

Learning-By-Doing: Using the FMP Python **Notebooks for Audio and Music Processing**

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Deep Learning Indaba X

Nigeria, 24 Sep - 25 Sep 2021

Meinard Müller

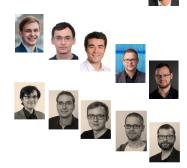
- Mathematics (Diplom/Master) Computer Science (PhD) Information Retrieval (Habilitation)
- universitätbonn
- Since 2012: Professor Semantic Audio Processing

President of the International Society for Music Information Retrieval (MIR)

Member of the Senior Editorial Board of the IEEE Signal Processing Magazine

IEEE Fellow for contributions to Music Signal Processing

© AudioLahs 2021 Meinard Müller


Meinard Müller: Research Group

Semantic Audio Processing

- Michael Krause
- Yigitcan Özer
- Peter Meier (external)
- Christof Weiß (Paris)
- Frank Zalkow
- Christian Dittmar
- Stefan Balke
- Jonathan Driedger
- Thomas Prätzlich

© AudioLabs, 2021, Meinard Müller

Deep Learning Indaba%, Nigeria 2021 – FMP Python Notebooks

International Audio Laboratories Erlangen

- Largest Fraunhofer institute with ≈ 1000 members
- Applied research for sensor, audio, and media technology

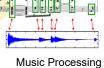
Strong Technical

© AudioLabs, 2021, Meinard Mülle

International Audio Laboratories Erlangen

International Audio Laboratories Erlangen

Audio Coding


Audio

3D Audio

Psychoacoustics

Internet of Things

© AudioLabs, 2021, Meinard Mül

Deep Learning Indaba%, Nigeria 2021 - FMP Python Notebooks

LABS

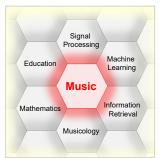
AudioLabs – FAU

- Prof. Dr. Jürgen Herre Audio Coding
- Prof. Dr. Bernd Edler Audio Signal Analysis
- Prof. Dr. Meinard Müller
 Semantic Audio Processing
- Prof. Dr. Emanuël Habets Spatial Audio Signal Processing
- Prof. Dr. Nils Peters
- Dr. Stefan Turowski
 Coordinator AudioLabs-FAU

© AudioLabs, 2021, Meinard Müller

Deep Learning Indaba%, Nigeria 2021 – FMP Python Notebooks

Music Processing



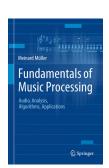
O AudioLabs, 2021, Meinard Müller

Deep Learning IndabaX, Nigeria 2021 – FMP Python Notebooks

AUDIO LABS

Music Processing: A Multifaceted Research Area

- Music is a ubiquitous and vital part of our lives
- Digital music services: Spotify, Pandora, iTunes, ...
- Music yields intuitive entry point to support and motivate education in technical disciplines
- Music bridges the gap between engineering, computer science, mathematics, and the humanities


© AudioLabs, 2021, Meinard Müller

Deep Learning Indaba%, Nigeria 2021 – FMP Python Notebooks

LABS

Fundamentals of Music Processing (FMP)

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de

© AudioLabs, 2021, Meinard Müller

Deep Learning Indaba%, Nigeria 2021 – FMP Python Notebooks

Fundamentals of Music Processing (FMP)



Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de

2nd edition Meinard Müller Fundamentals of Music Processing Using Python and Jupyter Notebooks Springer, 2021

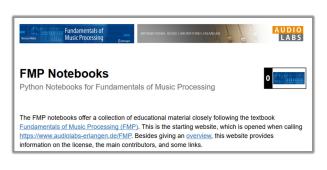
Fundamentals of Music Processing (FMP)

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de

2nd edition Meinard Müller Fundamentals of Music Processing Using Python and Jupyter Notebooks Springer, 2021

AudioLabs, 2021, Meinard Mülle


Deep Learning Indaba%, Nigeria 2021 – FMP Python Notebooks

© AudioLabs, 2021, Meinard Mül

Deep Learning Indaba%, Nigeria 2021 – FMP Python Notebooks

FMP Notebooks: Education & Research

https://www.audiolabs-erlangen.de/FMP

© AudioLabs, 2021, Meinard Müller

Deep Learning Indaba%, Nigeria 2021 – FMP Python Notebooks

FMP Notebooks: Education & Research

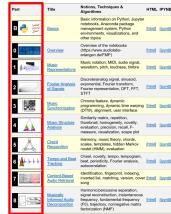
- ... provide educational material for teaching and learning fundamentals of music processing.
- ... combine textbook-like explanations, technical concepts, mathematical details, Python code examples, illustrations, and sound examples.
- ... bridge the gap between theory and practice being based on interactive Jupyter notebook framework.
- ... are freely accessible under a Creative Commons license.

https://www.audiolabs-erlangen.de/FMP

AudioLabs, 2021, Meinard Müller

Deep Learning IndabaX, Nigeria 2021 – FMP Python Notebooks

FMP Notebooks


O AudioLabs, 2021, Meinard Müller

Deep Learning Indaba%, Nigeria 2021 – FMP Python Notebook

FMP Notebooks

Structured in 10 parts

© AudioLabs, 2021, Meinard Müller

Deep Learning Indaba%, Nigeria 2021 – FMP Python Noteboo

FMP Notebooks

Structured in 10 parts

- Part B: Basic introductions to
 - Jupyter notebook framework
 - Python programming
 - Other technical concepts underlying these notebooks

LABS

FMP Notebooks

Structured in 10 parts

- Part B: Basic introductions to
 - Jupyter notebook framework
 - Python programming
 - Other technical concepts underlying these notebooks
- Part 0: Starting notebook

AudioLabs, 2021, Meinard Müller

Deep Learning Indaba%, Nigeria 2021 – FMP Python Noteboo

Structured in 10 parts

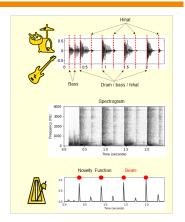
- Part B: Basic introductions to
 - Jupyter notebook framework
 - Python programming
 - Other technical concepts underlying these notebooks
- Part 0: Starting notebook
- Part 1 to Part 8: Different music processing scenarios

© AudioLabs, 2021, Meinard Müller

Deep Learning Indaba%, Nigeria 2021 – FMP Pvtl

LABS

FMP Notebooks Structured in 10 parts Part B: Basic introductions to Jupyter notebook framework Python programming Other technical concepts underlying these notebooks Part 6: Tempo and **Beat Tracking** Part 0: Starting notebook Part 1 to Part 8: Different music processing scenarios


© AudioLabs, 2021, Meinard Müller

LABS

Part 6: Tempo and **Beat Tracking**

- When listening to a piece of music, we as humans are often able to tap along with the musical beat
- Automated beat tracking: Simulate this cognitive process by a computer

© AudioLabs, 2021, Meinard Müller

Deep Learning Indaba%, Nigeria 2021 – FMP Python Notebooks

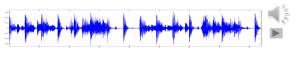
LABS

LABS

Tempo and Beat Tracking

Basic task: "Tapping the foot when listening to music"

© AudioLabs, 2021, Meinard Müller

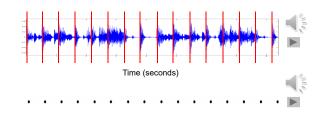

Deep Learning Indaba%, Nigeria 2021 - FMP Python Note

LABS

Tempo and Beat Tracking

Basic task: "Tapping the foot when listening to music"

Example: Queen - Another One Bites The Dust

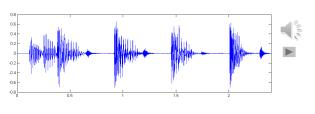


Time (seconds)

Tempo and Beat Tracking

Basic task: "Tapping the foot when listening to music"

Queen - Another One Bites The Dust Example:

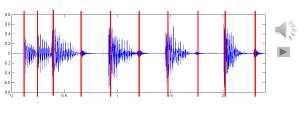

Deep Learning IndabaX, Nigeria 2021 - FMP Python Notebooks

Tempo and Beat Tracking

Tasks

- Onset detection
- Beat tracking
- Tempo estimation

© AudioLabs, 2021, Meinard Müller

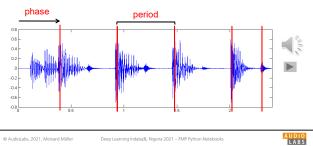

Deep Learning Indaba%, Nigeria 2021 – FMP Python Notebooks

Tempo and Beat Tracking

Tasks

- Onset detection
- Beat tracking
- Tempo estimation

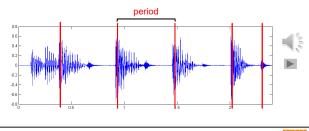
© AudioLabs, 2021, Meinard Müller


Deep Learning IndabaX, Nigeria 2021 – FMP Python Notebooks

Tempo and Beat Tracking

Tasks

- Onset detection
- Beat tracking
- Tempo estimation


Tempo and Beat Tracking

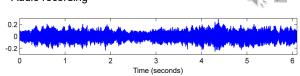
Tasks

- Onset detection
- Beat tracking
- Tempo estimation

Tempo := 60 / period

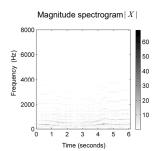
Beats per minute (BPM)

© AudioLabs, 2021, Meinard Müller


Deep Learning Indaba%, Nigeria 2021 – FMP Python Notebooks

LABS

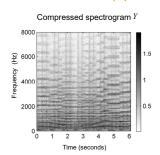
Onset Detection (Spectral Flux)


Audio recording

Deep Learning Indaba%, Nigeria 2021 – FMP Python Notebooks

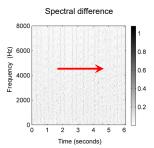
LABS

Onset Detection (Spectral Flux)


Steps:

1. Spectrogram

Deep Learning Indaba%, Nigeria 2021 - FMP Python Notebooks



Onset Detection (Spectral Flux)

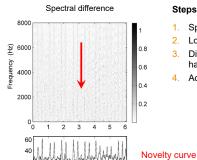
- Spectrogram
- Logarithmic compression

Onset Detection (Spectral Flux)

- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification

© AudioLabs, 2021, Meinard Müller

Deep Learning Indaba%, Nigeria 2021 – FMP Python Notebooks



© AudioLabs, 2021, Meinard Müller

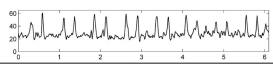
Deep Learning IndabaX, Nigeria 2021 – FMP Python Notebooks

Onset Detection (Spectral Flux)

Steps:

- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification
- Accumulation

Deep Learning Indaba%, Nigeria 2021 – FMP Python Notebooks

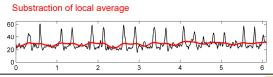


Onset Detection (Spectral Flux)

Steps:

- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification
- Accumulation

Novelty function

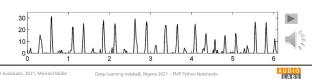


Onset Detection (Spectral Flux)

Steps:

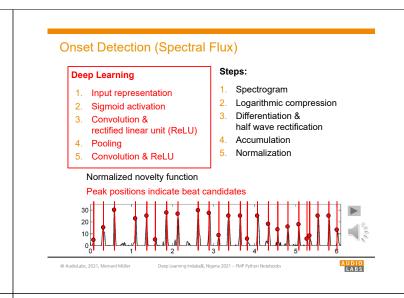
- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification
- Accumulation
- Normalization

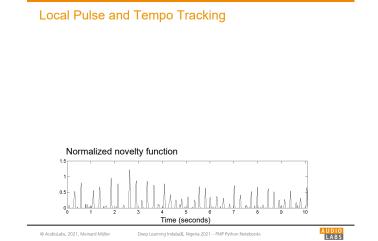
Novelty function

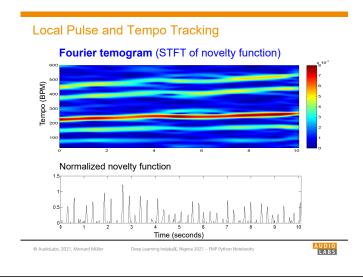


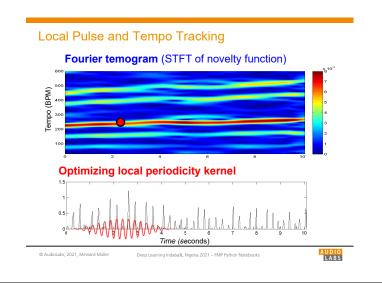
Onset Detection (Spectral Flux)

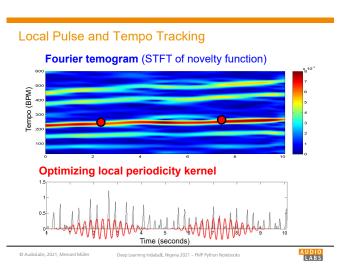
Steps:

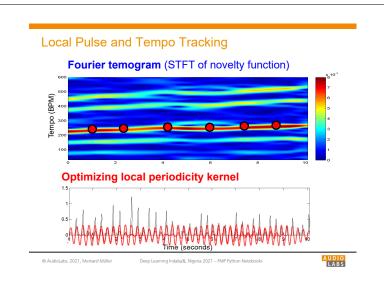

- Spectrogram
- Logarithmic compression
- Differentiation & half wave rectification
- Accumulation
- Normalization

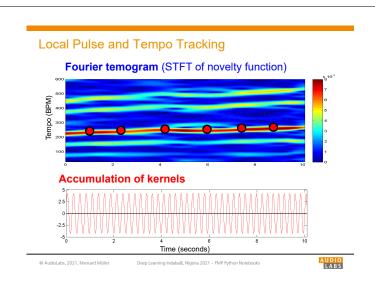

Normalized novelty function

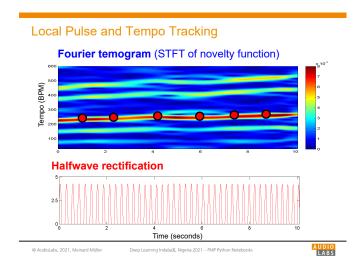


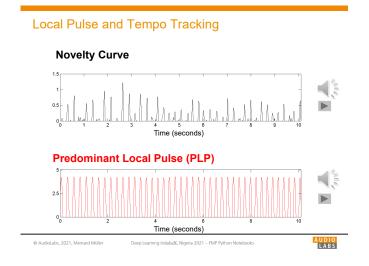

1. Spectrogram 2. Logarithmic compression 3. Differentiation & half wave rectification 4. Accumulation 5. Normalization Normalized novelty function Peak positions indicate beat candidates

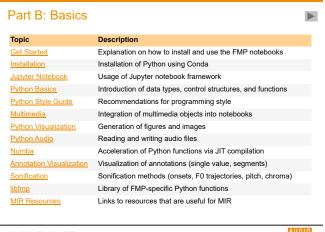

Onset Detection (Spectral Flux)

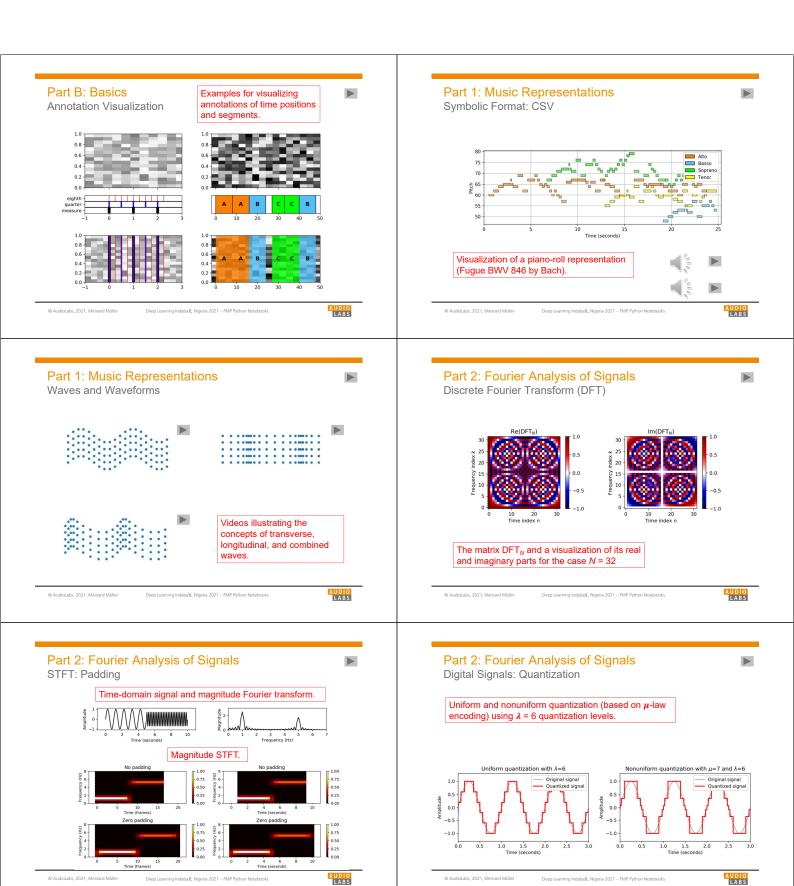




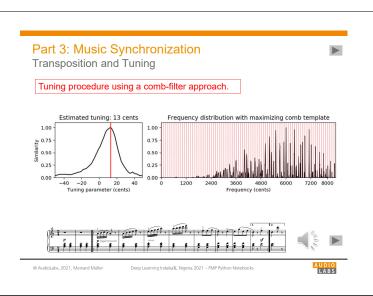


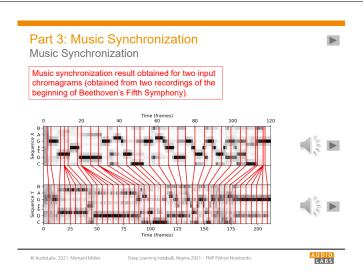


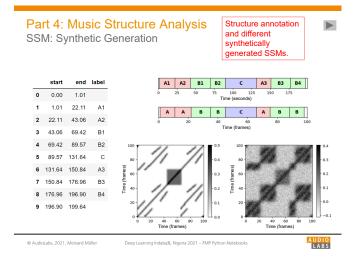


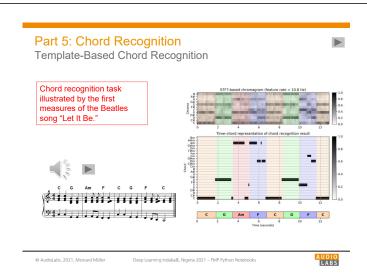


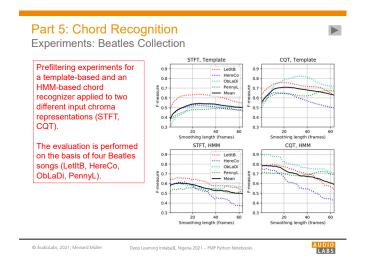
© AudioLabs, 2021, Meinard Mülle

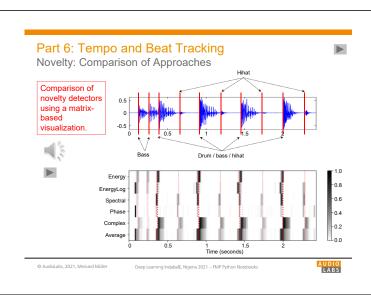

Deep Learning Indaba%, Nigeria 2021 - FMP Python Notebooks

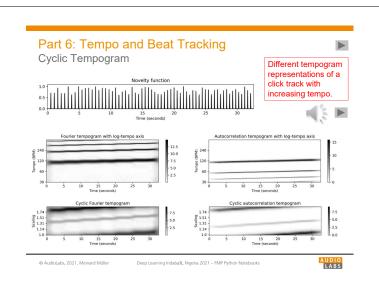


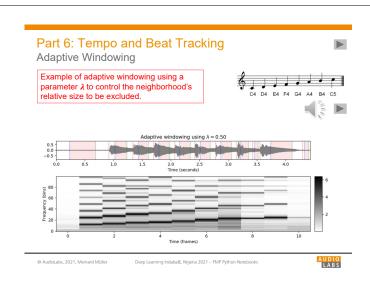


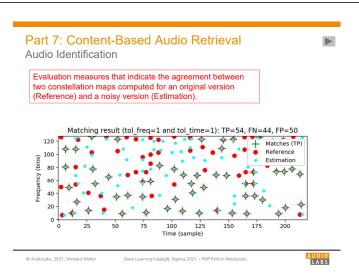

Deep Learning IndabaX, Nigeria 2021 - FMP Python Notebooks

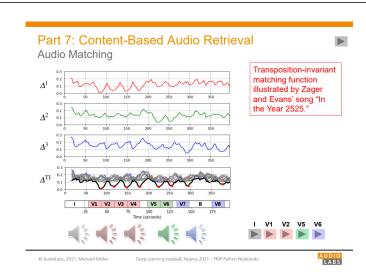

Deep Learning Indaba%, Nigeria 2021 - FMP Python Notebooks

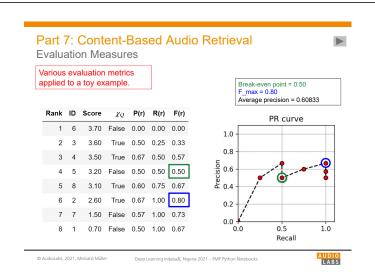


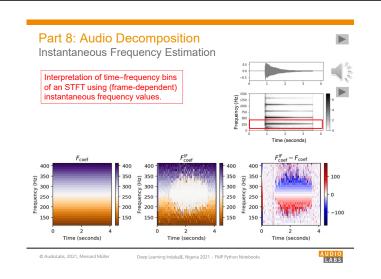


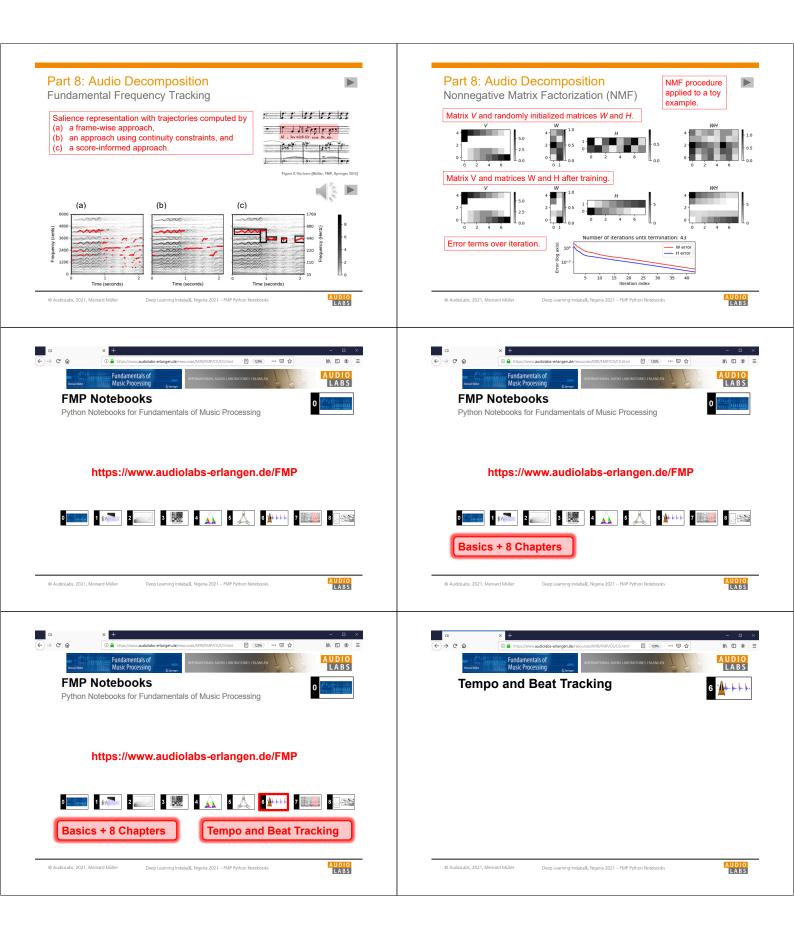


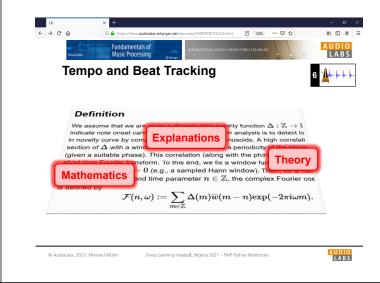


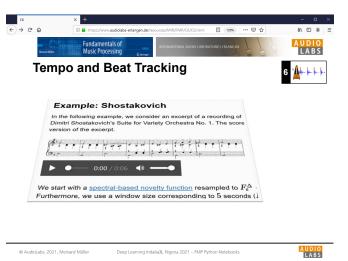


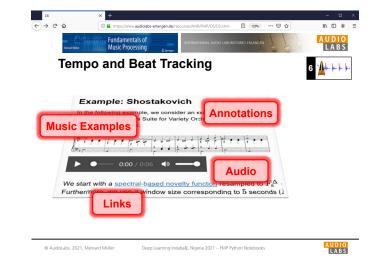


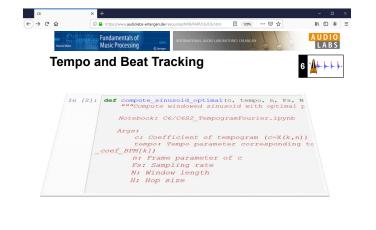


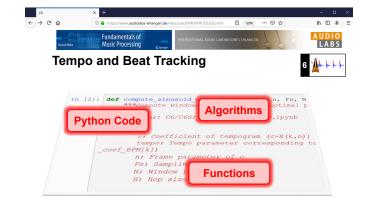


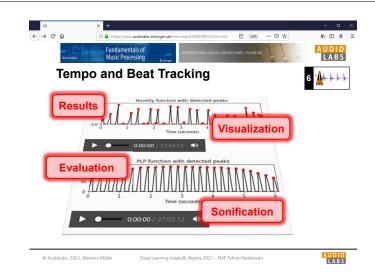


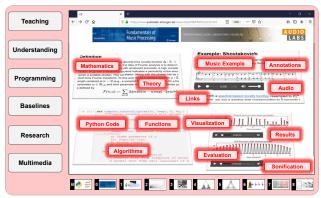











LABS

@ AudioLabs, 2021, Meinard Müller

FMP Notebooks

© AudioLabs, 2021, Meinard Müller

Deep Learning Indaball, Nigeria 2021 – FMP Python Notebooks

LABS

References

- Meinard Müller: Fundamentals of Music Processing Using Python and Jupyter Notebooks 2nd Edition, Springer, 2021.
- Meinard Müller and Frank Zalkow: libfmp: A Python Package for Fundamentals of Music Processing. Journal of Open Source Software (JOSS), 6(63): 1–5, 2021. https://joss.theej.org/papers/10.21105/joss.03326
- Meinard Müller: An Educational Guide Through the FMP Notebooks for Teaching and Learning Fundamentals of Music Processing, Signals, 2(2): 245–285, 2021.
 https://www.mdpi.com/26/24.81/20/2/18.
- Meinard Müller and Frank Zalkow: FMP Notebooks: Educational Material for Teaching and Learning Fundamentals of Music Processing, Proc. International Society for Music Information Retrieval Conference (ISMIR): 573–580, 2019.
- Meinard Müller, Brian McFee, and Katherine Kinnaird: Interactive Learning of Signal Processing Through Music: Making Fourier Analysis Concrete for Students. IEEE Signal Processing Magazine, 38(3): 73–84, 2021.
 https://ieeexplore.ieee.org/document/9418542

© AudioLabs, 2021, Meinard Müller

Deep Learning IndabaX, Nigeria 2021 – FMP Python Notebooks

Resources (Group Meinard Müller)

- FMP Notebooks:
 - https://www.audiolabs-erlangen.de/FMP
- libfmp:

https://github.com/meinardmueller/libfmp

- synctoolbox:
 - $\underline{\text{https://github.com/meinardmueller/synctoolbox}}$
- libtsm
 - https://github.com/meinardmueller/libtsm
- Preparation Course Python (PCP) Notebooks:

https://www.audiolabs-erlangen.de/resources/MIR/PCP/PCP.html

https://github.com/meinardmueller/PCP

Resources

librosa:

https://librosa.org/

madmom:

https://github.com/CPJKU/madmom

Essentia Python tutorial:

https://essentia.upf.edu/essentia python tutorial.html

mirdata:

https://github.com/mir-dataset-loaders/mirdata

open-unmix:

https://github.com/sigsep/open-unmix-pytorch

Open Source Tools & Data for Music Source Separation:

https://source-separation.github.io/tutorial/landing.html

Slibrosa

ESSENTIA

© AudioLabs, 2021, Meinard

eep Learning IndabaX, Nigeria 2021 – FMP Python Notebooks

