

An Introduction to **Music Information Retrieval**

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Deep Learning Indaba X

Nigeria, 24 Sep - 25 Sep 2021

Meinard Müller

- Mathematics (Diplom/Master) Computer Science (PhD) Information Retrieval (Habilitation)
- Since 2012: Full Professor Semantic Audio Processing

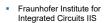
- President of the International Society for Music Information Retrieval (MIR)
- ISMIR
- Member of the Senior Editorial Board of the IEEE Signal Processing Magazine

IEEE Fellow for contributions to Music Signal Processing

Meinard Müller: Research Group

- Sebastian Rosenzweig
- Michael Krause
- Yigitcan Özer
- Peter Meier (external)
- Frank Zalkow
- Christian Dittmar
- Christof Weiß
- Stefan Balke
- Jonathan Driedger
- Thomas Prätzlich

International Audio Laboratories Erlangen



- Largest Fraunhofer institute with ≈ 1000 members
- Applied research for sensor, audio, and media technology

- Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
- One of Germany's largest universities with ≈ 40,000 students

3D Audio

Strong Technical

International Audio Laboratories Erlangen

Audio

International Audio Laboratories Erlangen

Audio

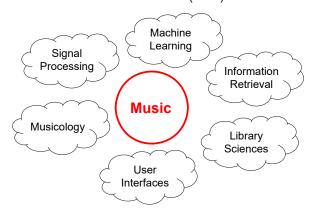
Internet of Things

Music Processing

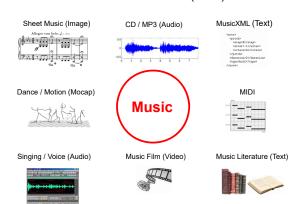
International Audio Laboratories Erlangen

- Prof. Dr. Jürgen Herre Audio Coding
- Prof. Dr. Bernd Edler Audio Signal Analysis
- Prof. Dr. Meinard Müller Semantic Audio Processing
- Prof. Dr. Emanuël Habets Spatial Audio Signal Processing
- Prof. Dr. Nils Peters Audio Signal Processing
- Dr. Stefan Turowski Coordinator AudioLabs-FAU

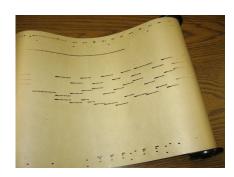
Music Information Retrieval (MIR)



Music Information Retrieval (MIR)

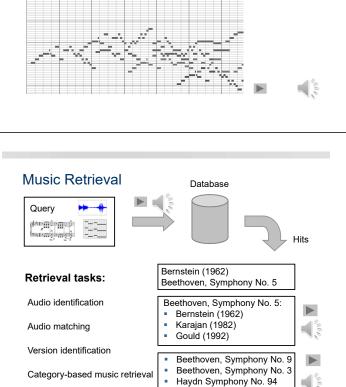


Piano Roll Representation



Player Piano (1900)

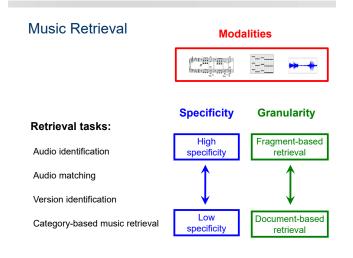
Piano Roll Representation (MIDI) J.S. Bach, C-Major Fuge (Well Tempered Piano, BWV 846) Piano Roll Representation (MIDI) Query: Goal: Find all occurrences of the query Matches:

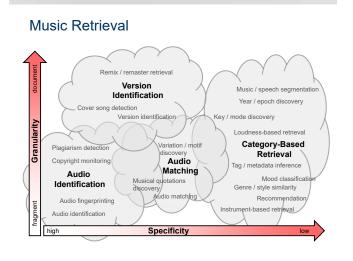


Piano Roll Representation (MIDI)

Goal: Find all occurrences of the query

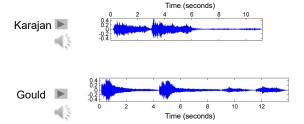
Query:





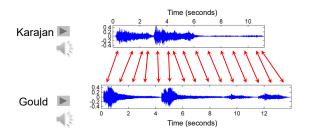
Music Synchronization: Audio-Audio

Beethoven's Fifth



Music Synchronization: Audio-Audio

Beethoven's Fifth



Application: Interpretation Switcher

Music Synchronization: Audio-Audio

Task

Given: Two different audio recordings (two versions) of

the same underlying piece of music.

Goal: Find for each position in one audio recording

the musically corresponding position in the other audio recording.

Music Synchronization: Audio-Audio

Traditional Engineering Approach:

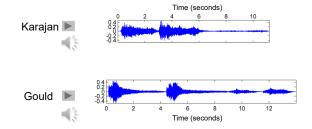
- 1.) Feature extraction
 - Robust to variations (e.g., instrumentation, timbre, dynamics)
 - Discriminative (e.g., capturing harmonic, melodic, tonal aspects)
 - ➡ Chroma features

2.) Temporal alignment

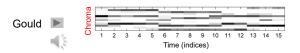
- Capturing local and global tempo variations
- Trade-off: Robustness vs. accuracy
- Efficiency
 - Dynamic time warping (DTW)

Music Synchronization: Audio-Audio

Beethoven's Fifth

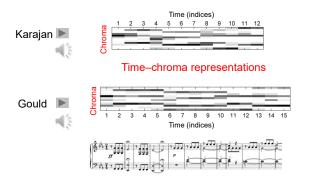


Music Synchronization: Audio-Audio Beethoven's Fifth Karajan



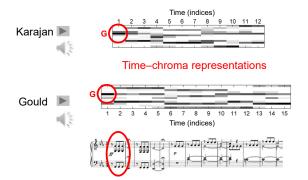
Music Synchronization: Audio-Audio

Beethoven's Fifth



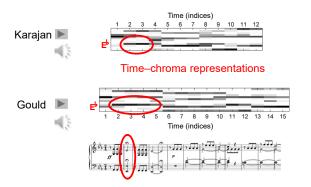
Music Synchronization: Audio-Audio

Beethoven's Fifth

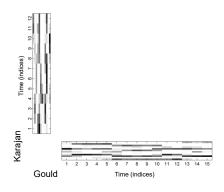


Music Synchronization: Audio-Audio

Beethoven's Fifth

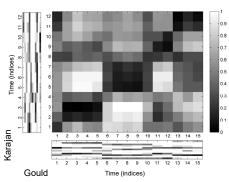


Music Synchronization: Audio-Audio



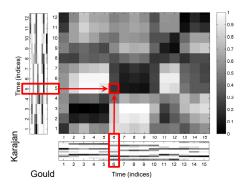
Music Synchronization: Audio-Audio

Cost matrix



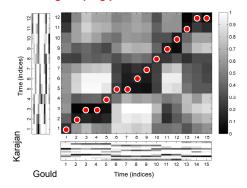
Music Synchronization: Audio-Audio

Cost matrix



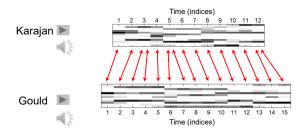
Music Synchronization: Audio-Audio

Cost-minimizing warping path



Music Synchronization: Audio-Audio

Optimal alignment (cost-minimizing warping path)



Music Synchronization: Audio-Audio

Deep Learning Approaches

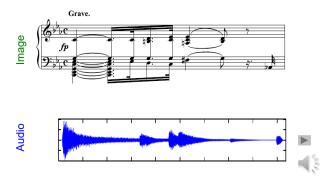
- Learn audio features from data
 - Should be able to achieve high alignment accuracy
 - Should be robust to performance variations
 - Musical relevance?
- Alignment problem
 - Pre-aligned data for training
 - Part of loss function → differentiability?

CTC-Loss
Graves et al.: Connectionist Temporal Classification: Labelling Unsegmented Sequence
Data with Recurrent Neural Networks. ICML 2006

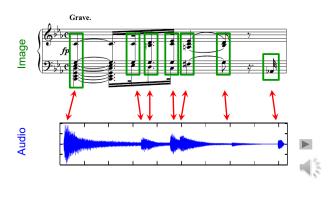
Soft-DTW

Cuturi, Blondel: Soft-DTW: A Differentiable Loss Function for Time-Series. ICML 2017

Music Synchronization: Image-Audio



Music Synchronization: Image-Audio



Application: Score Viewer

How to make the data comparable?

Audio

How to make the data comparable?

Image Processing: Optical Music Recognition

_____а

Audio

How to make the data comparable?

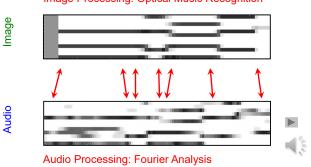
Image Processing: Optical Music Recognition

mage

Audio Processing: Fourier Analysis

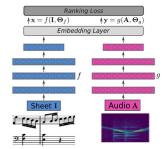
How to make the data comparable?

Image Processing: Optical Music Recognition



Music Synchronization: Image-Audio

Deep Learning Approach



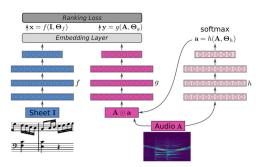
- Cross-modal embedding
- Requires corresponding snippets of audio and sheet music for training
- Triplet Loss function
- $\max(0, d(x^a, y^p) d(x^a, y^n) + \alpha)$ Problem very hard
 - Performance variationsLayout variations

Cross-Modal Retrieval

Dorfer et al.: End-to-End Cross-Modality Retrieval with CCA Projections and Pairwise Ranking Loss. International Journal of Multimedia Information Retrieval, 2018.

Music Synchronization: Image-Audio

Deep Learning Approach: Soft Attention Mechanism



Music Processing

Coarse/Relative Level	Fine/Absolute Level
What do different versions or instances have in common?	What are the characteristics of a specific version or instance?
Provide coarse description: What makes up a piece of music?	Capture nuances and subtleties: What makes music come alive?
Identify despite of differences	Identify the differences
Example tasks: Music Retrieval Genre Classification Global Tempo Estimation	Example tasks: Music Transcription Performance Analysis Local Tempo Estimation

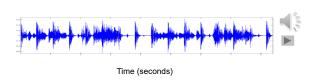
Tempo Estimation and Beat Tracking

Basic task: "Tapping the foot when listening to music"

Tempo Estimation and Beat Tracking

Basic task: "Tapping the foot when listening to music"

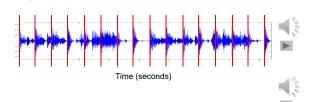
Example: Queen – Another One Bites The Dust



Tempo Estimation and Beat Tracking

Basic task: "Tapping the foot when listening to music"

Example: Queen – Another One Bites The Dust



Tempo Estimation and Beat Tracking

Example: Chopin – Mazurka Op. 68-3

Pulse level: Quarter note

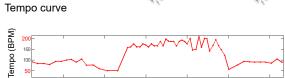
Tempo: ??'

Tempo Estimation and Beat Tracking

Example: Chopin – Mazurka Op. 68-3

Pulse level: Quarter note

Tempo: 50-200 BPM

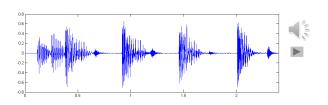


Time (beats)

Tempo Estimation and Beat Tracking

Tasks

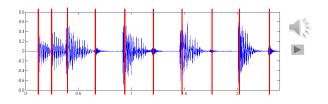
- Onset detection
- Beat tracking
- Tempo estimation



Tempo Estimation and Beat Tracking

Tasks

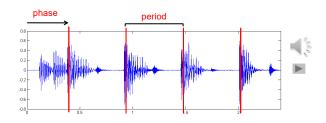
- Onset detection
- Beat tracking
- Tempo estimation



Tempo Estimation and Beat Tracking

Tasks

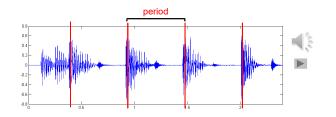
- Onset detection
- Beat tracking
- Tempo estimation



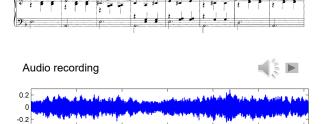
Tempo Estimation and Beat Tracking

Tasks

- Onset detection
 - Beat tracking
 - Tempo estimation
- Tempo := 60 / period
- Beats per minute (BPM)



Onset Detection (Spectral Flux)

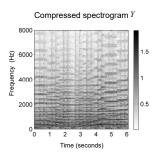


Onset Detection (Spectral Flux)

${\it Magnitude spectrogram} \, |\, X \, | \,$ 원 6000 4000 2000 Time (seconds)

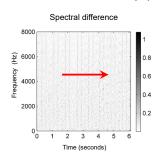
1. Spectrogram

Onset Detection (Spectral Flux)



- Spectrogram
- Logarithmic compression

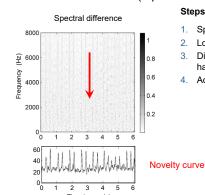
Onset Detection (Spectral Flux)



Steps:

- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification

Onset Detection (Spectral Flux)



Steps:

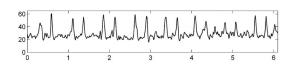
- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification
- Accumulation

Onset Detection (Spectral Flux)

Steps:

- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification
- Accumulation

Novelty function



Onset Detection (Spectral Flux)

Steps:

- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification
- Accumulation
- Normalization

Novelty function

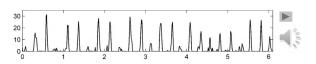
Substraction of local average



Onset Detection (Spectral Flux)

- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification
- Accumulation
- Normalization

Normalized novelty function



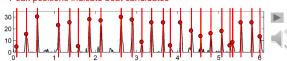
Onset Detection (Spectral Flux)

Steps:

- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification
- Accumulation
- Normalization

Normalized novelty function

Local Pulse and Tempo Tracking



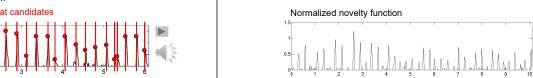
Onset Detection (Spectral Flux)

Deep Learning Approach

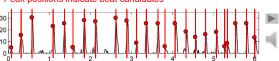
- 1. Input representation
- Sigmoid activation
- Convolution & rectified linear unit (ReLU)
- Pooling
- Convolution & ReLU

Steps:

- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification
- Accumulation
- Normalization

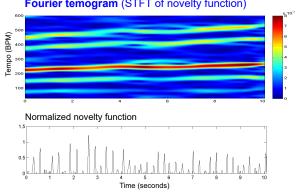


Normalized novelty function



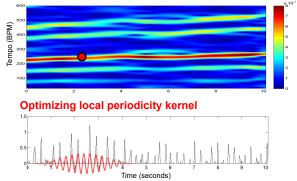
Local Pulse and Tempo Tracking

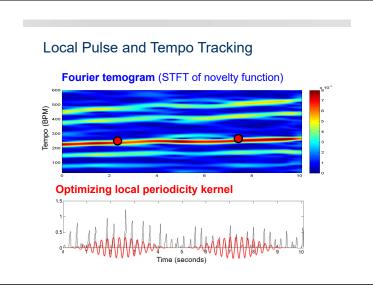
Fourier temogram (STFT of novelty function)

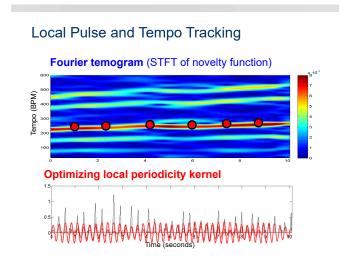


Local Pulse and Tempo Tracking

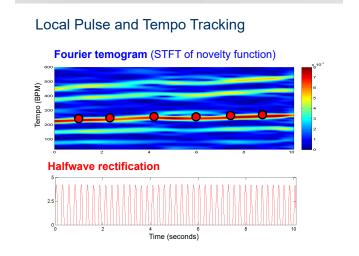
Fourier temogram (STFT of novelty function)







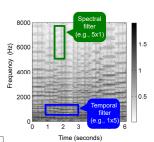
Local Pulse and Tempo Tracking Fourier temogram (STFT of novelty function) **Accumulation of kernels** Time (seconds)



Local Pulse and Tempo Tracking **Novelty Curve Predominant Local Pulse (PLP)** Time (seconds)

Local Pulse and Tempo Tracking **Deep Learning Approach**

- End-to-end approach
 - Input: Short audio snippets
 - Output: Tempo value
- DL architecture inspired by traditional engineering
 - Layers and activation functions
 - Shape of convolutional kernels



Tempo Estimation

Schreiber, Müller: A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network, ISMIR 2018.

Automatic Music Transcription

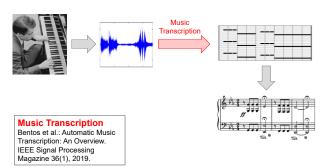
Task: Convert a music recording into sheet music

Music Transcription Bentos et al.: Automatic Music

Bentos et al.: Automatic Music Transcription: An Overview. IEEE Signal Processing Magazine 36(1), 2019.

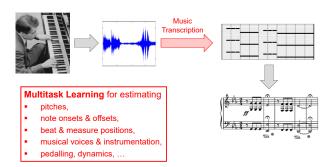
Automatic Music Transcription

Task: Convert a music recording into sheet music (or another symbolic music representation)



Automatic Music Transcription

Task: Convert a music recording into sheet music (or another symbolic music representation)



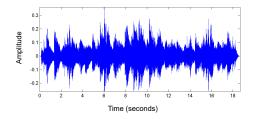
Why is Music Processing Challenging?

Example: Chopin, Mazurka Op. 63 No. 3

Why is Music Processing Challenging?

Example: Chopin, Mazurka Op. 63 No. 3

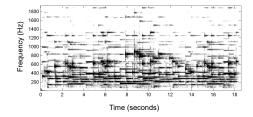
Waveform



Why is Music Processing Challenging?

Example: Chopin, Mazurka Op. 63 No. 3

Waveform / Spectrogram



Why is Music Processing Challenging?

Example: Chopin, Mazurka Op. 63 No. 3

- Waveform / Spectrogram
- Performance
 - Tempo
 - Dynamics
 - Note deviations
 - Sustain pedal

Why is Music Processing Challenging?

Example: Chopin, Mazurka Op. 63 No. 3

- Waveform / Spectrogram
- Performance
 - Tempo
 - Dynamics
 - Note deviationsSustain pedal
- Polyphony

Main Melody

Additional melody line

Accompaniment

Source Separation

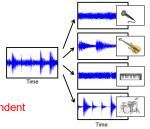
- Decomposition of audio stream into different sound sources
- Central task in digital signal processing
- "Cocktail party effect"

Source Separation

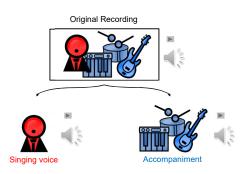
- Decomposition of audio stream into different sound sources
- Central task in digital signal processing
- "Cocktail party effect"
- Several input signals
- Sources are assumed to be statistically independent

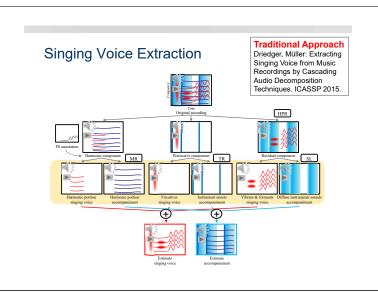
Source Separation (Music)

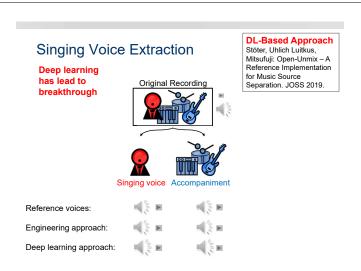
- Main melody, accompaniment, drum track
- Instrumental voices
- Individual note events
- Only mono or stereo
- Sources are often highly dependent



Singing Voice Extraction

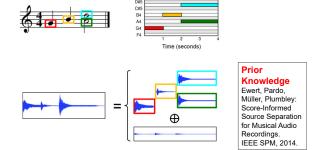






Score-Informed Audio Decomposition

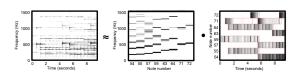
Exploit musical score to support decomposition process



Score-Informed Audio Decomposition

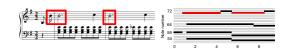
Exploit musical score to support decomposition process

NMF-based spectrogram decomposition

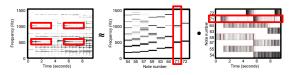


Score-Informed Audio Decomposition

Exploit musical score to support decomposition process

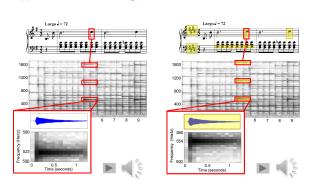


NMF-based spectrogram decomposition

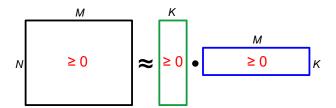


Score-Informed Audio Decomposition

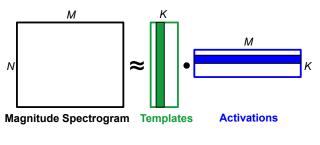
Application: Audio editing



NMF (Nonnegative Matrix Factorization)



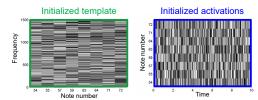
NMF (Nonnegative Matrix Factorization)



Templates: Pitch + Timbre "How does it sound" Activations: Onset time + Duration

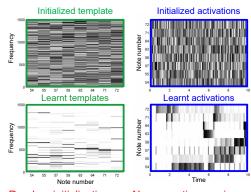
"When does it sound"

NMF-Decomposition



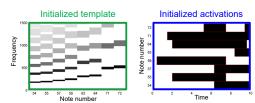
Random initialization

NMF-Decomposition



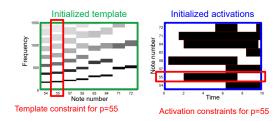
Random initialization → No semantic meaning

NMF-Decomposition



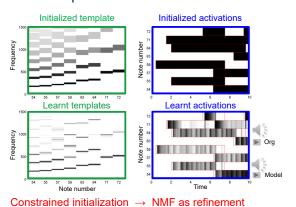
Constrained initialization

NMF-Decomposition

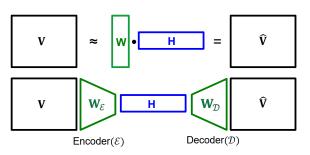


Constrained initialization

NMF-Decomposition



NMF-Decomposition

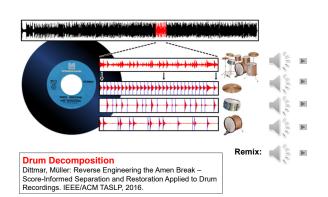


NMF as Autoencoder

Smaragdis, Venkataramani: A Neural Network Alternative to Non-Negative Audio Models. ICASSP 2017.

Constraint Autoencoders
Ewert, Sandler: Structured dropout for weak label and multi-instance learning and its application to score-informed source separation. ICASSP 2017

Informed Drum-Sound Decomposition



Informed Drum-Sound Decomposition

Major challenge: Reconstructed sound events often have artifacts

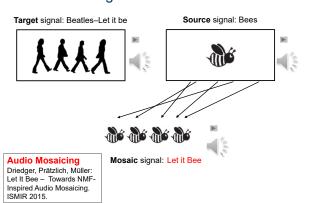
Approaches:

- Resynthesize certain sound components
- Differentiable Digital Signal Processing (DDSP) combines classical DSP and deep learning
- Generative adversarial networks may help to reduce the artifacts

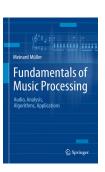
DDSP

Engel et al.: DDSP: Differentiable Digital Signal Processing. ICLR 2020.

Audio Mosaicing



Fundamentals of Music Processing (FMP)



Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de

Fundamentals of Music Processing (FMP)

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de

2nd edition Meinard Müller Fundamentals of Music Processing Using Python and Jupyter Notebooks Springer, 2021

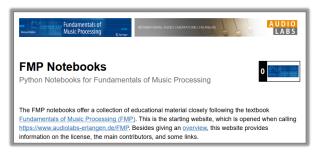
Fundamentals of Music Processing (FMP)

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de

2nd edition Meinard Müller Fundamentals of Music Processing Using Python and Jupyter Notebooks Springer, 2021

FMP Notebooks: Education & Research



https://www.audiolabs-erlangen.de/FMP