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Abstract. Optical capturing of human body motion has many practi-
cal applications, ranging from motion analysis in sports and medicine,
over ergonomy research, up to computer animation in game and movie
production. Unfortunately, many existing approaches require expensive
multi-camera systems and controlled studios for recording, and expect the
person to wear special marker suits. Furthermore, marker-less approaches
demand dense camera arrays and indoor recording. These requirements
and the high acquisition cost of the equipment makes it applicable only
to a small number of people. This has changed in recent years, when the
availability of inexpensive depth sensors, such as time-of-flight cameras or
the Microsoft Kinect has spawned new research on tracking human mo-
tions from monocular depth images. These approaches have the potential
to make motion capture accessible to much larger user groups. However,
despite significant progress over the last years, there are still unsolved chal-
lenges that limit applicability of depth-based monocular full body motion
capture. Algorithms are challenged by very noisy sensor data, (self) occlu-
sions, or other ambiguities implied by the limited information that a depth
sensor can extract of the scene. In this article, we give an overview on the
state-of-the-art in full body human motion capture using depth cameras.
Especially, we elaborate on the challenges current algorithms face and dis-
cuss possible solutions. Furthermore, we investigate how the integration of
additional sensor modalities may help to resolve some of the ambiguities
and improve tracking results.

1 Introduction

The recording and analysis of full-body human motion data constitutes an impor-
tant strand of research in computer vision, computer graphics and many related
fields of visual computing. Full body human motion capture has many appli-
cations in divers areas, ranging from character animation for movie and game
productions, sports sciences, and human computer interaction. Unfortunately,
the methods for measuring human skeletal motion that were available until re-
cently impose stark constraints on applicability and can lead to high acquisition
cost. Most applications in the movie and game industry, medical research and
rehabilitation, as well as sports sciences are often based on optical marker-based
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(a) (b)

Fig. 1. (a) Input color images for a typical markerless multi-camera motion capture
approach. (b) Input depth image for a typical depth tracking approach.

or marker-less approaches, see [1] for an overview. These approaches often need
multi-view input images, recorded in controlled environments using expensive
and calibrated recording equipment, see also Fig. 1a. These requirements ren-
der them unaffordable for many users, or even completely unsuitable, such as in
home user applications.

In the recent years, depth sensing devices such as time-of-flight (ToF) cam-
eras or the Microsoft Kinect have triggered a new strand of research, where
human motion data is inferred from so called 2.5D depth maps. Such cameras
are easy to set-up and are inexpensive compared to the systems required by
the approaches above. The provided data is especially appealing for tracking
because of two reasons. Firstly, it is more resilient to challenging surface and
appearance properties of objects and in most cases independent from controlled
lighting conditions. Secondly, the provided depth maps enable easier background
subtraction and provide rich geometric information even when using only a sin-
gle camera, see also Fig. 1b. In consequence, several algorithms were introduced
recently that can capture full body human skeletal poses from a single depth
camera view. While they do not yet reach the same level of accuracy as classi-
cal multi-camera-based approaches, many of them perform in real-time and have
paved the trail for some new interaction applications in home user environments.

However, despite the advances in this field, there are still many fundamental
algorithmic obstacles to overcome in order to bridge the immense quality and
robustness gap between depth-camera based tracking and earlier multi-camera
approaches. Current algorithms are challenged by the non-trivial noise charac-
teristics of depth cameras. Understanding and characterizing this noise (see also
chapter “Denoising Strategies for Time-of-Flight Data”) and properly accom-
modating for it (see also chapter “Stabilization of 3D Position Measurement”)
in the pose estimation methods is thus a key requirement. Another set of chal-
lenges originates from the fact that depth images are very sparse. While already
with multiple available camera views the process of inferring pose from images is
highly ambiguous, this problem is even more difficult in monocular pose recon-
struction. Algorithms are challenged by occlusions resulting in missing informa-
tion. Another example is the fact that the orientation of rotationally symmetric
body parts, such as arms and legs, is ambiguous in the depth data.
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In this article, we want to give an overview on the current state-of-the art
in human pose estimation from depth images, see Sect. 2. We will review the
advantages and disadvantages of the main categories of algorithmic strategies
for monocular pose estimation from depth, which includes generative and dis-
criminative strategies. We will also put a focus on the basic principle of so-called
hybrid trackers that combine these two tracking recipes. Based on this review of
state-of-the-art, we will elaborate on primary algorithmic limitations and chal-
lenges that current methods have to overcome, and present ideas and an outlook
to possible ways of achieving this, see Sect. 3. In particular, we will use the exam-
ple approach presented by Baak et al. [2] as instructional example, see Sect. 3.4.

2 State-of-the-Art

Nowadays, most commercial solutions to full-body human motion capture em-
ploy techniques that are invasive to the scene. Some approaches are based on me-
chanical or electronic exoskeletons, or other external sensors placed on the body.
But the most widely used techniques require the person to wear special suits with
retro-reflective markers whose motion is picked up by a multi-camera system to
compute the skeletal motion of the person [3]. Due to the complex apparatus,
these approaches are expensive, need a lot of preparation time, and are restricted
to controlled recording environments which constrains their application to spe-
cialized professional users. To overcome this limitation, researchers in computer
vision and computer graphics started to develop marker-less skeletal pose esti-
mation algorithms. They can capture skeletal motion from multi-view video of
a moving person, without needing markers in the scene. An extensive overview
of these methods is beyond the scope of this chapter, and a review can be found
in [4], but the main concepts are as follows. Most approaches use some form of 3D
kinematic skeleton model augmented by shape primitives, such as cylinders [5], a
surface mesh [6,7,8], or probabilistic density representations attached to the hu-
man body [9]. Optimal skeletal pose parameters are often found by minimizing an
error metric that assesses the similarity of the projected model to the multi-view
image data using features. Local optimization approaches are widely used due to
their high efficiency, but they are challenged by the highly multimodal nature of
the model-to-image similarity function [9,8]. Global pose optimization methods
can overcome some of these limitations, however at the price of needing much
longer computation times [10,6]. Some approaches aim to combine the efficiency
of local methods with the reliability of global methods by adaptively switching be-
tween them [6]. Even though marker-less approaches succeed with a slightly sim-
pler setup, many limitations remain: computation time often precludes real-time
processing, recording is still limited to controlled settings, and people are still ex-
pected to wear relatively tight clothing. Furthermore, marker-less motion capture
methods deliver merely skeletal motion parameters.

In contrast, marker-less performance capture methods go one step further and
reconstruct deforming surface geometry from multi-view video in addition to
skeletal motion. Some methods estimate the dynamic scene geometry using vari-
ants of shape-from-silhouette methods or combinations of shape-from-silhouette
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and stereo[11,12,13,14], but in such approaches establishing space-time coher-
ence is difficult. Template-based methods deform a shape template to match the
deformable surface in the real scene, which implicitly establishes temporal co-
herence [15,16], also in scenes with ten persons. All the developments explained
so far aim towards the goal of high-quality reconstruction, even if that necessi-
tates complex and controlled indoor setup. In contrast, depth-based tracking of
full-body human motion focuses on using inexpensive recording equipment that
is easy to setup and to use in home user applications. As a consequence, depth
based have to deal with various challenges that marker-less tracking approaches
do not face. Commercial systems that make use of this kind of motion tracking
can be found e. g. in the Microsoft Kinect for XBox1, the SoftKinetic IISU Mid-
dleware2 for pose and gesture recognition, as well as the SilverFit3 system for
rehabilitation support. So far, several depth-based tracking methods have been
published that can be classified into three basic types: Generative approaches,
discriminative approaches and hybrid approaches. In this chapter, we give a
general overview over full-body tracking approaches. We refer to the chapter “A
Survey on Human Motion Analysis from Depth Data” for activity recognition
and body part motion in general. Furthermore, we refer to the chapter “Gesture
Interfaces with Depth Sensors” for the specific case of hand and arm motion
tracking. The later chapter also discusses a special kind of generative tracking
approach which makes use of so-called self-organizing maps (SOM).

2.1 Generative Approaches

Generative approaches use parametrized body models that are fit into the depth
data using optimization schemes. In particular, the optimization process maxi-
mizes a model-to-image consistency measure. This measure is hard to optimize
due to the inherent ambiguity in the model-to-data projection. In particular,
when using monocular video cameras, this ambiguity precludes efficient and re-
liable inference of a usable range of 3D body poses. Depth data reduce this
ambiguity problem but it is still one of the main algorithmic challenges to make
generative methods succeed.

A first approach for obtaining pose and surface of articulated rigid objects
from ToF depth images was presented in [17]. Under the assumption that the
movement of the tracked object is small w. r. t. the capture speed of the depth
camera, the authors track individual bones from a manually pre-labeled depth
image using an iterative closest point (ICP) approach. In each frame, previously
unlabeled depth pixels are assigned to the bone that best explains the unla-
beled depth pixel. However, this approach was not real-time capable, running at
around 0.5 frames per second (FPS). Another approach [18] that is specialized
on human motion, generates point correspondences for an ICP based optimiza-
tion from both 3D and 2D input. An example for 2D input could be a body part

1 http://www.xbox.com/Kinect
2 http://www.softkinetic.com
3 http://www.silverfit.nl/en.html

http://www.xbox.com/Kinect
http://www.softkinetic.com
http://www.silverfit.nl/en.html
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Fig. 2. First five geodesic extrema (white spheres) computed for several poses. These
five extrema typically correspond to the four end-effectors (two hands, two feet) and
the head of the person.

or feature detector working on 2D color images. All 3D points that could be pro-
jected onto the 2D feature point now define a ray in 3D space. The closest point
of this ray to the model is used to generate a traditional 3D point constraint. The
authors report a performance of 25 fps with this method, but the approach is
limited to simple non-occluded poses since otherwise the tracker would converge
to an erroneous pose minimum from which it cannot recover. Another early ap-
proach for real time capable depth-based motion tracking from monocular views
was presented in [19]. Here, the authors describe a general pipeline for obtaining
pose parameters of humans from a stream of depth images that are then used to
drive the motion of a virtual character in e. g. video games. To further increase
the performance of generative approaches [20] proposed porting the computa-
tional intense local optimization to the graphics processor. However, all these
approaches tend to fail irrecoverably when the optimization is stuck in a local
minimum. This problem also exists in other vision-based approaches and was
e. g. discussed in [21]. In general, these tracking errors occur due to the ambigu-
ous model-to-data mapping in many poses, as well as fast scene motion. While
the latter problem can be remedied by increasing the frame rate, the former
was addressed by more elaborated formulations of the energy function. One op-
tion was lately presented in [22], where the authors proposed a modified energy
function that incorporates empty space information, as well as inter-penetration
constraints. A completely different approach was shown in [23]. Here, multi-
ple depth cameras were used for pose estimation which reduces the occlusion
problem and enabled capturing the motion of multiple person using high resolu-
tion body models. The approach is not real-time capable, though. With all these
depth-based methods, real-time pose estimation is still a challenge, tracking may
drift, and with exception to [23], the employed shape models are rather coarse
which impairs pose estimation accuracy.

2.2 Discriminative Approaches

On the other hand, discriminative approaches focus on detecting certain features
in the depth data—such as joint locations—and later combine these independent
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cues to form a body pose hypothesis. These feature are often learned for a pre-
defined set of poses. For this reason, discriminative methods are not dependent
on a numerical optimization procedure, and can infer pose also without temporal
context and continuity. One algorithm for detecting human body parts in depth
images was presented in [24]. Here, the authors use so-called geodesic extrema
calculated by iteratively using Dijkstra’s algorithm on a graph deduced by con-
necting all depth pixels in the 2.5D depth data into a map. The assumption
here is that geodesic extrema generally align with salient points of the human
body, such as the head, the hands, or the feet, see also Fig. 2. To label the re-
trieved geodesic extrema according to the corresponding body part, the authors
employ local shape descriptors on normalized depth image patches centered at
the geodesic extrema’s positions. Another body part detection approached is
pursued in [25], where the authors deduce landmark positions from the depth
image and include regularizing information from previous frames. These posi-
tions are then used in a kinematic self retargeting framework to estimate the
pose parameters of the person. In contrast, the approach described in [26] uses
regression forest learned on simple pair-wise depth features to do a pixel-wise
classification of the input depth image into body parts. To obtain a working
regression forest for joint classification that works under a large range of poses,
though, the authors had to train the classifier on approx. 500 000 synthetically
generated and labeled depth images. For each body part, joint positions are then
inferred by applying a mean shift-based mode finding approach on the pixels as-
signed to that body part, see also Fig. 3a. Using also regression forests for body
part detection, [27] determine the joint positions by letting each depth pixel
vote for the joint positions of several joints. After excluding votes from too dis-
tant depth pixels and applying a density estimator on the remaining votes, even
the probable positions of non-visible joints can be estimated, see also Fig. 3b.
Finally, [28] generate correspondences between body parts and a pose and size
parametrized human model, which they also achieve by using depth features and
regression forests. The parameters of this model are then found using a one shot
optimization scheme, i. e. without iteratively recomputing the established corre-
spondences. Discriminative approaches show impressive tracking results, where
some discriminative methods even succeed in detecting joint information also in
non-frontal occluded poses. However, since they often detect features in every
depth frame independently, discriminative approaches tend to yield temporally
unstable pose estimations results. Furthermore, for many learning-based meth-
ods, the effort to train classifiers can be significant.

2.3 Hybrid Approaches

Combining the ideas of generative and discriminative approaches, hybrid ap-
proaches try to harness the advantages from both tracker types. On the one
hand, hybrid trackers inherit the stability and temporal coherence of pose es-
timation results common to generative trackers. On the other hand, they show
the robustness of pose inference even in partly occluded poses that character-
izes discriminative approaches. A first method, in the domain of 3D surface
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(a)

(b)

Fig. 3. Regression-forest-based discriminative trackers. The images were taken from
the respective papers. (a) Body part and joint detection as presented in [26]. (b)
Voting approach for occluded joints as described in [27].

reconstruction, was presented in [29]. Here, the discriminative tracker is used for
initializing the surface model, while the generative tracker enforces the obser-
vance of distance constraints. The authors also sketched, how their approach can
be applied to human pose reconstruction. At the same time, the first method
with specialization to human pose estimation was presented in [30]. This work
combines the geodesic extrema-based body part recognition presented in [24]
with a generative pose optimization scheme based on articulated ICP. Further-
more, the authors introduce a dataset comprising of calibrated ToF depth images
and ground-truth marker positions that serves as common benchmark for future
work in that field. The works by Baak et al. [2] and Ye et al. [31] also use a
discriminative tracker to initialize a generative pose estimation algorithm. In
detail, the approach presented in [31] uses a database consisting of 19 300 poses.
For each of these poses, four synthesized depth images were rendered from dif-
ferent views. Using a principal axis based normalization, the point clouds are
indexed using their coefficients in a PCA subspace. Here, the normalization of
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Fig. 4. Schematic overview of a hybrid depth tracker as suggested by Baak et al. [2]

the point cloud in combination with the rendering from four different views is
used to retrieve poses from the database independent from the orientation w. r. t.
the depth camera. Note that by storing four different views in the database, the
index size is increased to 77 200, while still only 19 300 poses are contained in the
database. During tracking, the input point cloud is normalized in the same way,
its PCA-coefficients are calculated and used for retrieving a similar point cloud
in the database. Finally, they refine the retrieved pose using the Coherent Drift
Point algorithm presented in [32]. This approach shows good pose estimation
results on the benchmark dataset introduced in [30]. However, their approach
does not run in real time—inferring the pose in one frame takes between 60 s
and 150 s.

In contrast, the approach showcased in [2] uses a modified iterated version
of Dijkstra’s algorithm to calculate geodesic extrema similar to the approach in
[24]. The stacked positions of the first five geodesic extrema, which often co-align
with the head, hands and feet, serve as index into a pose database consisting of
50 000 poses. The suitability of such an approach has been previously discussed
in [33], where the authors used the stacked positions of the body’s extremities
(head, hands, and feet) to index a database containing high dimensional motion
data. As index structure the authors employed a kd-tree facilitating fast nearest
neighbor searches. To be invariant to certain orientation variations of the person,
Baak et al. normalize the query and the database poses based on information
deduced from the depth point cloud. The incorporated generative tracker is a
standard ICP approach that builds correspondences between preselected points
from the parametrized human model and points in the depth point cloud. In each
frame, they conduct two local optimizations, one initialized using the pose from
the previous frame and one using the retrieved pose from the pose database.
Using a late fusion step they decide based on a sparse Hausdorff-like distance
function which pose obtained from the two local optimizations best describes the
observed depth image. This pose is then used as final pose hypothesis, see Fig. 4
for an overview of their approach. While not showing as good results as the ap-
proach presented in [31], their tracker runs much faster at around 50−60 frames
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per second, enabling very responsive tracking. Another real-time approach was
recently proposed by e. g. [34]. Here, the authors use a discriminative body-part
detector similar to [26] to augment a generative tracker. In particular, they use
the pose obtained from the discriminative tracker only for initialization at the
beginning of the tracking and for reinitializing the generative tracker in cases of
tracking errors. For detecting wrongly tracked frames, they measure how well
their body model with the current pose parameters explains the observed point
cloud. Hybrid approaches, harnessing the advantages of both tracking worlds, are
able to show superior performance compared too purely discriminative or gener-
ative approaches. However, even the current state-of-the-art hybrid trackers still
have limitations, which we will elaborate on in the following.

3 Open Challenges and Possible Solutions

While providing good overall tracking results, hybrid approaches still suffer from
the noisy character and the sparsity of the depth data and are prone to ambi-
guities originating from occlusions. In this section, we will discuss the various
challenges current approaches still face, elaborate on the reasons, and give an
outlook how these problems could be approached. For the special case of denois-
ing depth data we refer to the chapter “Denoising Strategies for Time-of-Flight
Data”.

3.1 Accuracy of the Body Model

Most trackers use an underlying model of the human body. Such models vary
drastically ranging from simple representations as graphs [17,25,26,27,28,29,31],
over articulated rigid bodies [18,20,22,34] to complex triangle meshes driven by
underlying skeletons using skinning approaches [2,23,30]. Here, the complexity of
the model mainly depends on the intended application. While some approaches
are only interested in tracking specific feature points of the body such as the
positions of the extremities [24] or joint positions [26], other approaches try
to capture pose parameters such as joint angles [2,22,28,30,31,34], or even the
complete surface of the person including cloth wrinkles and folds [23]. Another
requirement for a detailed surface model may be the energy function used in gen-
erative or hybrid approaches. In particular, ICP-based trackers benefit from an
accurate surface model to build meaningful correspondences between the model
and the point cloud during optimization. In order to circumvent the problem of
obtaining an accurate model of each individual person, some approaches use a
fixed body model and scale the input data instead [2]. However, this approach
fails for persons with very different body proportions.

In general, the model of the tracked person is often assumed to be created
in a pre-processing step using manual modeling or special equipment as full-
body laser scanners. While this is a viable way in movie and game productions
or in most scientific settings, in home user scenarios it is not feasible. To this
end, most algorithms applied in home user scenarios, such as [26] use a different
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(a) (b) (c) (d) (e)

Fig. 5. (a) Body shape of a person to be tracked. (b) Depth image of shape. (c) Graph
model. (d) Model based on articulated cylinders and spheres . (e) High resolution
surface model.

approach. In a pre-processing step the authors use a large number of body models
of different sizes and proportions to learn a decision-forest-based classifier that
is able to label depth pixels according to the body part they belong to. As
a consequence, this classifier becomes invariant to the size of the person and
its proportions. During the actual tracking, the learned classifier can be used
without obtaining an actual body model of the tracked person. Based on the
labeled depth pixel the authors employ a heuristic to deduce the most probable
joint position. This approach runs in real-time and works for many tracking
applications.

However, for some augmented reality applications the reconstruction quality
obtained from simple graphical body models may not be sufficient enough. A
popular example is virtual try-on, where the person can wear a piece of virtual
apparel that plausibly interacts with the person’s body motion. Here, an accu-
rate reconstruction of the person’s body surface is beneficial in order to ensure
believable visual quality or to give good indication whether the cloth actually
fits. One possible approach would be to infer a high resolution body model from
depth data in a pre-processing step and then use this model for tracking, visual-
ization or physical simulations of objects in the augmented scene. Recently, one
approach [35] has addressed this issue. Here, the authors fit a pose and shape
parametrized model into the depth point clouds using an ICP-based approach.
The point clouds were obtained from four sequentially captured depth images
showing the person from the front, the back and two sides. However, the fact that
the person had to reproduce the same pose in all four images and the optimiza-
tion’s runtime of about one hour makes this approach not applicable in home
user scenarios. For an explanation how to obtain a pose and shape parametrized
model, we refer to [36,37].

3.2 Rotational Ambiguities

Another inherent challenge to all depth-based trackers are rotational ambigui-
ties. Depth data contains rich information about the relative location of objects
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(a) (c)(b)

Fig. 6. Rotational ambiguities of depth data. (a) Input depth image. (b) One typ-
ical output from a generative pose estimation procedure. Note that the axis of the
elbow joint is vertical. (c) Another possible output, the axis of the elbow joint is now
horizontal.

which enables easy background subtraction compared to vision based approaches
on intensity images. However, depth images reveal only little information about
the surface structure and no color information at all. This makes it hard to
determine the correct orientation of rotational symmetric objects, such as the
body extremities. Since most depth trackers only depend on very simplistic un-
derlying body models with isotropic extremities [18,20,22,34] or even graphs
[17,25,26,27,28,29,31] that do not have any volume at all, they can simply ignore
the aforementioned problem. However, these trackers also do not provide any
pose information about the twist of the arms or the legs. In contrast, trackers
that use complex triangle meshes for defining the body’s surface [2,23,30] should
not ignore rotational ambiguities. In particular, for these approaches the used
generative tracker might come to different results depending on its initialization.
An example can be seen in Fig. 6. Here, the depth image shown in Fig. 6a reveals
only little information on how the arm is oriented. Two possible solutions of a
generative tracker are depicted in in Fig. 6b&c. The difference between both
solutions lies in the twist of the arm. While in Fig. 6b the axis of the right elbow
joint is oriented vertically, it is oriented horizontally in Fig. 6c. In this exam-
ple, the latter would semantically be the correct pose estimation result. At first
glance this might not have huge impact on the overall performance of the tracker.
However, a tracking error might serve as initialization for the next frame. Lets
consider the scenario that the tracked person bends her arm with the forearm
pointing upwards. While this is a straight-forward task for the generative tracker
initialized with the pose shown in Fig. 6c, a local optimization starting with the
pose shown in Fig. 6b is more likely to get stuck in a local minimum. Unfortu-
nately, none of the presented trackers employs methods to prevent this. While
pure generative trackers are likely to fail in such situations and may not be able
to proceed, discriminative trackers completely avoid this issue by tracking each
frame independently and not relying on local optimization. In contrast, hybrid
approaches, such as presented in [2,34], detect the failure of their generative
tracker and reinitialize it using pose estimations of their discriminative tracker.
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Similar challenges are also faced in other tracking fields as e. g. marker-less
motion capture. Here, so called silhouetted-based trackers that estimate the pose
of the person from multiple, binary (foreground vs. background) images, suffer
from the same challenge being unable to determine the correct orientation of the
person’s extremities. One approach to tackle this was presented in [7], where the
authors included information from another sensor modality to correctly detect
the orientation of the extremities independent from ambiguous optical informa-
tion. In particular, their approach relies on orientation data obtained from five
inertial sensors attached to the lower legs, forearms and the trunk of the per-
son. By including the measured orientations into the energy function of their
generative approach, tracking errors in rotationally symmetric limbs could be
avoided.

3.3 Occlusions

The third and by far greatest challenge for today’s depth trackers are occlusions.
Occlusions stem from the fundamental principle how depth images (and other
optical data) is obtained. Light is reflected by some object and detected by some
light sensitive sensor inside the camera. If light from an object, e. g. a body part,
cannot reach the sensor of the camera because another object in between, the
object is occluded. As a consequence, one cannot obtain any usable information
about the occluded object. Present depth trackers deal with occlusions in var-
ious ways. Some trackers simply avoid this by requiring the tracked person to
strike only poses where all body parts are clearly visible to the depth camera
[2,30,34]. Such trackers often show undefined behavior if the requirements are
not met, see Fig. 7 for some representative failure cases. Some discriminative
trackers allow for non frontal poses but do not give any pose hypothesis for
non-visible parts [25,26,28,34]. In contrast, the approach presented in [27] uses a
regression forest-based approach to learn the relative joint positions for a depth
pixel based on depth values in its neighborhood. Calculating the density mean
on a set of votes yields a hypothesis even for occluded joints. As most learn-
ing based approaches, this approach shows good results on poses close to the
one used for learning and vice versa. In a pure generative setting, the approach
proposed in [22] includes two additional constraints into the energy function to
produce plausible results for occluded body parts. The first constraint prevents
body parts from entering empty space, i. e. parts in the depth image where no
foreground pixels were detected. The second constraint prevents body parts from
inter-penetrating. However, without an actual measurement it is impossible to
deduce the correct pose for occluded body parts.

We see two ways that could help tracking in difficult scenes. Firstly, occlusions
could be reduced by dynamically moving the cameras during the recording of the
scene. Secondly, occlusions could be handled by adding another input modality
that does not depend on visual cues. As for the first approach, the authors
in [23] make use of three Kinect depth cameras that are carried by operators
around a scene. At a given frame, the depth input of the three Kinects is then
fused into one point cloud representation of the whole scene. Using a generative
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Fig. 7. Illustration of typical tracking artifacts in the case of non-frontal poses and
occlusions. Many trackers require the tracked person to face the depth camera and
have all arms and legs clearly visible. If those requirements are not met, this results in
strong tracking artifacts. These example images where generated using the approach
presented in [2].

tracking approach, the poses of the persons are tracked by fitting a rigged surface
mesh into the point cloud. While this approach shows good results even for
multiple persons in close contact, the runtime of the approach is not real-time
and the use of multiple Kinect cameras is not feasible in home user scenarios.
Furthermore, the use of several Kinect cameras simultaneously bears its own
challenge since these cameras, in contrast to color cameras, interfere with each
other’s measurement. In order to reduce the interference of multiple Kinects, the
authors of [38,39] applied vibration patterns to each camera. These vibrations
have the effect that the point pattern projected by one Kinect looks blurred when
seen from a different Kinect. In contrast, the pattern does not look blurred for
the Kinect it is projected from, since its projector is moved in the same way
its camera is. A similar effect is achieved in the approach presented in [23],
since the three Kinects are not installed on tripods but hand-held by the camera
operators. However, even when using multiple depth cameras, occlusions are
difficult to prevent in many tracking scenarios.

As for the second approach, the fusion of different sensor modalities has be-
come a successful approach for dealing with challenging tasks, in other research
fields. An approach combining two complementary sensor types for full body hu-
man tracking in large areas was presented in [40]. Here, densely placed inertial
sensors, one placed on every limb of the body, provide an occlusion independent
estimation of the persons body configuration using measured global orientations.
Since inertial sensors cannot measure their position, this information is provided
by an optical system mounted to a robot accompanying the tracked person. Un-
fortunately, their approach does not include the rich optical information for sup-
porting the tracking of the persons body configuration. Their approach rather
solves two independent sub task, determining the local body configuration and
estimating the global position of the person.

At this point, we want to take a second look on the approach presented in
[7], which we also discussed in Sect. 3.2. In this approach, the main intention of
using inertial sensors in a classical marker-less tracking framework was to pre-
vent erroneous tracking that stems from the ambiguous representation of body
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(a) (b) (c) (d) (e)

Fig. 8. Normalization of the query pose as presented in [2]. (a) Input point cloud
of the tracked person. (b) Detected end effector positions. (c) Segmentation of the
torso using mean-shift approach. (d) Plane fitted into torso points. The normal of the
plane determines the front direction. (e) Normalized (front direction pointing towards
camera) end effector positions as used for querying.

extremities in silhouette images. Another interesting side-effect is that the iner-
tial sensors provide information about the limb orientations even in situations
when the limbs are not visible to the camera. While in the presented scenario this
effect was not important because multiple cameras enabled an almost occlusion
free observation of the tracked person, this effect might be very important in
monocular tracking approaches. In particular, many current depth-based track-
ers would benefit from additional information that does not depend on visual
cues. In the following, we will take a state-of-the-art depth tracker and explain
in detail how inertial information could be included to increase the performance
in challenging tracking situations.

3.4 Improvement of a Hybrid Tracking Approach

The hybrid depth tracker presented by Baak et al. [2] states a typical example
for combining a generative (local optimization) approach with a discriminative
(DB lookup) approach. While their real-time tracking approach shows good per-
formance on fast and dynamic motions, the tracker requires the person to face
the camera during tracking. Furthermore, if body parts are occluded, the tracker
might produce erroneous tracking results, see also Fig. 7. In this section, we elab-
orate on some of the limitations of this approach and discuss modifications to
enhance its tracking performance. Furthermore, we will show that including ad-
ditional complementary sensor information, such as provided by inertial sensors,
may support the tracking in challenging tracking situations.

The requirement for frontal poses stems from design decisions made by the
authors. In particular, the authors employ a database with normalized poses
that serve as initialization to the generative tracker. As query to the database,
the authors employ so called geodesic extrema, inspired by [24], computed on the
depth point cloud that often co-align with salient features of the persons body
such as the head, hands and feet. The normalization of the database was chosen
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(a) (c)(b)

Fig. 9. Typical tracking situations when some of the geodesic extrema do not align
with the hand, feet and head

to enable a densely sampled pose space while not requiring to sample the same
pose in various global orientations. To this end, their database only contains
poses, where the person is facing the camera frontally. As a consequence, also
the query to the database needs to be normalized in the same way. By fitting
a plane into a subset of depth pixels representing the torso of the person, the
authors compute a front direction that serves as basis for the normalization,
see also Fig. 8. Note that this way of normalization only works for near frontal
poses and it is prone to noise and limbs occluding the torso. In order to pursue
a normalization also in poses with occlusions, an additional inertial sensor could
be leveraged to obtain a stable estimation of the person’s front direction. This
approach works for arbitrary rotations and is independent of optical clues that
are prone to occlusions. This would already stabilize the lookup of poses from
the database in cases when the geodesic extrema are calculated correctly.

However, there will be many occasions remaining where the query to the
database, the geodesic extrema, cannot be calculated correctly. Some of these
occasions with or without occlusions are shown in Fig. 9. The question is, whether
it is possible to obtain poses from a database based on sparse features that are
independent to occlusions. In computer animation this question is related to
the data-driven reconstruction of human motions from sparse control signals.
Many papers have come up that are inspired by an approach using sparse op-
tical features presented in [41]. In particular, the two approaches [42,43] based
on sparse inertial sensors data are interesting in our context since they do not
rely on optical but inertial cues. In particular, the authors use the readings from
inexpensive accelerometers fixed to the body to retrieve poses from a database.
Unfortunately, the authors state, that using accelerometer data to obtain poses
from the database is challenging because of the noisy characteristics of the data
and the lack of discrimination of certain motions. This fact was further exam-
ined in [44], where the authors concluded that features based on orientations
are better suited to describe full-body human motions than features based on
accelerations. To conclude, a sparse set of inertial sensors could also be used
to obtain a pose prior from a pose database when using e. g. orientation-based
features are used for indexing. Such additional sensors could be easily added to
the extremities of the person using straps.
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Fig. 10. Sketch of a fusion approach that uses optical depth data and inertial data to
generate a single combined pose hypothesis.

Inertial data could also be used to support generative trackers. The idea is,
to include information about the limbs orientations directly during the gener-
ative tracker’s optimization. In contrast to the approach presented in [40], we
propose not to solve two independent problems but building a combined energy
function that incorporates visual and inertial constraints. In particular, optical
cues might add positional constraints, while inertial sensors contribute with ro-
tational constraints, see also Fig. 10. This would help to prevent tracking errors
in a similar fashion as described in [7]. Furthermore, the inertial sensors would
provide information about limbs even when they are not visible to the depth
camera. This concept is modular in a way that one could selectively add inertial
sensors to those parts of the body that need highly accurate tracking and do
not attach sensors to body parts one does not need as accurate tracking. Over-
all, this enables selective tracking accuracy that can be adopted to the need of
specific applications. Please note that the additional information needed to re-
solve rotational ambiguities might also be obtained from other sensor modalities
such as RGB-input from a color camera. In particular, one could use feature
tracking-based or optical-flow-based cues to stabilize tracking, see also [45].

4 Conclusion

In this chapter, we showed how recent depth cameras can be employed for track-
ing full-body human motion. Based on the unique properties of the provided
depth data, such as easy background subtraction and geometric information,
monocular tracking approaches become feasible that are not possible with tra-
ditional marker-less techniques. Furthermore, being much cheaper and easier to
setup than systems used by traditional vision-based approaches, depth cameras,
such as the Microsoft Kinect, have enabled applications even in uncontrolled



204 T. Helten et al.

home user scenarios. While there was a lot of progress in the field of monocu-
lar depth tracking of human motions, current approaches still suffer from the
challenging noise characteristics of depth cameras and the sparse information
contained in their depth images. Especially rotational ambiguities and occlu-
sions show, that the tracking of human poses is still very challenging and maybe
not feasible in all cases when only relying to monocular depth images. To this
end, we also discussed how current approaches could benefit from including addi-
tional, complementary sensor information for tracking stabilization. Here, work
from other domains showed that inertial sensors are suitable to provide valuable
information in cases when pure optical approaches fail.
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33. Krüger, B., Tautges, J., Weber, A., Zinke, A.: Fast local and global similarity
searches in large motion capture databases. In: Symposium on Computer Anima-
tion, pp. 1–10 (2010)

34. Wei, X., Zhang, P., Chai, J.: Accurate realtime full-body motion capture using a
single depth camera. TOG 31(6), 188:1–188:12 (2012)

35. Weiss, A., Hirshberg, D., Black, M.: Home 3D body scans from noisy image and
range data. In: ICCV (2011)

36. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape:
Shape completion and animation of people. ACM TOG 24, 408–416 (2005)



206 T. Helten et al.

37. Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., Seidel, H.P.: A statistical model
of human pose and body shape. CGF 2(28) (March 2009)

38. Maimone, A., Fuchs, H.: Reducing interference between multiple structured light
depth sensors using motion. In: 2012 IEEE Virtual Reality Short Papers and
Posters (VRW), pp. 51–54 (2012)

39. Butler, A., Izadi, S., Hilliges, O., Molyneaux, D., Hodges, S., Kim, D.:
Shake’n’sense: Reducing interference for overlapping structured light depth cam-
eras. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI 2012, pp. 1933–1936 (2012)

40. Ziegler, J., Kretzschmar, H., Stachniss, C., Grisetti, G., Burgard, W.: Accurate
human motion capture in large areas by combining IMU- and laser-based people
tracking. In: IROS, pp. 86–91 (2011)

41. Chai, J., Hodgins, J.K.: Performance animation from low-dimensional control sig-
nals. TOG 24(3), 686–696 (2005)

42. Slyper, R., Hodgins, J.K.: Action capture with accelerometers. In: Symposium on
Computer Animation, pp. 193–199 (2008)
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