

Nonnegative Autoencoders with Applications to Music Audio Decomposing

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Guest Lecture Sound and Music Computing (CS4347/CS5647) National University of Singapore 16.10.2023

Meinard Müller

- Mathematics (Diplom/Master, 1997) Computer Science (PhD, 2001) Information Retrieval (Habilitation, 2007)
- Senior Researcher (2007-2012)
- Professor Semantic Audio Processing (since 2012)
- Former President of the International Society for Music Information Retrieval (MIR)
- IEEE Fellow for contributions to Music Signal Processing

PIEEE

Nonnegative Autoencoders with Applications to Music Audio Decomposing

Meinard Müller: Research Group Semantic Audio Processing

- Michael Krause
- Yigitcan Özer
- Simon Schwär
- Johannes Zeitler
- Peter Meier (external)
- Christof Weiß
- Sebastian Rosenzweig
- Frank Zalkow
- Christian Dittmar
- Stefan Balke
- Jonathan Driedger Thomas Prätzlich

International Audio Laboratories Erlangen

- Fraunhofer Institute for Integrated Circuits IIS
- Largest Fraunhofer institute with ≈ 1000 members
- Applied research for sensor, audio, and media technology

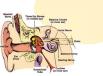
- Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
- One of Germany's largest universities with ≈ 40,000 students
- Strong Technical Faculty

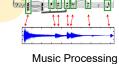
3D Audio

International Audio Laboratories Erlangen

International Audio Laboratories Erlangen

Audio Coding





Internet of Things

Psychoacoustics

AudioLabs – FAU

- Prof. Dr. Jürgen Herre Audio Coding
- Prof. Dr. Bernd Edler
- Prof. Dr. Meinard Müller Semantic Audio Processing
- Prof. Dr. Emanuël Habets Spatial Audio Signal Processing
- Prof. Dr. Nils Peters
- Dr. Stefan Turowski Coordinator AudioLabs-FAU

negative Autoencoders with ications to Music Audio Decomposing

LABS

Source Separation

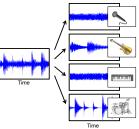
- Decomposition of audio stream into different sound sources
- Central task in digital signal processing
- "Cocktail party effect"

Source Separation

- Decomposition of audio stream into different sound sources
- Central task in digital signal processing
- "Cocktail party effect"
- Several input signals
- Sources are assumed to be statistically independent

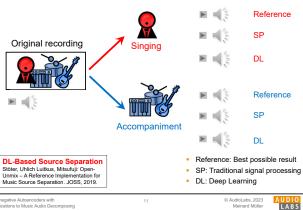
Source Separation (Music)

- Main melody, accompaniment, drum track
- Instrumental voices
- Individual note events
- Only mono or stereo
- Sources are often highly dependent



Prior Knowledge
Ewert, Pardo, Müller, Plumbley:
Score-Informed Source Separatio
for Musical Audio Recordings.
IEEE SPM 31(3), 2014.

Source Separation (Singing Voice)

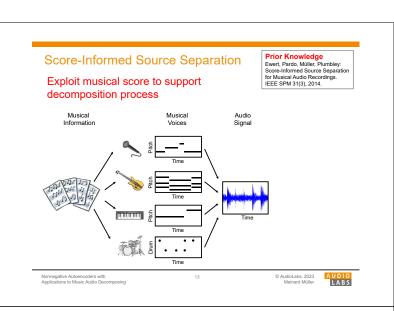


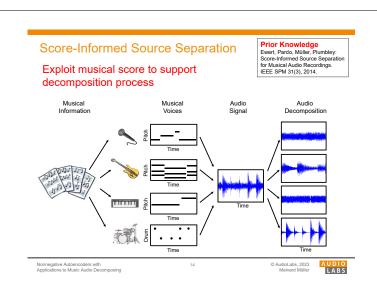
Score-Informed Source Separation

Exploit musical score to support decomposition process

Musical

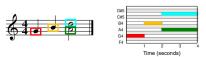
Audio Signal



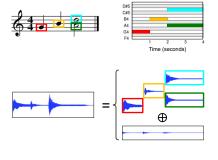


Score-Informed Audio Decomposition

Score-Informed Audio Decomposition



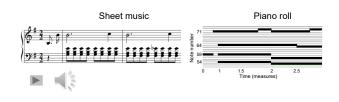
Score-Informed Audio Decomposition



Nonnegative Autoencoders with Applications to Music Audio Decomposing

© AudioLabs, 2023 Meinard Müller LABS

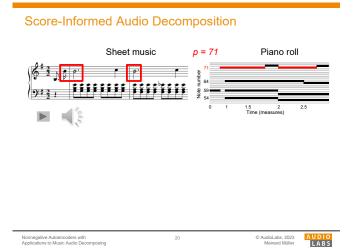
Score-Informed Audio Decomposition



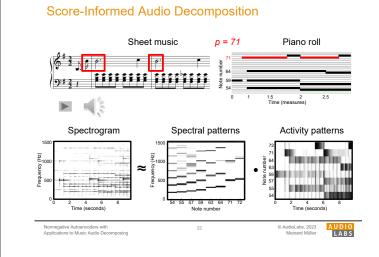
Nonnegative Autoencoders with Applications to Music Audio Decomposing

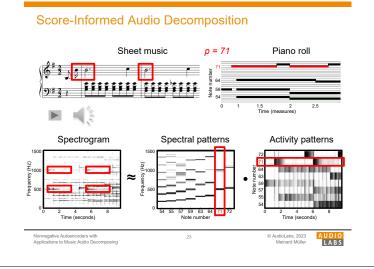
Sheet music p = 59 Piano roll

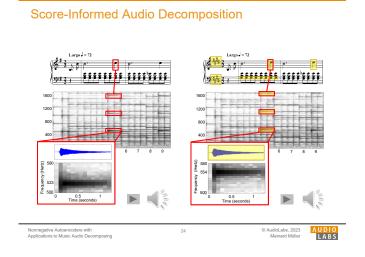
© AudioLabs, 2023 Meinard Müller LABS



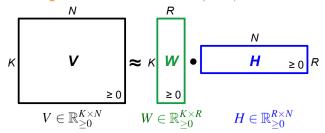
Score-Informed Audio Decomposition Sheet music p = 71 Piano roll Piano rol



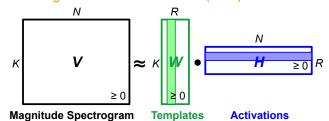




Nonnegative Matrix Factorization (NMF)



Nonnegative Matrix Factorization (NMF)



Templates:

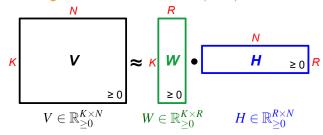
Pitch + Timbre

"How does it sound"

Activations: Onset time + Duration "When does it sound"

AUDIO

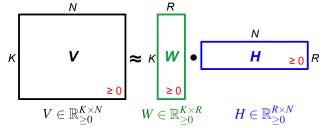
Nonnegative Matrix Factorization (NMF)



Dimensionality reduction

- K, N typically much larger than R (maximal rank)
- Example: N = 1000, K = 500, R = 20 $K \times N = 500,000, K \times R = 10,000,$ $R \times N = 20,000$

Nonnegative Matrix Factorization (NMF)



Nonnegativity:

- Prevents mutual cancellation of template vectors
- Encourages semantically meaningful decomposition

NMF Optimization

Optimization problem:

Given $V \in \mathbb{R}_{\geq 0}^{K imes N}$ and rank parameter \emph{R} minimize

$$||V - WH||^2$$

with respect to $\ W \in \mathbb{R}_{\geq 0}^{K imes R} \ \ \ \ \ M \in \mathbb{R}_{\geq 0}^{R imes N} \,.$

Optimization not easy:

- Nonnegativity constraints
- Nonconvexity when jointly optimizing W and H

Strategy: Iteratively optimize W and H via gradient descent

NMF Optimization

Computation of gradient with respect to H (fixed W)

D := RN

 $oldsymbol{arphi}^W:\mathbb{R}^D o\mathbb{R}$

 $\varphi^W(H) := \|V - WH\|^2$

Variables

 $H \in \mathbb{R}^{R \times N}$

 $\rho \in [1:R]$

 $v \in [1:N]$

NMF Optimization

Computation of gradient with respect to *H* (fixed *W*)

$$\begin{split} & D := RN \\ & \phi^W : \mathbb{R}^D \to \mathbb{R} \\ & \phi^W(H) := \|V - WH\|^2 \end{split} \qquad \frac{\partial \phi^W}{\partial H_{\rho \nu}} = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{r=1}^R W_{kr} H_{rn} \right)^2 \right)}{\partial H_{\rho \nu}}$$

Variables

$$H \in \mathbb{R}^{R \times N}$$
 $H_{\rho v}$
 $\rho \in [1:R]$

 ν ∈ [1 : *N*]

Nonnegative Autoencoders with Applications to Music Audio Decomposing

NMF Optimization

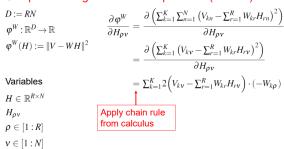
Computation of gradient with respect to *H* (fixed *W*)

$$\begin{array}{ll} D := RN & \frac{\partial \varphi^W}{\varphi^W : \mathbb{R}^D \to \mathbb{R}} & \frac{\partial \varphi^W}{\partial H_{\rho \nu}} = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{r=1}^R W_{kr} H_{rn}\right)^2\right)}{\partial H_{\rho \nu}} \\ \varphi^W(H) := \|V - WH\|^2 & = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ \text{Variables} & = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ \text{Summand that does not depend on } H_{\rho \nu} \\ H_{\rho \nu} & = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ \text{Must be zero} & = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{r=1}^K W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ \text{Must be zero} & = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{r=1}^K W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ \text{Must be zero} & = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{r=1}^K W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ \text{Must be zero} & = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{r=1}^K W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ \text{Must be zero} & = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{r=1}^K W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ \text{Must be zero} & = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{r=1}^K W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ \text{Must be zero} & = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{r=1}^K W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ \text{Must be zero} & = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{r=1}^K W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ \text{Must be zero} & = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{n=1}^K W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ \text{Must be zero} & = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{n=1}^K W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ \text{Must be zero} & = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{n=1}^K W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ \text{Must be zero} & = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{n=1}^K W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ \text{Must be zero} & = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^K W_{kr} H_{r\nu}\right)}{\partial H_{\rho \nu}} \\ \text{Must be zero} & = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^K W_{kr} H_{r\nu}\right)}{\partial H_{\rho \nu}} \\ \text{Must be zero} \\ \text{Must be zero} & = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^K W_{kr} H_{r\nu}\right)}{\partial H_{\rho \nu}} \\ \text{Must be zero} \\ \text{Must be zero} & = \frac{\partial \left(\sum_{k=1}^K W_{kr} H_{r\nu}\right)}{\partial H_{\rho \nu}} \\ \text{Must be zero} \\ \text{Must be$$

 ν ∈ [1 : *N*]

NMF Optimization

Computation of gradient with respect to *H* (fixed *W*)



NMF Optimization

Computation of gradient with respect to *H* (fixed *W*)

$$\begin{array}{ll} D := RN \\ \phi^W : \mathbb{R}^D \to \mathbb{R} \\ \phi^W(H) := \|V - WH\|^2 \\ \end{array} \qquad \begin{array}{ll} \frac{\partial \phi^W}{\partial H_{\rho \nu}} = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{r=1}^R W_{kr} H_{rn}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ \end{array} \\ \text{Variables} \\ H \in \mathbb{R}^{R \times N} \\ H_{\rho \nu} \\ \rho \in [1:R] \\ \nu \in [1:N] \end{array} \qquad \begin{array}{ll} \frac{\partial \phi^W}{\partial H_{\rho \nu}} = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{\nu\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{k\nu} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{k\nu} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{k\nu} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{k\nu} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{k\nu} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{k\nu} H_{r\nu}\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{k\nu}\right)}{\partial H_{\rho \nu}} \\ = \frac{\partial \left(\sum_{k=$$

NMF Optimization

Computation of gradient with respect to *H* (fixed *W*)

$$D := RN$$

$$\varphi^W : \mathbb{R}^D \to \mathbb{R}$$

$$\varphi^W(H) := \|V - WH\|^2$$

$$= \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{r=1}^R W_{kr} H_{rn}\right)^2\right)}{\partial H_{\rho \nu}}$$

$$= \frac{\partial \left(\sum_{k=1}^K \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right)^2\right)}{\partial H_{\rho \nu}}$$

$$= \sum_{k=1}^K 2 \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right) \cdot \left(-W_{k\rho}\right)$$

$$= \sum_{k=1}^K 2 \left(V_{k\nu} - \sum_{r=1}^R W_{kr} H_{r\nu}\right) \cdot \left(-W_{k\rho}\right)$$

$$= 2 \left(\sum_{r=1}^R \sum_{k=1}^K W_{k\rho} W_{kr} H_{r\nu} - \sum_{k=1}^K W_{k\rho} V_{k\nu}\right)$$

$$= 2 \left(\sum_{r=1}^R \left(\sum_{k=1}^K W_{k\rho} W_{kr}\right) H_{r\nu} - \sum_{k=1}^K W_{\rho k} V_{k\nu}\right)$$
Introduce transposed W^\top

NMF Optimization

Computation of gradient with respect to H (fixed W)

$$\begin{split} D &:= RN \\ \phi^W : \mathbb{R}^D \to \mathbb{R} \\ \phi^W(H) &:= \|V - WH\|^2 \\ \text{Variables} \\ H &\in \mathbb{R}^{R \times N} \\ H_{\rho v} \\ \rho &\in [1:R] \\ v &\in [1:N] \end{split} \qquad \begin{aligned} & \frac{\partial \phi^W}{\partial H_{\rho v}} &= \frac{\partial \left(\sum_{k=1}^K \sum_{n=1}^N \left(V_{kn} - \sum_{r=1}^R W_{kr} H_{rn}\right)^2\right)}{\partial H_{\rho v}} \\ &= \frac{\partial \left(\sum_{k=1}^K \left(V_{kv} - \sum_{r=1}^R W_{kr} H_{rv}\right)^2\right)}{\partial H_{\rho v}} \\ &= \sum_{k=1}^K 2 \left(V_{kv} - \sum_{r=1}^R W_{kr} H_{rv}\right) \cdot \left(-W_{k\rho}\right) \\ &= 2 \left(\sum_{r=1}^R \sum_{k=1}^K W_{k\rho} W_{kr} H_{rv} - \sum_{k=1}^K W_{k\rho} V_{kv}\right) \\ &= 2 \left(\sum_{r=1}^R \left(\sum_{k=1}^K W_{\rho k} W_{kr}\right) H_{rv} - \sum_{k=1}^K W_{\rho k} V_{kv}\right) \\ &= 2 \left(\left(W^\top W H\right)_{\rho v} - \left(W^\top V\right)_{\rho v}\right). \end{aligned}$$

Nonnegative Autoencoders with Applications to Music Audio Decomposing

NMF Optimization

Gradient descent

Initialization $H^{(0)} \in \mathbb{R}^{R \times N}$ Iteration for $\ell = 0, 1, 2, \dots$

$$H_{rn}^{(\ell+1)} = H_{rn}^{(\ell)} - \gamma_{rn}^{(\ell)} \cdot \left(\left(W^ op W H^{(\ell)}
ight)_{rn} - \left(W^ op V
ight)_{rn}
ight)$$

with suitable learning rate $\gamma_{rn}^{(\ell)} \geq 0$

NMF Optimization

Gradient descent

Initialization $H^{(0)} \in \mathbb{R}^{R \times N}$ Iteration for $\ell = 0, 1, 2, \dots$

$$H_{rn}^{(\ell+1)} = H_{rn}^{(\ell)} - \gamma_{rn}^{(\ell)} \cdot \left(\left(W^\top W H^{(\ell)} \right)_{rn} - \left(W^\top V \right)_{rn} \right)$$

with suitable learning rate $\gamma_m^{(\ell)} \geq 0$

Issues:

- How to do the initialization?
- How to choose the learning rate?
- How to ensure nonnegativity?

Nonnegative Autoencoders with Applications to Music Audio Decomposing

NMF Optimization Gradient descent

Initialization $H^{(0)} \in \mathbb{R}^{R \times N}$ Iteration for $\ell = 0, 1, 2, \dots$ Choose adaptive learning rate:

$$\gamma_{rn}^{(\ell)} := rac{H_{rn}^{(\ell)}}{\left(W^ op W H^{(\ell)}
ight)_{rn}}$$

$$\begin{split} H_{rn}^{(\ell+1)} &= H_{rn}^{(\ell)} - \underbrace{\begin{pmatrix} \chi^{(\ell)}_{rn} \end{pmatrix} \left(\begin{pmatrix} W^\top W H^{(\ell)} \end{pmatrix}_{rn} - \begin{pmatrix} W^\top V \end{pmatrix}_{rn} \right)}_{rn} - \begin{pmatrix} W^\top V \end{pmatrix}_{rn} \\ &= H_{rn}^{(\ell)} \cdot \frac{\begin{pmatrix} W^\top V \end{pmatrix}_{rn}}{\begin{pmatrix} W^\top W H^{(\ell)} \end{pmatrix}_{rn}} \end{split}$$

Issues:

- How to do the initialization?
- How to choose the learning rate?
- How to ensure nonnegativity?

NMF Optimization Gradient descent

Initialization $H^{(0)} \in \mathbb{R}^{R \times N}$ Iteration for $\ell = 0, 1, 2, \dots$ $\gamma_{rn}^{(\ell)} := rac{1}{\left(W^ op W H^{(\ell)}
ight)_{rn}}$

Choose adaptive

learning rate:

$$\begin{aligned} H_{rn}^{(\ell+1)} &= H_{rn}^{(\ell)} - \overbrace{\mathbf{v}_{rn}^{(\ell)}} \left(\left(W^{\top} W H^{(\ell)} \right)_{rn} - \left(W^{\top} V \right)_{rn} \right) \\ &= H_{rn}^{(\ell)} \cdot \frac{\left(W^{\top} V \right)_{rn}}{\left(W^{\top} W H^{(\ell)} \right)} \end{aligned}$$

Issues:

- How to do the initialization?
- How to choose the learning rate?
- How to ensure nonnegativity?
- Update rule become multiplicative
- Nonnegative values stav nonnegative

LABS

NMF Optimization

NMF Algorithm

Algorithm: NMF $(V \approx WH)$

Nonnegative matrix V of size $K \times N$ Input:

Threshold ε used as stop criterion

Output: Nonnegative template matrix W of size $K \times R$ Nonnegative activation matrix H of size $R \times N$

Procedure: Define nonnegative matrices $W^{(0)}$ and $H^{(0)}$ by some random or informed initialization. Furthermore set $\ell=0$. Apply the following update rules (written in matrix notation):

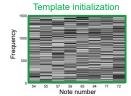
$$(1) \quad H^{(\ell+1)} = H^{(\ell)} \odot \left(((W^{(\ell)})^\top V) \oslash ((W^{(\ell)})^\top W^{(\ell)} H^{(\ell)}) \right)$$

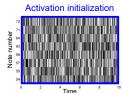
$$(2) \quad W^{(\ell+1)} = W^{(\ell)} \odot \left((V(H^{(\ell+1)})^\top) \oslash (W^{(\ell)}H^{(\ell+1)}(H^{(\ell+1)})^\top) \right)$$

(3) Increase ℓ by one.

Repeat the steps (1) to (3) until $\|H^{(\ell)}-H^{(\ell-1)}\| \le \varepsilon$ and $\|W^{(\ell)}-W^{(\ell-1)}\| \le \varepsilon$ (or until some other stop criterion is fulfilled). Finally, set $H=H^{(\ell)}$ and $W=W^{(\ell)}$.

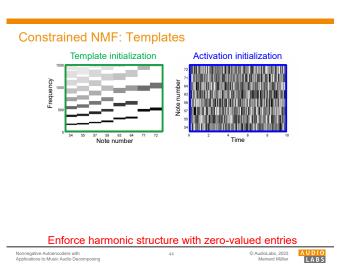
NMF-based Spectrogram Decomposition

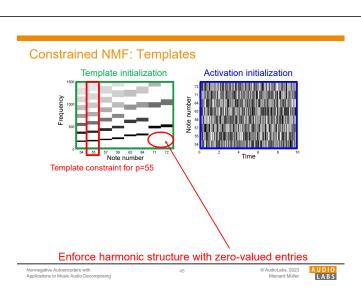


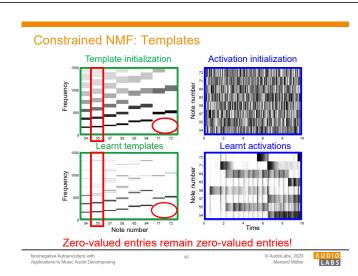


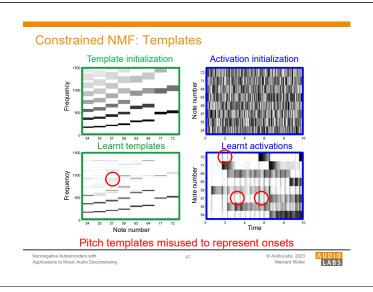
Random initialization

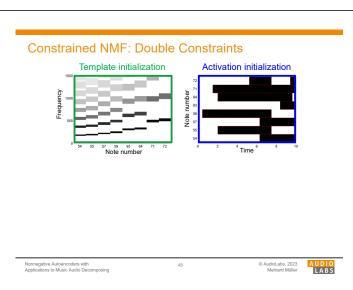
Nonegative Autoencoders with Applications Mail: Autoencoders with Applications to Mail: Autoencoders with Applications with Autoencoders with Autoencoders with Applications to Mail: Autoencoders with Autoen



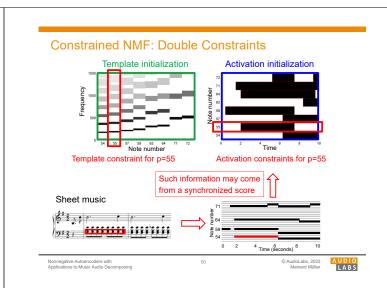


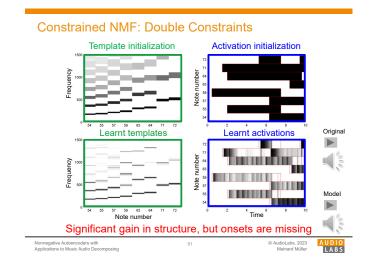


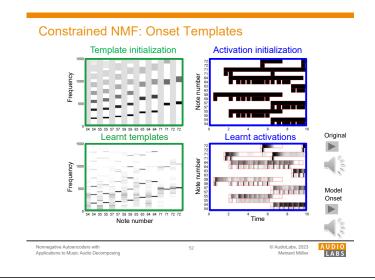


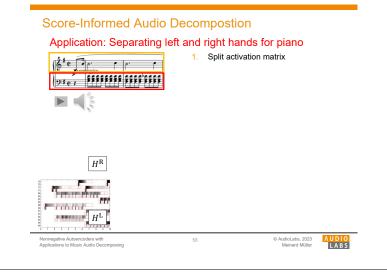


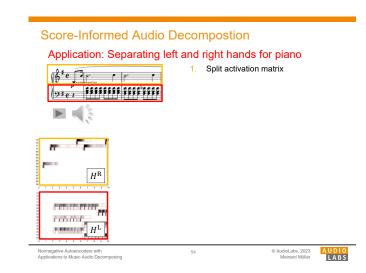
Constrained NMF: Double Constraints Activation initialization Activation initialization Activation constraints for p=55 Activation constraints for p=55







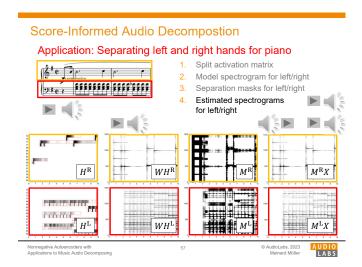


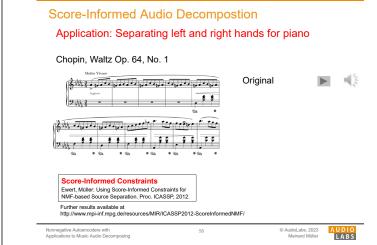


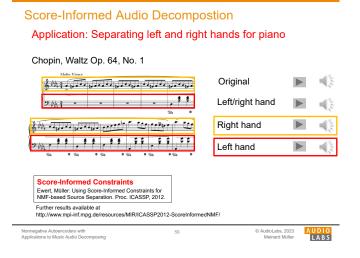
Score-Informed Audio Decompostion Application: Separating left and right hands for piano 1. Split activation matrix 2. Model spectrogram for left/right

LABS

Score-Informed Audio Decompostion Application: Separating left and right hands for piano 1. Split activation matrix 2. Model spectrogram for left/right 3. Separation masks for left/right WHR WHR Applications to Music Audio Decomposition







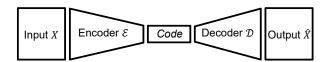
Conclusions (NMF)

- NMF used for spectrogram decomposition
- Multiplicative update rules make it easy to constrain NMF model via zero initialization
- Exploiting score information to guide separation process (requires score—audio synchronization)
- Application: Separation of arbitrary note groups from given audio recording

Nonnegative Autoencoders with Applications to Music Audio Decomposing

© AudioLabs, 2023 Meinard Müller

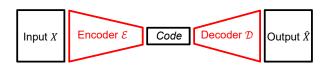
Autoencoder



- Specific type of neural network
- Encoder: Compress input X into a low-dimensional code
- Decoder: Reconstruct output \hat{X} from code

LABS

Autoencoder



- Specific type of neural network
- Encoder: Compress input X into a low-dimensional code
- Decoder: Reconstruct output \widehat{X} from code
- Goal: Learn parameters for encoder and decoder such that output is close to input with respect to some loss function:

$$\mathcal{L}\big(X,\widehat{X}\big)\approx 0$$

NMF

LABS

NMF and Autoencoder (AE)

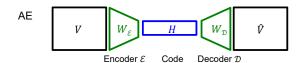
Nonnegative Autoencoder Smaragdis, Venkataramani: A Neural Network Alternative to Non-Negative Audio Models, Proc. ICASSP 2017. NMF

 $V \approx WH$ implies $W^+V \approx H$ with pseudoinverse W^+

NMF and Autoencoder (AE)

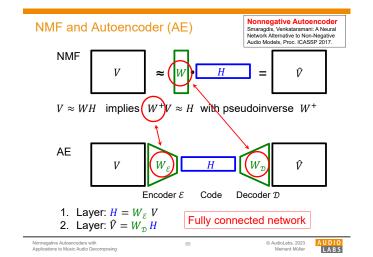
Nonnegative Autoencoder Smaragdis, Venkataramani: A Neural Network Alternative to Non-Negative Audio Models, Proc. ICASSP 2017.

 $V \approx WH$ implies $W^+V \approx H$ with pseudoinverse W^+



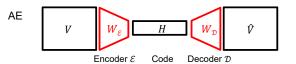
1. Layer: $H = W_{\varepsilon} V$

2. Layer: $\hat{V} = W_{\mathcal{D}} H$



Nonnegative Autoencoder Smaragdis, Venkataramani: A Neural Network Alternative to Non-Negative Audio Models, Proc. ICASSP 2017. Ŷ

 $V \approx WH$ implies $W^+V \approx H$ with pseudoinverse W^+

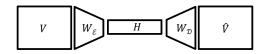


1. Layer: $H = W_{\varepsilon} V$ 2. Layer: $\hat{V} = W_{\mathcal{D}} H$

NMF: Learn H and W AE: Learn W_{ε} and $W_{\mathcal{D}}$

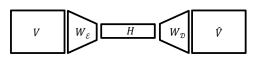
NMF

Nonnegative Autoencoder (NAE)



- 1. Layer: $H = W_{\varepsilon} V$ 2. Layer: $\hat{V} = W_{\mathcal{D}} H$
- How can one adjust the AE to simulate NMF?
- How can one achieve nonnegativity?
- How can one incorporate musical knowledge?

Nonnegative Autoencoder (NAE)



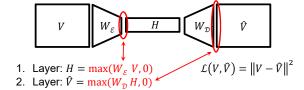
1. Layer: $H = W_{\varepsilon} V$ 2. Layer: $\hat{V} = W_{\mathcal{D}} H$

 $\mathcal{L}(V, \widehat{V}) = \|V - \widehat{V}\|^2$

Loss function: same as in NMF

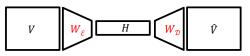
Nonnegative Autoencoders with Applications to Music Audio Decomposing

Nonnegative Autoencoder (NAE)



- Loss function: same as in NMF
- Activation function (ReLU) makes H and \hat{V} nonnegative

Nonnegative Autoencoder (NAE)



1. Layer: $H = \max(W_{\varepsilon} V, 0)$

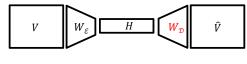
 $\mathcal{L}(V, \widehat{V}) = \|V - \widehat{V}\|^2$

2. Layer: $\hat{V} = \max(W_D H, 0)$

 $W_{\mathcal{D}} \leftarrow \max \left(W_{\mathcal{D}} - \gamma \frac{\partial \mathcal{L}}{\partial W_{\mathcal{D}}}, 0 \right)$

- Loss function: same as in NMF
- Activation function (ReLU) makes H and \hat{V} nonnegative
- Projected gradient descent can be used to keep $W_{\mathcal{D}}$ (and $W_{\mathcal{E}}$) nonnegative

Musical Constraints

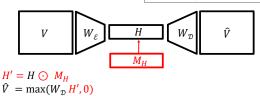


 $H = \max(W_{\varepsilon} V, 0)$ $\widehat{V} = \max(W_{\mathcal{D}} H, 0)$

• Template constraints: Project certain entries in $W_{\mathcal{D}}$ to zero values (using projected gradient decent)

Musical Constraints

Ewert, Sandler: Structured Dropout for Weak Label and Multi-Instance Learning and Its Application to Score-Informed Source Separation. Proc. ICASSP, 2017.



- Template constraints: Project certain entries in $W_{\mathcal{D}}$ to zero values (using projected gradient decent)
- Activation constraints: Use structured dropout by applying pointwise multiplication with binary mask M_H

NAE with Multiplicative Update Rules

- Multiplicative update rules in NMF:
 - Preserve nonnegativity
 - Lead to fast convergence
- Question: Can one introduce multiplicative update rules to train network weights for NAE?
- Use in additive gradient descent

$$W^{(\ell+1)} = W^{(\ell)} - \gamma \cdot \frac{\partial \mathcal{L}}{\partial W}$$

a suitable (adaptive) learning rate $\ \gamma$.

LABS

NAE with Multiplicative Update Rules

Encoder:

$$H = W_{\mathcal{E}}V$$

Structured Dropout:

$$H' = H \odot M_H$$

Decoder:

$$\hat{V} = W_{\mathcal{D}}H'$$

NMF vs. NAE

Ozer, Hansen, Zunner, Müller: Investigating Nonnegative Autoencoders for Efficient Audio Decomposition. Proc. EUSIPCO, 2022.

NAE with Multiplicative Update Rules

Encoder:

$$H = W_{\mathcal{E}}V$$

$$W_{\mathcal{E},rk}^{(\ell+1)} = W_{\mathcal{E},rk}^{(\ell)} \cdot \frac{\left(\left(\left(W_{\mathcal{D}}^{\top}V\right) \odot M_{H}\right)V^{\top}\right)_{rk}}{\left(\left(\left(W_{\mathcal{D}}^{\top}W_{\mathcal{D}}H^{\prime(\ell)}\right) \odot M_{H}\right)V^{\top}\right)_{rk}}$$

Structured Dropout:

$$H' = H \odot M_H$$

Decoder:

$$\hat{V} = W_{\mathcal{D}}H'$$

$$W_{\mathcal{D},kr}^{(\ell+1)} = W_{\mathcal{D},kr}^{(\ell)} \cdot \frac{\left(VH'^{\intercal}\right)_{kr}}{\left(W_{\mathcal{D}}^{(\ell)}H'H'^{\intercal}\right)_{kr}}$$

Similar idea and

computation as for NMF

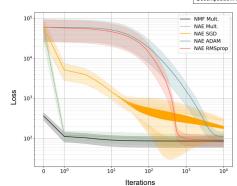
NMF vs. NAE

Ozer, Hansen, Zunner, Müller: Investigating Nonnegative Autoencoders for Efficient Audio Decomposition. Proc. EUSIPCO, 2022.

Approximation Loss

NMF vs. NAE

Özer, Hansen, Zunner, Müller: Investigating Nonnegative Autoencoders for Efficient Audi Decomposition. Proc. EUSIPCO, 2022.

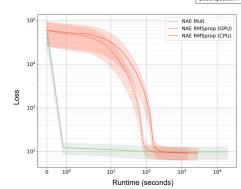


LABS

Approximation Loss

NMF vs. NAE

Özer, Hansen, Zunner, Müller: Investigating Nonnegative Autoencoders for Efficient Audio Decomposition. Proc. EUSIPCO, 2022.



LABS

Conclusions (NAE)

- Simulation of NMF:
 - Decoder corresponds to NMF templates
 - Encoder learns a kind of pseudo-inverse
 - Code corresponds to NMF activations
- Nonnegativity can be achieved via
 - activation function (ReLU)
 - projected gradient descent
 - multiplicative update rules
- Musical knowledge can be integrated via
 - removing network weights (template constraints)
 - structured dropout (activation constraints)

Nonnegative Autoencoders with Applications to Music Audio Decomposing

LABS

Outlook

- More complex networks
 - Deeper networks (more layers)
 - Different layer types (CNN, RNN, ...) and activation functions
 - Modification of loss function and regularization terms
- Understanding encoder decoder relationship
 - Nonnegativity
 - Pseudo-inverse
- Update rules
 - Constraints and convergence issues
 - Adaptive learning rates and projected gradient descent

Score-Informed Audio Decomposition

Audio mosaicing (style transfer)

Target signal: Beatles-Let it be

Source signal: Bees

એઇ એઇ એઇ એઇ Mosaic signal: Let it Bee

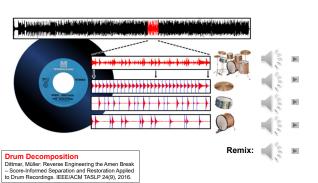
Audio Mosaicing Driedger, Prätzlich, Müller: Let It Bee – Towards NMF-Inspired Audio Mosaicing. ISMIR, 2015.

© AudioLabs, 2023 Meinard Müller

LABS

Score-Informed Audio Decomposition

Informed Drum-Sound Decomposition



Score-Informed Audio Decomposition

Major challenge: Reconstructed sound events often have artifacts

Approaches:

- Resynthesize certain sound components
- Differentiable Digital Signal Processing (DDSP) combines classical DSP and deep learning
- Generative adversarial networks may help to reduce the artifacts

DDSP Engel et al.: DDSP: Differentiable Digital Signal Processing. ICLR, 2020.

Source Separation (Piano Concerto)

- Yigitcan Özer
- PhD student in engineering
- Pianist

Source Separation (Piano Concerto)

- Yigitcan Özer
- PhD student in engineering
- Pianist

Only Piano!

Where is the orchestra?

Source Separation (Piano Concerto)

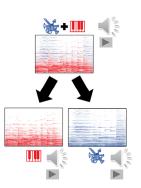
LABS

Source Separation (Piano Concerto)

© AudioLabs, 2023 Meinard Müller

LABS

Source Separation (Piano Concerto)



LABS

Source Separation (Piano Concerto)



LABS

Fundamentals of Music Processing (FMP)

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de

Fundamentals of Music Processing (FMP)

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de

2nd edition Meinard Müller Fundamentals of Music Processing Using Python and Jupyter Notebooks Springer, 2021

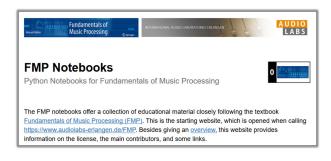
Fundamentals of Music Processing (FMP)

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de

2nd edition Meinard Müller Fundamentals of Music Processing Using Python and Jupyter Notebooks Springer, 2021

FMP Notebooks: Education & Research



https://www.audiolabs-erlangen.de/FMP

© AudioLabs, 2023 Meinard Müller

librosa

ESSENTIA

Resources (Group Meinard Müller)

FMP Notebooks:

https://www.audiolabs-erlangen.de/FMP

libfmp:

https://github.com/meinardmueller/libfmp

synctoolbox:

https://github.com/meinardmueller/synctoolbox

https://github.com/meinardmueller/libtsm

Preparation Course Python (PCP) Notebooks:

https://www.audiolabs-erlangen.de/resources/MIR/PCP/PCP.html https://github.com/meinardmueller/PCP

Resources

librosa:

https://librosa.org/

madmom:

https://github.com/CPJKU/madmom

Essentia Python tutorial:

https://essentia.upf.edu/essentia_python_tutorial.html

https://github.com/mir-dataset-loaders/mirdata

open-unmix:

https://github.com/sigsep/open-unmix-pytorch

Open Source Tools & Data for Music Source Separation:

https://source-separation.github.io/tutorial/landing.html

References (FMP Textbook & Notebooks)

- Meinard Müller: Fundamentals of Music Processing Using Python and Jupyter Notebooks. 2nd Edition, Springer, 2021.
- Meinard Müller and Frank Zalkow: libfmp: A Python Package for Fundamentals of Music Processing. Journal of Open Source Software (JOSS), 6(63): 1–5, 2021. https://joss.theoj.org/papers/10.21105/joss.03326
- Meinard Müller: An Educational Guide Through the FMP Notebooks for Teaching and Learning Fundamentals of Music Processing. Signals, 2(2): 245–285, 2021.
- Meinard Müller and Frank Zalkow: FMP Notebooks: Educational Material for Teaching and Learning Fundamentals of Music Processing. Proc. International Society for Music Information Retrieval Conference (ISMIR): 573-580, 2019.
- Meinard Müller, Brian McFee, and Katherine Kinnaird: Interactive Learning of Signal Processing Through Music: Making Fourier Analysis Concrete for Students. IEEE Signal Processing Magazine, agreed 37 a 44 contr. 38(3): 73–84, 2021.

References (NMF, NAE)

- Daniel Lee and Sebastian Seung: Algorithms for Non-Negative Matrix Factorization. Proc. NIPS, 2000.
- Sebastian Ewert and Meinard Müller: Using Score-Informed Constraints for NMF-Based Source Separation, Proc. ICASSP, 2012.
- Paris Smaragdis and Shrikant Venkataramani: A Neural Network Alternative to Non-Negative Audio Models. Proc. ICASSP, 2017.
- Sebastian Ewert and Mark B. Sandler: Structured Dropout for Weak Label and Multi-Instance Learning and Its Application to Score-Informed Source Separation. Proc. ICASSP, 2017
- Yigitcan Özer, Jonathan Hansen, Tim Zunner, and Meinard Müller: Investigating Nonnegative Autoencoders for Efficient Audio Decomposition. Proc. EUSIPCO, 2022.

Nonnegative Autoencoders with Applications to Music Audio Decomposing

