INTERNATIONAL AUDIO LABORATORIES ERLANGEN

An Introduction to Music Information Retrieval

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Deep Learning IndabaX

Nigeria, 24 Sep - 25 Sep 2021

Α

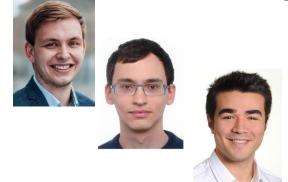
Meinard Müller

- Mathematics (Diplom/Master) Computer Science (PhD) Information Retrieval (Habilitation)
- Since 2012: Full Professor Semantic Audio Processing
- President of the International Society for Music Information Retrieval (MIR)
- Member of the Senior Editorial Board of the IEEE Signal Processing Magazine
- IEEE Fellow for contributions to Music Signal Processing

Meinard Müller: Research Group

- Sebastian Rosenzweig
- Michael Krause
- Yigitcan Özer
- Peter Meier (external)
- Frank Zalkow
- Christian Dittmar
- Christof Weiß
- Stefan Balke

- Jonathan Driedger
- Thomas Prätzlich

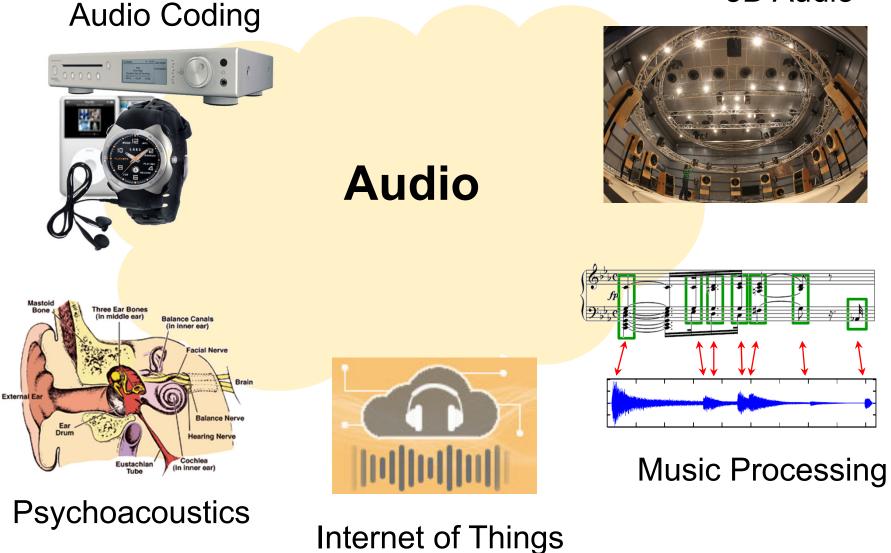


🗾 Fraunhofer

- Fraunhofer Institute for Integrated Circuits IIS
- Largest Fraunhofer institute with
 ≈ 1000 members
- Applied research for sensor, audio, and media technology

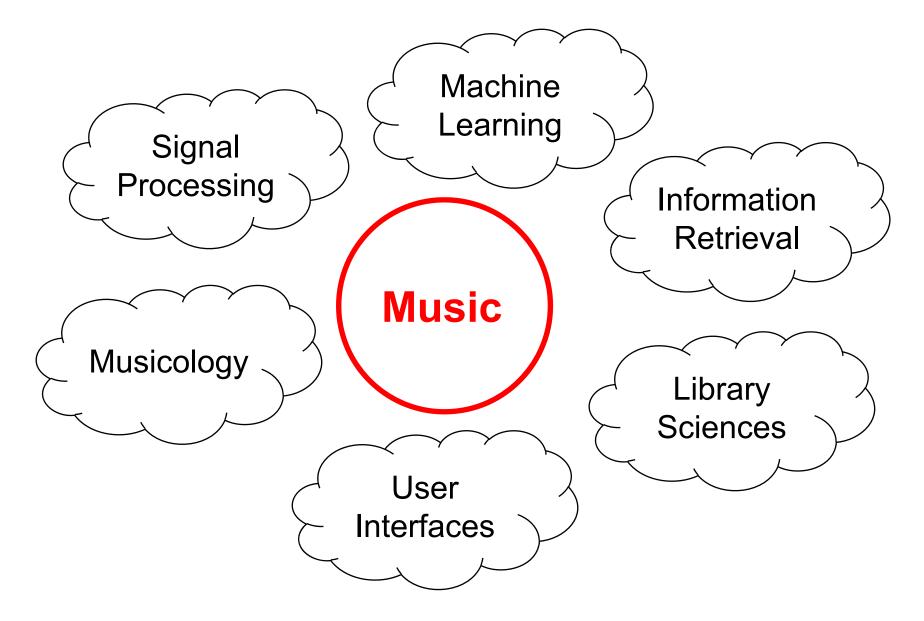
- Friedrich-Alexander
 Universität Erlangen Nürnberg (FAU)
- One of Germany's largest universities with ≈ 40,000 students
- Strong Technical Faculty

3D Audio

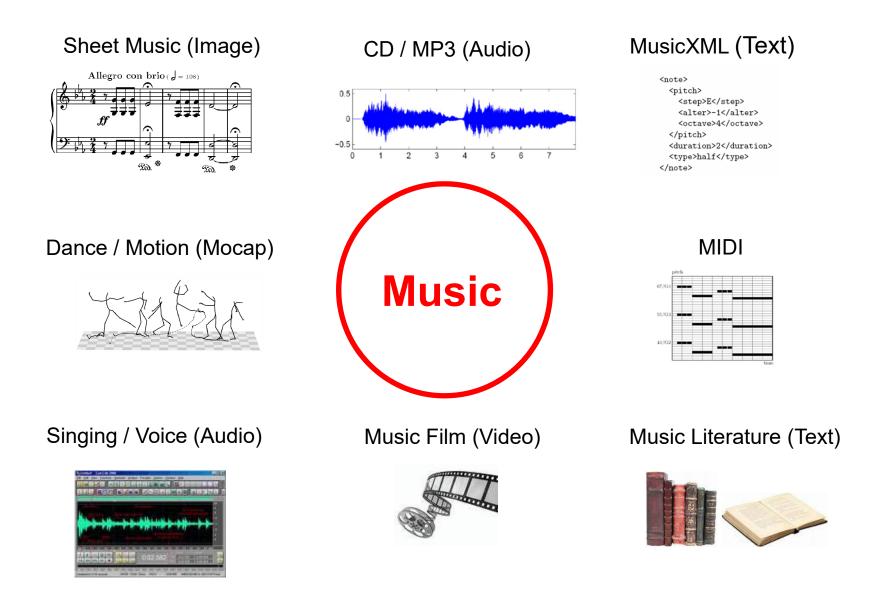


- Prof. Dr. Jürgen Herre Audio Coding
- Prof. Dr. Bernd Edler Audio Signal Analysis
- Prof. Dr. Meinard Müller Semantic Audio Processing
- Prof. Dr. Emanuël Habets
 Spatial Audio Signal Processing
- Prof. Dr. Nils Peters Audio Signal Processing
- Dr. Stefan Turowski
 Coordinator AudioLabs-FAU

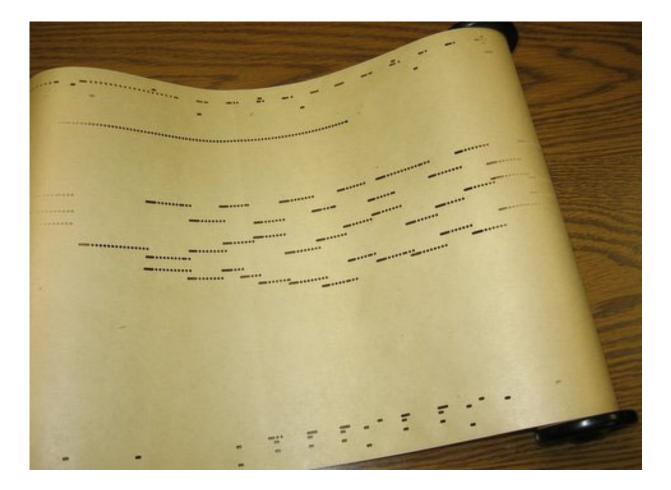
Music Information Retrieval (MIR)



Music Information Retrieval (MIR)



Piano Roll Representation

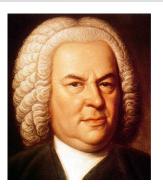


Player Piano (1900)

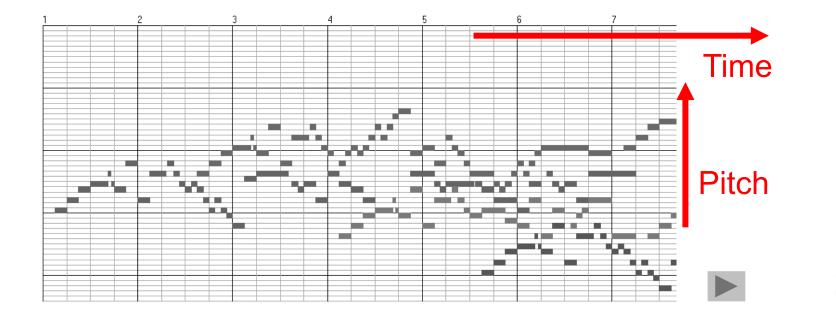
Piano Roll Representation (MIDI)

J.S. Bach, C-Major Fuge

(Well Tempered Piano, BWV 846)

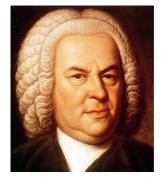


111

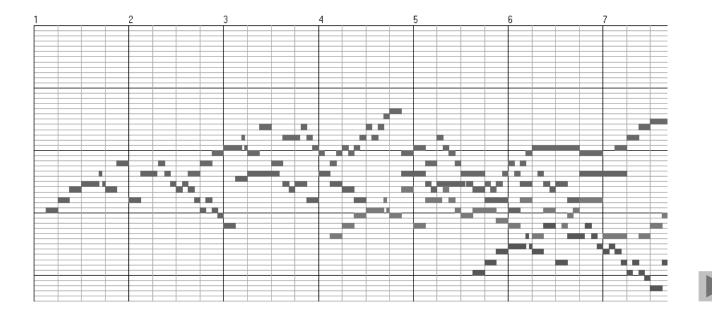


Piano Roll Representation (MIDI)

Query:

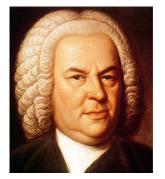


Goal: Find all occurrences of the query



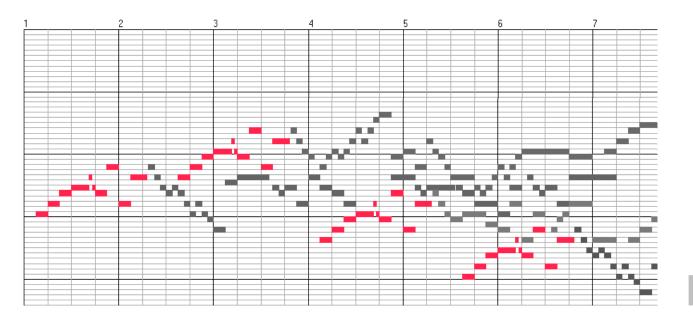
Piano Roll Representation (MIDI)

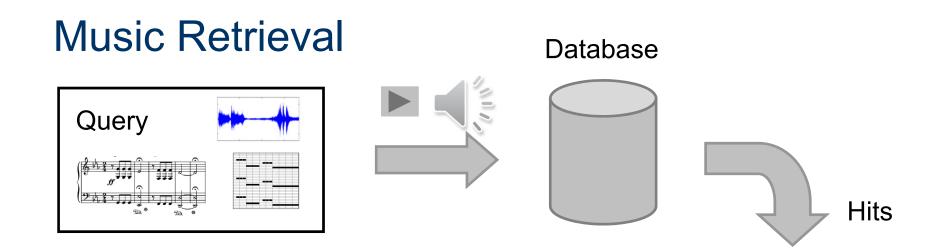
Query:



Goal: Find all occurrences of the query

Matches:





Retrieval tasks:

Audio identification

Audio matching

Version identification

Category-based music retrieval

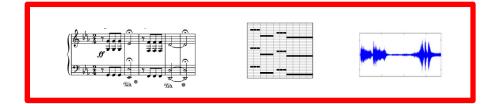
Bernstein (1962) Beethoven, Symphony No. 5

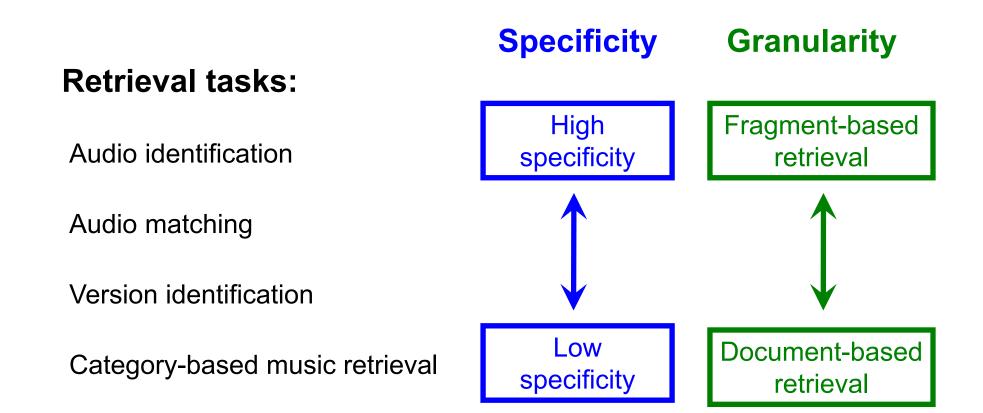
Beethoven, Symphony No. 5:

- Bernstein (1962)
- Karajan (1982)
- Gould (1992)
- Beethoven, Symphony No. 9
- Beethoven, Symphony No. 3
- Haydn Symphony No. 94

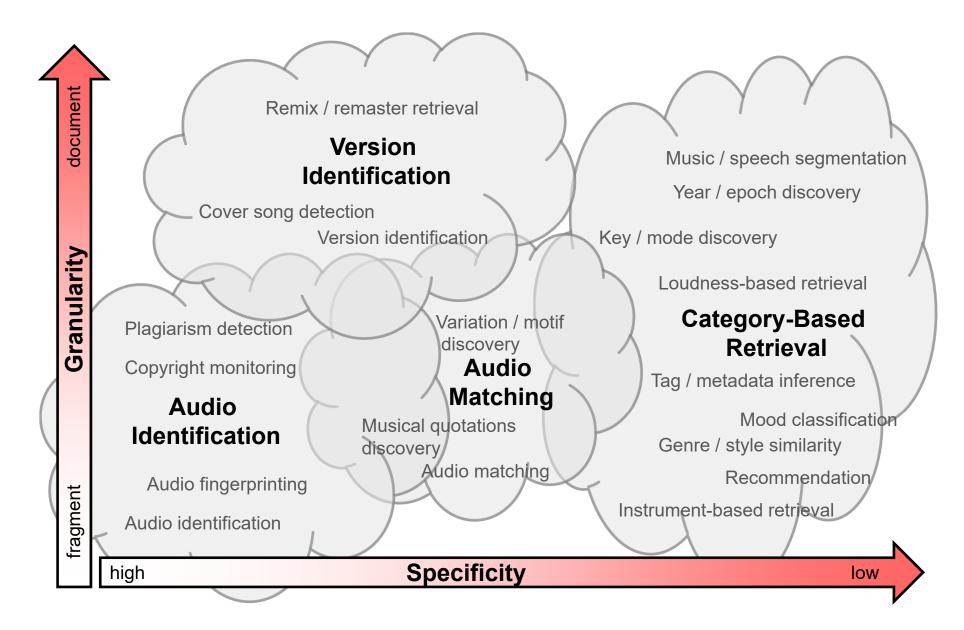
Music Retrieval

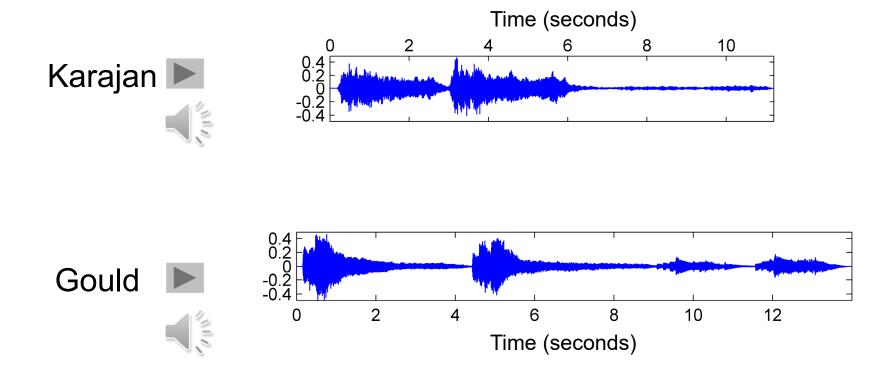
Modalities

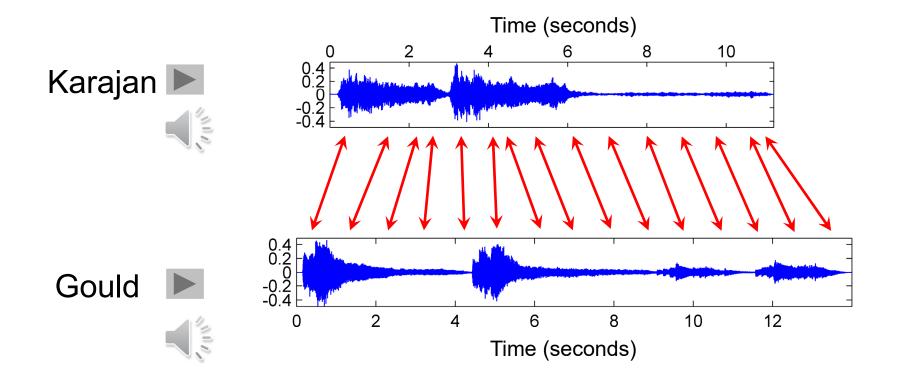




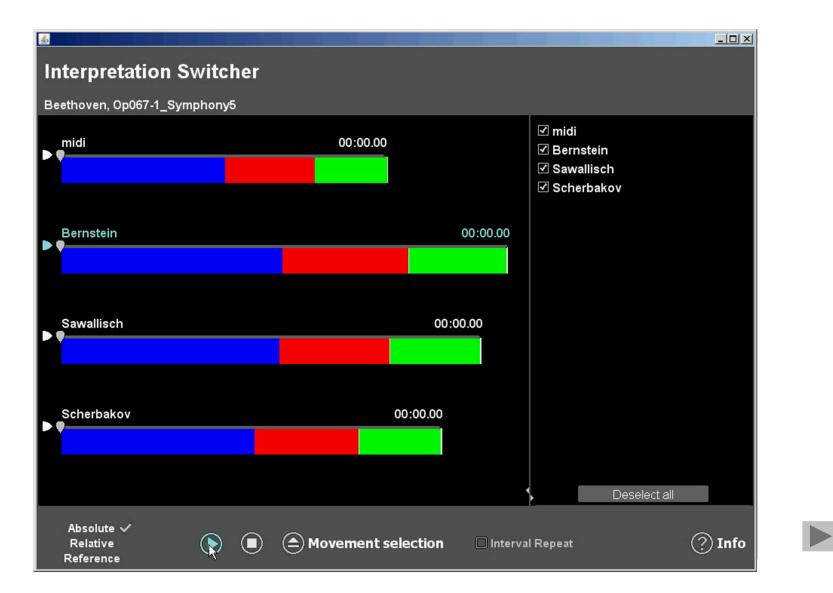
Music Retrieval







Application: Interpretation Switcher



Music Synchronization: Audio-Audio Task

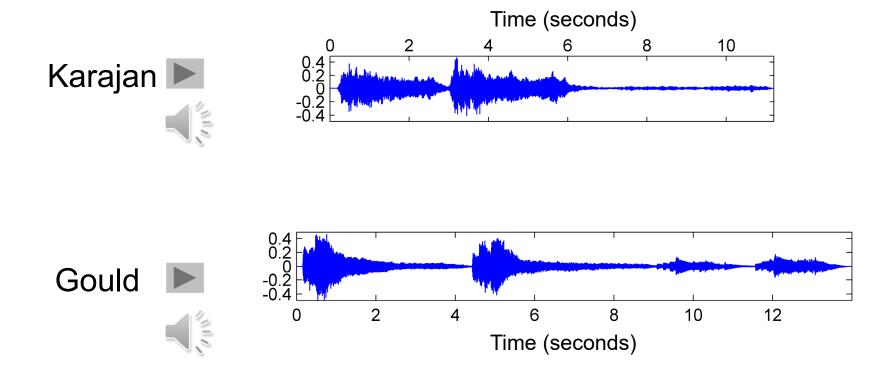
- **Given:** Two different audio recordings (two versions) of the same underlying piece of music.
- **Goal:** Find for each position in one audio recording the musically corresponding position in the other audio recording.

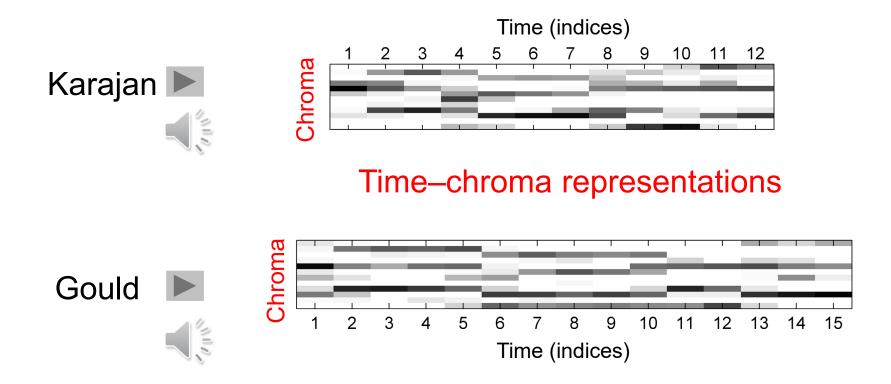
Music Synchronization: Audio-Audio Traditional Engineering Approach:

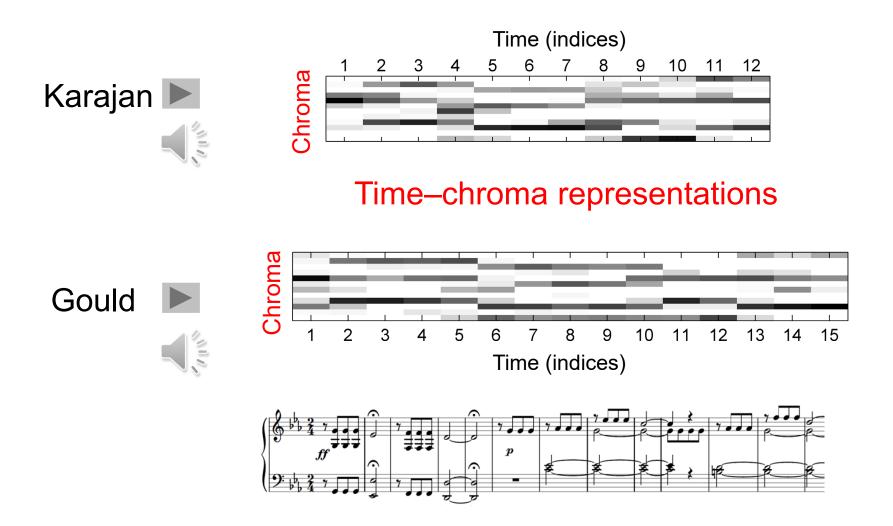
- 1.) Feature extraction
 - Robust to variations (e.g., instrumentation, timbre, dynamics)
 - Discriminative (e.g., capturing harmonic, melodic, tonal aspects)

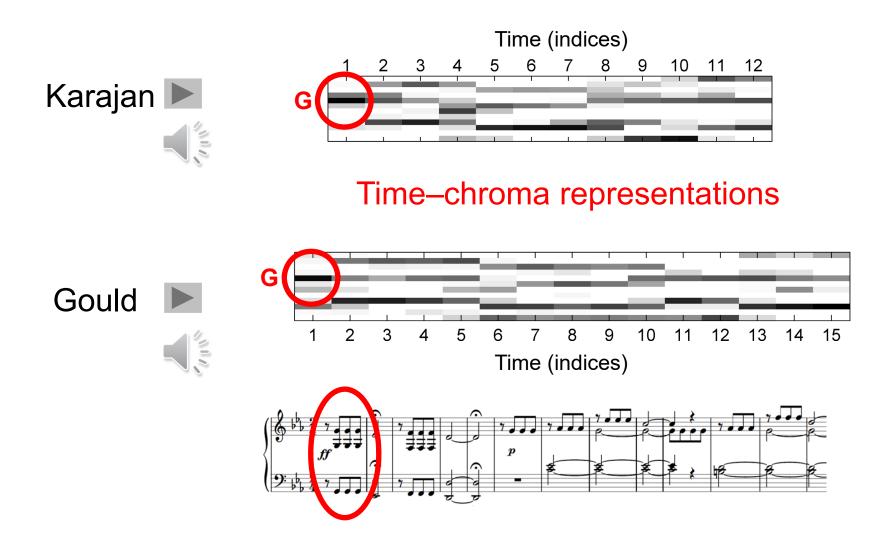
➡ Chroma features

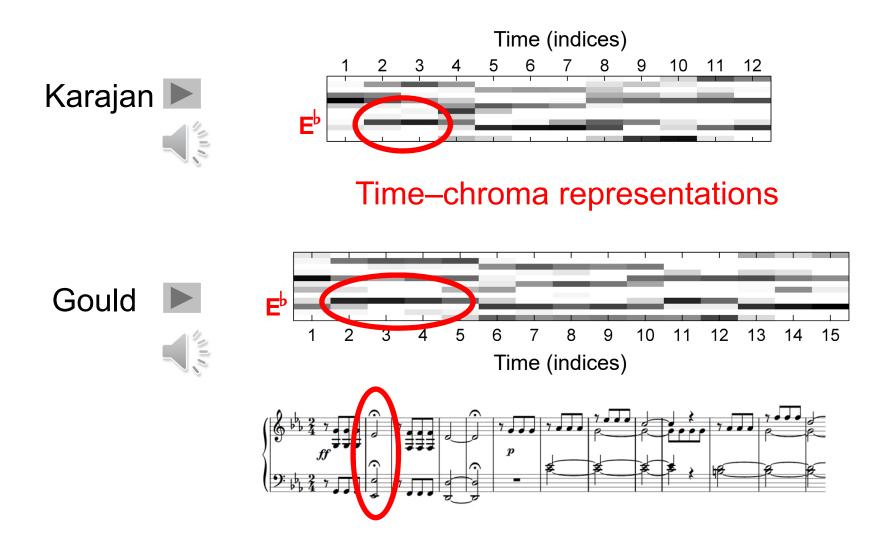
- 2.) Temporal alignment
 - Capturing local and global tempo variations
 - Trade-off: Robustness vs. accuracy
 - Efficiency



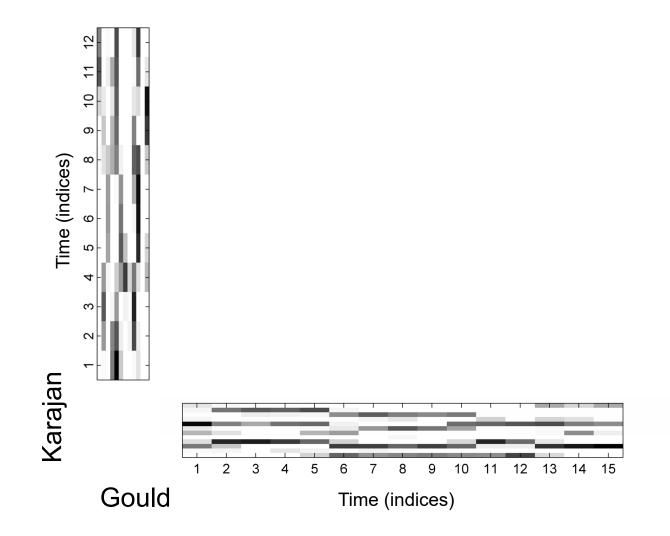




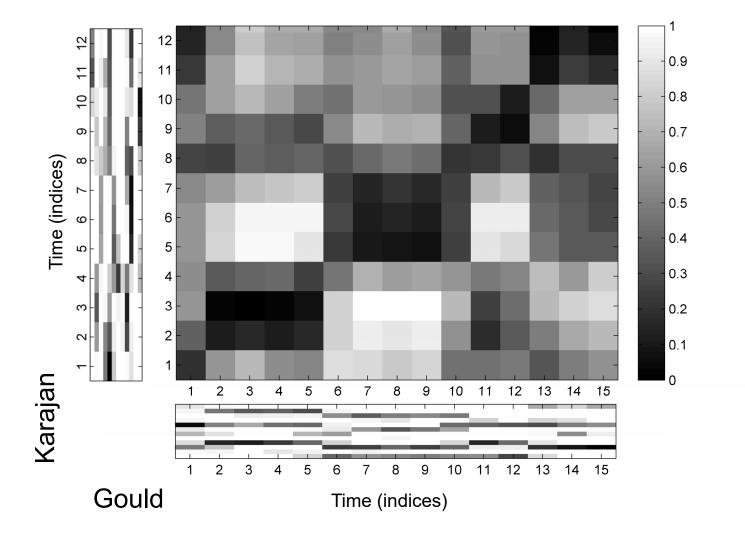




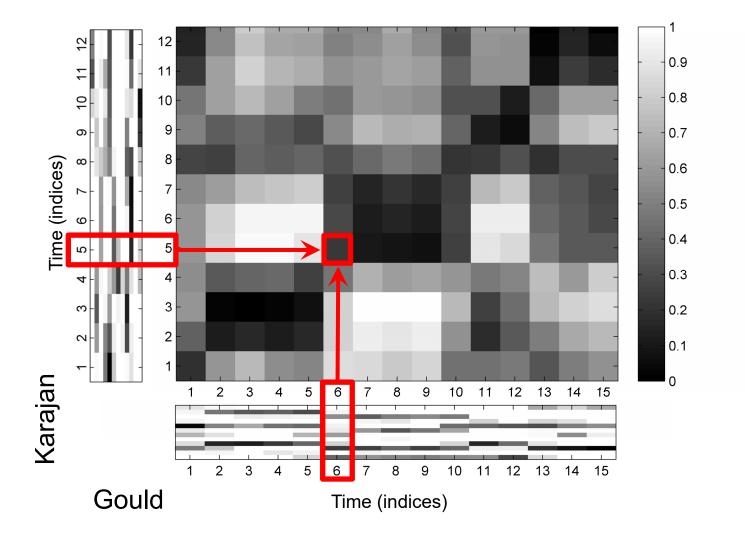
Music Synchronization: Audio-Audio



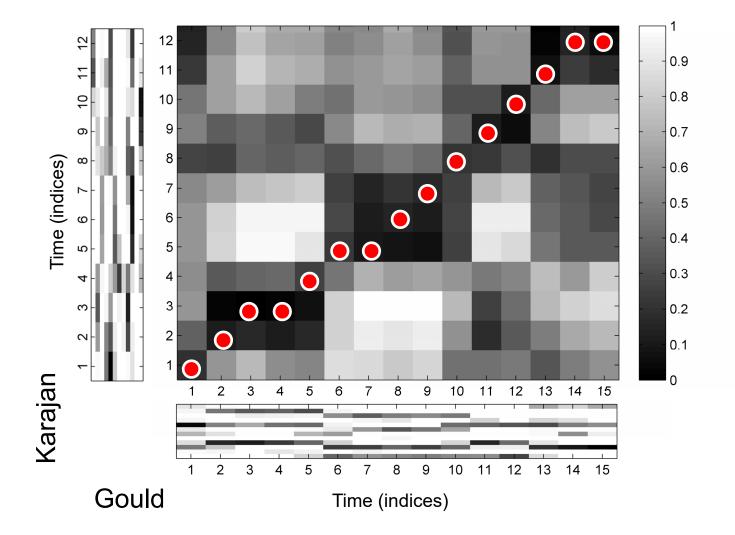
Music Synchronization: Audio-Audio Cost matrix



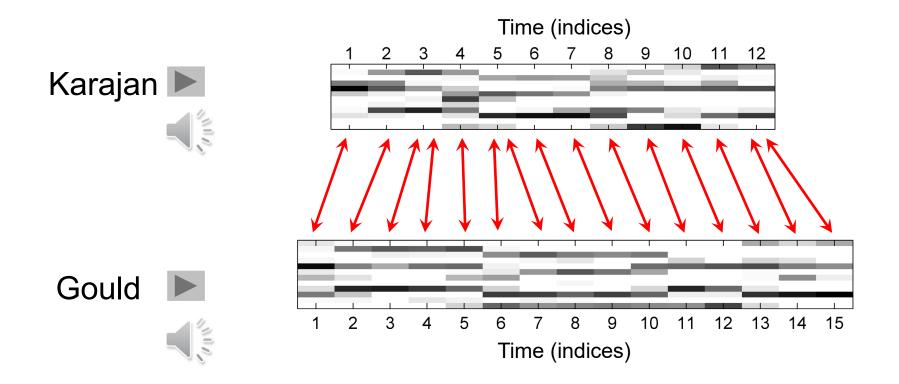
Music Synchronization: Audio-Audio Cost matrix



Music Synchronization: Audio-Audio Cost-minimizing warping path



Music Synchronization: Audio-Audio Optimal alignment (cost-minimizing warping path)



Music Synchronization: Audio-Audio

Deep Learning Approaches

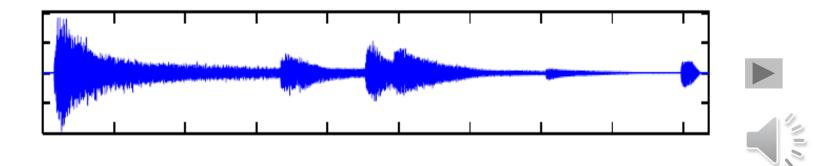
- Learn audio features from data
 - Should be able to achieve high alignment accuracy
 - Should be robust to performance variations
 - Musical relevance?
- Alignment problem
 - Pre-aligned data for training
 - Part of loss function \rightarrow differentiability?

CTC-Loss Graves et al.: Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks. ICML 2006

Soft-DTW

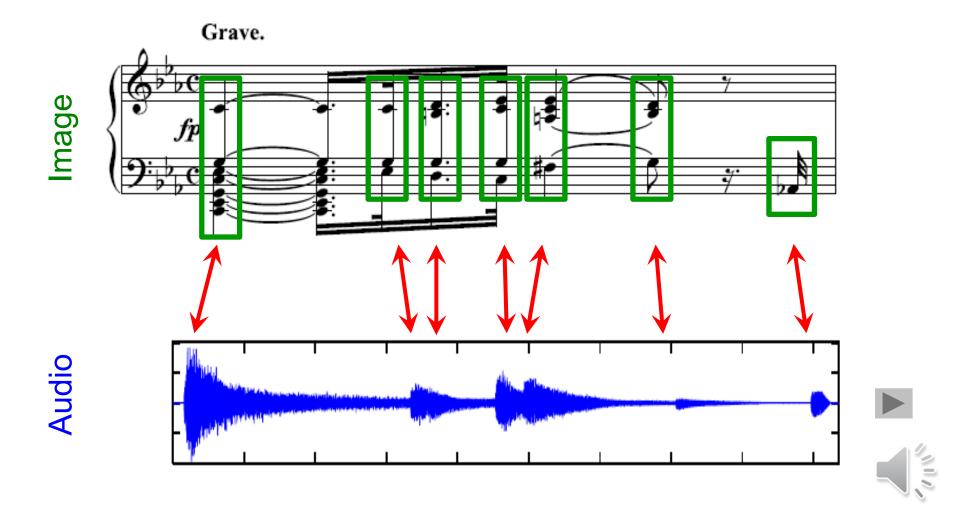
Cuturi, Blondel: Soft-DTW: A Differentiable Loss Function for Time-Series. ICML 2017

Music Synchronization: Image-Audio

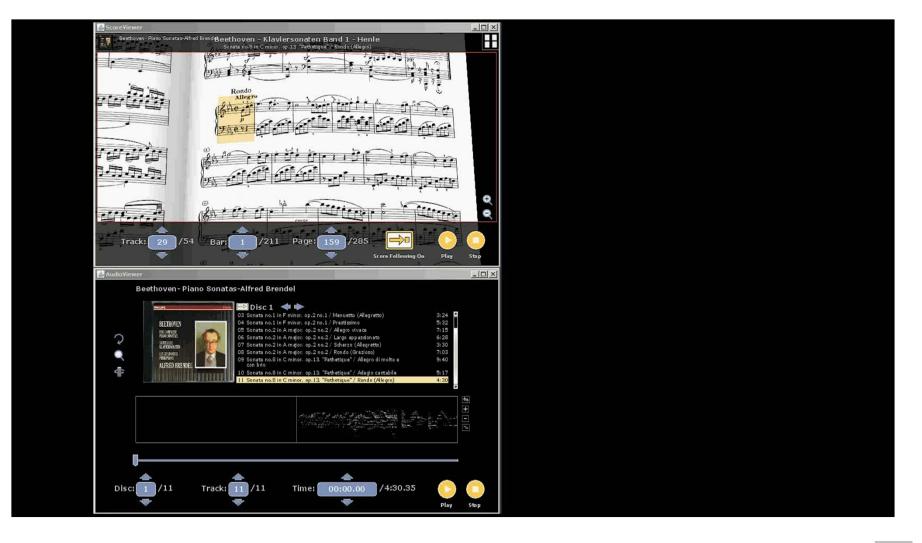


Audio

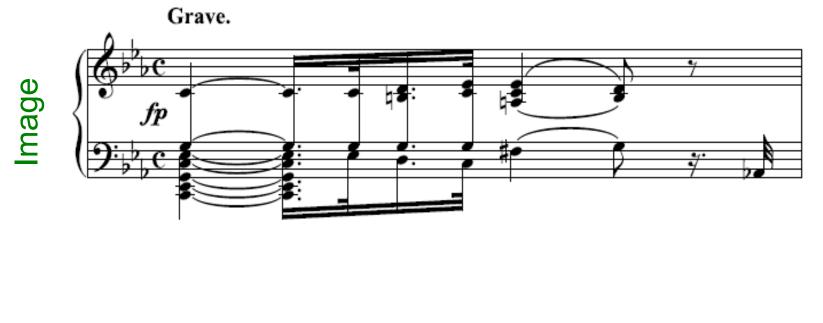
Music Synchronization: Image-Audio



Application: Score Viewer



Audio



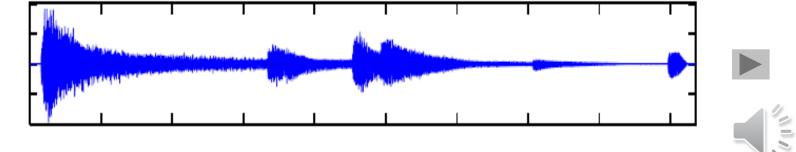
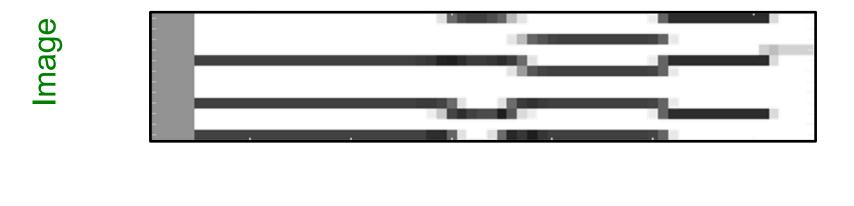


Image Processing: Optical Music Recognition



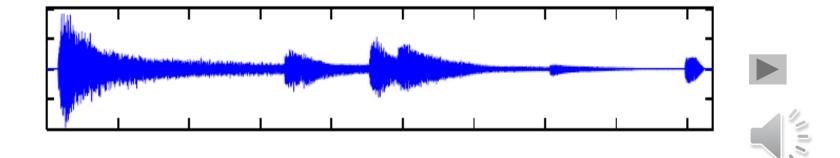
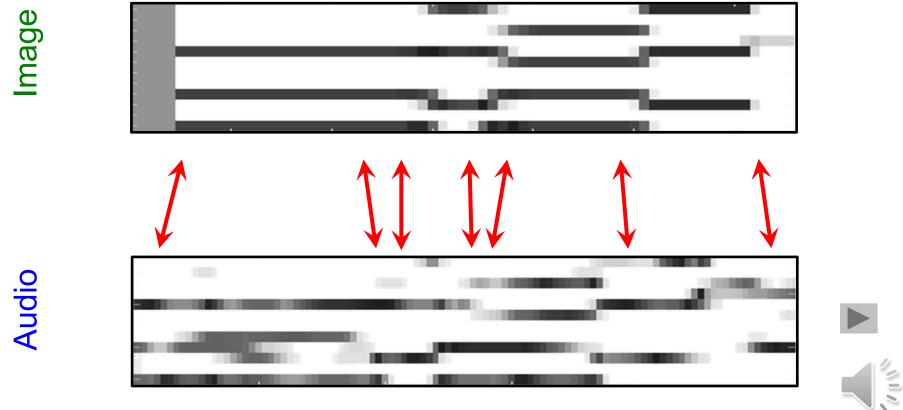


Image Processing: Optical Music Recognition

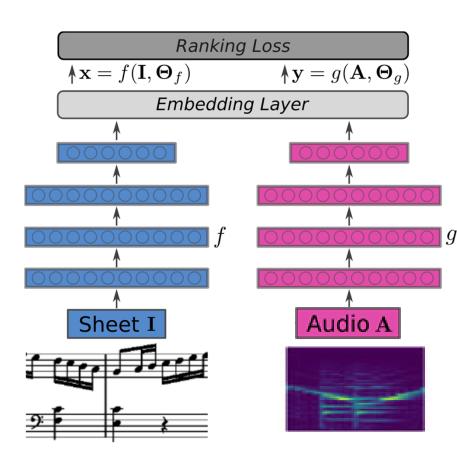
Audio Processing: Fourier Analysis

Image Processing: Optical Music Recognition



Audio Processing: Fourier Analysis

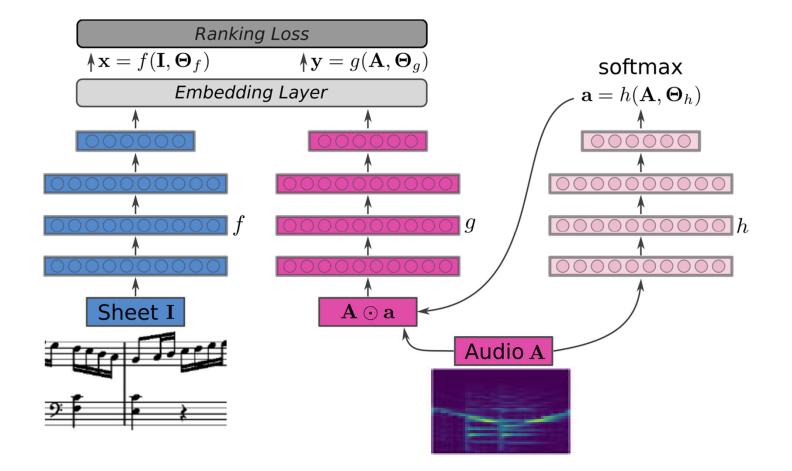
Music Synchronization: Image-Audio Deep Learning Approach



- Cross-modal embedding
- Requires corresponding snippets of audio and sheet music for training
- Triplet Loss function $\max(0, d(x^a, y^p) - d(x^a, y^n) + \alpha)$
- Problem very hard
 - Performance variations
 - Layout variations

Cross-Modal Retrieval

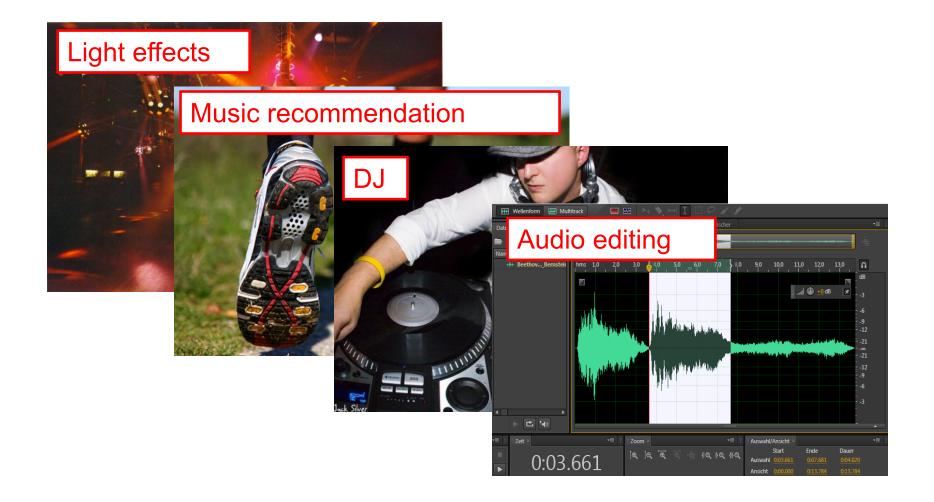
Dorfer et al.: End-to-End Cross-Modality Retrieval with CCA Projections and Pairwise Ranking Loss. International Journal of Multimedia Information Retrieval, 2018. Music Synchronization: Image-Audio Deep Learning Approach: Soft Attention Mechanism



Music Processing

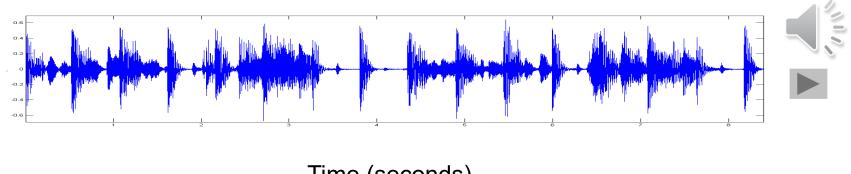
Coarse/Relative Level	Fine/Absolute Level
What do different versions or instances have in common?	What are the characteristics of a specific version or instance?
Provide coarse description: What makes up a piece of music?	Capture nuances and subtleties: What makes music come alive?
Identify despite of differences	Identify the differences
Example tasks: Music Retrieval Genre Classification Global Tempo Estimation	Example tasks: Music Transcription Performance Analysis Local Tempo Estimation

Tempo Estimation and Beat Tracking Basic task: "Tapping the foot when listening to music"



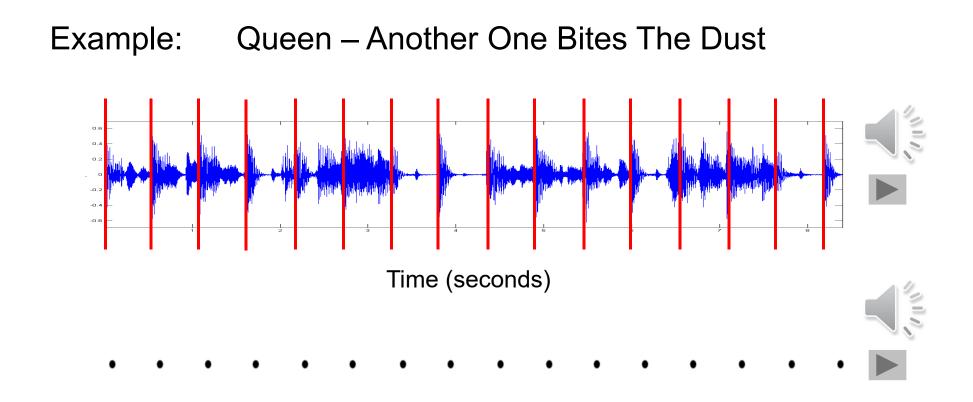
Tempo Estimation and Beat Tracking Basic task: "Tapping the foot when listening to music"





Time (seconds)

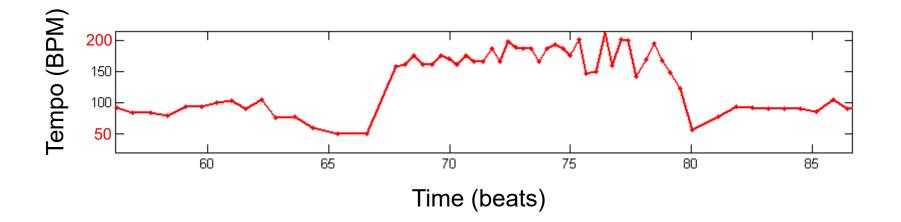
Tempo Estimation and Beat Tracking Basic task: "Tapping the foot when listening to music"



- Example: Chopin Mazurka Op. 68-3
- Pulse level: Quarter note
- Tempo: ???

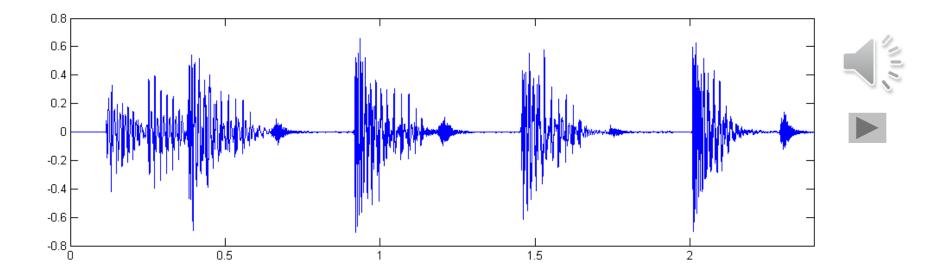
- Example: Chopin Mazurka Op. 68-3
- Pulse level: Quarter note
- Tempo: 50-200 BPM

Tempo curve



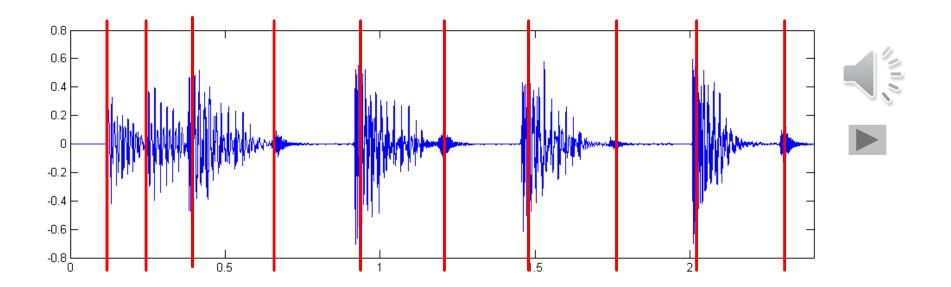
Tasks

- Onset detection
- Beat tracking
- Tempo estimation



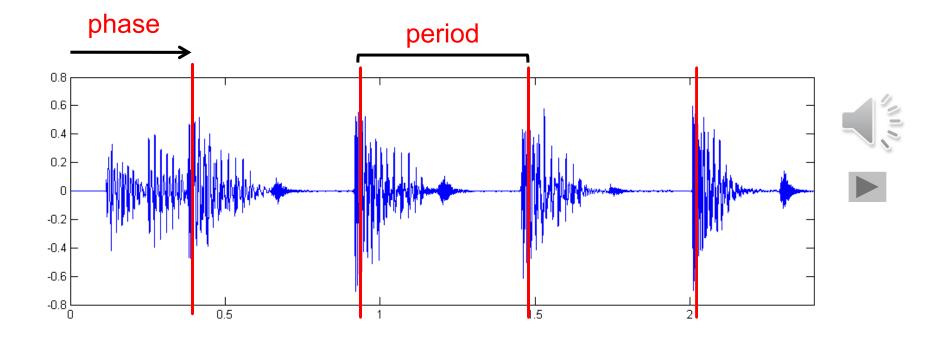
Tasks

- Onset detection
- Beat tracking
- Tempo estimation



Tasks

- Onset detection
- Beat tracking
- Tempo estimation

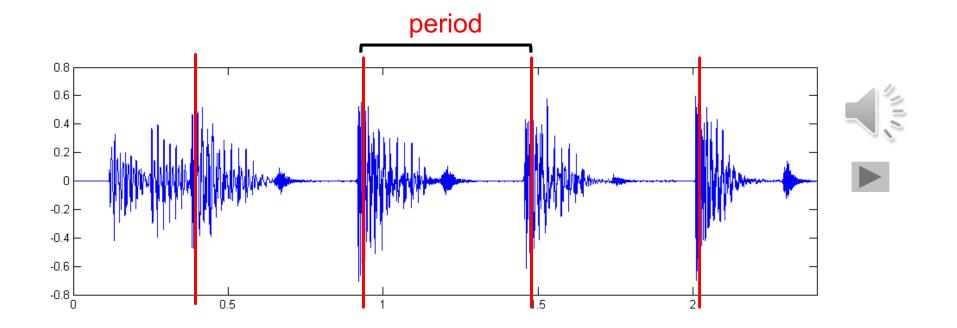


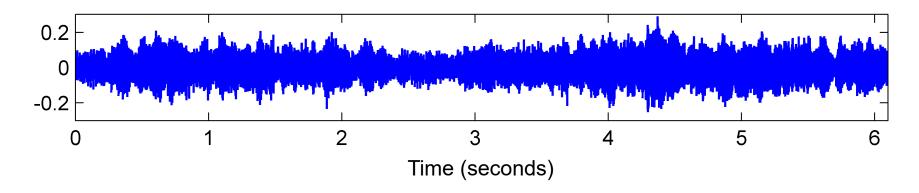
Tasks

- Onset detection
- Beat tracking
- Tempo estimation

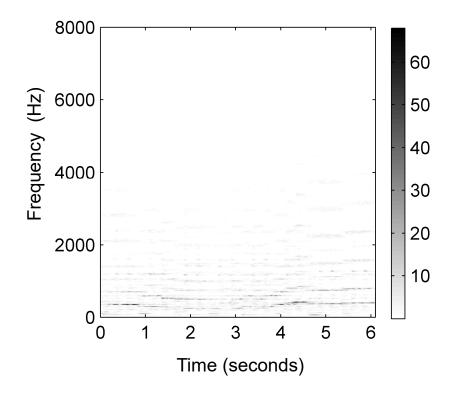
Tempo := 60 / period

Beats per minute (BPM)





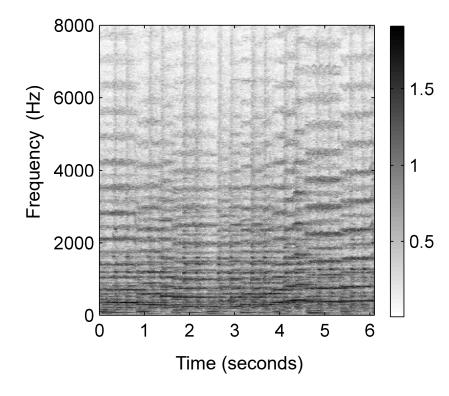
Magnitude spectrogram |X|



Steps:

1. Spectrogram

Compressed spectrogram Y



Steps:

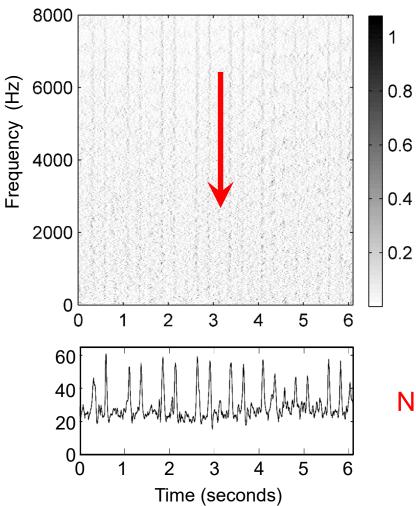
- 1. Spectrogram
- 2. Logarithmic compression

8000 1 Frequency (Hz) 6000 0.8 0.6 4000 0.4 2000 0.2 0 2 3 5 6 0 1 4 Time (seconds)

Spectral difference

Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation & half wave rectification



Spectral difference

Steps:

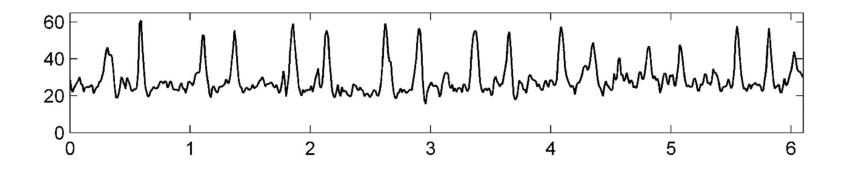
- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation & half wave rectification
- 4. Accumulation

Novelty curve

Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation & half wave rectification
- 4. Accumulation

Novelty function

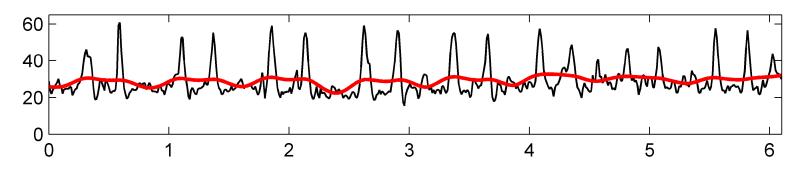


Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation & half wave rectification
- 4. Accumulation
- 5. Normalization

Novelty function

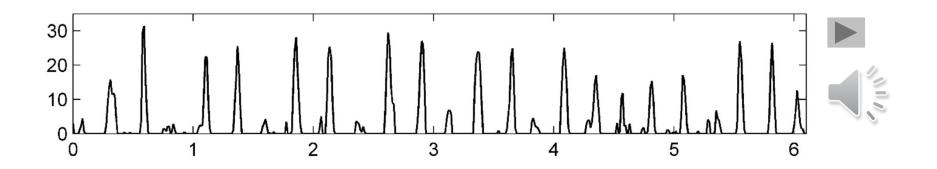
Substraction of local average



Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation & half wave rectification
- 4. Accumulation
- 5. Normalization

Normalized novelty function

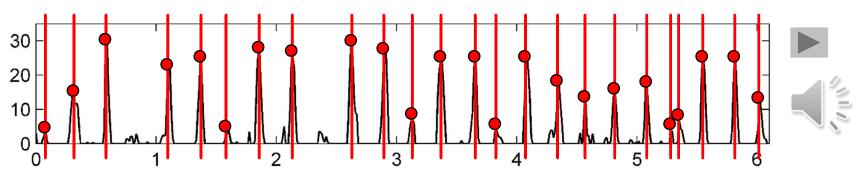


Steps:

- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation & half wave rectification
- 4. Accumulation
- 5. Normalization

Normalized novelty function

Peak positions indicate beat candidates



Deep Learning Approach

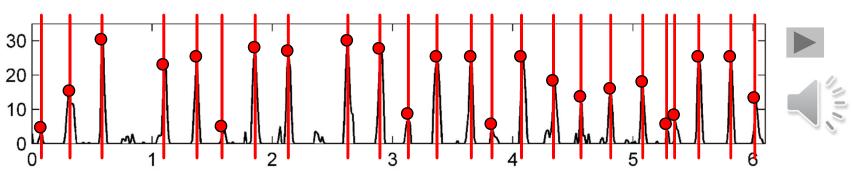
- 1. Input representation
- 2. Sigmoid activation
- 3. Convolution & rectified linear unit (ReLU)
- 4. Pooling
- 5. Convolution & ReLU

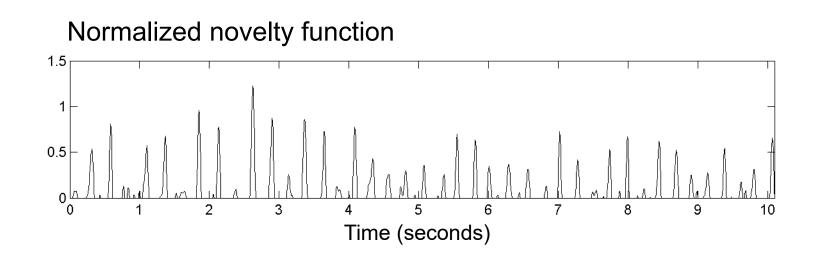
Steps:

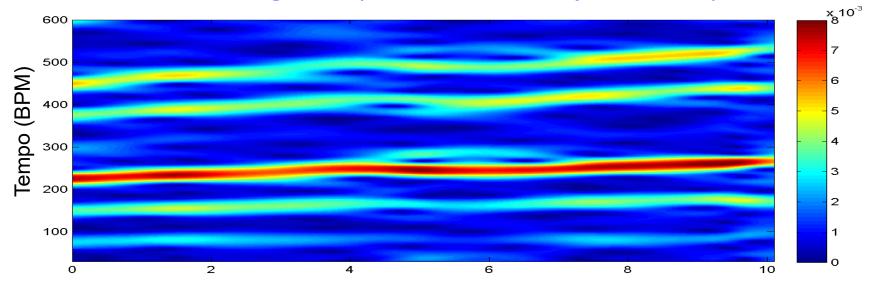
- 1. Spectrogram
- 2. Logarithmic compression
- 3. Differentiation & half wave rectification
- 4. Accumulation
- 5. Normalization

Normalized novelty function

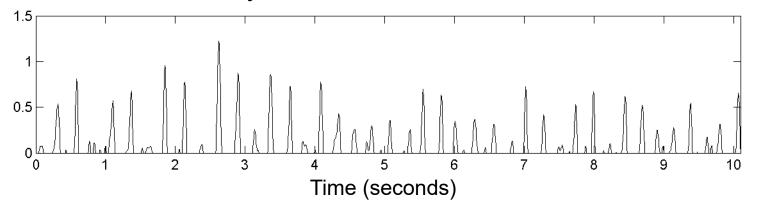
Peak positions indicate beat candidates

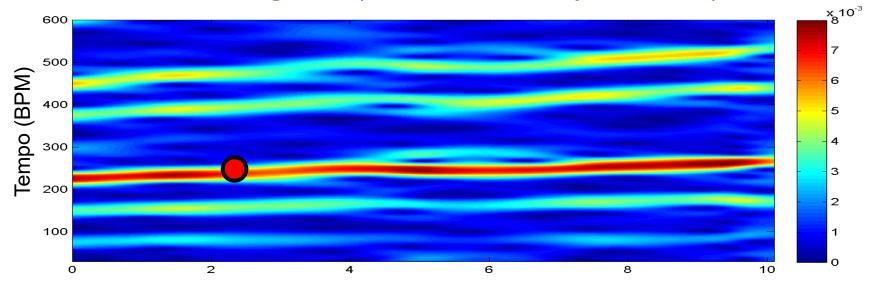




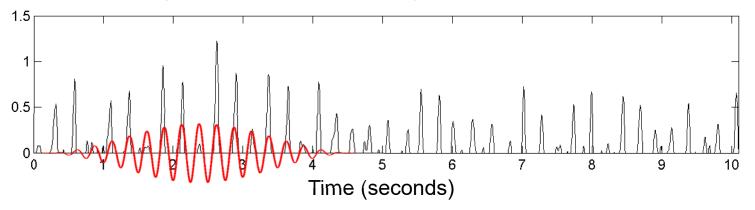


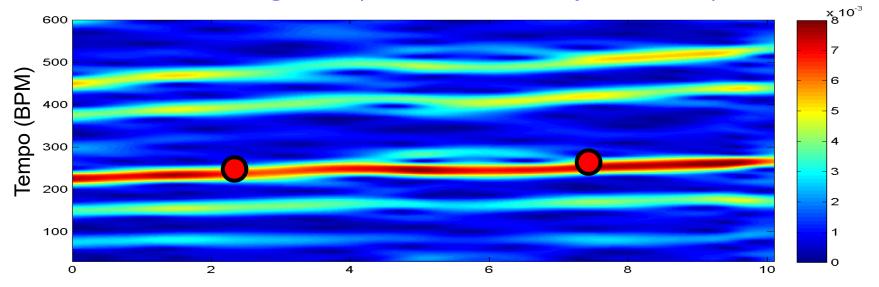
Normalized novelty function



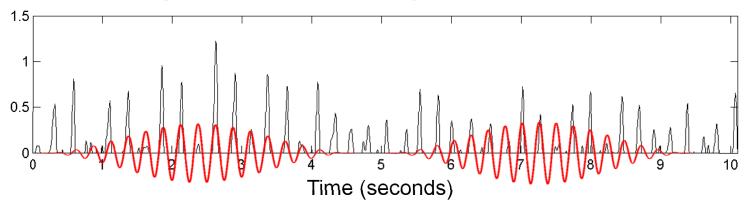


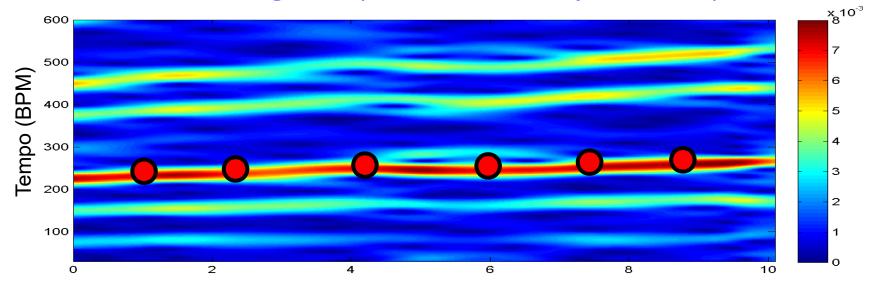
Optimizing local periodicity kernel



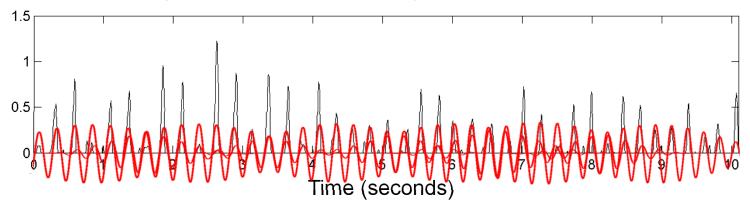


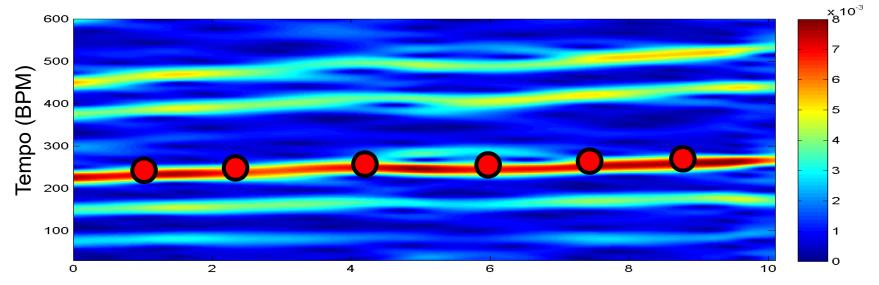
Optimizing local periodicity kernel



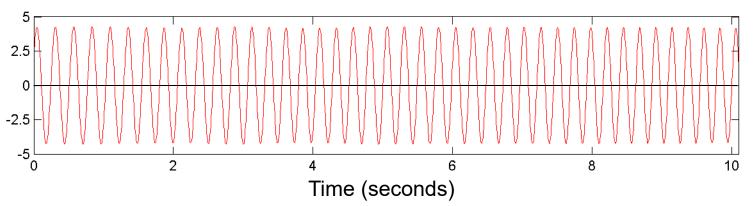


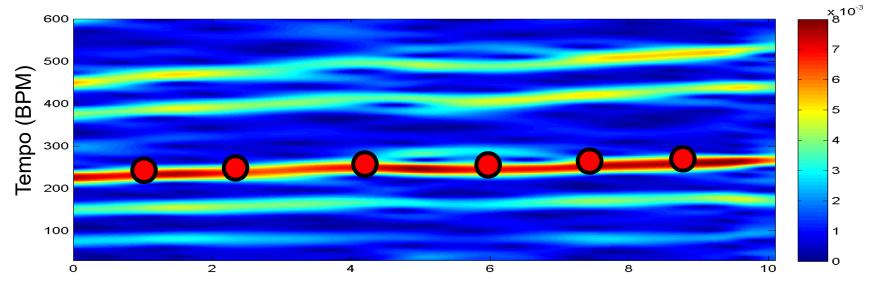
Optimizing local periodicity kernel



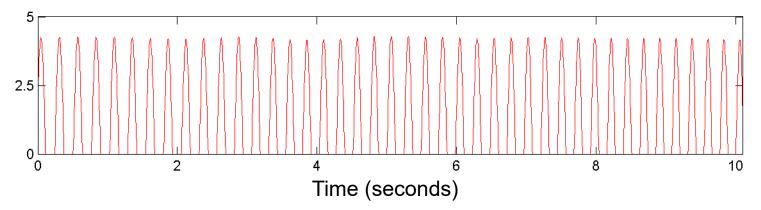


Accumulation of kernels

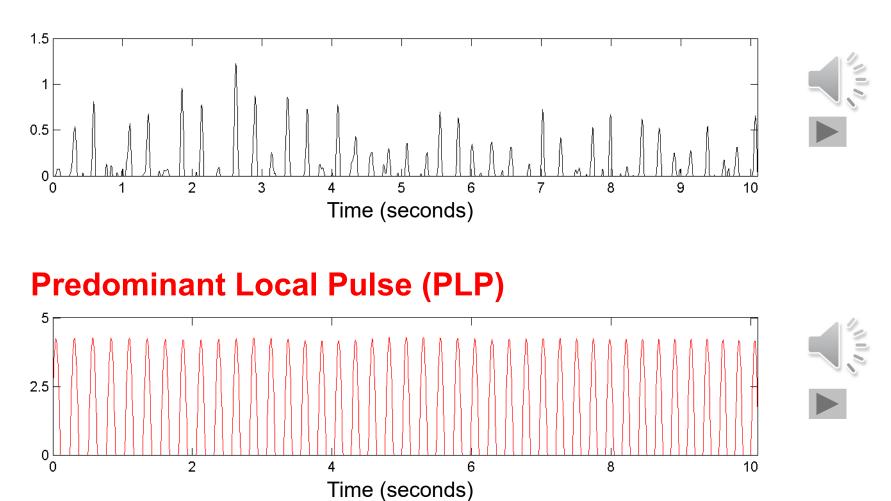




Halfwave rectification

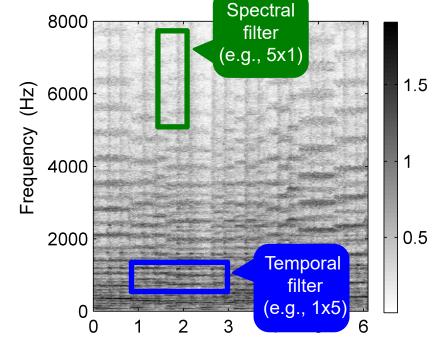


Novelty Curve



Deep Learning Approach

- End-to-end approach
 - Input: Short audio snippets
 - Output: Tempo value
- DL architecture inspired by traditional engineering
 - Layers and activation functions
 - Shape of convolutional kernels



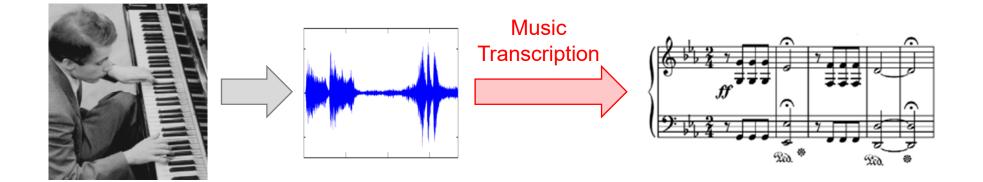
Time (seconds)

Tempo Estimation

Schreiber, Müller: A Single-Step Approach to Musical Tempo Estimation Using a Convolutional Neural Network, ISMIR 2018.

Automatic Music Transcription

Task: Convert a music recording into sheet music

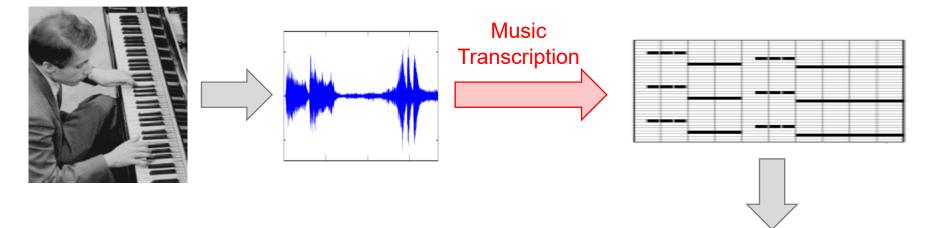


Music Transcription

Bentos et al.: Automatic Music Transcription: An Overview. IEEE Signal Processing Magazine 36(1), 2019.

Automatic Music Transcription

Task: Convert a music recording into sheet music (or another symbolic music representation)

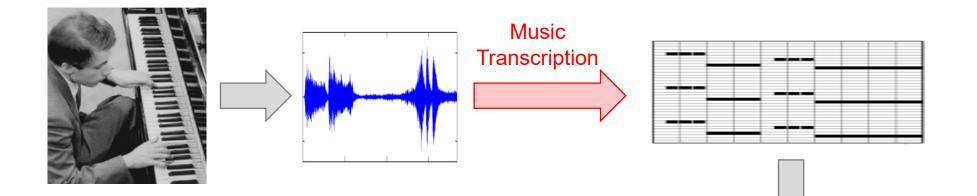


Music Transcription

Bentos et al.: Automatic Music Transcription: An Overview. IEEE Signal Processing Magazine 36(1), 2019.

Automatic Music Transcription

Task: Convert a music recording into sheet music (or another symbolic music representation)



Multitask Learning for estimating

- pitches,
- note onsets & offsets,
- beat & measure positions,
- musical voices & instrumentation,
- pedalling, dynamics, ...

Why is Music Processing Challenging? Example: Chopin, Mazurka Op. 63 No. 3

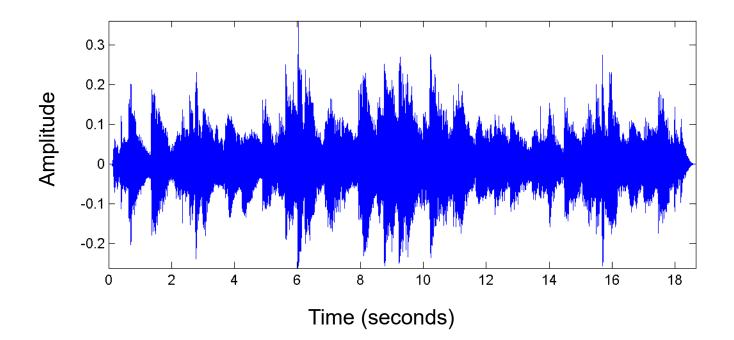
Mazurka.

F. CHOPIN. Op. 63, Nº 3.



Why is Music Processing Challenging? Example: Chopin, Mazurka Op. 63 No. 3

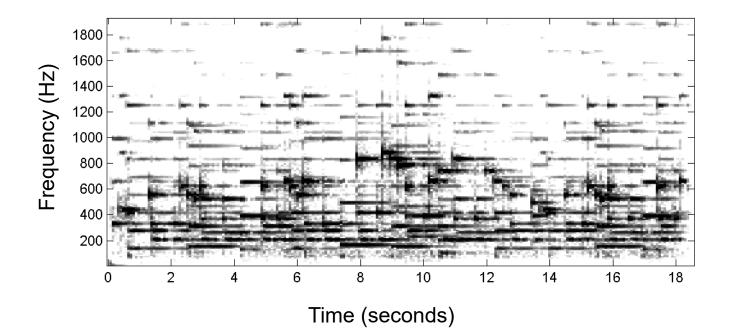
Waveform



Why is Music Processing Challenging?

Example: Chopin, Mazurka Op. 63 No. 3

Waveform / Spectrogram



Why is Music Processing Challenging?

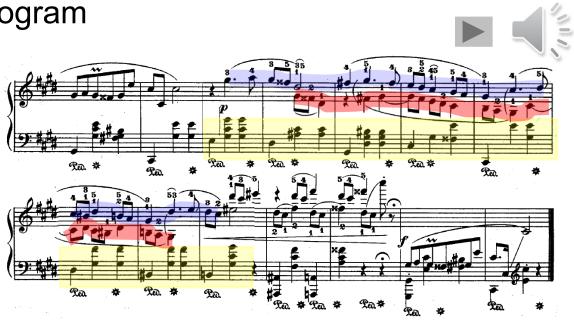
Example: Chopin, Mazurka Op. 63 No. 3

- Waveform / Spectrogram
- Performance
 - Tempo
 - Dynamics
 - Note deviations
 - Sustain pedal

Why is Music Processing Challenging?

Example: Chopin, Mazurka Op. 63 No. 3

- Waveform / Spectrogram
- Performance
 - Tempo
 - Dynamics
 - Note deviations
 - Sustain pedal
- Polyphony



Main Melody Additional melody line Accompaniment

Source Separation

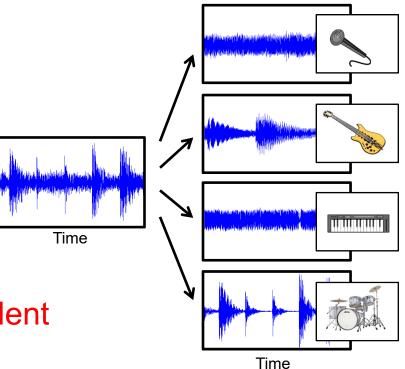
- Decomposition of audio stream into different sound sources
- Central task in digital signal processing
- "Cocktail party effect"

Source Separation

- Decomposition of audio stream into different sound sources
- Central task in digital signal processing
- "Cocktail party effect"
- Several input signals
- Sources are assumed to be statistically independent

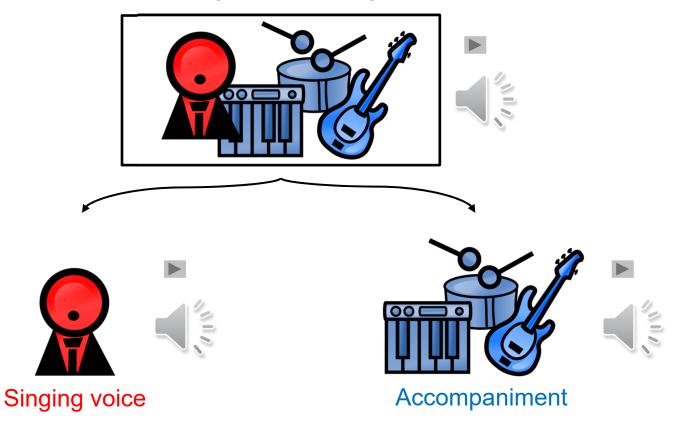
Source Separation (Music)

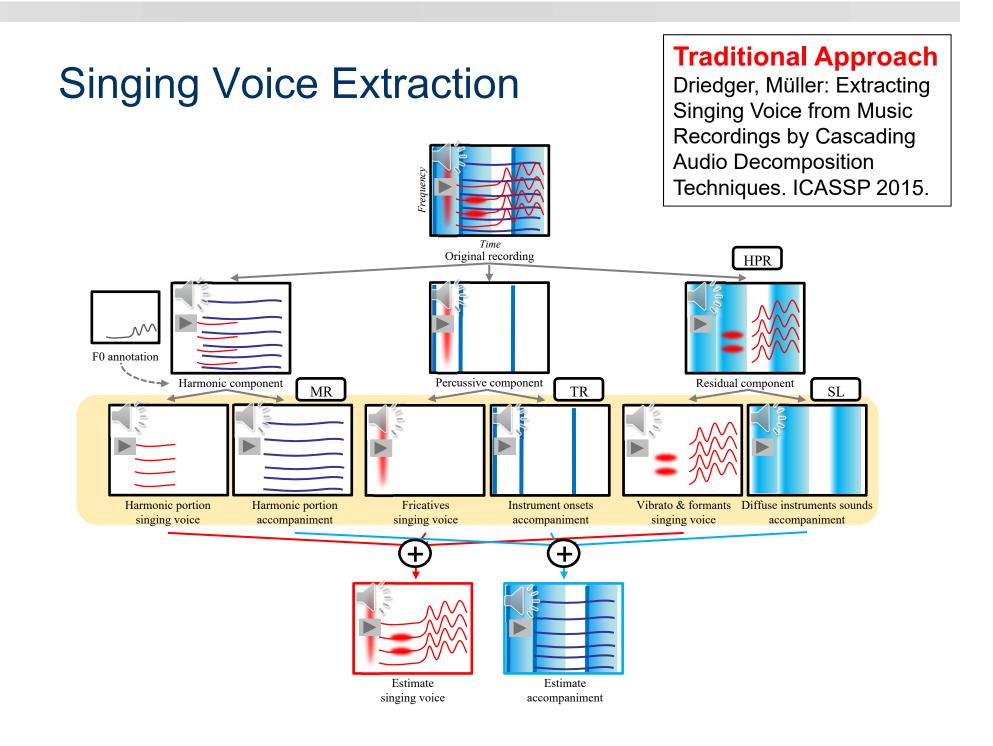
- Main melody, accompaniment, drum track
- Instrumental voices
- Individual note events
- Only mono or stereo
- Sources are often highly dependent



Singing Voice Extraction

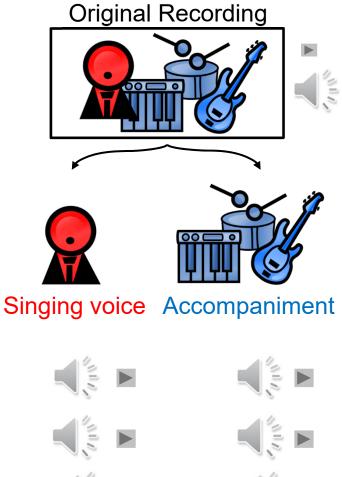
Original Recording





Singing Voice Extraction

Deep learning has lead to breakthrough



DL-Based Approach Stöter, Uhlich Luitkus, Mitsufuji: Open-Unmix – A **Reference Implementation**

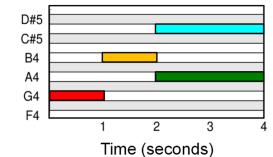
for Music Source Separation. JOSS 2019.

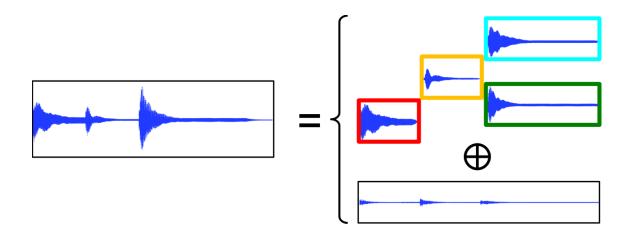
Reference voices:

Engineering approach:

Deep learning approach:

Exploit musical score to support decomposition process

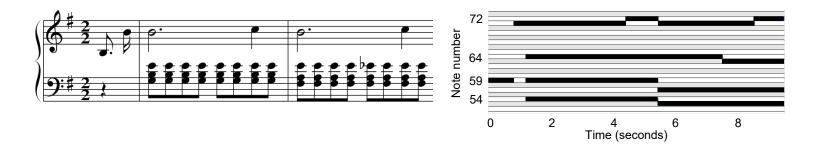




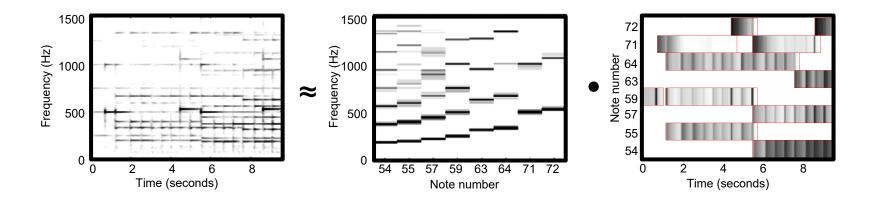
Prior Knowledge

Ewert, Pardo, Müller, Plumbley: Score-Informed Source Separation for Musical Audio Recordings. IEEE SPM, 2014.

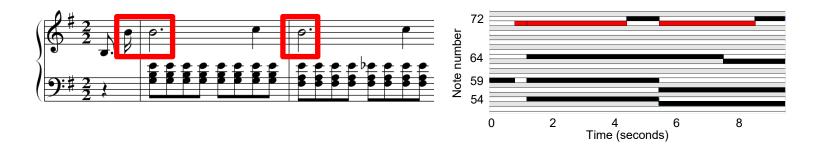
Exploit musical score to support decomposition process



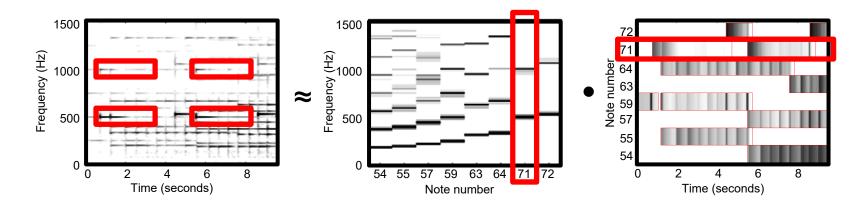
NMF-based spectrogram decomposition



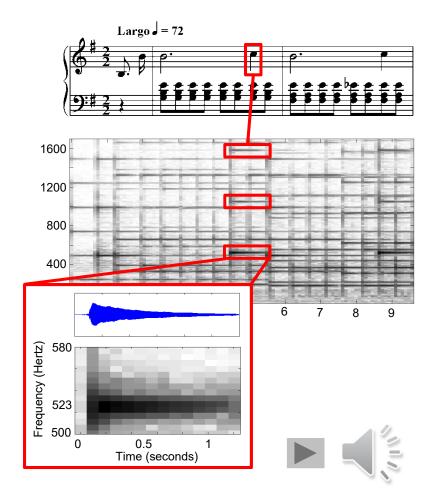
Exploit musical score to support decomposition process

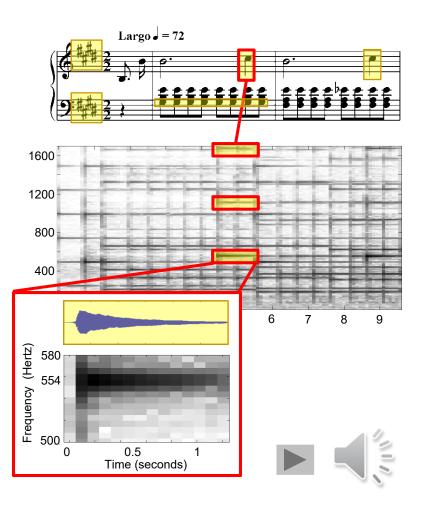


NMF-based spectrogram decomposition

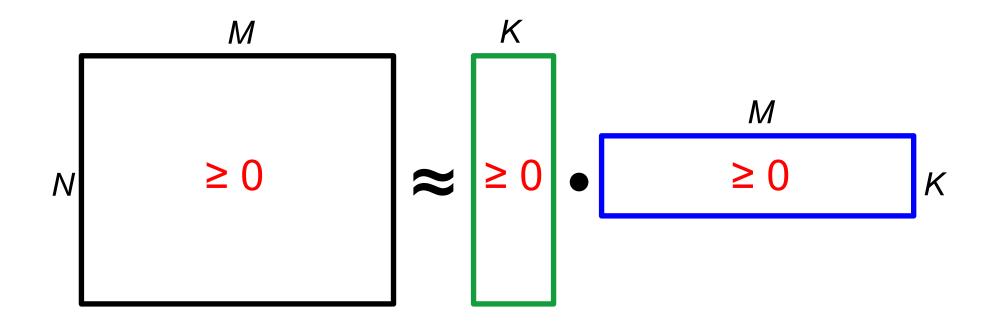


Application: Audio editing

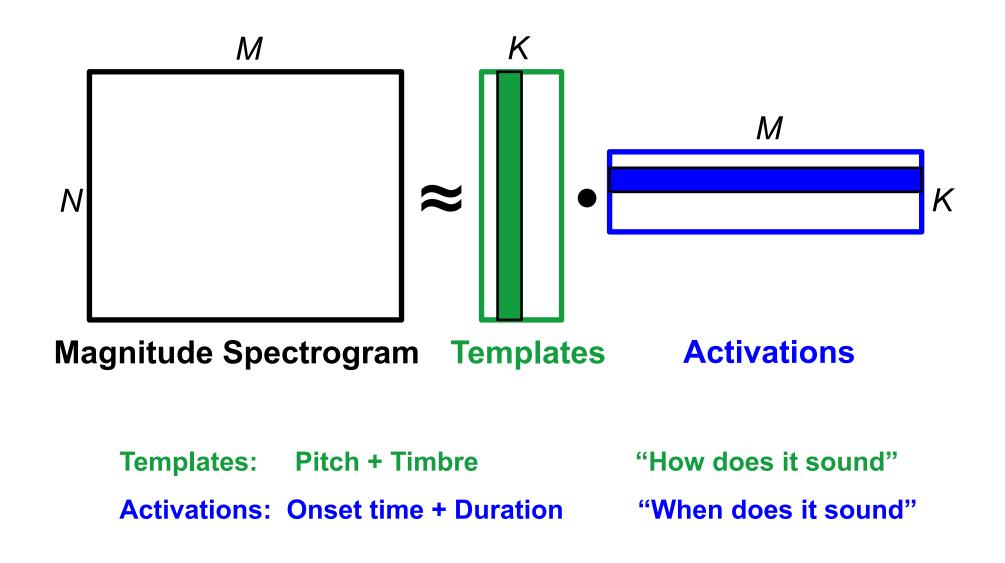




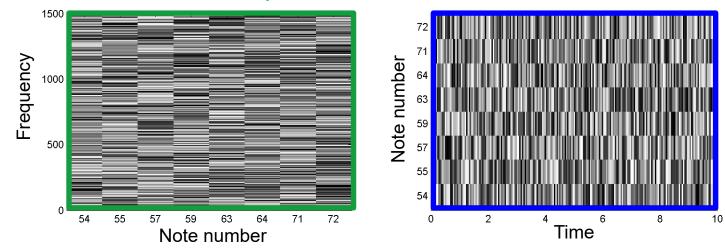
NMF (Nonnegative Matrix Factorization)



NMF (Nonnegative Matrix Factorization)



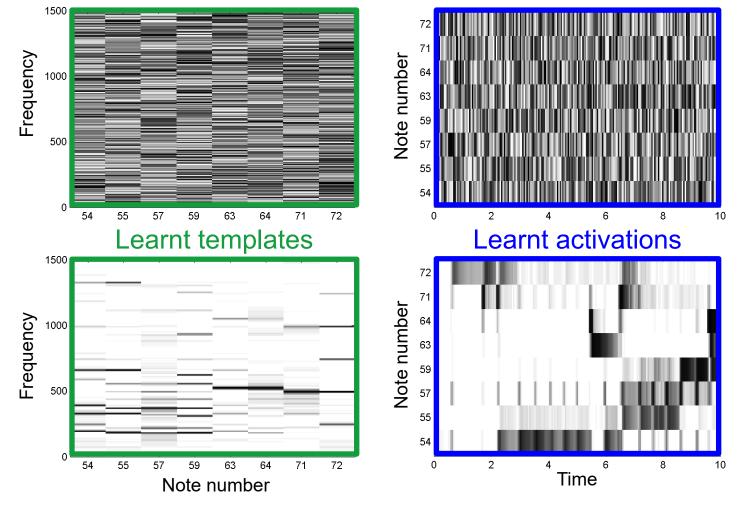
Initialized template



Initialized activations

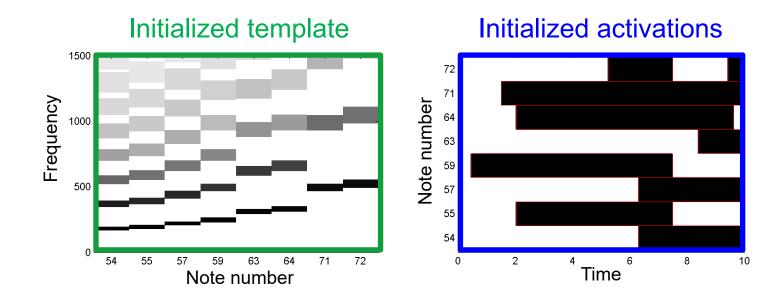
Random initialization

Initialized template

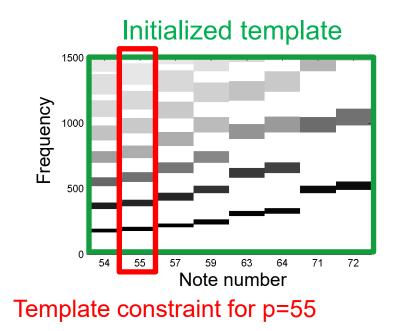


Initialized activations

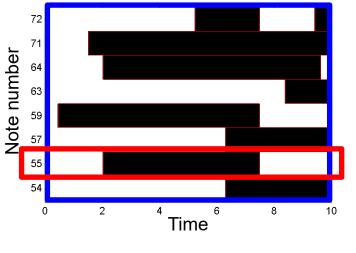
Random initialization \rightarrow No semantic meaning



Constrained initialization

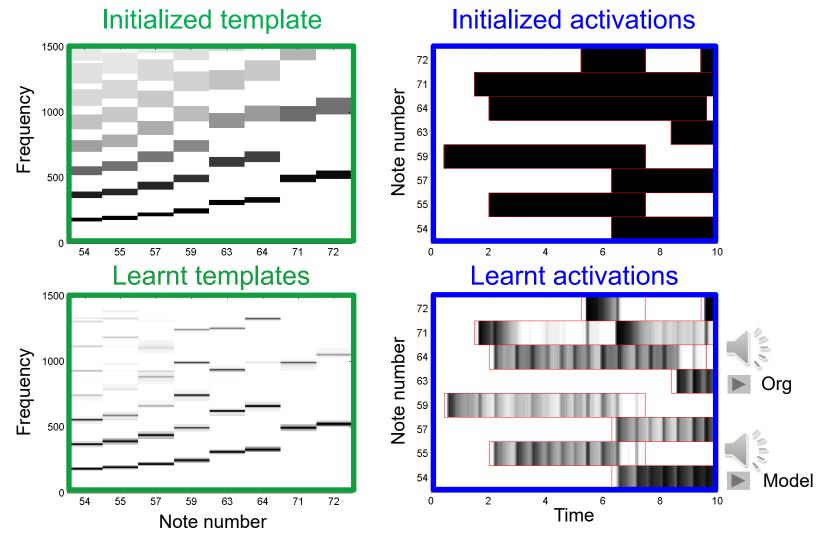


Initialized activations

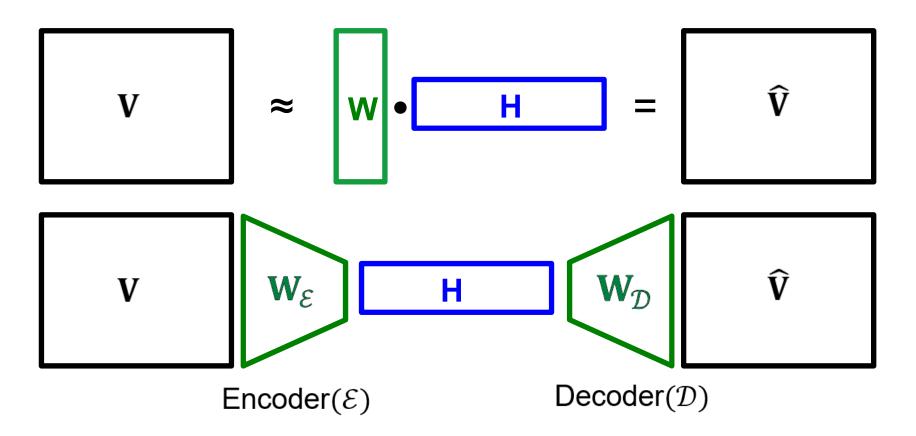


Activation constraints for p=55

Constrained initialization



Constrained initialization → NMF as refinement



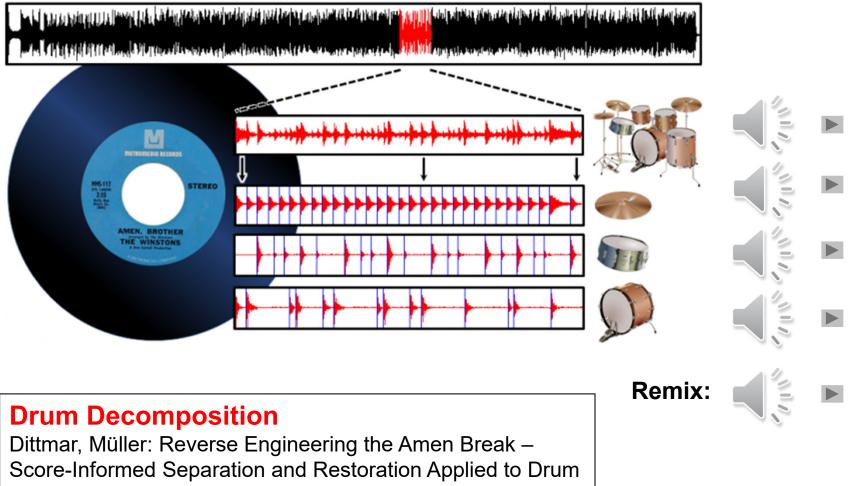
NMF as Autoencoder

Smaragdis, Venkataramani: A Neural Network Alternative to Non-Negative Audio Models. ICASSP 2017.

Constraint Autoencoders

Ewert, Sandler: Structured dropout for weak label and multi-instance learning and its application to score-informed source separation. ICASSP 2017

Informed Drum-Sound Decomposition



Recordings. IEEE/ACM TASLP, 2016.

Informed Drum-Sound Decomposition

Major challenge: Reconstructed sound events often have artifacts

Approaches:

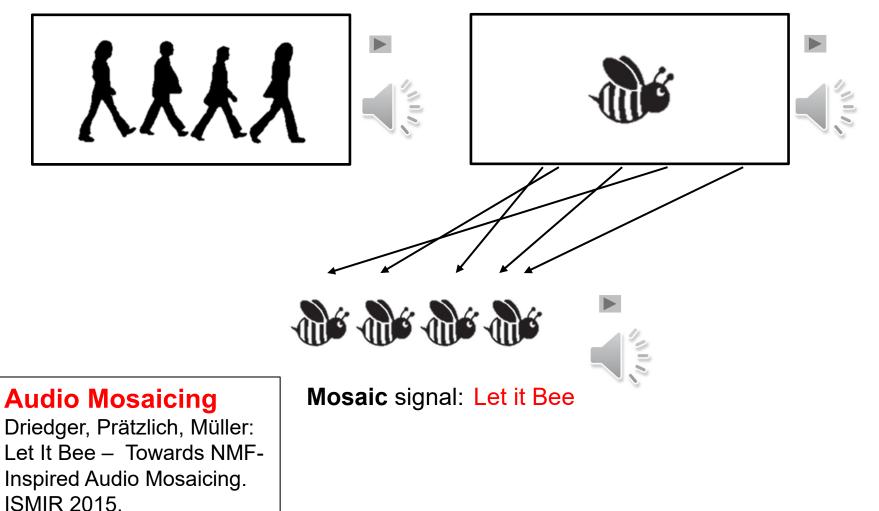
- Resynthesize certain sound components
- Differentiable Digital Signal Processing (DDSP) combines classical DSP and deep learning
- Generative adversarial networks may help to reduce the artifacts

DDSP Engel et al.: DDSP: Differentiable Digital Signal Processing. ICLR 2020.

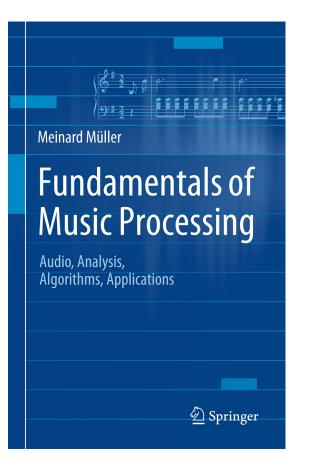
Audio Mosaicing

Target signal: Beatles–Let it be

Source signal: Bees



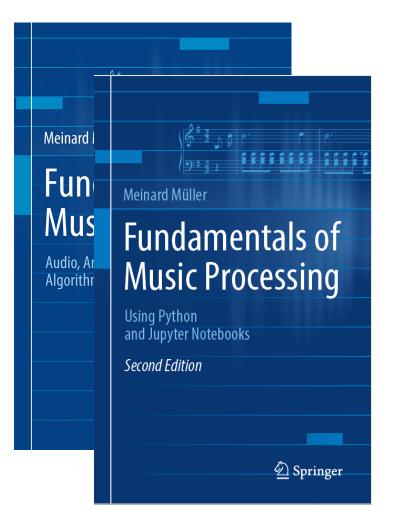
Fundamentals of Music Processing (FMP)



Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de

Fundamentals of Music Processing (FMP)



Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de

2nd edition Meinard Müller Fundamentals of Music Processing Using Python and Jupyter Notebooks Springer, 2021

Fundamentals of Music Processing (FMP)

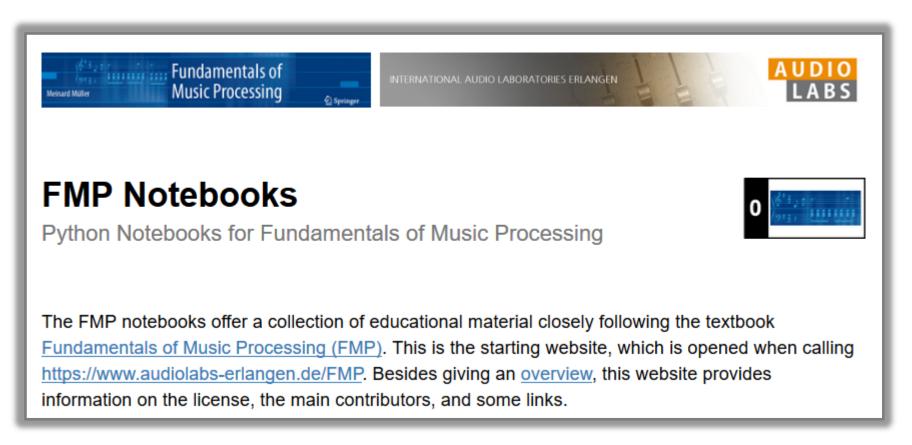
Chapter		Music Processing Scenario
1		Music Represenations
2		Fourier Analysis of Signals
3	3.88	Music Synchronization
4		Music Structure Analysis
5		Chord Recognition
6		Tempo and Beat Tracking
7		Content-Based Audio Retrieval
8		Musically Informed Audio Decomposition

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de

2nd edition Meinard Müller Fundamentals of Music Processing Using Python and Jupyter Notebooks Springer, 2021

FMP Notebooks: Education & Research



https://www.audiolabs-erlangen.de/FMP