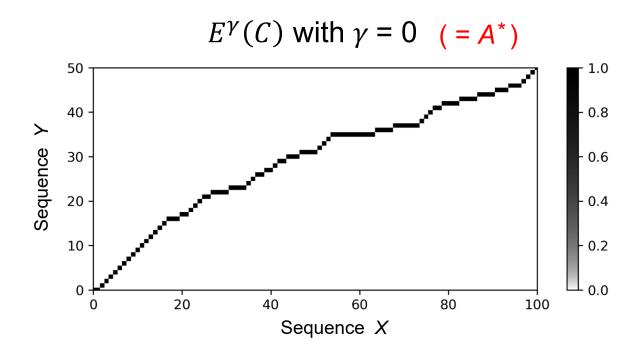
Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



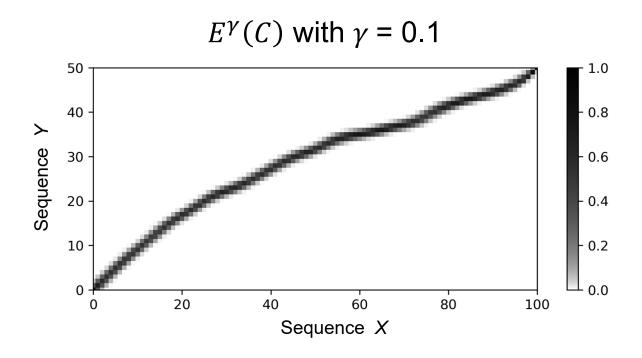
Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



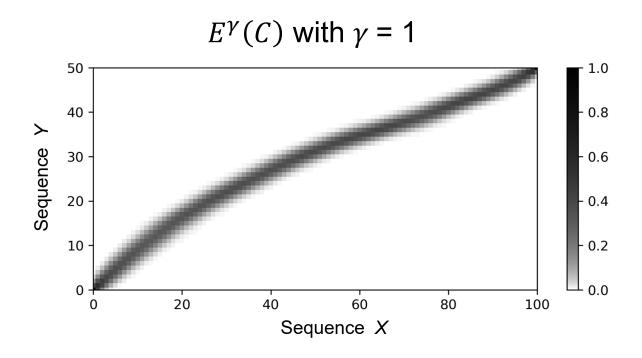
Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



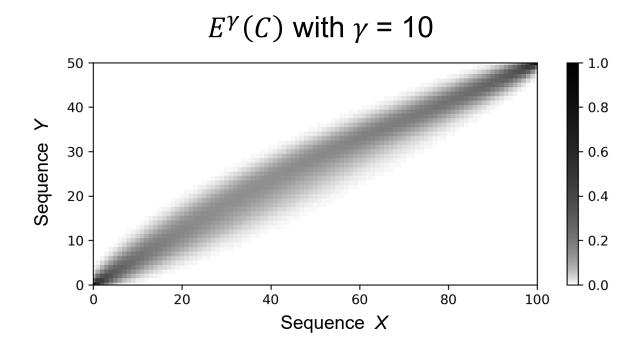
Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



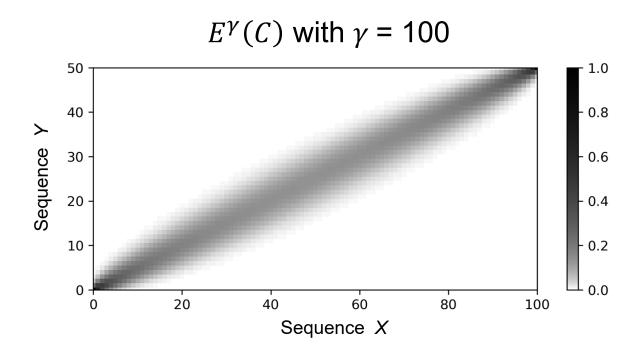
Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ



Conclusions

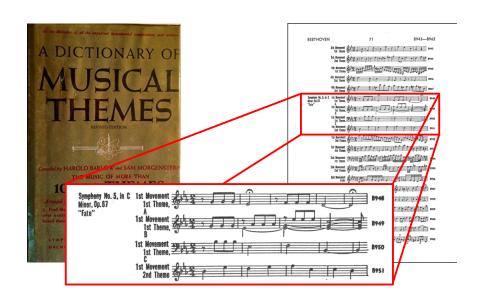
- Direct generalization of DTW (replacing min by smooth variant)
- Gradient is given by expected alignment
- Fast forward algorithm: O(NM)
- Fast gradient computation: O(NM)
- SDTW yields a (typically) poor lower bound for DTW
- Can be used as loss function to learn from weakly aligned sequences

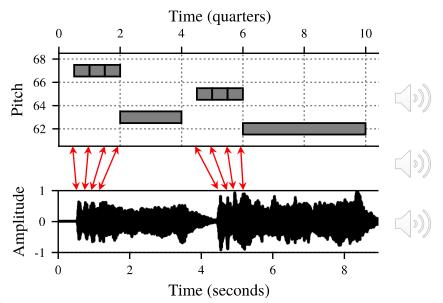
References

- Marco Cuturi, Mathieu Blondel: Soft-DTW: A Differentiable Loss Function for Time-Series.
 ICML, pages 894–903, 2017.
- Mathieu Blondel, Arthur Mensch, Jean-Philippe Vert: Differentiable Divergences Between Time Series. AISTATS, pages 3853 – 3861, 2021.
- Michael Krause, Christof Weiß, Meinard Müller: Soft Dynamic Time Warping for Multi-Pitch Estimation and Beyond. IEEE ICASSP, 2023.

Thanks: Michale Krause (Ph.D. 2023) Johannes Zeitler (Ph.D.)

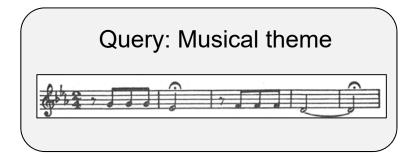
Barlow & Morgenstern (1949): A Dictionary of Musical Themes

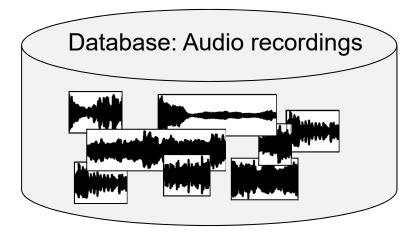




- 2067 themes by 54 different composers
- Recordings (1126 recordings, ~ 120 hours)
- Theme occurences (~ 5 hours)

Barlow & Morgenstern (1949): A Dictionary of Musical Themes





Challenges

- Cross-modalitySymbolic vs. audio data
- TuningDeviations from standard tuning
- TranspositionPlayed key vs. written key
- TempoLocal & global tempo deviations
- Polyphony
 Monophonic query vs.
 polyphonic audio

Monophony-Polyphony Challenge

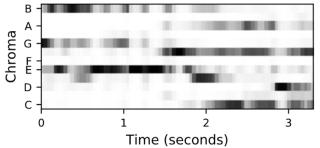
Monophonic symbolic musical theme

Chroma

Time (seconds)

Chromagram

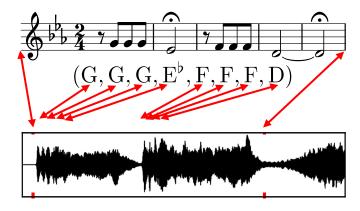
Audio recording of polyphonic music



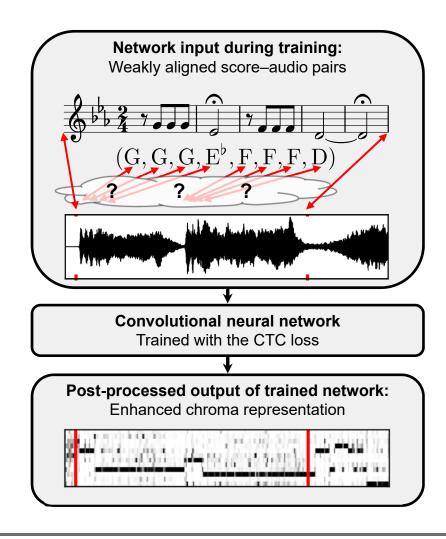
Meinard Müller

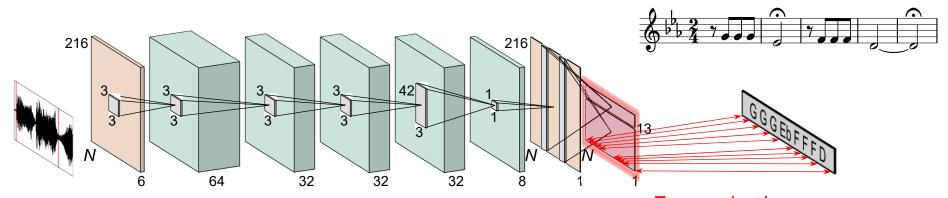
Goal: Compute "enhanced" chromagram from polyphonic audio recording that better matches the symbolic monophonic theme

Strongly Aligned Training Data

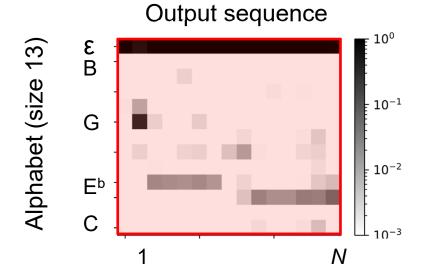


Weakly Aligned Training Data



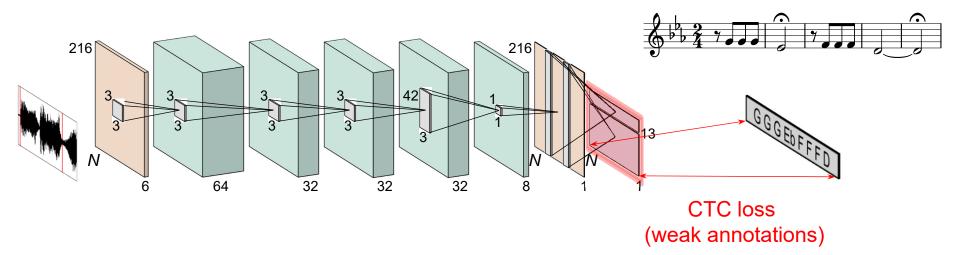


Framewise loss (strong annotations)



Salience Computation

Bittner, McFee, Salamon, Li, Bello: Deep salience representations for F0 tracking in polyphonic music. ISMIR, 2017.

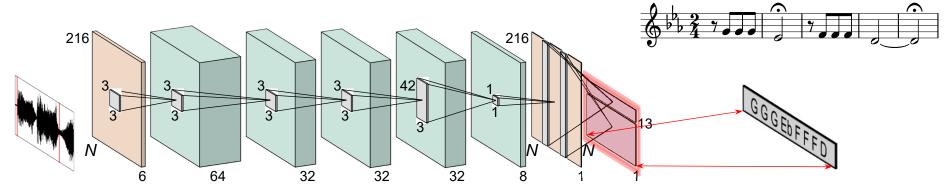


- Idea of CTC loss similar to SDTW
- Theme is given as label sequence over finite alphabet (size 13 including blank symbol)
- Expand label sequence to match audio feature sequence → valid alignment
- CTC loss considers probability over all valid alignments → differentiable

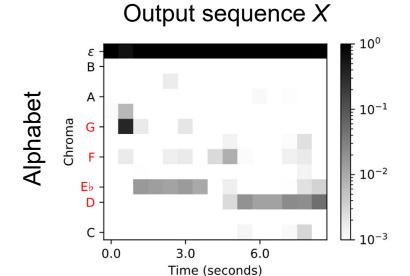
CTC Loss

Graves, Fernández, Gomez, Schmidhuber: Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks. ICML, 2006.

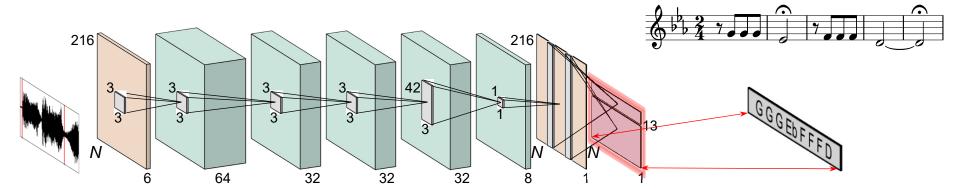
CTC-Based Training



Label sequence *Y* G G G E^b F F F D

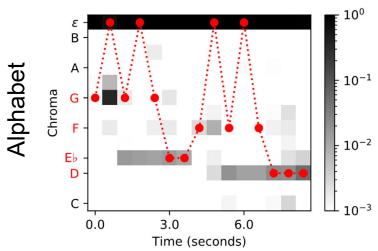


CTC-Based Training



54

Label sequence Y
GGGE^bFFFD

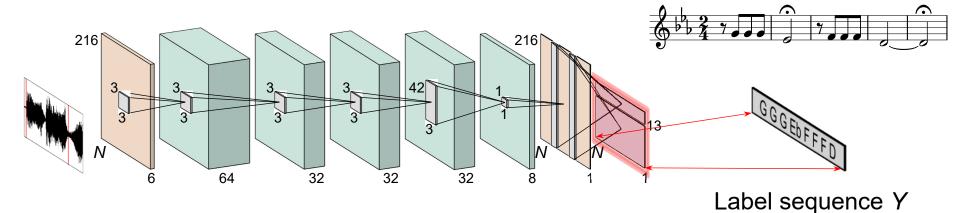


Valid alignment

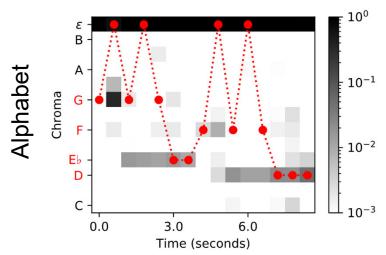
 $G \epsilon G \epsilon G E^{b} E^{b} F \epsilon F \epsilon F D D D$

→ matches sequence X

CTC-Based Training



G G G E^b F F F D



Set of all valid alignments

$$\mathbb{K}_{X,Y} = \{ A \in (\mathbb{A}')^N : \kappa(A) = Y \}$$

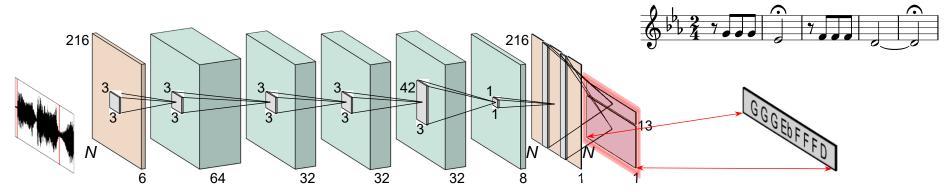
Probability of label sequence

$$P(Y\mid X) = \sum\nolimits_{A\in \mathbb{K}_{X,Y}} P(A\mid X)$$

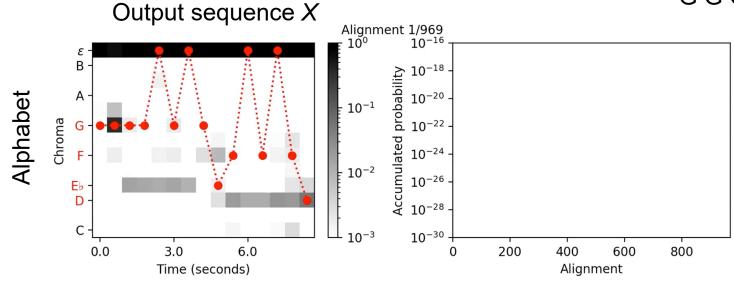
CTC loss

$$L_{\theta}(X, Y) = -\log P(Y \mid X)$$

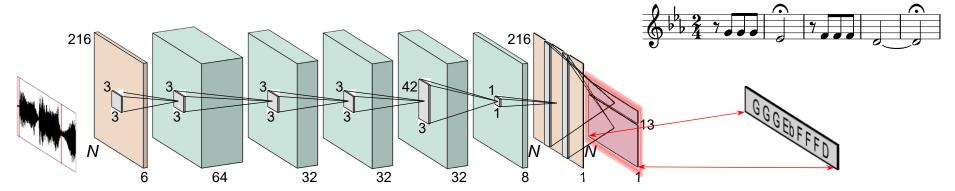
CTC-Based Training



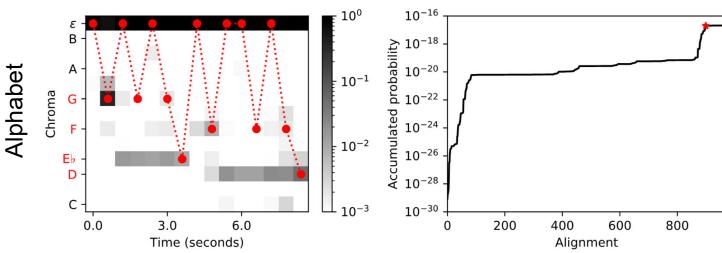
Label sequence *Y* G G G E^b F F F D



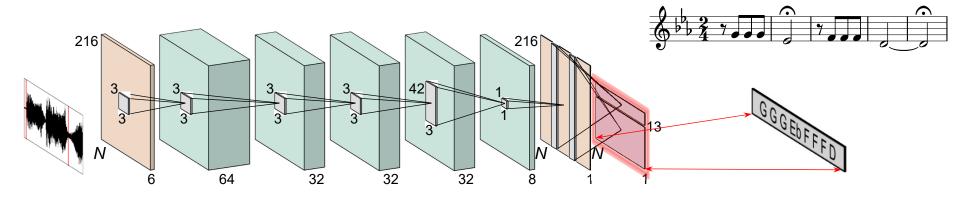
CTC-Based Training



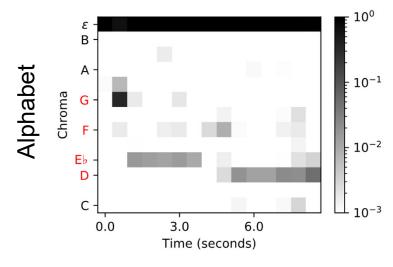
Label sequence *Y* G G G E^b F F F D



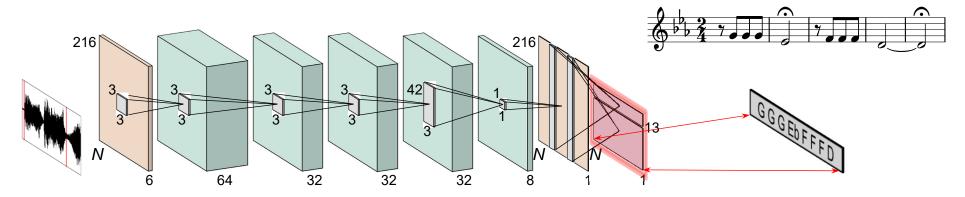
CTC-Based Training

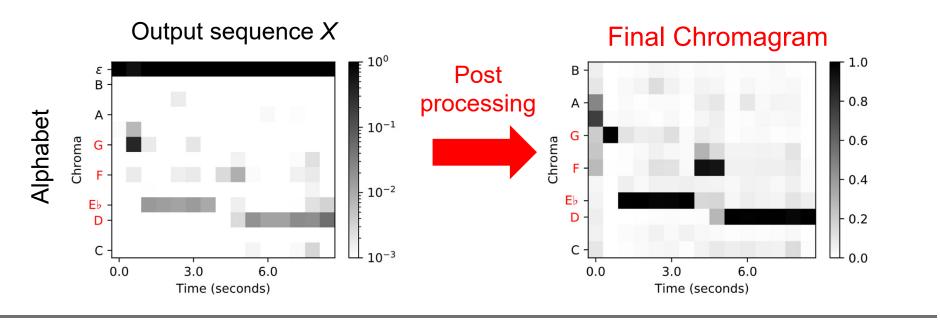


Output sequence X



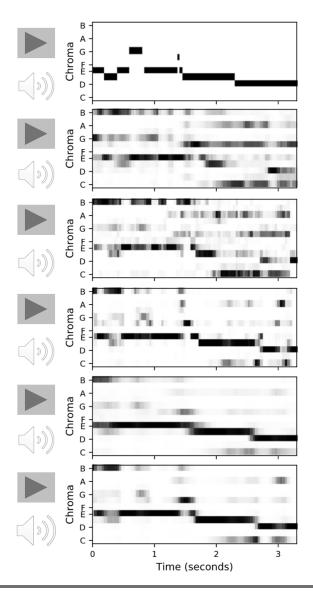
CTC-Based Training





Evaluation Results

Chroma Variant	Top-1	Top-10
Standard chromagram	0.561	0.723
Enhanced chromagram (baseline)	0.824	0.861
DNN-based chromagram (CTC)	0.867	0.942
DNN-based chromagram (linear scaling)	0.829	0.914
DNN-based chromagram (strong alignment)	0.882	0.939



References

- R. Bittner, B. McFee, J. Salamon, P. Li, and J. Bello: Deep salience representations for F0 tracking in polyphonic music. Proc. ISMIR, pages 63–70, 2017.
- A. Graves, S. Fernández, F. J. Gomez, and J. Schmidhuber: Connectionist temporal classification:
 Labelling unsegmented sequence data with recurrent neural networks. ICML, 2006.
- F. Zalkow, S. Balke, V. Arifi-Müller, and M. Müller. MTD: A multimodal dataset of musical themes for MIR research. TISMIR, 3(1), 2020.
- F. Zalkow, S. Balke, and M. Müller. Evaluating salience representations for cross-modal retrieval of Western classical music recordings. Proc. ICASSP, 2019.
- F. Zalkow and M. Müller. CTC-based learning of deep chroma features for score-audio music retrieval. 2021. IEEE/ACM Trans. on Audio, Speech, and Language Processing, 29, pages 2957–2971, 2021.

Thanks:

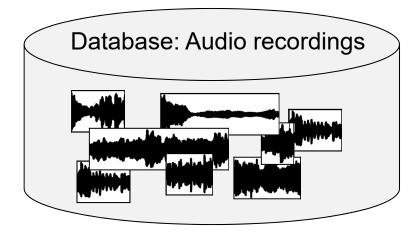
Frank Zalkow (Ph.D. 2021) Stefan Balke (Ph.D. 2018)

Audio Matching

Task

Given a short query audio clip, find corresponding audio clips of similar musical content.





Challenges

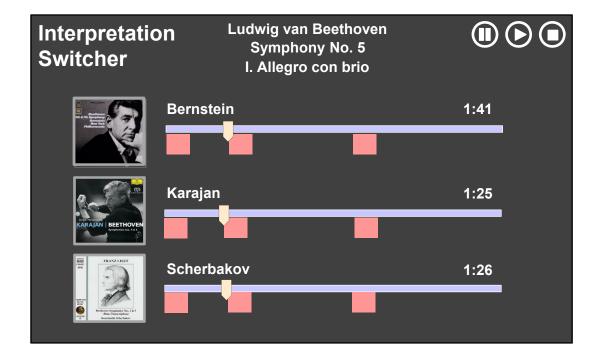
- Similarity measure
 - Different performances
 - Instrumentation may change
 - Similar harmonic progression
- Local comparison
 - Query is short
 - Database recordings are long
- Efficiency
 - Database may be huge

Audio Matching

Task

Query:

Database: Matches



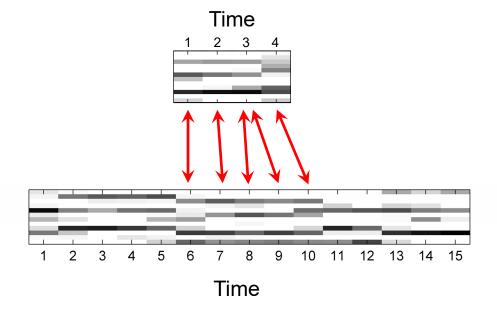
63

Audio Matching

Task

Query: Sequence X

Database: Sequence Y



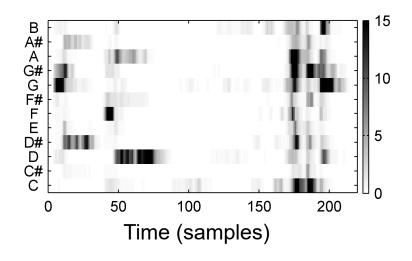
Subsequence matching

64

Audio Features

Example: Beethoven's Fifth

Bernstein



Karajan



Chroma representation (10 Hz)

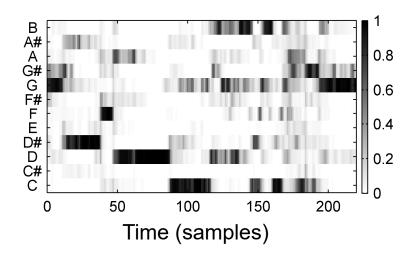
Chroma Features

Müller, Kurth, Clausen: Audio Matching via Chroma-Based Statistical Features. ISMIR, 2005

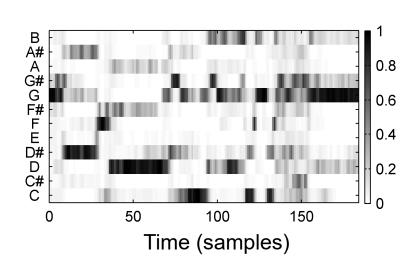
Audio Features

Example: Beethoven's Fifth

Bernstein



Karajan



Chroma representation (10 Hz)

Normalization

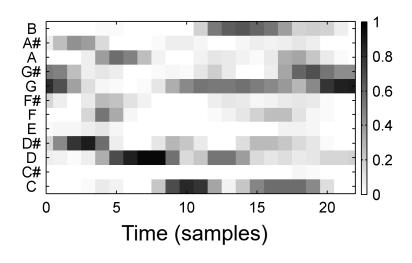
Chroma Features

Müller, Kurth, Clausen: Audio Matching via Chroma-Based Statistical Features. ISMIR, 2005

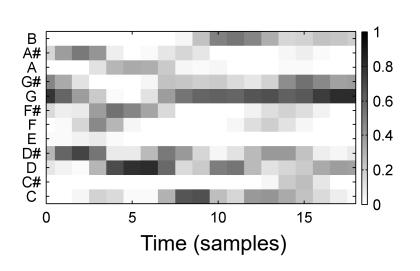
Audio Features

Example: Beethoven's Fifth

Bernstein



Karajan

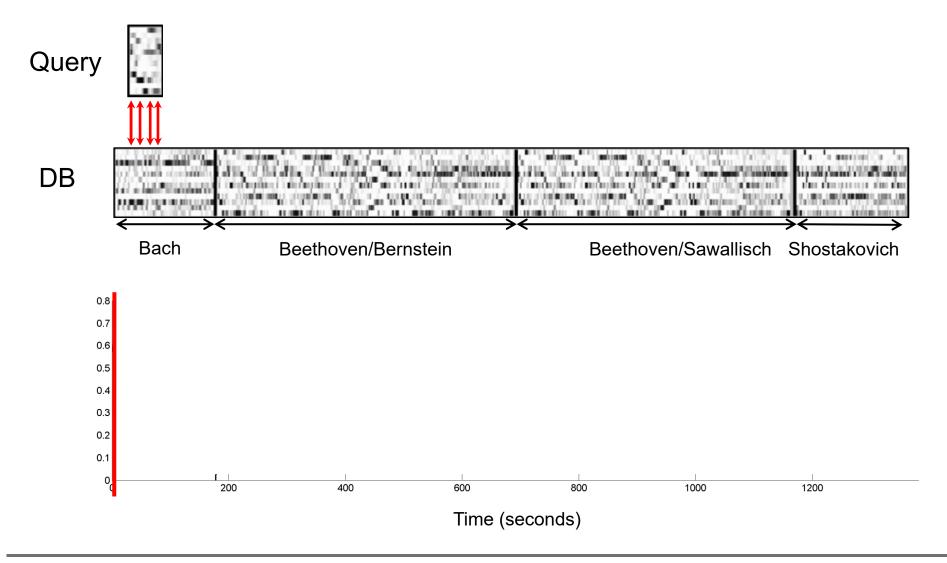


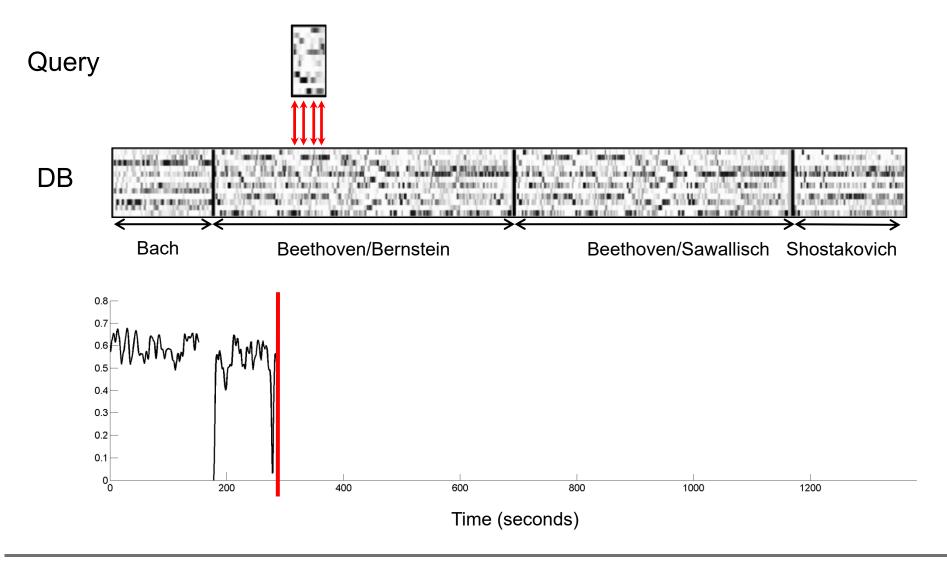
Chroma representation (1 Hz)

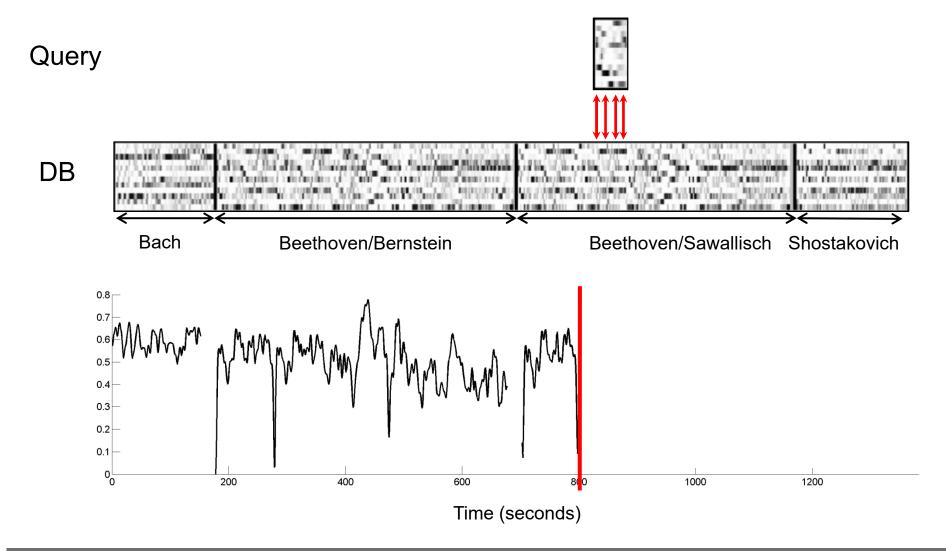
- Normalization
- Smoothing & downsampling

Chroma Features

Müller, Kurth, Clausen: Audio Matching via Chroma-Based Statistical Features. ISMIR, 2005

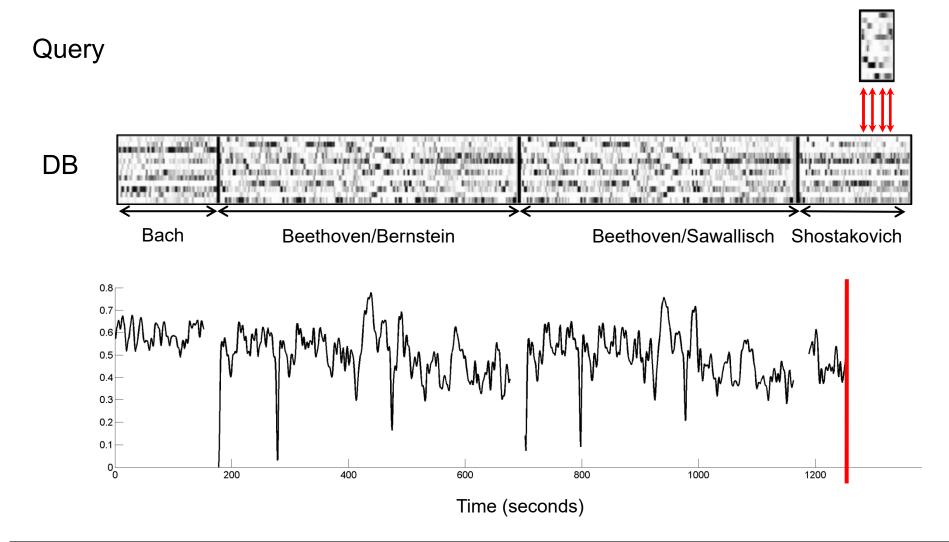






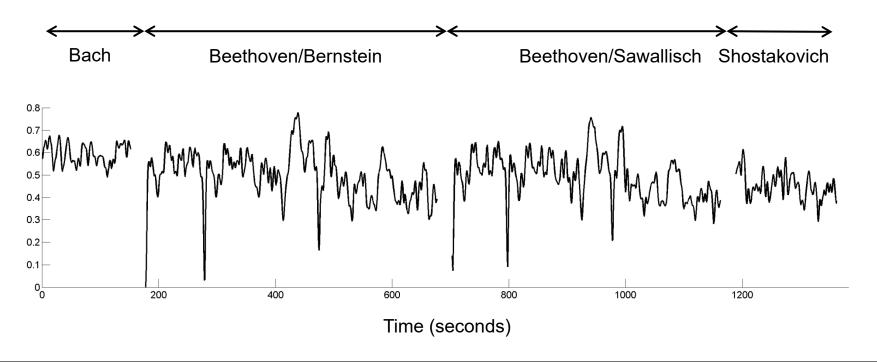
© AudioLabs, 2023

Meinard Müller



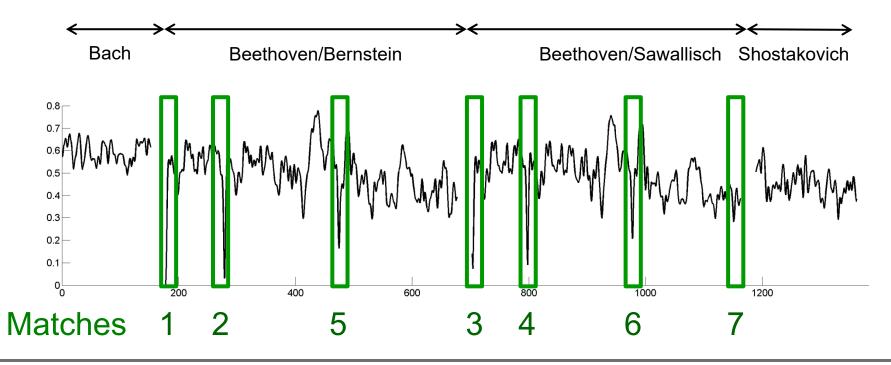
Matching curve

Query: Beethoven's Fifth / Bernstein (first 20 seconds)



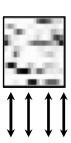
Matching curve

Query: Beethoven's Fifth / Bernstein (first 20 seconds)



Problem: How to deal with tempo differences?

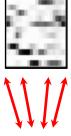
Karajan is much faster than Bernstein!



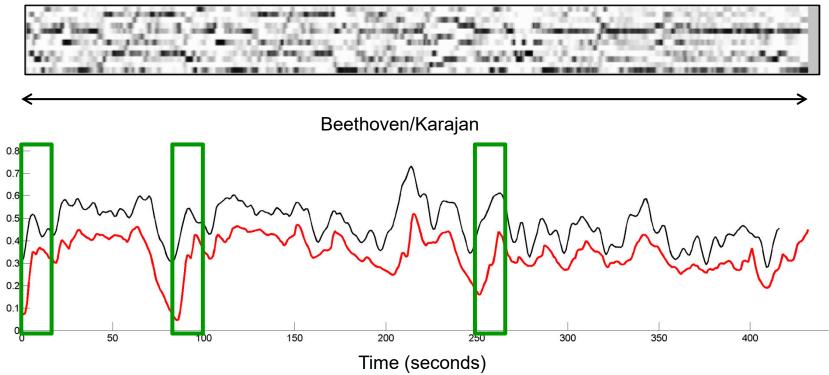


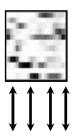
1. Strategy: Usage of local warping

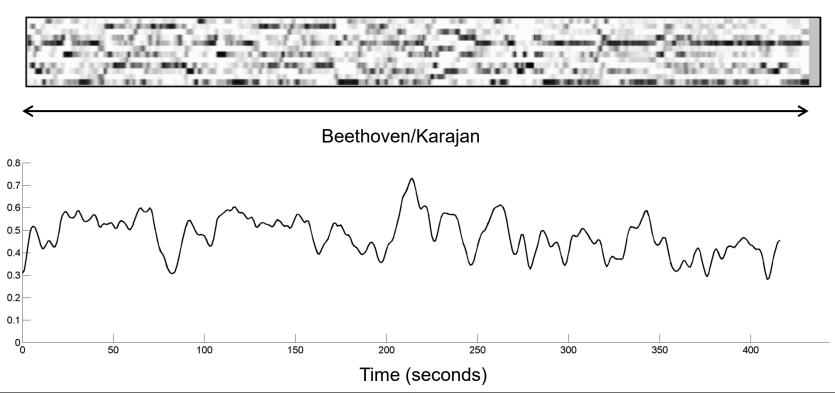
Karajan is much faster than Bernstein!

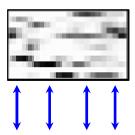


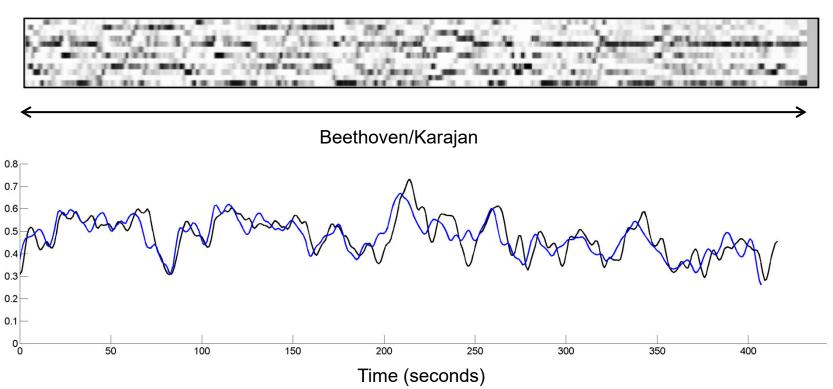
Warping strategies are computationally expensive and hard for indexing.

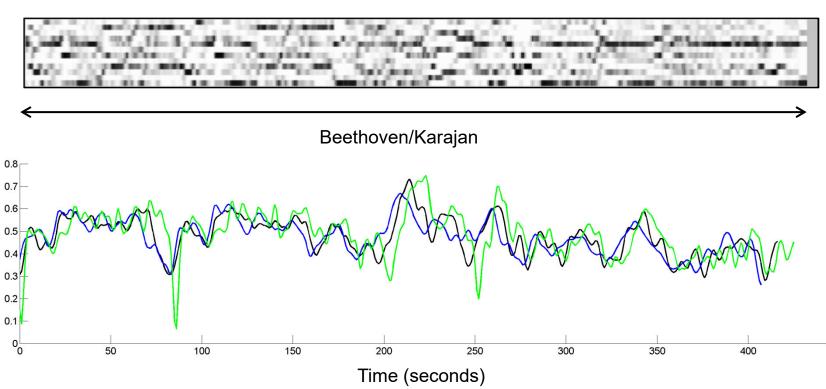






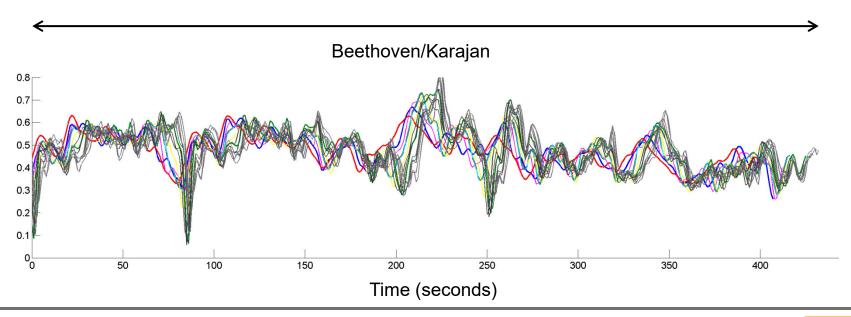






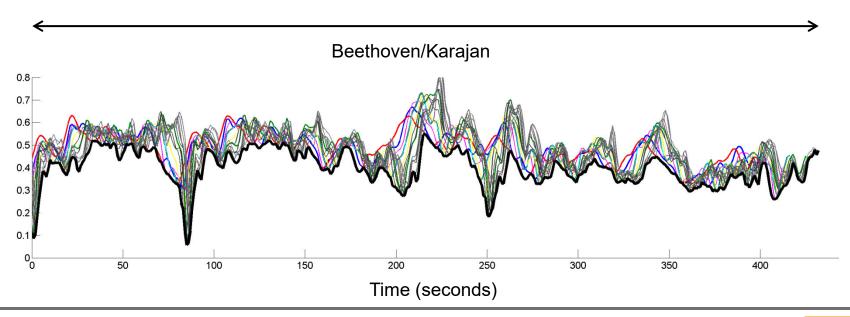
2. Strategy: Usage of multiple scaling

Query resampling simulates tempo changes



2. Strategy: Usage of multiple scaling

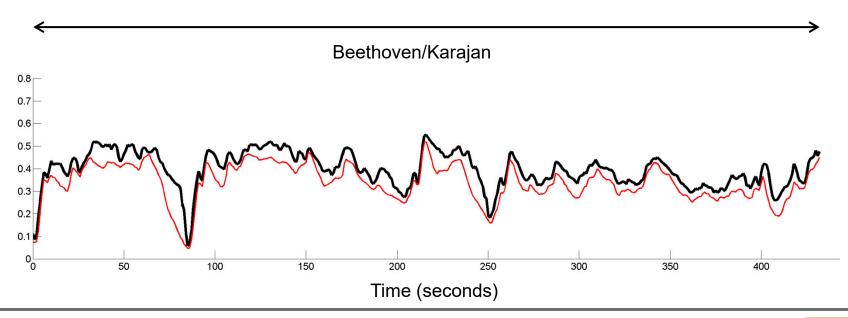
- Query resampling simulates tempo changes
- Minimize over all curves



© AudioLabs, 2023

Meinard Müller

- Query resampling simulates tempo changes
- Minimize over all curves
- Resulting curve is similar to warping curve



Audio Matching

Query: Beethoven's Fifth / Bernstein (first 20 seconds)

Rank	Piece	Position	
1	Beethoven's Fifth/Bernstein	0 - 21	
2	Beethoven's Fifth/Bernstein	101- 122	
3	Beethoven's Fifth/Karajan	86 - 103	
:	<u>:</u>	: :	
:	:	: :	
10	Beethoven's Fifth/Karajan	252 - 271	
11	Beethoven's Fifth/Scherbakov	0 - 19	
12	Beethoven's Fifth/Sawallisch	275 - 296	
13	Beethoven's Fifth/Scherbakov	86 - 103	
14	Schumann Op. 97,1/Levine	28 - 43	

Audio Matching

Strategy: Handle variations at various levels

- Chroma → invariance to timbre
- Normalization → invariance to dynamics
- ullet Smoothing igtarrow invariance to local time deviations
- Multiple queries → invariance to global tempo

Notes:

- There is no "standard" chroma feature.
 - → Variants can make a huge difference!
- Learn invariance from examples
 - → "Deep Chroma"
- Temporal warping makes problem hard
- Efficiency

Audio Matching

Müller, Kurth, Clausen: Audio Matching via Chroma-Based Statistical Features. ISMIR, 2005

Deep Chroma

Korzeniowski, Widmer: Feature Learning for Chord Recognition: The Deep Chroma Extractor. ISMIR, 2016

Idea

- Query and database are split up into small overlapping shingles that consist of short feature subsequences.
- Shingles can be matched using efficient nearest neighbor retrieval.
- Trade-off:
 - Large shingles have high musical relevance
 - High shingle dimensionality makes indexing difficult

Database Chroma sequence

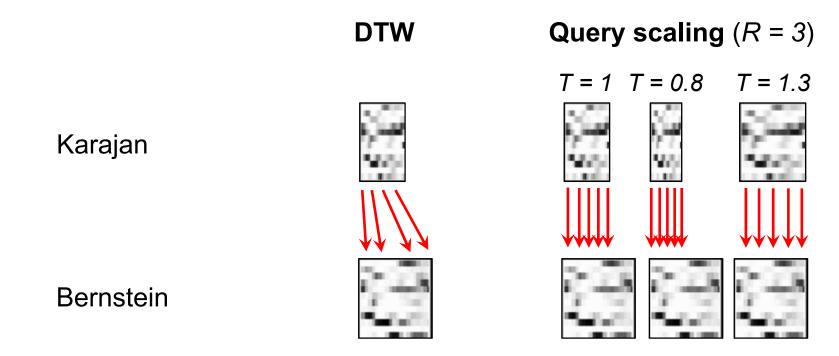
Chroma shingles

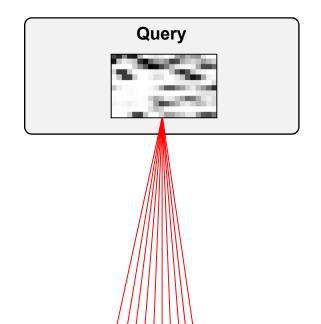
Retrieval (index-based)

Query Chroma sequence (ca. 10 to 30 seconds)

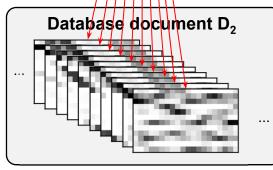
Tempo-invariant matching

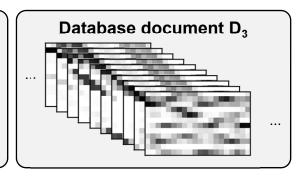
Avoiding expensive temporal warping, tempo differences are handled by creating R scaled variants of the query, each simulating a global change in tempo of up to \pm 50 %.









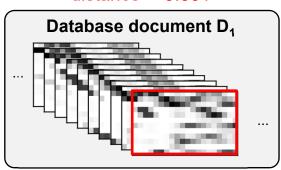


Query

Ranked list

- 1. Database document D₁
- 2. Database document D₃
- 3. Database document D₂

distance ≈ 0.001



distance ≈ 0.651



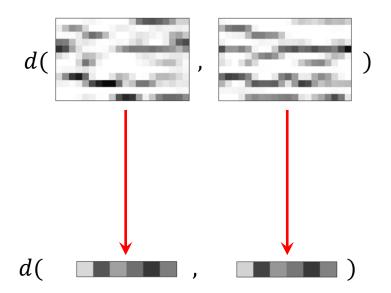
distance ≈ 0.289

Dimensionality Reduction

Retrieval based on distance computation between shingles

Expensive for high shingle dimensions

Strategy: dimensionality reduction

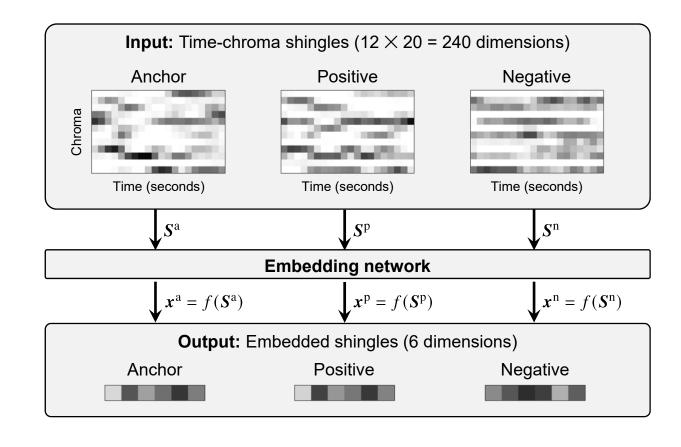


- 1. Using classical PCA
- 2. Using a neural network trained with triplet loss

Triplet Loss

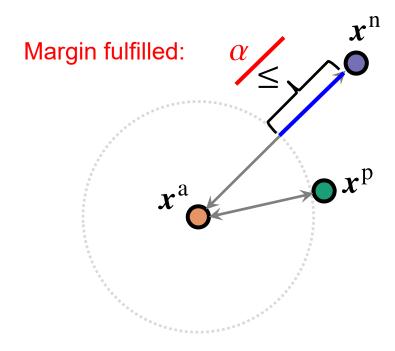
F. Schroff, D. Kalenichenko, J. Philbin: FaceNet: A unified embedding for face recognition and clustering. CVPR, 2015.

Triplet-Based Embedding



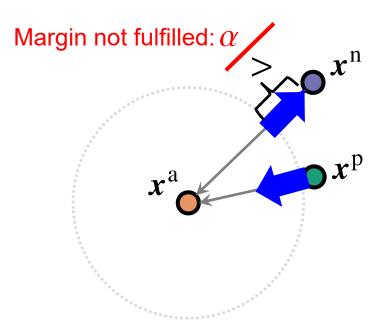
Triplet Loss

$$\mathcal{L}(\boldsymbol{X}) = \max\left(0, d(\boldsymbol{x}^{a}, \boldsymbol{x}^{p}) - d(\boldsymbol{x}^{a}, \boldsymbol{x}^{n}) + \alpha\right)$$



Triplet Loss

$$\mathcal{L}(X) = \max\left(0, d(\mathbf{x}^{\mathbf{a}}, \mathbf{x}^{\mathbf{p}}) - d(\mathbf{x}^{\mathbf{a}}, \mathbf{x}^{\mathbf{n}}) + \alpha\right)$$



Loss tries to

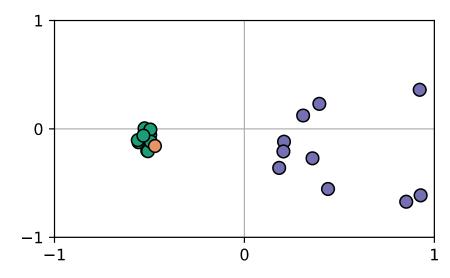
- push x^n from anchor x^a
- **pull** x^p towards anchor x^a until margin α is fulfilled

Meinard Müller

Triplet Loss

$$\mathcal{L}(X) = \max \left(0, d(\mathbf{x}^{\mathbf{a}}, \mathbf{x}^{\mathbf{p}}) - d(\mathbf{x}^{\mathbf{a}}, \mathbf{x}^{\mathbf{n}}) + \alpha\right)$$

Embeddings after training



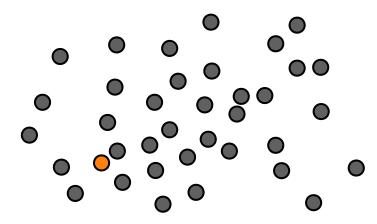
93

Experiment

- Training set: 357 recordings of different pieces by Beethoven, Chopin, and Vivaldi (~ 19 hours)
- Test set: 330 different recordings of different pieces by the same composers (~ 16 hours)

Shingle Reduction	Dimensionality	Retrieva P@1	I Quality MAP	Retrieval Time (seconds)
No reduction	240	0.996	0.972	23.0
DNN	30	0.981	0.959	3.4
DNN	12	0.964	0.928	1.8
DNN	6	0.890	0.856	1.2

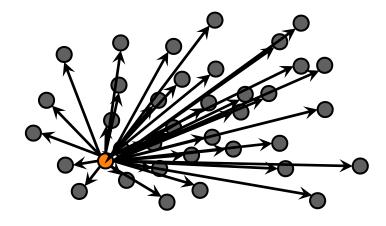
Nearest Neighbor Search



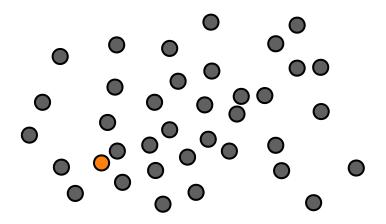
Nearest Neighbor Search

Strategies

Brute force



Nearest Neighbor Search



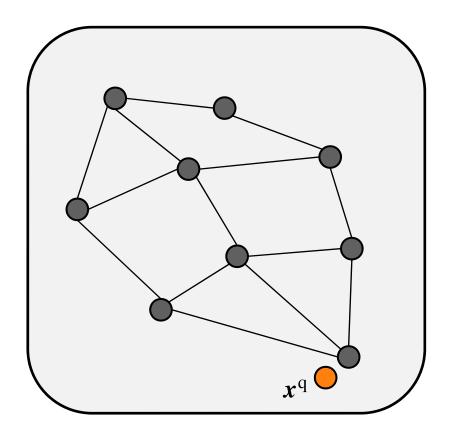
Strategies

- Brute force
- K-D trees
- HNSW graphs

HNSW Graphs

Graph-Based Nearest Neighbor Search

Initial situation

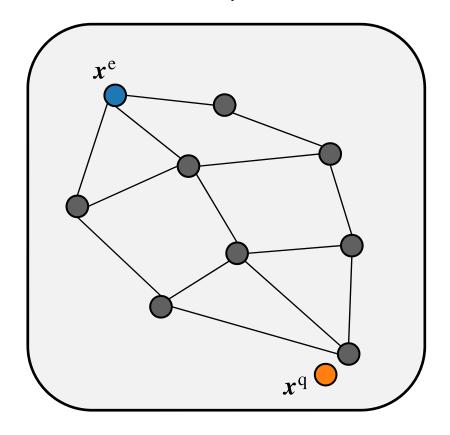


• Given: query node $x^{
m q}$

HNSW Graphs

Graph-Based Nearest Neighbor Search

Step 1

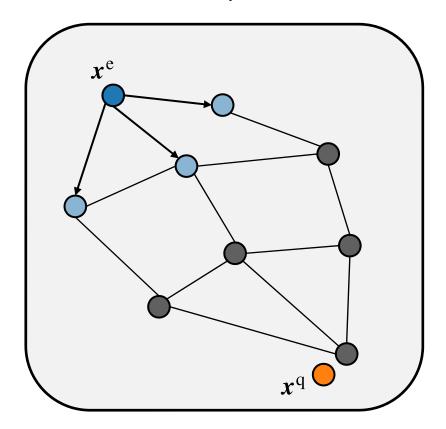


- Given: query node $oldsymbol{x}^{ ext{q}}$
- Start with (random) entry node x^e

HNSW Graphs

Graph-Based Nearest Neighbor Search

Step 1

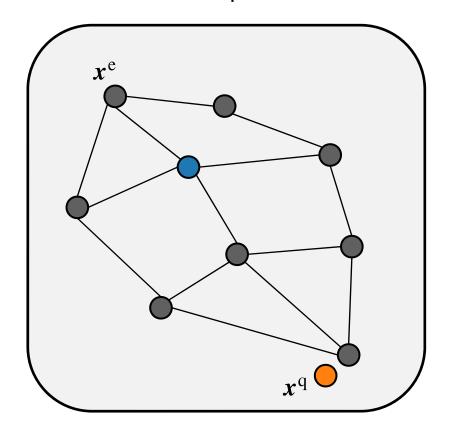


- Given: query node x^q
- Start with (random) entry node x^e
- Traverse graph along edges and compare nodes with x^q

HNSW Graphs

Graph-Based Nearest Neighbor Search

Step 2

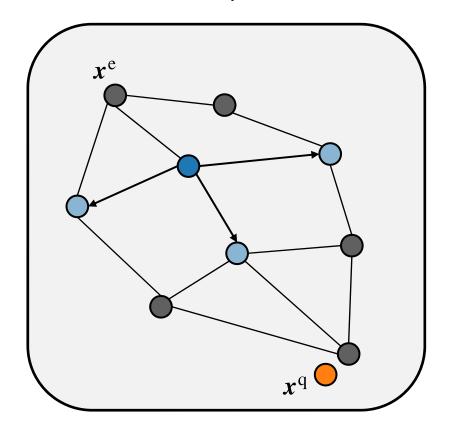


- Given: query node $oldsymbol{x}^{ ext{q}}$
- Start with (random) entry node x^e
- Traverse graph along edges and compare nodes with $oldsymbol{x}^{ ext{q}}$
- Continue with closest node

HNSW Graphs

Graph-Based Nearest Neighbor Search

Step 2

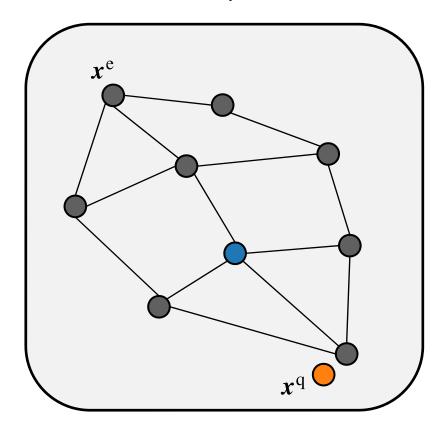


- Given: query node $oldsymbol{x}^{ ext{q}}$
- Start with (random) entry node x^e
- Traverse graph along edges and compare nodes with x^q
- Continue with closest node

HNSW Graphs

Graph-Based Nearest Neighbor Search

Step 3



- Given: query node $oldsymbol{x}^{ ext{q}}$
- Start with (random) entry node x^e
- Traverse graph along edges and compare nodes with x^q
- Continue with closest node

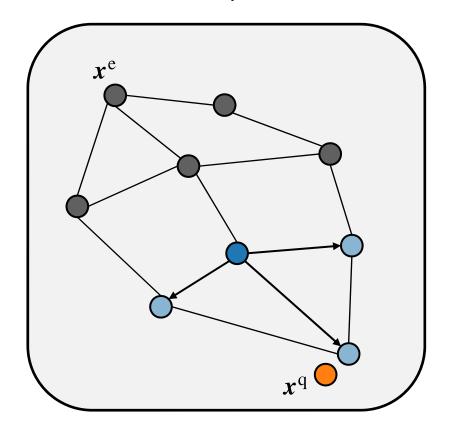
HNSW Graphs

Y. Malkov and D. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on PAMI, 2020.

103

Graph-Based Nearest Neighbor Search

Step 3

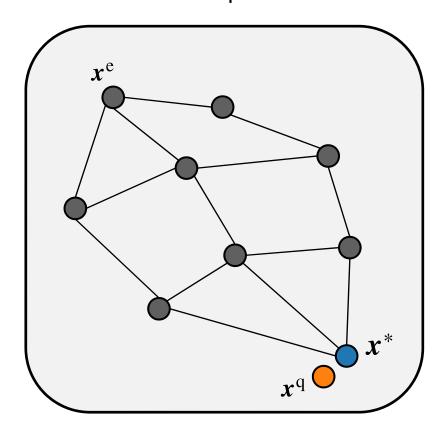


- Given: query node $oldsymbol{x}^{ ext{q}}$
- Start with (random) entry node x^e
- Traverse graph along edges and compare nodes with x^q
- Continue with closest node

HNSW Graphs

Graph-Based Nearest Neighbor Search

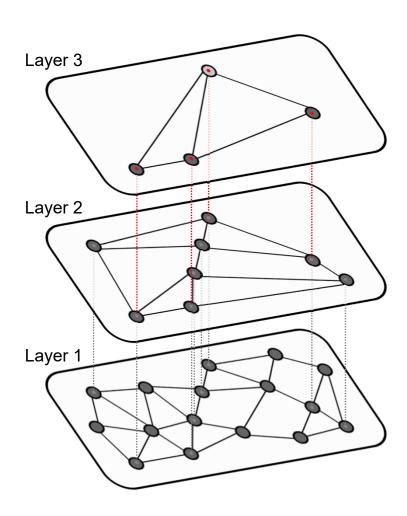
Step 4



- Given: query node $oldsymbol{x}^{ ext{q}}$
- Start with (random) entry node x^e
- Traverse graph along edges and compare nodes with x^q
- Continue with closest node
- Stop when distances increase

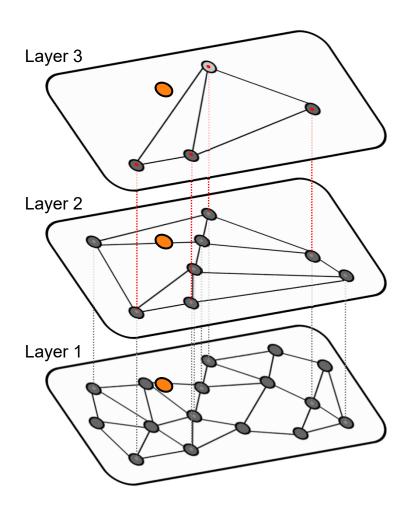
HNSW Graphs

HNSW Graphs



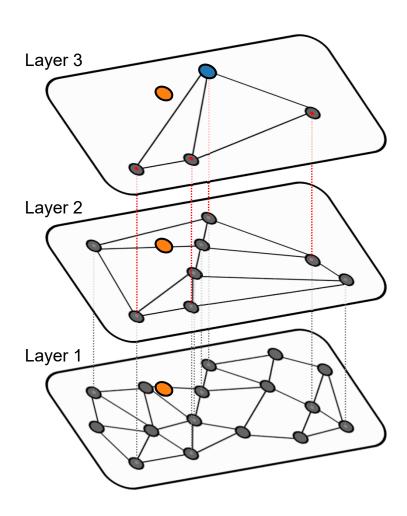
HNSW Graphs

HNSW Graphs



HNSW Graphs

HNSW Graphs

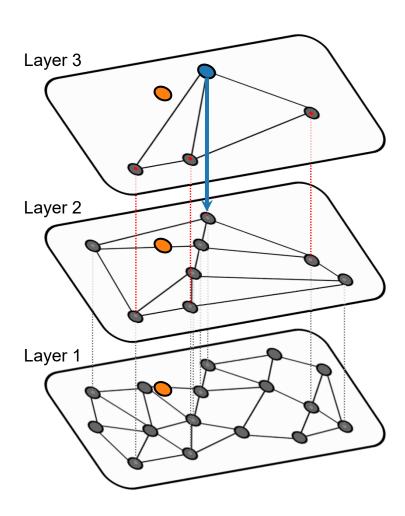


HNSW Graphs

Y. Malkov and D. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on PAMI, 2020.

108

HNSW Graphs



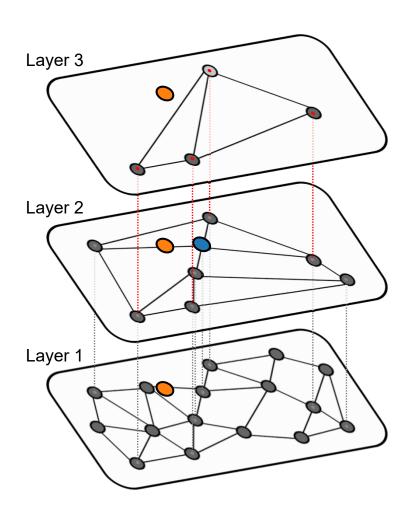
HNSW Graphs

Y. Malkov and D. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on PAMI, 2020.

© AudioLabs, 2023

Meinard Müller

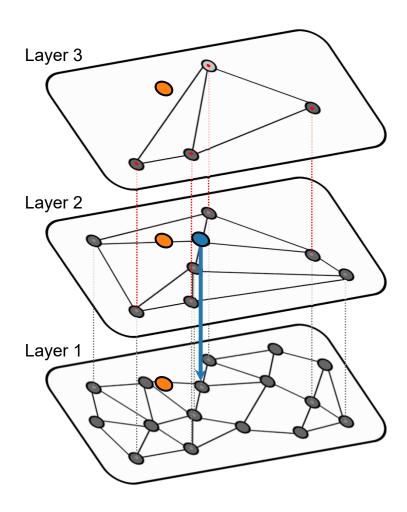
HNSW Graphs



HNSW Graphs

Y. Malkov and D. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on PAMI, 2020.

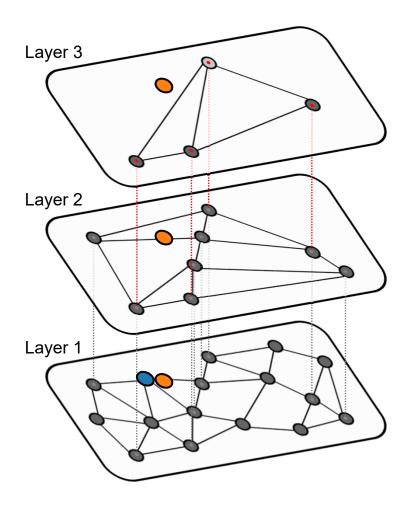
HNSW Graphs



HNSW Graphs

Y. Malkov and D. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on PAMI, 2020.

Shingle-Based Retrieval HNSW Graphs



Properties

- Approximate nearest neighbor search
- Search runtime logarithmic in dataset size
- Works well with high dimensional data
- Efficient algorithm to build graph structure

HNSW Graphs

Y. Malkov and D. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on PAMI, 2020.

Experiment

- Approximate search yields nearly same results as exact search
- Dataset: Entire audio catalogue by Carus publisher
 (7115 recordings, ~ 390 hours, > 1,25 million shingles)
- Runtime for brute force approach: ~ 100 ms to 300 ms per query

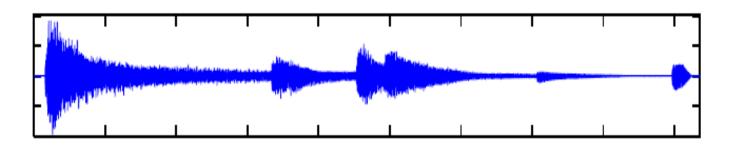
Search	Shingle Reduction	Dimensionality	Time (ms)
KD	No reduction	240	772.95
KD	DNN	30	117.54
KD	DNN	12	7.24
KD	DNN	6	0.66
HNSW	No reduction	240	0.20
HNSW	DNN	30	0.08
HNSW	DNN	12	0.06
HNSW	DNN	6	0.06

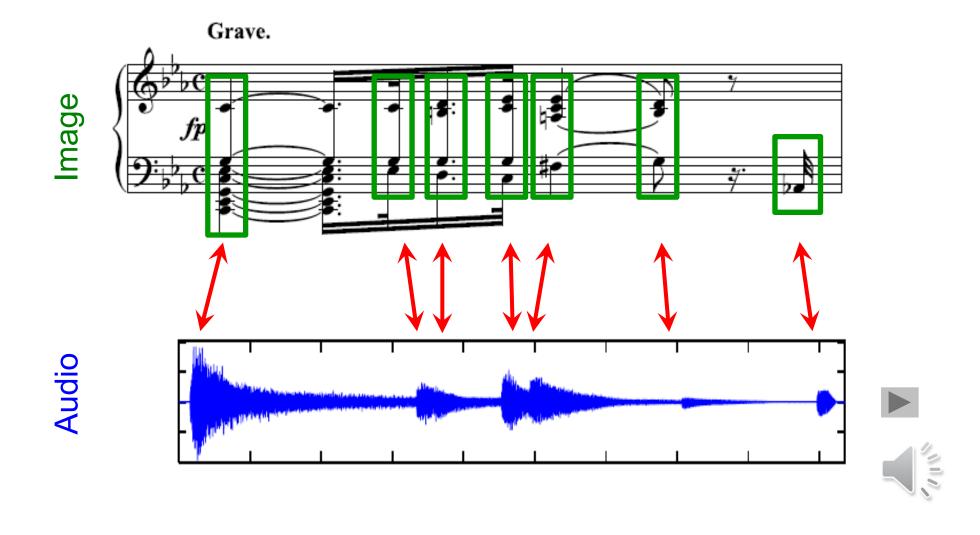
References

- P. Grosche, M. Müller: Toward characteristic audio shingles for efficient cross-version music retrieval.
 IEEE ICASSP, pages 473-476, 2012
- Y. Malkov and D. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on PAMI, 2020.
- F. Schroff, D. Kalenichenko, J. Philbin: FaceNet: A unified embedding for face recognition and clustering. CVPR, 2015.
- F. Zalkow and M. Müller: Learning low-dimensional embeddings of audio shingles for cross-version retrieval of classical music. Applied Sciences, 10(1), 2020.
- F. Zalkow, J. Brandner, and M. Müller: Efficient retrieval of music recordings using graph-based index structures. Signals, 2(2), 2021.

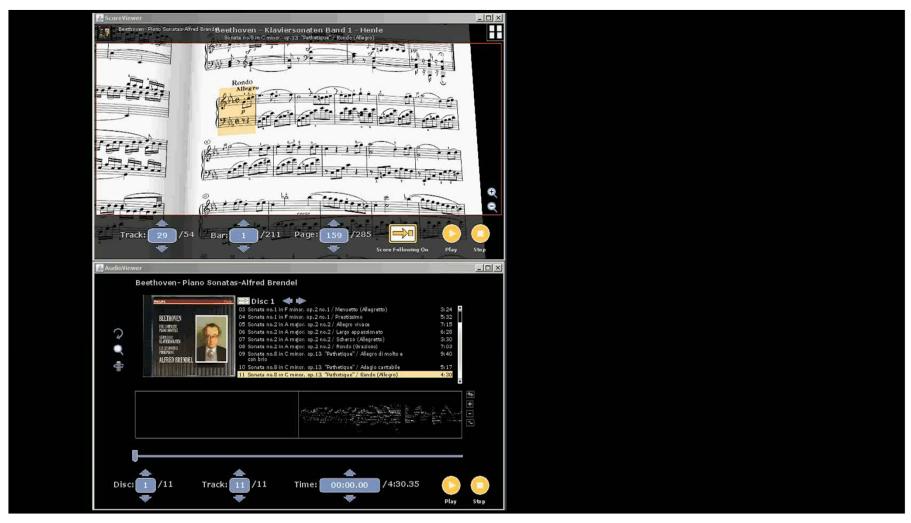
Thanks:

Frank Zalkow (Ph.D. 2021)





Application: Score Viewer



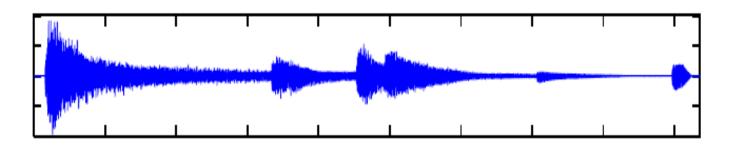


Image Processing: Optical Music Recognition

Image

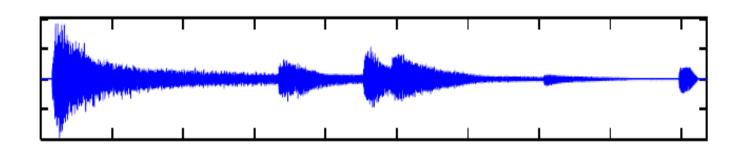
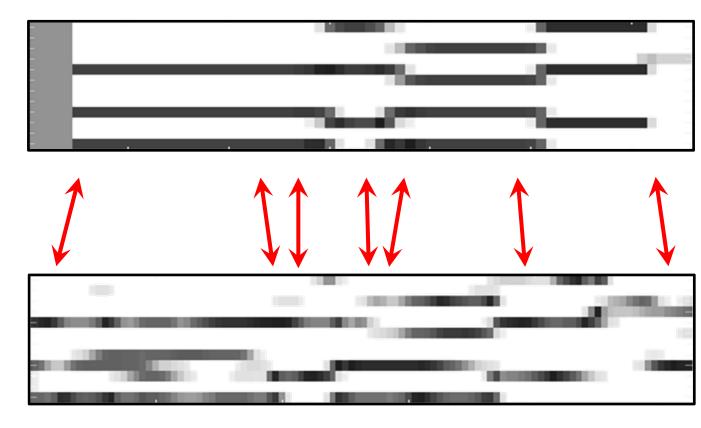
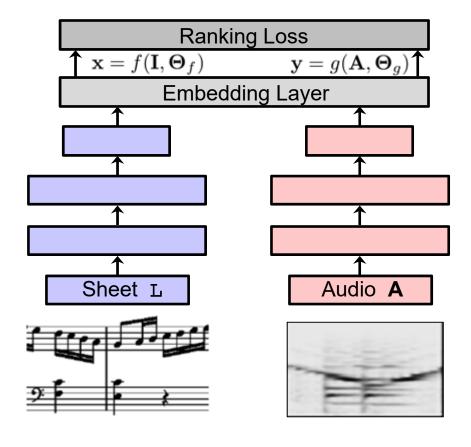


Image Processing: Optical Music Recognition

Image





- Representation learning
- Embedding techniques
- Weak annotations
- Loss functions
- **.**.

Cross-Modal Retrieval

Dorfer et al.: End-to-End Cross-Modality Retrieval with CCA Projections and Pairwise Ranking Loss. International Journal of Multimedia Information Retrieval, 2018.

Music Retrieval

