

Learning-By-Doing: Using the FMP Python Notebooks for Audio and Music Processing

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

50th SIGMA (Special Interest Group on Music Analysis) Meeting 24.09.2021

Meinard Müller

- Mathematics (Diplom/Master) Computer Science (PhD) Information Retrieval (Habilitation)
- universitätbonn
- Since 2012: Professor Semantic Audio Processing
- FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANDERN PÜRNBERG
- President of the International Society for Music Information Retrieval (MIR)
- ISMIR
- Member of the Senior Editorial Board of the IEEE Signal Processing Magazine
- **IEEE**
- IEEE Fellow for contributions to Music Signal Processing

© AudioLahs 2021 Meinard Müller

50th SIGMA Meeting - EMP Python Notehooks

International Audio Laboratories Erlangen

- Fraunhofer Institute for Integrated Circuits IIS
- Largest Fraunhofer institute with ≈ 1000 members
- Applied research for sensor, audio, and media technology

- Universität Erlangen-Nürnberg (FAU)
- One of Germany's largest universities with ≈ 40.000 students

© AudioLabs, 2021, Meinard Müller

50th SIGMA Meeting - FMP Python Notebooks

AudioLabs - FAU

- Prof. Dr. Jürgen Herre Audio Coding
- Prof. Dr. Bernd Edler
- Prof. Dr. Meinard Müller Semantic Audio Processing
- Prof. Dr. Emanuël Habets Spatial Audio Signal Processing
- Prof. Dr. Nils Peters Audio Signal Processing
- Dr. Stefan Turowski

AudioLabs, 2021, Meinard Müller

50th SIGMA Meeting - FMP Python Notebooks

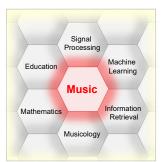
Research Group (Meinard Müller)

Semantic Audio Processing

- Sebastian Rosenzweig Michael Krause
- Yigitcan Özer
- Peter Meier (external)
- Christof Weiß (Paris)
- Frank Zalkow
- Christian Dittmar Stefan Balke
- Jonathan Driedger Thomas Prätzlich

LABS

Music Processing



50th SIGMA Meeting - FMP Python Notebooks

Music Processing: A Multifaceted Research Area

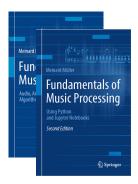

- Music is a ubiquitous and vital part of our lives
- Digital music services: Spotify, Pandora, iTunes, ...
- Music yields intuitive entry point to support and motivate education in technical disciplines
- Music bridges the gap between engineering, computer science, mathematics, and the humanities

© AudioLabs, 2021, Meinard Müller

50th SIGMA Meeting – FMP Python Notebooks

Fundamentals of Music Processing (FMP)

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015


Accompanying website: www.music-processing.de

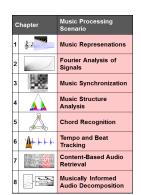
© AudioLabs, 2021, Meinard Müller

50th SIGMA Meeting – FMP Python Notebooks

Fundamentals of Music Processing (FMP)

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de


2nd edition Meinard Müller Fundamentals of Music Processing Using Python and Jupyter Notebooks Springer, 2021

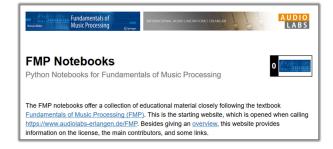
© AudioLabs, 2021, Meinard Müller

50th SIGMA Meeting – FMP Python Notebooks

Fundamentals of Music Processing (FMP)

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de


2nd edition Meinard Müller Fundamentals of Music Processing Using Python and Jupyter Notebooks Springer, 2021

© AudioLabs, 2021, Meinard Müller

50th SIGMA Meeting – FMP Python Notebooks

FMP Notebooks: Education & Research

https://www.audiolabs-erlangen.de/FMP

LABS

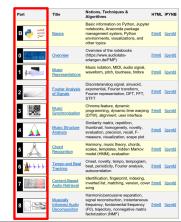
FMP Notebooks: Education & Research

- ... provide educational material for teaching and learning fundamentals of music processing.
- ... combine textbook-like explanations, technical concepts, mathematical details, Python code examples, illustrations, and sound examples.
- ... bridge the gap between theory and practice being based on interactive Jupyter notebook framework.
- ... are freely accessible under a Creative Commons license.

https://www.audiolabs-erlangen.de/FMP

AudioLabs, 2021, Meinard Müller

50th SIGMA Meeting – FMP Python Noteboo


FMP Notebooks

© AudioLabs, 2021, Meinard Müller

FMP Notebooks

Structured in 10 parts

© AudioLabs, 2021, Meinard Müller

LABS

FMP Notebooks

Structured in 10 parts

- Part B: Basic introductions to
 - Jupyter notebook framework
 - Python programming
 - Other technical concepts underlying these notebooks

Part	Title	Algorithms	HTML	IPYNB
В 🤚 💬	Basics	Basic information on Python, Jupyter notebooks, Anaconda package management system, Python environments, visualizations, and other topics	[html]	[ipynb]
0 (1) 1 (mm)	Overview	Overview of the notebooks (https://www.audiolabs- erlangen.de/FMP)	[html]	[ipynb]
1 🗱	Music Representations	Music notation, MIDI, audio signal, waveform, pitch, loudness, timbre	[html]	[ipynb]
2	Fourier Analysis of Signals	Discrete/analog signal, sinusoid, exponential, Fourier transform, Fourier representation, DFT, FFT, STFT	[html]	[ipynb]
3	Music Synchronization	Chroma feature, dynamic programming, dynamic time warping (DTW), alignment, user interface	[html]	[ipynb]
4	Music Structure Analysis	Similarity matrix, repetition, thumbnail, homogeneity, novelty, evaluation, precision, recall, F- measure, visualization, scape plot	[html]	[ipynb]
5	Chord Recognition	Harmony, music theory, chords, scales, templates, hidden Markov model (HMM), evaluation	[html]	[ipynb]
6 14+++	Tempo and Beat Tracking	Onset, novelty, tempo, tempogram, beat, periodicity, Fourier analysis, autocorrelation	[html]	[ipynb]
7	Content-Based Audio Retrieval	Identification, fingerprint, indexing, inverted list, matching, version, cover song	[html]	[ipynb]
8	Musically Informed Audio Decomposition	Harmonic/percussive separation, signal reconstruction, instantaneous frequency, fundamental frequency (FO), trajectory, nonnegative matrix factorization (NMF)	Ditmil	[ipynb]

© AudioLabs, 2021, Meinard Müller

50th SIGMA Meeting – FMP Python Notebooks

FMP Notebooks

Structured in 10 parts

- Part B: Basic introductions to
 - Jupyter notebook framework
 - Python programming
 - Other technical concepts underlying these notebooks

Part 0: Starting notebook

© AudioLabs, 2021, Meinard Müller

50th SIGMA Meeting - FMP Python Notebook

FMP Notebooks

Structured in 10 parts

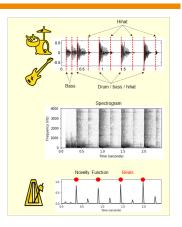
- Part B: Basic introductions to
 - Jupyter notebook framework
 - Python programming
 - Other technical concepts underlying these notebooks
- Part 0: Starting notebook
- Part 1 to Part 8: Different music processing scenarios

LABS

FMP Notebooks

Structured in 10 parts

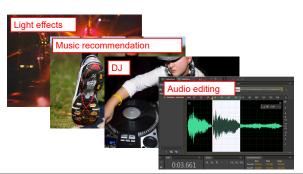
- Part B: Basic introductions to
 - Jupyter notebook framework
 - Python programming
 - Other technical concepts underlying these notebooks
- Part 0: Starting notebook
- Part 1 to Part 8: Different music processing scenarios


© AudioLabs, 2021, Meinard Müller

LABS

Part 6: Tempo and Beat Tracking

- When listening to a piece of music, we as humans are often able to tap along with the musical beat
- Automated beat tracking: Simulate this cognitive process by a computer

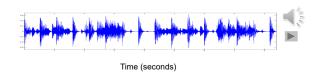

AudioLabs, 2021, Meinard Müller

50th SIGMA Meeting – FMP Python Notebooks

Tempo and Beat Tracking

Basic task: "Tapping the foot when listening to music"

© AudioLabs, 2021, Meinard Müller


50th SIGMA Meeting – FMP Python Notebooks

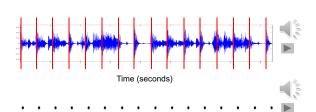
AUDIO

Tempo and Beat Tracking

Basic task: "Tapping the foot when listening to music"

Example: Queen – Another One Bites The Dust

© AudioLabs, 2021, Meinard Müller


50th SIGMA Meeting – FMP Python Notebooks

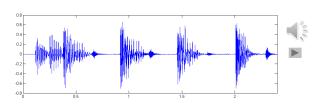
AUDIO LABS

Tempo and Beat Tracking

Basic task: "Tapping the foot when listening to music"

Example: Queen – Another One Bites The Dust

© AudioLabs, 2021, Meinard Müller


50th SIGMA Meeting – FMP Python Notebooks

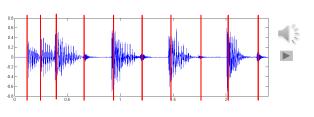
AUDIO LABS

Tempo and Beat Tracking

Tasks

- Onset detection
- Beat tracking
- Tempo estimation

AudioLabs, 2021, Meinard Mülle


50th SIGMA Meeting – FMP Python Noteboo

AUDIO LABS

Tempo and Beat Tracking

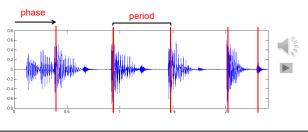
Tasks

- Onset detection
- Beat tracking
- Tempo estimation

© AudioLabs, 2021, Meinard Müller

50th SIGMA Meeting – FMP Python Notebool

LABS


Tempo and Beat Tracking

Tasks

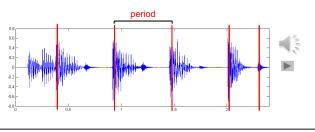
- Onset detection
- Beat tracking

© AudioLabs, 2021, Meinard Müller

Tempo estimation

50th SIGMA Meeting – FMP Python Notebooks

AUDIO
LABS

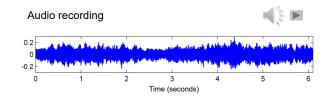

Tempo and Beat Tracking

Tasks

- Onset detection
- Beat tracking
- Tempo estimation

Tempo := 60 / period

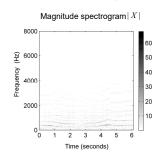
Beats per minute (BPM)


© AudioLabs, 2021, Meinard Müller 50th

50th SIGMA Meeting – FMP Python Notebooks

AUDIO LABS

Onset Detection (Spectral Flux)



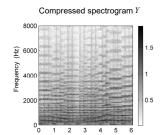
© AudioLabs, 2021, Meinard Müller 50th SIGM

50th SIGMA Meeting – FMP Python Notebooks

AUDIO

Onset Detection (Spectral Flux)

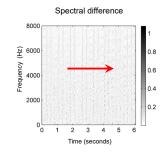
Steps:


1. Spectrogram

© AudioLabs, 2021, Meinard Müller

50th SIGMA Meeting – FMP Python Notebooks

LABS


Onset Detection (Spectral Flux)

Steps:

- 1. Spectrogram
- Logarithmic compression

Onset Detection (Spectral Flux)

Steps:

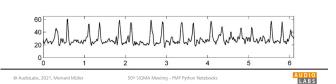
- . Spectrogram
- 2. Logarithmic compression
- Differentiation & half wave rectification

AudioLabs, 2021, Meinard Müller

50th SIGMA Meeting – FMP Python Notebooks

AUDIO LABS AudioLabs, 2021, Meinard Müller

50th SIGMA Meeting – FMP Python Notebooks


Onset Detection (Spectral Flux) Spectral difference 8000 Spectrogram Logarithmic compression 휲 6000 Differentiation & half wave rectification 4000 Accumulation 2000 Novelty curve

50th SIGMA Meeting – FMP Python Notebook

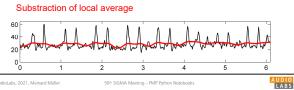
Onset Detection (Spectral Flux)

- Spectrogram
- 2. Logarithmic compression
- Differentiation & half wave rectification
- Accumulation

Novelty function

Onset Detection (Spectral Flux)

© AudioLabs 2021 Meinard Müller

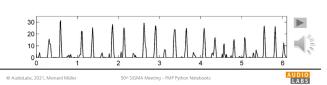

Steps:

- Spectrogram
- Logarithmic compression

LABS

- Differentiation & half wave rectification
- Accumulation
- Normalization

Novelty function



Onset Detection (Spectral Flux)

Steps:

- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification
- Accumulation
- Normalization

Normalized novelty function

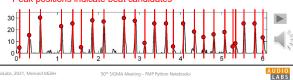

Onset Detection (Spectral Flux)

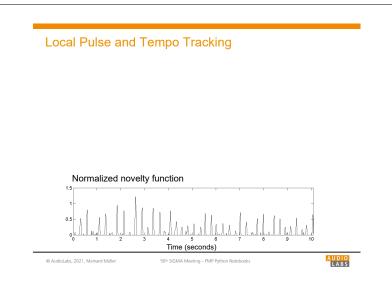
Steps:

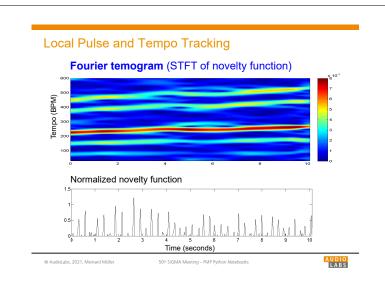
- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification
- Accumulation

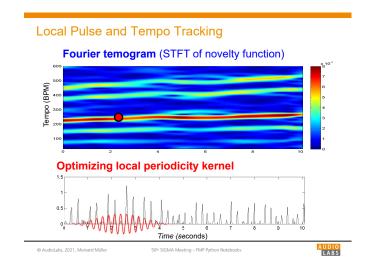
Normalization

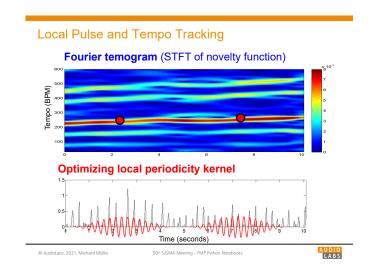
Normalized novelty function

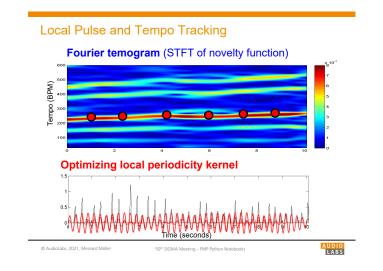

Onset Detection (Spectral Flux)

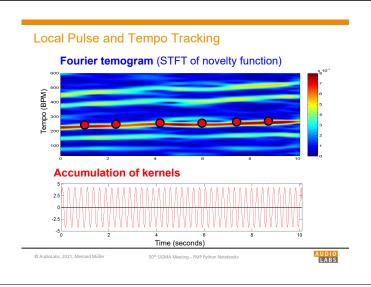

Deep Learning Approaches:

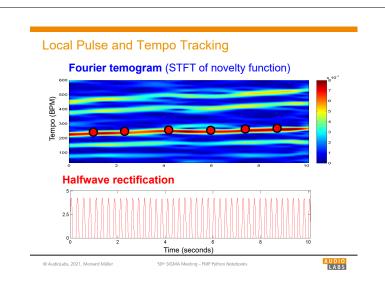

- Input representation
- Sigmoid activation
- Convolution & rectified linear unit (ReLU)
- Pooling
- Convolution & ReLU

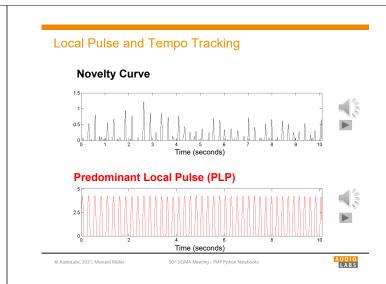

- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification
- Accumulation
- Normalization 5.

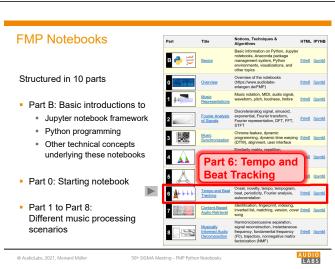

Normalized novelty function

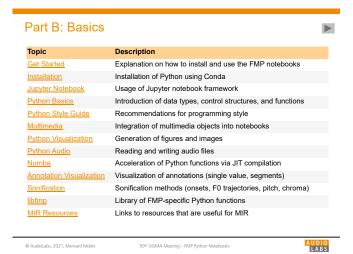


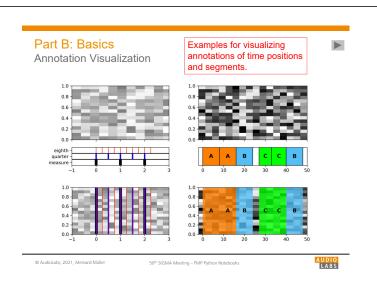


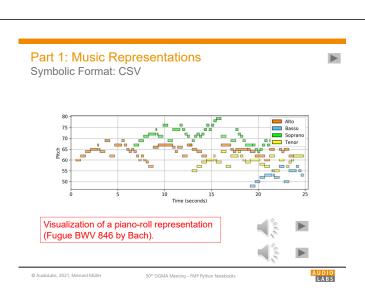


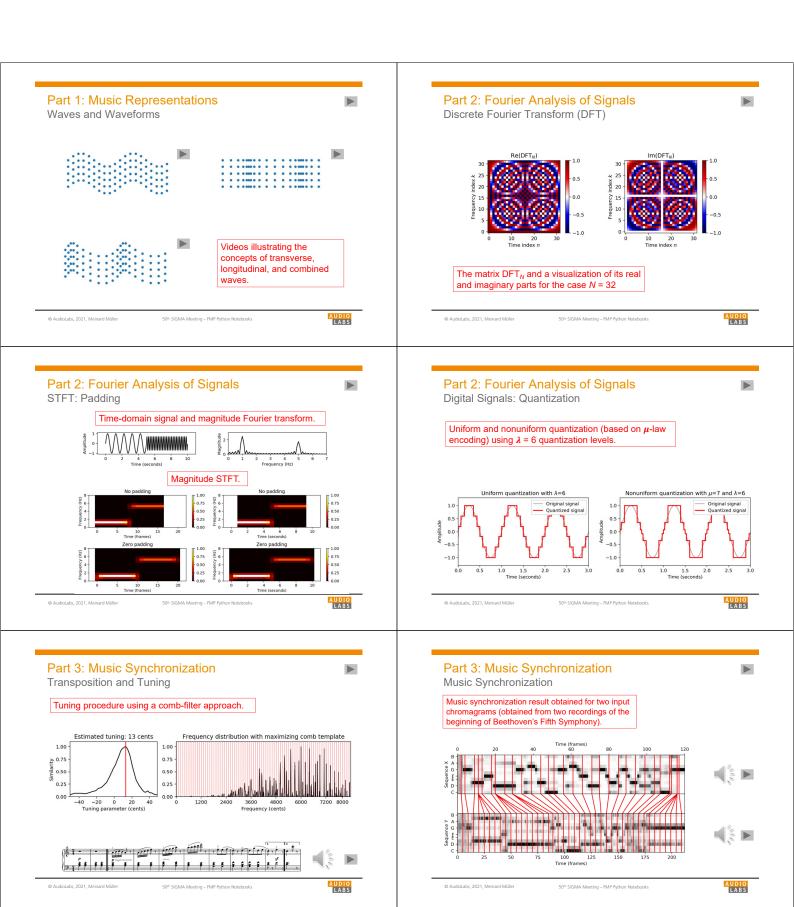


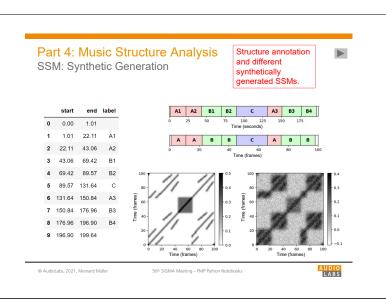


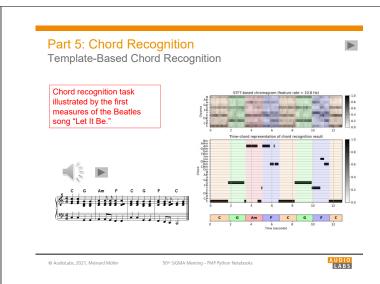


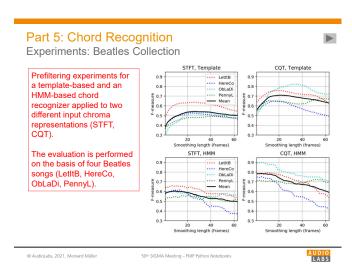


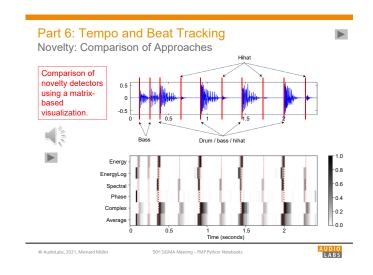


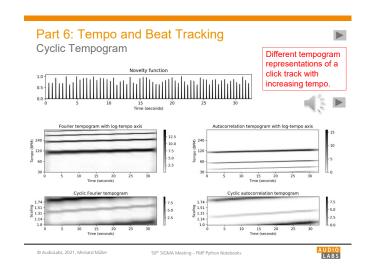


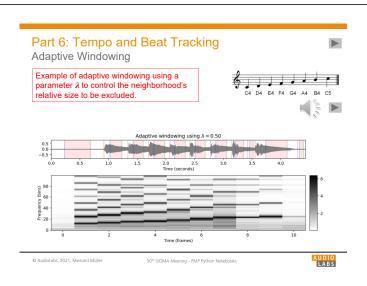


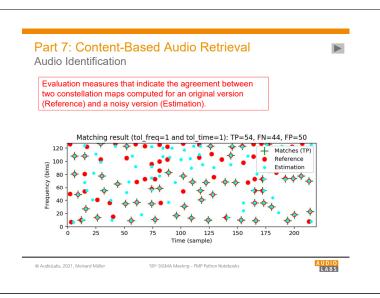


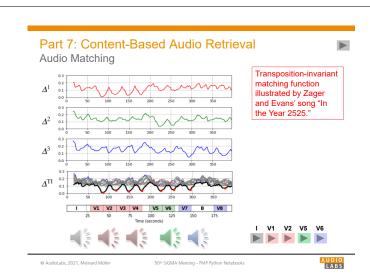


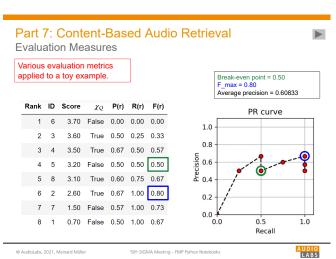


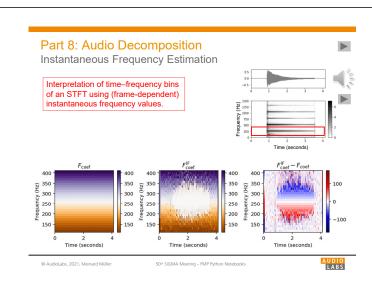


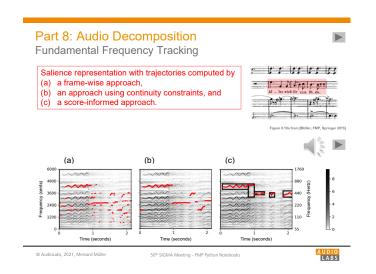


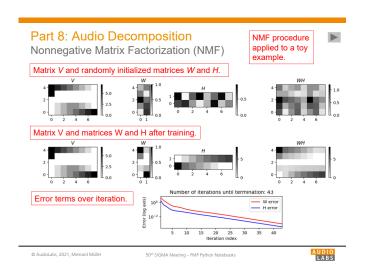


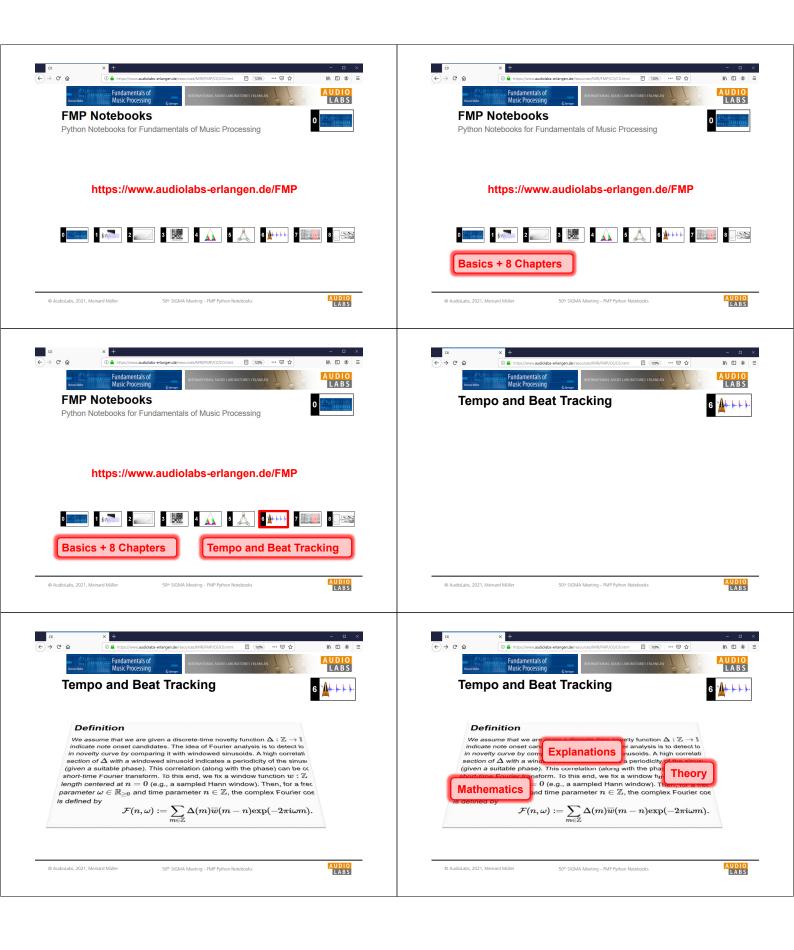


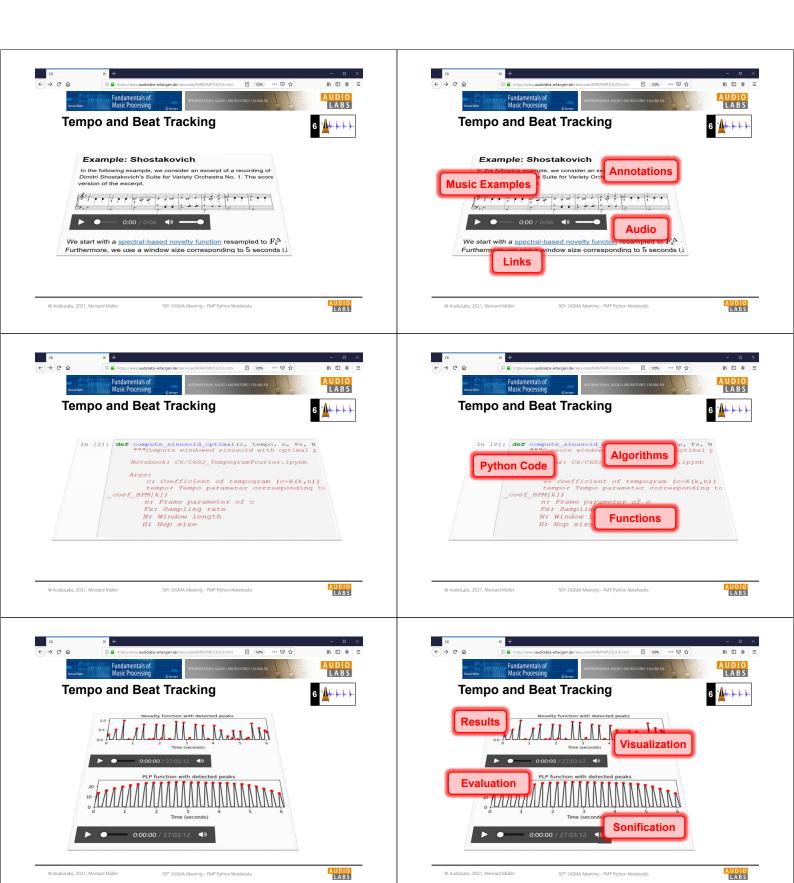


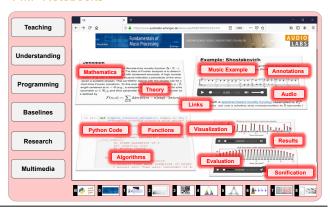












FMP Notebooks

© AudioLabs, 2021, Meinard Müller

iOth SIGMA Meeting – FMP Python Notebook

References

 Meinard Müller: Fundamentals of Music Processing – Using Python and Jupyter Notebooks. 2nd Edition, Springer, 2021.

https://www.springer.com/gp/book/9783030698072

- Meinard Müller and Frank Zalkow: libfmp: A Python Package for Fundamentals of Music Processing. Journal of Open Source Software (JOSS), 6(63): 1–5, 2021. https://loss.theol.org/appers/10.21105/ioss.03326
- Meinard Müller: An Educational Guide Through the FMP Notebooks for Teaching and Learning Fundamentals of Music Processing. Signals, 2(2): 245–285, 2021. https://www.mdpi.com/2624-6120/2/2/18
- Meinard Müller and Frank Zalkow: FMP Notebooks: Educational Material for Teaching and Learning Fundamentals of Music Processing. Proc. International Society for Music Information Retrieval Conference (ISMIR): 573–580, 2019.

https://zenodo.org/record/3527872#.YOhEQOgzaUk

 Meinard Müller, Brian McFee, and Katherine Kinnaird: Interactive Learning of Signal Processing Through Music: Making Fourier Analysis Concrete for Students. IEEE Signal Processing Magazine, 38(3): 73–84, 2021.

https://ieeexplore.ieee.org/document/9418542

© AudioLabs, 2021, Meinard Müller

50th SIGMA Meeting – FMP Python Notebooks

Resources (Group Meinard Müller)

FMP Notebooks:

https://www.audiolabs-erlangen.de/FMP

· libfmp:

https://github.com/meinardmueller/libfmp

synctoolbox:

https://github.com/meinardmueller/synctoolbox

libtsm:

https://github.com/meinardmueller/libtsm

Preparation Course Python (PCP) Notebooks:
 https://www.audiolabs-erlangen.de/resources/MIR/PCP/PCP.html
 https://github.com/meinardmueller/PCP

© AudioLabs, 2021, Meinard Müller

50th SIGMA Meeting – FMP Python Notebooks

Resources

librosa:

https://librosa.org/

madmom:

https://github.com/CPJKU/madmom

Essentia Python tutorial:

https://essentia.upf.edu/essentia python tutorial.html

mirdata:

https://github.com/mir-dataset-loaders/mirdata

open-unmix:

https://github.com/sigsep/open-unmix-pytorch

Open Source Tools & Data for Music Source Separation:

https://source-separation.github.io/tutorial/landing.html

Slibrosa

ESSENTIA

© AudioLabs, 2021, Meinard Müller

50th SIGMA Meeting – FMP Python Notebooks

