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Music and Motion
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Overview

= Audio Features based on Chroma Information
Application: Audio Matching

= Motion Features based on Geometric Relations
Application: Motion Retrieval

= Musically Informed Audio Decomposition
Application: Audio Editing

Overview

= Audio Features based on Chroma Information
Application: Audio Matching

Chroma-based Audio Features

= Very popular in music signal processing
= Based equal-tempered scale of Western music
= Captures information related to harmony

= Robust to variations in instrumentation or timbre

Chroma-based Audio Features

Example: Chromatic scale

Spectrogram
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Chroma-based Audio Features

Example: Chromatic scale

Spectrogram
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Chroma-based Audio Features

Chroma-based Audio Features

Example: Chromatic scale > Example: Chromatic scale >
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Motivation: Audio Matching

Four occurrences of the main theme

First occurrence Third occurrence
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Chroma Features
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Chroma Features

How to make chroma features more robust to timbre changes?
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M. Miiller and S. Ewert

Towards Timbre-Invariant Audio Features for Harmony-Based Music.
IEEE Trans. on Audio, Speech & Language Processing, Vol. 18, No. 3,

pp. 649-662, 2010.

Chroma Features

How to make chroma features more robust to timbre changes?
Idea: Discard timbre-related information
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M. Miller and S. Ewert

Towards Timbre-Invariant Audio Features for Harmony-Based Music.
IEEE Trans. on Audio, Speech & Language Processing, Vol. 18, No. 3,

pp. 649-662, 2010.

MFCC Features and Timbre
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MFCC Features and Timbre

MFCC coefficient
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Idea: Discard lower MFCCs to achieve timbre invariance

Pitch scale

Enhancing Timbre Invariance

Short-Time Pitch Energy Steps:
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Enhancing Timbre Invariance
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Pitch scale

Enhancing Timbre Invariance

Steps:

1. Log-frequency spectrogram
. Log (amplitude)
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Chroma scale

Enhancing Timbre Invariance
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Enhancing Timbre Invariance

Chroma versus CRP

Shostakovich Waltz
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Chroma versus CRP Audio Analysis
Shostakovich Waltz
Idea:

Use “Audio Matching” for analyzing and
understanding audio & feature properties:

= Relative comparison
= Compact

= Intuitive

= Quantitative evaluation




Audio Analysis
Example: Shostakovich, Waltz (Yablonsky) »
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Audio Analysis
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Audio Analysis
Query: Shostakovich, Waltz (Yablonsky) >

Audio Analysis
Query: Shostakovich, Waltz (Yablonsky) >
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Audio Analysis

Idea:
= Use matching curve for analyzing feature properties

Expected matching positions (should have local minima)
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Audio Analysis

Idea:

= Use matching curve for analyzing feature properties
= Example: Chroma feature of higher timbre invariance

Expected matching positions (should have local minima)
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Overview

= Motion Features based on Geometric Relations
Application: Motion Retrieval

Motion Capture Data

3D representations
of motions

Computer animation
Sports

Gait analysis




Motion Capture Data

Optical System

Motion Capture Data
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Motion Retrieval

= D = MoCap database
= ()= query motion clip

= Goal: find all motion
clips in D similar to ()

Motion Retrieval

Motion Retrieval

= Numerical similarity
vs. logical similarity

= Logically related
motions may exhibit
significant spatio-
temporal variations

Relational Features

= Exploit knowledge of kinematic chain
= Express geometric relations of body parts

= Robust to motion variations

Meinard Miiller, Tido Réder, and Michael Clausen
Efficient content-based retrieval of motion capture data.
ACM Transactions on Graphics (SIGGRAPH), vol. 24, pp. 677-685, 2005.

Meinard Miiller and Tido Réder

Motion templates for automatic classification and retrieval of motion
capture data.

Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (SCA), Vienna, Austria, pp. 137-146, 2006.




Relational Features
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Relational Features

Relational Features
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bent? fast? moving upwards?

Motion Templates (MT)
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Motion Templates (MT)

Superimpose templates

Features

Time (frames)

Motion Templates (MT)

Average template

Features

Time (frames)

Motion Templates (MT)

Quantized template

= Gray areas indicate inconsistencies / variations
= Achieve invariance by disregarding gray areas

MT-based Motion Retrieval

MT-based Motion Retrieval
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MT-based Motion Retrieval: Jumping Jack




MT-based Motion Retrieval: Jumping Jack

MT-based Motion Retrieval: Jumping Jack

MT-based Motion Retrieval: Elbow-To-Knee

MT-based Motion Retrieval: Cartwheel

Matching curve using average MT
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Conclusions (Motion) Informed Feature Representations

= Exploit model assumptions ]
_a » — Equal-tempered scale Fe_at_ures W'_th
- Kinematic chain explicit meaning.

JR = Deal with variances on feature level

@w — Enhancing timbre invariance Makes subsequent
x — Relational features steps mOf_e_rObUSt
"\ A& ; — Quantized motion templates and efficient!

= Consider requirements for specific Avoid making

application
} problem harder as

— Explicit information often not required

'{ t} — Mid-level features itis.

Overview Musically Informed Audio Decomposition
= Extraction of main melody

= Separation of drum track

= Separation of instrumental voices

= Musically Informed Audio Decomposition

Application: Audio Editing = Decomposition into individual note events

= Harmonic-percussive separation

Exploit musical knowledge to support decomposition process

Score-Informed Source Separation Score-Informed Audio Decomposition

Exploit musical score to support separation process Parameterize audio signal using score’s note events
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Score-Informed Audio Decomposition
Application: Audio editing
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NMF-based Audio Decomposition Score-Informed Audio Decomposition
Application: Separating left and right hands for piano
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Score-Informed Audio Decomposition
Application: Separating left and right hands for piano

Chopin, Waltz Op. 64, No. 1

Original

Left/right hand

Right hand

AIBAR/R\ 4

[ Left hand

Audio Decomposition

Audio Decomposition

o Much more difficult

Related problems:
= FO estimation
= Melody tracking
= Human voice

= Vibrato

o Much more difficult
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Score-Informed Source Separation

Application: Voice separation and editing

- Original audio

- Separated voice




Score-Informed Source Separation

Application: Voice separation and editing

>y Original audio

Score-Informed Source Separation

Application: Voice separation and editing

- Original audio
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