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Music structure analysis 

General goal: Divide an audio recording into temporal 
segments corresponding to musical parts and group these 
segments into musically meaningful categories.

Evaluation 

General goal: Determine how well an algorithm achieves 
the goal above
Problem: What metric is appropriate?
…More problems: 

What is the performance floor? Ceiling? 
What differences in performance are significant? 
Do the annotations mean what we think?



Overview

▪ Introduction 

▪ Part 1: Evaluation techniques 
▪ Metrics 
▪ Evaluation Design 
▪ Meta-evaluation 

▪ Part 2: Annotations and listeners 
▪ Annotation procedures  
▪ Disagreements

Metrics
▪ Labelling metrics vs. boundary metrics

(vs. summary metrics) 
▪ Over-segmentation vs. under-segmentation 
▪ Compiled in Lukashevich 2008

5

Metrics
▪ Pairwise retrieval 

▪ Main idea: Consider Ma, the set of all pairs of 
frames annotated with the same label. This is a 
set of similarity relationships to estimate 
▪ precision: pwp = | Ma ∩ Me | / | Me | 
▪ recall: pwr = | Ma ∩ Me | / | Ma | 
▪ f-measure: pwf = 2 pwp pwr / (pwp+pwr)
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Metrics
▪ Pairwise retrieval 

▪ Main idea: Consider Ma, the set of all pairs of 
frames annotated with the same label. This is a 
set of similarity relationships to estimate

7“Blue Fiddle” by Claude Lamothe
A' A AB B A AB CC B

Annotation Estimate

• 166 correct pairs 

• Recall = 166/222
   r = 0.75 

• Precision = 166/186
   p = 0.89 

• f-measure
   f = 0.81

Metrics
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Annotation: Estimate: Grading:

Missed similarity = red 
Spurious similarity = blue  
Correct pairs = white

• 484 pixels total 
• 262 black 
• 222 white pixels

Ma = 222

• 186 white pixels
Me = 186

Metrics
▪ Rand index 

▪ Main idea: like pairwise retrieval, but consider 
pairwise dissimilarities as also necessary to 
estimate 
▪ recall = a / (a+b) 
▪ precision = a / (a+c) 
▪ Rand =

(a+d) / (a+b+c+d)
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• a = 166 true positive 
• b = 56 false negative 
• c = 20 false positive 
• d = 242 true negative 

• Rand = (166+242) / 
(166+56+20+242)
= 0.84

Metrics
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Annotation: Estimate: Grading:

Spurious dissimilarity = red 
Spurious similarity = blue  
Correct pairs = white or black

• 484 pairs 
• 222 similar pairs (a+b) 
• 262 dissimilar pairs (c+d)

• 484 off-diagonal pixels 
• 186 similar pairs (a+c) 
• 298 dissimilar pairs (b+d)

Metrics
▪ Average speaker purity (ASP) and average 

cluster purity (ACP) 
▪ Main idea: estimate the level of fragmentation of 

each label category 

▪ Consider each annotated label Li separately 
▪ Given Li, consider the parallel estimated 

frames and compute the sum of squares for 
each label 

▪ Normalise and tally these sums to get ASP
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Metrics
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Metrics
▪ Average speaker purity (ASP) and average 

cluster purity (ACP) 
▪ Main idea: estimate the level of fragmentation of 

each label category 

▪ Consider each annotated label Li separately 
▪ Given Li, consider the parallel estimated 

frames and compute the sum of squares for 
each label 

▪ Normalise and tally these sums to get ASP 
▪ Do the reverse to get ACP 
▪ Summary metric K = (ASP*ACP)1/2 19

Metrics

A 
B 
C

# of labels 
2 
1 
1

Sum of squares 
12 + 102 = 101 
16 
49

length 
11 
4 
7

SSQ/length 
9.18 
4 
7

ASP = normalized sum =    (1+10+5.91)/22 = 0.77 
ACP = normalized sum =    (9.18 + 4 + 7)/22 = 0.92

A' A AB B

A AB CC B
Estimate

Annotation

K = (0.77 * 0.92)1/2 = 0.84

• R = 0.75 
• P = 0.89 
• f = 0.81



Metrics
▪ Over- and under-segmentation scores 

▪ Main idea:  
▪ Over-segmentation: SO = H(E|A), normalized 
▪ given the annotation, how much more is 

there to know about the estimated 
analysis? 

▪ Under-segmentation: SU = H(A|E), normalized 
▪ given the estimated analysis, how much 

more is there to know about the 
annotation?
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Metrics
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A AB CC B
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find all p(ai):
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P(C|ai) 0 0 7/11
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find all p(ai):

H(E|A) = 0*1/22 + 0*10/22 -0.95*11/22
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=  1 – 0.473/1.585  =  0.70
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Metrics
A' A AB B

A AB CC B
Estimate

Annotation

=  1 – 0.473/1.585  =  0.70

=  1 – 0.02/1.585  =  0.99

Metrics
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Annotation

=  1 – 0.473/1.585  =  0.70

=  1 – 0.02/1.585  =  0.99

Metrics
A' A AB B

A AB CC B
Estimate

Annotation

=  1 – 0.473/1.585  =  0.70

I(A,E) =  H(E) – H(E|A) = 1.473 – 0.473  =  1.00



Metrics
▪ Boundary retrieval 

▪ Main idea: treat all boundaries within a fixed 
threshold of the true boundaries as correct
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f

0.13

0.75

0

0

0.62

Metrics
▪ Median claim to true 

▪ Main idea: estimate the median proximity of the 
estimated boundaries to the true ones

30
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Metrics
▪ Directional Hamming distance 

▪ Main idea: estimate the level of fragmentation of 
each section
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Fraction of estimated analysis covered by single annotated segments 
= 1 – f = under-segmentation 
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Fraction of estimated analysis covered by single annotated segments 
= 1 – f = under-segmentation = 0.86
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Fraction of estimated analysis covered by single annotated segments 
= 1 – f = under-segmentation 

Fraction of annotation covered by single estimated segments 
= 1 – m = over-segmentation 

= 0.86

= 0.58

Metrics
▪ Can someone do this all for me? 

▪ Raffel et al.: (PS2-20) MIR_EVAL: A 
Transparent Implementation of Common MIR 
Metrics  

▪ Structural Analysis Evaluation
code.soundsoftware.ac.uk/projects/
structural_analysis_evaluation
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Overview

▪ Introduction 

▪ Part 1: Evaluation techniques 
▪ Metrics 
▪ Evaluation Design 
▪ Meta-evaluation 

▪ Part 2: Annotations and listeners 
▪ Annotation procedures  
▪ Disagreements



Evaluation design
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Algorithm 1 Algo 1 
output

Algo 1 
grade

Algorithm 2 Algo 2 
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Evaluation design
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Corpus of annotations

Decision

Algorithm 1 Algo 1 
output
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Algorithm 2 Algo 2 
output
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Choice of evaluation metric

Evaluation design
▪ Choice of corpus 

▪ restricts view to subset of all music 
▪ choose to match needs of evaluation
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Evaluation design
▪ Choice of baseline 

▪ Segments: 
▪ fixed number of random boundaries 
▪ boundaries at fixed interval 

▪ Labels: 
▪ all the same labels 
▪ all different labels 
▪ random labels from fixed-size vocabulary

41

Evaluation design
▪ Choice of annotations 

▪ merging of segments  
▪ simplification of labels

42

0.0000000 -           
0.3697289 G/H--           
9.0107311 H-           
17.2752319 H         
25.3954022 H+         
33.5430528 H+         
41.6209960 H~         
49.7735622 I         
57.7395708 I         
65.6869237 J/2         
69.8471577 (5/8)A-         
80.0145458 (5/4)C         
100.1254529 (5/8)A       
109.9383816 (5/4)C'       
130.2545020 (5/8)A       
140.4218901 (3/2)C*       
164.6930311 end      

0.0 Silence 
0.411065759 A 
49.840770975 A' 
65.980725623 B 
80.060748299 C 
96.227619047 B 
110.325170068 C 
126.354331065 B 
140.525782312 C 
156.690249433 B 
164.745873015 silence 
166.826825396 end

SALAMI INRIA

Evaluation design
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Corpus of annotations
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Choice of evaluation metric

Also: 
boundary threshold; 

beginning/end threshold; 
P/R weighting;



Evaluation design
▪ Choice of comparison method 

▪ compare mean values 

▪ normal statistics 
▪ student’s t-test 
▪ ANOVA 

▪ non-normal statistics 
▪ Wilcoxon Signed-Rank test 
▪ Kruskal-Wallis test
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Evaluation design
▪ Decision: 

▪ “Our algorithm performs better than the leading 
MIREX competitor!”

vs. 

▪ “According to a Mann–Whitney U Test (U=43029, 
N=298, p < 0.05), our algorithm performs better than 
the leading MIREX competitor, when performance is 
evaluated with pairwise f-measure, on a version of the Beatles 
dataset with labels reduced to their main categories (intro, verse, chorus, 
other, outro). We achieved a median f-measure of 0.68 (IQR: 0.48, 0.75). The 
best-performing random baseline achieved a median f-measure of 0.35, and a 
comparison of different annotators indicates a performance ceiling with median f-measure 0.92.
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Overview

▪ Introduction 

▪ Part 1: Evaluation techniques 
▪ Metrics 
▪ Evaluation Design 
▪ Meta-evaluation 

▪ Part 2: Annotations and listeners 
▪ Annotation procedures  
▪ Disagreements

Meta-evaluation
▪ Julián Urbano: “Information retrieval meta-

evaluation: Challenges and opportunities in the 
music domain.” ISMIR 2011 

▪ 7 kinds of validation: 
▪ construct: does metric match goal? 
▪ content: is corpus representative? 
▪ convergent: do different results agree? 
▪ criterion: agreement with other experiments? 
▪ internal: any factors unaccounted for? 
▪ external: does sampling justify extrapolation? 
▪ conclusion: are conclusions justified?
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Meta-evaluation
▪ Julián Urbano: “Information retrieval meta-
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▪ construct: does metric match goal? 
▪ c
▪ convergent:
▪ criterion:

▪▪▪ Nieto, Farbood, Jehan and Bello: “Perceptual content:content:
analysis of theconvergent:convergent: f-measure for evaluating sectionff
boundaries in music.” ISMIR 2014, 

gg
criterion:criterion: PS2-3



Meta-evaluation
▪ Julián Urbano: “Information retrieval meta-

evaluation: Challenges and opportunities in the 
music domain.” ISMIR 2011

▪ 7 kinds of validation: 
▪ construct:
▪ content:
▪ convergent:

▪ external:
▪ conclusion:
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▪ i i
▪ internal:
▪▪▪ Smith and Chew 2013a: “A meta-analysis of the criterion:criterion: 

MIREX structure segmentation task.” ISMIRinternal:internal:

▪ convergent: do different results agree?

Meta-evaluation

50

summarys

Correlation in labelling metrics in 
ranking algorithms

over- 
seg

under- 
seg

Meta-evaluation
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Rand = (a+d) / (a+b+c+d)

A B BC D

Meta-evaluation
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Correlation in segmentation 
metrics in ranking algorithms

over- 
seg

under- 
seg

summarys

535555555533

Correlation of 
evaluation metrics 
and properties of 
annotations and 
algorithm output

Meta-evaluation
▪ Julián Urbano: “Information retrieval meta-

evaluation: Challenges and opportunities in the 
music domain.” ISMIR 2011

▪ 7 kinds of validation: 
▪ construct:
▪ content:
▪ convergent:
▪ criterion:
▪ internal:
▪ external:
▪ conclusion:
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▪ external: does sampling justify extrapolation?



Meta-evaluation
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Carole King

Michael 
Jackson

Queen

Beatles

Distribution of mean pairwise f-measure
0.4 0.5 0.6 0.7 0.8

Meta-evaluation
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Histogram of ratio between a song’s median segment length and 
the length of all of its segments

10.5 1.50 2

See also Bimbot et al. 2014: “Semiotic Description of Music Structure: an 
Introduction to the Quaero/Metiss Structural Annotations.” AES

Part 1: Summary
▪ Metrics 

▪ over- and under-segmentation metrics 
▪ boundary and grouping metrics 

▪ Evaluation Design 
▪ corpus 
▪ baseline 
▪ annotation interpretation 
▪ decision method 

▪ Meta-evaluation 
▪ human tests to align metrics with perceived quality 
▪ observe real-world performance of metrics

57

Summary

▪ How much agreement is there about what the 
musical parts are? 

▪ What is the significance of the disagreements? 
▪ Who creates the ground truth? 
▪ What procedure do they follow?

58

Music structure analysis 

General goal: Divide an audio recording into temporal 
segments corresponding to musical parts and group these 
segments into musically meaningful categories.

Overview

▪ Introduction 

▪ Part 1: Evaluation techniques 
▪ Metrics 
▪ Evaluation Design 
▪ Meta-evaluation 

▪ Part 2: Annotations and listeners 
▪ Annotation procedures 
▪ Disagreements

Annotation procedures
▪ Early Beatles annotations based on Alan 

Pollack’s analyses

6060
http://www.icce.rug.nl/~soundscapes/DATABASES/AWP/ct.shtml



Annotation procedures
▪ Early Beatles annotations based on Alan 

Pollack’s analyses
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http://www.icce.rug.nl/~soundscapes/DATABASES/AWP/ct.shtml

Annotation procedures
▪ Conflation of similarity, function, and instrumentation 

noted by Peeters and Deruty (2009) 
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Annotation procedures
▪ Conflation of similarity, function, and instrumentation 

noted by Peeters and Deruty (2009) 

61

0.000 1.000  silence 
1.000 35.861  intro/verse 
35.861 70.617  intro/verse 
70.617 76.487  refrain 
76.487 111.236  intro/verse 
111.236 116.995  refrain 
116.995 145.717  1/2_intro/verse_(instrumental) 
145.717 174.955  1/2_intro/verse 
174.955 180.829  refrain 
180.829 254.248  intro/outro_(fade-out) 
254.248 260.627  silence 

Beatles annotation:

Annotation procedures
▪ Conflation of similarity, function, and instrumentation 

noted by Peeters and Deruty (2009) 

61

Annotation procedures
▪ SALAMI dataset used simplified version of their 

proposal
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Annotation procedures
▪ SALAMI dataset used simplified version of their 

proposal

6262



Annotation procedures
▪ Bimbot et al. 2010 & 2012:  

▪ Segmentation: 
▪ Set standard segment length for each song 

▪ Ideal segment length: 15 seconds 
▪ Criteria for being a segment: 

▪ Interchangeability 
▪ Similarity 
▪ etc. 

▪ Labelling: 
▪ System & Contrast model 

▪ standard segment form: a-b-c-d 
▪ taxonomy of transformations and exceptions

63

Overview

▪ Introduction 

▪ Part 1: Evaluation techniques 
▪ Metrics 
▪ Evaluation Design 
▪ Meta-evaluation 

▪ Part 2: Annotations and listeners 
▪ Annotation procedures 
▪ Disagreements

Isaac Hayes, Run Fay Run Isaac Hayes, Run Fay Run

Isaac Hayes, Run Fay Run
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Isaac Hayes, Run Fay Run
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“Blue Fiddle” by Claude Lamothe
A' A AB B A AB CC B

Annotation 1 Annotation 2

AA AAA

Disagreements
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“Blue Fiddle” by Claude Lamothe
A' A AB B A AB CC B

Annotation 1 Annotation 2

CCC

Disagreements Disagreements
▪ How to minimise disagreements? 

▪ SALAMI: collect extra annotations to reflect 
variety of interpretations 

▪ INRIA: constrain annotation format to 
improve repeatability
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Disagreements
▪ Perception of structure depends on: 

▪ Familiarity with the piece (e.g., Margulis 2012) 

▪ Level of musical training (e.g., Bamberger 
2006) 

▪ Attention?
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Disagreements
▪ Smith 2014 

▪ Question:  Do differences in attention cause 
listener disagreements, or merely accompany 
them? 

▪ Goal:  Observe the impact that attention to 
specific features has on the grouping preferences 
of listeners 

▪ Method:  Experiment presenting listeners with 
ambiguous stimuli and controlling the attention 
condition
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Disagreements
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Disagreements
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Disagreements
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Disagreements
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Disagreements
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Disagreements
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Disagreements
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Melody:

Chords:

A A B

A B B



Disagreements
▪ Results:
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Disagreements
▪ Smith and Chew 2013b 

▪ The perception of structure is influenced by 
attention 

▪ Can we infer what a listener was paying attention 
to? 

▪ Can this help to explain listener disagreements?
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Disagreements
▪ Two different annotations of Chago Rodrigo’s 

“Garrotin”
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Disagreements
▪ Two different annotations of Chago Rodrigo’s 

“Garrotin”

76

Disagreements
▪ Two different annotations of Chago Rodrigo’s 

“Garrotin”
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A TOY EXAMPLE

Audio-derived SSM

Listener 1: AAB

Listener 2: ABBHarmony SSM
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A TOY EXAMPLE

Listener 1: AAB

Listener 2: ABBHarmony SSM

Timbre SSM
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Part 2: Summary
▪ Annotations and listeners 
▪ Defining ground truth is a fraught task 

because listeners often disagree 
▪ Solutions: 
▪ poll many listeners 
▪ define the task more narrowly 

▪ Music perception research demonstrates 
personal factors affect analysis 
▪ Content-based approach may never be 

perfect 
▪ Attention may be an important factor, and we 

can try to estimate it 82

Final thoughts

▪ Part 1: Be aware of how you evaluate! 
▪ Use proper statistics 
▪ Need for more meta-analysis of metrics 

▪ Part 2: Be aware of what you’re using! 
▪ Know the limitations of annotations 
▪ Need for more music cognition studies
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Music

▪ "Blue Fiddle" by Claude Lamothe (SALAMI ID 104) 
▪ “We Are The Champions" by Queen (SALAMI ID 1606) 
▪ "Come Together" by The Beatles 
▪ "Run Fay Run" by Isaac Hayes 
▪ "Garrotin" by Chado Rodrigo (SALAMI ID 842)
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Thank you!


