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Abstract The automatic segmentation and classification

of an unknown motion data stream according to given

motion categories constitute an important research problem

with applications in computer animation, medicine and

sports sciences. In this paper, the scenario of trampoline

motions is considered, where an athlete performs a routine

consisting of sequence of jumps that belong to predefined

motion categories such as pike jumps or somersaults. As

main contribution, a fully automated approach for capturing,

segmenting, and classifying trampoline routines according

to these categories is introduced. Since trampoline motions

are highly dynamic and spacious, optical motion capturing is

problematic. Instead, it is reverted to a small number of

inertial sensors attached to the athlete’s body. To cope with

measurement noise and performance differences, suitable

feature and class representations are introduced that are

robust to spatial and temporal variations while capturing the

characteristics of each motion category. The experiments

show that the approach reliably classifies trampoline jumps

across different athletes even in the presence of significant

style variations.

Keywords Motion classification � Inertial sensors �
Segmentation � Motion features � Class representation

1 Introduction

The usage of recorded human motion capture (mocap) data

for motion analysis and synthesis has become an essential

component in many fields such as computer animation [1],

medicine [2, 3] and sports sciences [4, 5]. For example, in

[4], mocap techniques have been used to analyze in air

motions in elite half-pipe snowboarding. In this paper,

mocap techniques are applied with the objective to auto-

matically classify trampoline motion sequences. This con-

stitutes a challenging application scenario because of the

high complexity in terms of dynamics and recording vol-

ume. In trampolining, an athlete performs a routine that

consists of a sequences of trampoline jumps that belong to

predefined motion categories such as pike jump or a som-

ersault. The classification problem then consists in auto-

matically segmenting an unknown trampoline routine into

its individual jumps and to classify these jumps according to

the given motion categories. Here, further challenges arise

from the fact that there is a wide spectrum on how a jump

from a specific category may be actually performed by an

athlete. As one main contribution of this paper, a fully

automated classification procedure is described that can

handle even significant performance variations.

There are many ways for recording human motion

sequences, including optical, inertial and mechanical

motion capture (mocap) systems, see [1, 3] for an over-

view. For example, optical motion capture systems, which

are widely used in movie and game productions, provide

very rich and easy to interpret data. On the downside, such

systems impose strong restrictions concerning the size of

the capture volume and lighting conditions making them

difficult to use in the described trampolining scenario.

Avoiding such restriction, inertial-based sensors have

become a low-cost alternative, which is increasingly used
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in entertainment, monitoring and sports applications [2, 4–

6]. The drawback of such systems is that the provided

data—accelerations and angular velocities—are difficult to

handle and prone to noise. Here, additional sensor infor-

mation has been used to derive more robust global orien-

tation data [7].

In this paper, a motion classification system is intro-

duced for automatically classifying trampoline routines

based on inertial sensor input, see Fig. 1 for an overview.

As one contribution, it is discussed how inertial raw data is

transformed into meaningful and robust feature represen-

tations underlying the classification scheme. As for the

predefined motion categories, suitable training data is used

to learn class representations that described the character-

istics of a specific trampoline jump. Here, as a further

contribution, the concept of boolean motion templates [8]

is extended to the real-valued case. In particular, the notion

of variance templates is introduced that allow for blending

out performance variations to be left unconsidered in the

classification stage. In this classification system, an athlete,

being equipped with a small number of inertial sensors,

performs a trampolining routine. The resulting motion

stream is first segmented into individual jumps, which are

then classified by comparing the segments with the previ-

ously learned class representations using a suitable simi-

larity measure. To prove the practicability of the proposed

approach, trampoline motions consisting of 750 individual

jumps that comprise 13 different classes performed by four

different athletes have been recorded. Various experiments

are reported on which show that this procedure yields a

high classification accuracy even in the presence of sig-

nificant style variations across the different athletes.

The remainder of this paper is organized as follows.

Firstly, some basics on trampolining (Sect. 2) as well as on

motion capturing (Sect. 3) are discussed. Then, the seg-

mentation procedure (Sect. 4) is described, various feature

representations (Sect. 5) are discussed, and the class repre-

sentations in form of real-valued motion templates (Sect. 6)

are introduced. Subsequently, the actual classification

procedure is described and evaluated, demonstrating the

practicability of the proposed approach (Sect. 7). Finally,

this paper is closed with an outlook on future work (Sect. 8).

2 Trampoline motions

In this section, some characteristics of trampoline motions

are described, which can be exploited for segmentation and

classification tasks. Trampolining is closely related to

gymnastics where athletes perform a sequence of acrobatic

moves. During a trampoline performance there are two

alternating phases. Firstly, there is a flight phase in which

the actual moves are performed and, secondly, there is a

contact phase in which the athlete is in contact with the

trampoline bed, see Fig. 2a. Furthermore, a contact phase

can be separated into two sub-phases, a landing phase,

where the athlete slows down, and a takeoff phase, where

the athlete gains speed for the next jump. In the following,

a trampoline jump is defined to be the concatenation of one

takeoff phase at the beginning, one flight phase in the

middle, and one landing phase at the end.

During these three phases, the athlete assumes and

executes different poses and rotations, see Fig. 3. The first

three subfigures (Fig. 3a–c) show different body poses

assumed during the contact phase of a jump. Since these

poses are determined during the landing phase of a jump,

they are referred to as landing poses. During the flight

phase the athlete assumes certain body poses (Fig. 3d–f)

and/or executes rotations (Fig. 3g–i) around the body’s

lateral and/or longitudinal axis. A given combination of a

landing pose in the takeoff phase, poses and rotations

during the flight phase and a landing pose in the landing

phase of a jump completely characterize a given jump. In

the following, all jumps which contain the same sequence

of poses and rotations are considered to belong to the same

jump class. Table 1 shows thirteen jump classes of low and

intermediate difficulty along with a short description. For

example, the class ‘‘tuck jump’’ (TJP) starts with the pose

Fig. 1 Classification system

used in this paper. Bottom class

representations are computed

for each of the motion

categories in a preprocessing

step. Top an unknown

trampoline routine is converted

into a feature sequences which

is then segmented into single

jump. Finally the segmented

jumps are compared to the class

templates and labeled with the

name of the most similar class

156 T. Helten et al.



‘‘on feet’’ (Fe) during the takeoff phase, it continues with

the pose ‘‘tucked’’ (Tu), and finishes with the landing pose

‘‘on feet’’ (Fe). Another example is the jump class BAR,

also known as Barani, consisting of the landing pose ‘‘on

feet’’ (Fe) in the beginning, a 360� somersault forwards

(F360) combined with a 180� twist (T180) and ending on

the feet (Fe). In trampolining, the most basic jump class is

the straight jump (STR) which only consists of the pose

‘‘on feet’’ at the beginning and at the end of the jump.

During competitions athletes have to perform so called

routines which are sequences of jumps. Here, a routine

starts with a number of straight jumps to gain momentum.

After this preparation the athlete has to perform a sequence

of ten jumps from a set of predefined jump classes. Then,

in this classification scenario, the task is to segment the

routine and to determine the classes of the performed

jumps.

For the experiments, the trampoline performances of

four female, non-professional athletes with intermediate

skills were recorded. The athletes were given the oppor-

tunity to warm up and train various jumps which occur

during the following recording. Then, they were asked to

perform eight predefined routines and up to two routines

that they could chose by themselves. Each routine was

performed two to three times by one athlete. Between the

routines the athletes were able to rest. In the experiments

the effects of fatigue and training where not accounted for.

In total, 109 routines with difficulty scores ranging from

0.4 to 3.1 comprising a total of 750 jumps were recorded.

Out of these 109 routines 13 routines were chosen to form a

routine database DR: From the remaining 96 routines, for

each of the 13 jump classes 16 instances—four instances

for each of the four actors—were manually assembled. The

resulting dataset, containing 208 jumps, is denoted as cut

database DC: DC is then partitioned into two databases D0C
and D00C each containing two jumps per actor from all 13

jump classes, amounting to 104 jumps. Note that the par-

titioning is always done in a way that all databases contain

routines done by all four actors from every phase of the

recording.

Fig. 2 Illustration of phases

during a trampoline jump and

the corresponding accelerations.

a Phases of a trampoline jump

comprising a contact phase (C),

a landing phase (L), a takeoff

phase (T), and flight phase (F).

b Absolute acceleration as

measured by sensor s1 (light
gray), as well as low pass

filtered acceleration (black) and

threshold (s = 35 m/s2) as used

for the automatic segmentation

described in Sect. 4

Fig. 3 a–c Landing poses during the contact phase: on feet (Fe),

seated (Se) and on the front (Fr). d–f Different body poses during the

flight phase: piked (Pi), tucked (Tu) and straddled (St). g–i
Rotations around main body axes during flight phase: lateral forwards

(F*), lateral backwards (B*) and twists around longitudinal axis (T*)
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3 Sensors

As stated before, there are many ways to record human

motion data using, e.g., optical, magnetic, inertial and

mechanical mocap systems. A general overview of current

optical mocap techniques can be found by Moeslund et al.

[1], while Zheng et al. [3] give a summary on mechanical

and inertial mocap systems. Now a closer look is taken on

optical mocap systems on the one hand and inertial sensor-

based systems on the other hand.

The most widely used motion capture systems in com-

puter animation and movie industry are optical marker-

based mocap systems as the Vicon MX1 or the Phase-

Space.2 Here, a set of calibrated cameras is used to record

2D images of an actor wearing a suit with retro-reflective

or active markers, see Fig. 4a. From these 2D images the

3D positions of the markers can be deduced with high

accuracy. Besides accuracy, the 3D marker data can be

easily converted to other representations based on joint

positions or joint angles. However, there are also some

drawbacks, as illustrated by Fig. 4a. For example, the

lighting during the recording must be dim so that the

markers can be distinguished from the background. Fur-

thermore, the setup of the systems is cumbersome as many

cameras need to be carefully placed, aligned, and calibrated

in order to cover the large capture volume as needed for

trampoline motions, see Fig. 4b. In addition, due to the

highly dynamic character of trampoline motions, markers

can easily detach from the suit requiring an interruption of

the recording session. Finally, optical marker-based mocap

systems are rather expensive in comparison to other mocap

systems.

For these reasons, in many sports and medical applica-

tions, human motion is often recorded using much cheaper

devices such as single high-speed cameras or even standard

consumer camcorders. Here, the recorded video stream has

to be manually annotated using specialized software tools,

from which various motion parameters such as joint posi-

tions or joint angles are derived. Obviously, the quality of

the used cameras highly influences the accuracy of the

deduced motion data. For example, if the camera has a low

temporal resolution, motion blur as shown in Fig. 4c ren-

ders the correct positioning of annotations impossible.

Furthermore, as the main drawback of such video based

Fig. 4 a Recordings using optical systems require controlled lighting

conditions. b Cumbersome setup of an optical mocap system.

c Optical recordings suffer from motion blur in case of fast motion.

d Actor wearing a suit containing inertial sensors. e Locations of the

seven motion sensors attached to the human body as used in this

paper. f Inertial sensors are attached in direction of the body’s limb

and can measure the limb’s orientation

Table 1 Low and intermediate

level jumps used for

classification

The table shows how the jumps

are composed of the poses and

rotations displayed in Fig. 3

ID Description Poses and rotations during phases

Takeoff Flight Landing

BAR Barani Fe T180, F360 Fe

FRF Front to feet Fr Fe

HTW Half twist Fe T180 Fe

HFR Half twist to front Fe T180, F90 Fr

PJP Pike jump Fe Pi Fe

SHA Seat half twist to feet Se T180 Fe

SST Seat to feet Se Fe

BWB Somersault backwards piked Fe Pi, B360 Fe

BWS Somersault backwards to seat Fe Tu, B360 Se

BWC Somersault backwards tucked Fe Tu, B360 Fe

SJP Straddle jump Fe St Fe

STR Straight jump Fe Fe

TJP Tuck jump Fe Tu Fe

1 http://www.vicon.com.
2 http://www.phasespace.com.
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methods, the manual annotation process makes large-scale

experiments with a high data throughput infeasible.

In this paper, an inertial sensor-based mocap system is

used consisting of seven Xsens MTx3 sensor units denoted

by s1, …, s7. The sensors are placed inside a suit (see

Fig. 4d) together with a wireless transmission system

which sends the measured data directly to a computer. For

this reason, inertial sensors do not pose any restrictions on

the lighting requirements and can be used in many loca-

tions, even outdoor. Fig. 4e shows the placement of the

seven sensors in the setup fixed at the trunk, the forearms,

the upper legs and the lower legs of the athlete. Further-

more, as indicated by Fig. 4f, the sensors are carefully

aligned in a way that the sensors’ local X axes are parallel

to the limbs they are attached to while pointing away from

the body’s center. In general, inertial sensors only provide

3D accelerations a and 3D angular velocities x which are

rather unintuitive quantities prone to noise. For example

acceleration sensors not only measure the acceleration due to

motion but also the acceleration due to gravity. In other words,

an acceleration sensor which is in rest observes a constant

acceleration in the upward direction. This superposition of a

motion-dependent and a direction-dependent component

renders acceleration sensors alone difficult to use for motion

analysis. Yet, by combining inertial sensors with other sensor

types [7, 9], as done in the Xsens MTx units, it is possible to

calculate full three degrees of freedom global orientations

denoted by q. In this contribution, the 3D accelerations, 3D

rate of turn data and three degrees of freedom orientation data

are used as provided by the sensor units. Note that this data is

already preprocessed (a and x), respectively derived (q) by

the sensor units from the raw data of the unit’s acceleration

sensors and rate of turn sensors. Now, some further notations

used in the rest of the paper are fixed.

A sensor data stream is modeled as a sequence

D = (S1, S2, …, SK) of sensor readings Sk 2 S for

k [ [1 : K]: = {1, 2, …, K} (w. r. t. a fixed sampling rate,

in this case 100 Hz). Here, S denotes the space of sensor

readings and K denotes the number of frames. Each sensor

reading Sk consists of the orientations, accelerations and

angular velocities measured by the seven sensor units:

Sk :¼ qk
s1
; . . .; qk

s7
; ak

s1
; . . .; ak

s7
;xk

s1
; . . .;xk

s7

� �
; k 2 ½1 : K�;

ð1Þ

where qk
s 2 IR3ak

s 2 IR3;xk
s 2 IR4 for all s [ {s1, …, s7}.

4 Segmentation

The first step of the proposed classification system is the

segmentation of an unknown trampoline motion sequence

into separate jumps. Here, the two phases are used, the

contact phase and the flight phase, which segment jumps in

a natural way. While the actual jump is performed during

the flight phase, the athlete gains momentum during the

contact phase, which is always related to a large absolute

acceleration of the whole body. This absolute acceleration

can be measured using the L2-norm of the three-dimen-

sional sensor readings of sensor s1 which is located at the

athlete’s trunk. As shown in Fig. 2b, the measurement of

kas1
k2 is rather noisy. For this reason, a low pass filter L of

width corresponding to 0.1 s is applied to the measured

accelerations to obtain a :¼ Lðkas1
k2Þ: Then, those frames

k were labeled that satisfy the heuristic ak [ s to be a

contact phase frame, where s is a suitably chosen threshold.

The threshold s = 35 m/s2 was defined experimentally

using a small test dataset. The exact value was not crucial

in the conducted experiments—a variation of ±5 m/s2 is

acceptable—but the threshold might be dependent on the

skill level of the athletes or the properties of the used

trampoline. Firstly, during the flight phase, the dynamic of

the performed rotations affects the value of threshold. Fast

rotations, as performed by skilled athletes, require higher

thresholds than slower rotations. Secondly, depending on

the jump height—or the stiffness of the trampoline bed—

the acceleration during the contact phase is affected. Here,

higher accelerations allow for a higher threshold, lower

accelerations require a lower threshold. An experiment was

conducted to get a quantitative impression how well this

simple segmentation algorithm works. To this end, the 13

routines from the routine database DR were automatically

segmented and the results were compared with the manu-

ally generated ground-truth segmentations which were

obtained by manual inspection of a 25-Hz synchronized

video. In this experiment, a jump was considered to be

segmented correctly when the computed interval ends only

differed from the ground-truth interval ends by a maximum

of 0.15 s (15 frames using the 100 Hz Xsens frame rate).

The experiment showed that in total 94% of the jumps were

segmented correctly. Here, the wrongly segmented jumps

were exclusively at the very beginning or at the end of the

trampoline routines, where the athletes were still in the

preparatory phase and the accelerations were compara-

tively low. Actually, all of the important jumps during the

routine were segmented correctly.

5 Feature representation

As for the classification step, the raw sensor input is much

too noisy and inconsistent to yield good motion represen-

tations. This is partly due to the noise introduced by the

measurements itself. Even more problematic is the fact that

different performances of the same jump may reveal3 http://www.xsens.com.
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significant spatial, dynamical, and temporal differences. In

particular, there are many actor-specific performance

variations within a jump class. Therefore, instead of

working on the raw data itself, suitable feature represen-

tations were derived from the inertial data that encode

important and intuitive properties of the athlete’s body

configuration while being invariant under global variations

such as the actor’s facing direction. In Sect. 6, it is shown

how to deal with local performance variations by intro-

ducing suitable class representations. Now, three different

feature types will be introduced. The first feature type /s

measures the angle between the X axis of a sensor s and the

horizontal plane. If the sensor is aligned as shown in

Fig. 4f, this angle is the same as the angle between the limb

and the horizontal plane, see Fig. 5a. In other words, the

feature /s measures the inclination of a limb with respect

to the ground plane. The second feature type hs,t/ws,t

measures the enclosed angle between two limbs. Here, the

only difference between hs,t and ws,t is the way the feature

is computed. The feature ws,t measures the angle between

limbs belonging to different extremities (Fig. 5b), while

the feature hs,t measure the angle between limbs belonging

to the same extremity (Fig. 5c). Finally, the third type of

feature ~xs captures the angular velocity of the sensors

X axis. In other words, this feature type measures the

velocity as a limb rotates around its longitudinal axis. The

exact formulas used to compute the introduced feature

types are given in the ‘‘Appendix’’.

Based on these three feature types, in total nine features

are defined as shown in Table 2. Mathematically, a feature

is a function F : S! IR: By forming a vector of f features

for some f C 1, a combined feature F : S! IRf is

obtained which is referred to as a feature set. In this paper,

F is equal to one of the following feature sets

FI5A3W :¼ ðF1;F2;F3;F4;F5;F6;F7;F8;F9ÞT ; ð2Þ

FA3W :¼ ðF6;F7;F8;F9ÞT ; ð3Þ

FI5W :¼ ðF1;F2;F3;F4;F5;F9ÞT ; or ð4Þ

FI5A3 :¼ F1;F2;F3;F4;F5;F6;F7;F8ÞT ; ð5Þ

where the index (e. g., I5A3W) gives a hint on what

features are included in the feature set. The part I5 stands

for the five inclination type features F1, F2, F3, F4, F5, A3

represents the three angular type features F6, F7, F8, and W

stands for the one angular velocity type feature F9. This

naming convention becomes important in Sect. 7 where the

importance of the different feature types for the proposed

classification scenario is discussed. Fig. 5e shows how a

feature set F ¼ FI5A3W is applied to a sensor data stream D.

The result is represented by a feature matrix FðDÞ ¼
ðFðS1Þ; . . .;FðSKÞÞ with f rows and K columns, where in

this case f = 9 and K = 132. Each row of such a feature

matrix represents one feature, while each column repre-

sents the feature values F(Sk) for a frame k 2 ½1 : K�:

6 Class representations

Based on feature matrices, a representation is now described

that captures characteristic properties of an entire motion

class. To this end, the concept of motion templates (MTs)

is adapted, which was previously introduced in [8] by Müller

and Röder. Here, given a class C ¼ fD1; . . .;DNg consisting

of N example motions Dn; n 2 ½1 : N�; first all motions are

converted into features matrices Xn. Then, the idea is to

compute a kind of average matrix. However, note that the N

motions generally have a different length. Therefore,

dynamic time warping is applied to temporally align the

motions and to warp all feature matrices to yield the same

length. The average matrix XC over the warped feature

matrices is then referred to as class motion template. Müller

and Röder apply this concept to boolean-valued features

θs6 s2

(c)

ψs6 s7

(b)

φs5

(a) (d)

ω̃s1

1 30 60 90 132
−1

−0.5

0

0.5

1

F9
F8
F7
F6
F5
F4
F3
F2
F1

Time [frames]

X

Y
X

Y

FI5A3W(D)

(e)

,

Fig. 5 Illustration of the various feature types and the feature

representation

Table 2 Description of the used features with feature ID and type

ID Type Description

F1 /s1 Inclination of lower spine

F2 /s2 Inclination of left lower leg

F3 /s3 Inclination of right lower leg

F4 /s4 Inclination of left forearm

F5 /s5 Inclination of right forearm

F6 hs6,s2 Angle between left lower and upper leg

F7 hs7,s3 Angle between right lower and upper leg

F8 ws6,s7 Angle between left upper and right upper leg

F9 ~xs1
Absolute angular velocity around the body’s

longitudinal axis

160 T. Helten et al.



matrices yielding boolean feature matrices. As a consequence,

regions in the class MT with the values zero/one indicate

periods in time (horizontal axis) where certain features (ver-

tical axis) consistently assume the same values zero/one in all

training motions, respectively. By contrast, regions with val-

ues between zero and one indicate inconsistencies mainly

resulting from variations in the training motions (and partly

from inappropriate alignments). This property of MTs can

then be used to automatically mask out the variable aspects of

a motion class when being compared with an unknown motion

data stream. This makes motion classification very robust

even in the presence of significant performances differences,

see [8] for details.

Now, the concept of motion templates is applied to

the trampoline classification scenario. LetC ¼ fBAR; . . .;TJPg
be the set of all considered jump categories, and let C 2 C

one of the motion classes. Using a feature set F, all example

motions contained in C are converted into feature matrices.

However, opposed to the approach by Müller and Röder [8],

the proposed features are real-valued, so that some modifi-

cations in the MT computation are needed. First of all, to

balance out the importance of the various features contained

in F, all features need to be normalized to approximately

have the same range. In this case, as described in the

‘‘Appendix’’, the feature were designed to lie roughly in the

range [ -1, 1]. Note that this normalization does not depend

on the underlying data (i. e., it does not change with an

athletes performance). As an example, Fig. 6a–c shows the

resulting feature matrices of three example jumps from the

class C = BAR. Then, as proposed by Müller and Röder, the

normalized feature matrices are temporally warped and an

average matrix XC is computed, see Fig. 6d. Now, starting

with real-valued instead of boolean-valued feature matrices,

the inconsistencies are not revealed as described by Müller

and Röder. Instead, a variance template VC is computed,

which encodes the entry-wise variance of the N warped

feature matrices, see Fig. 6e. Here, the idea is that incon-

sistent regions in the real-valued feature matrices induce

larger variances than consistent regions. Now the variance

template can be used to mask out inconsistencies in XC. In

this setting, those regions of XC are masked out, where the

value in VC is larger than the 75% quantile of all values of

VC. In other words, the 25% most variant values are ignored,

see Fig. 6f. Here, the percentage value of 25% has been

determined experimentally, yielding a good trade-off

between capturing sufficient motion characteristics while

suppressing unwanted motion variations. Mathematically,

the masking is modeled as a separate mask matrix

MC 2 IRf�K ; where a value of 0 means that the value is

masked out. The entries of MC can be computed in the

following way:

MCði; jÞ :¼ 1 : VCði; jÞ�Q75%ðVCÞ
0 : else

�
ð6Þ

for i 2 ½1 : f � and j 2 ½1 : K�: Here, Q75%(VC) is the 75%

quantile of VC. Later in this paper, a scenario is introduced

where the influence of certain feature functions needs to be

amplified. This can be modeled by allowing other values

beside 0 and 1 inside the mask matrix.

7 Classification and experiments

For the classification an unknown jump is locally compared

with all class MTs XC for C 2 C and then labeled

according to the class MT having the smallest distance to

the jump. In the following, let Y 2 IRf�L be the feature

matrix of an unknown jump to be classified, where L is the

length of the jump and f is the number of features. The used

distance measure is a variant of dynamic time warping

(DTW) as described by Müller and Röder, but the local

cost measure c has to be adjusted in order to be compatible

with the proposed masking. Let mðkÞ :¼
Pf

i¼1 MCði; kÞ;
then the masked local cost measure is defined as

cðk; ‘Þ :¼ 1

mðkÞ
Xf

i¼1

MCði; kÞjXCði; kÞ � Yði; ‘Þj2
 !1

2

; ð7Þ

for m(k) = 0 and c(k,l) = 0 for m(k) = 0, where k 2 ½1 :

K� and ‘ 2 ½1 : L�: Now, the distance DC between a class

C with MT XC and mask MC and a feature matrix Y is

defined as
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Fig. 6 Template computation: a–c feature matrices for three different

jumps from the class BAR. d Average of aligned feature matrices

(average template). e Variances of aligned feature matrices (variance

template). f Template, where regions with 25% highest variances are

masked out (masked template)
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DCðYÞ :¼ 1

K
DTWðXC; YÞ; ð8Þ

where DTW denotes the DTW-distance between the

sequences of columns defined by XC and Y using the local

cost measure c. Finally, the classification problem for an

unknown jump with feature matrix Y can be solved by

identifying the class C 2 C which has the smallest distance

DCðYÞ:

7.1 Influence of feature types

Firstly, an experiment is reported on that is used for

investigating how the quality of the classification depends

on the used feature types. To this end, confusion matrices

are used, which give a qualitative impression which jump

classes are classified correctly, and which jump classes are

confused among each other. Such confusion matrices dis-

play the ratio of how many motions from a given class

(abscissa) were classified as a certain class (ordinate),

where dark entries represent a high percentage of motions.

If the used feature types discriminate jump classes well,

this would result in a dark diagonal leading from the top

left of the matrix to the bottom right. In this experiment,

jumps from database D0C were used to learn the motion

templates while D00C was used for evaluation.

Figure 7 shows the confusion matrices for the four dif-

ferent feature sets defined in Sect. 5, where the feature set

FI5A3W includes all feature types, while the feature sets

FA3W;FI5W; and FI5A3 lack one of the feature types. In

Fig. 7a it can be seen that the feature set FA3W; which lacks

the inclination aspect, performs worst. This is expressed by

the many high-valued off-diagonal entries which are an

indication for massive miss-classifications. This shows that

the feature set FA3W is too sparse for distinguishing dif-

ferent jump categories. Figure 7b shows the results for the

feature set FI5W: Here, while most of the jumps were

classified correctly, the jump classes PJP, SJP, and TJP

are mixed up among each other. This is due to the fact that

these jump classes only differ in the configuration of the

legs during the flight phase. For example, in both jump

classes PJP and SJP the legs are straight to the front

during flight. The only difference is that in the jump class

SJP the legs are additionally straddled. If the feature set

contains inclination and angle feature types, as shown in

Fig. 7c, the classification works better for the jump classes

PJP, SJP, and TJP, but now other jump classes as STR

and HTW get mixed up. Here, these two jump classes only

differ in a rotation around the bodies longitudinal axis. For

this reason, the feature that measures the angular velocity is

needed to capture the difference between the two jump

classes. Finally, Fig. 7d shows that the proposed feature set

FI5A3W almost perfectly separates all jump classes from

each other.

7.2 Routine classification

As main experiment, the automatic segmentation from

Sect. 4 is combined with the classification introduced

above. Here, the overall system performance is evaluated

in a realistic trampolining scenario. Furthermore, it is

discussed how the used masking affects the retrieval

results. For this evaluation, the thirteen routines from the

database DR are used for evaluation, while the motion

templates are again learned from the databases D0C:

Furthermore, quantile masks are used as defined in Eq. 6.

Figure 8a displays a classified routine where the black

regions represent the automatic classification result and

the red rectangles indicate the manual ground-truth

annotations. It can be seen that for this example 14 out of

18 jumps were classified correctly. Here, for example,

the misclassification of the jump SHA (frames 2,200–

2,350) with the class SST is due to the fact that the

feature F9 is the only feature which is actually able to

capture the difference between this two classes. Simi-

larly, the confusion between STR (frames 3,050–3,200)

and HTW can be explained. In such cases, the influence of

the feature F9 on the local cost measure c is not large

enough (its only one ninth compared to the features

F1; . . .;F8). In order to better separate the confused jump

classes from each other, the influence of the feature F9

(a) (b)

(c) (d)

Fig. 7 Confusion matrices showing the influence of the different

feature types. The learning database is D0C while the evaluation

database is D00C: In all four cases the quantile mask introduced in Sect.

6 is used
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can be increased by replacing all ones in the quantile

mask matrices of the class representations belonging to

feature F9 with some value larger than one (five in this

experiments). The effect of such so called weighted mask

matrices can be seen in Fig. 8c, where the previously

misclassified jumps SHA and STR are now classified

correctly. The misclassifications between the jump TJP

(frames 1,950–2,075) with STR and the jump PJP

(frames 2,380–2,500) may be explained as follows.

Firstly, it has to be noted that the performance variations

between jumps that belong to the same class are often

significant—even within the jumps of the same athlete.

Such variations are actually masked out by the local cost

measure. Now, the differences between two jump classes

such as TJP and STR or PJP and SJP are often subtle

and only refer to a single motion aspect. It may happen

that such aspects are actually masked out by the pro-

posed masking concept, which then leads to unwanted

confusion. These examples indicate the trade-off

between robustness on the one hand and discrimination

capability on the other hand.

In addition to this qualitative analysis, a quantitative

analysis was done to measure the classification accuracy

for each jump class. An automatically segmented jump is

considered as classified correctly if its segment boundaries

lie in the neighborhood of an annotated jump (using a

tolerance of 0.15 s) and if the computed class label coin-

cides with the annotated label. In this evaluation, three

different masking strategies are considered: binary mask-

ing (quantile mask), weighted masking, and no masking at

all. As Fig. 8c shows, the classification results are very

good for most classes independent of the used masking

strategy. This again shows that the proposed features are

capable to capture relevant motion characteristics. When

using the weighted mask matrix the classification results

are generally better than when using the binary mask.

Especially, the jump classes SHA and STR, as in the pre-

vious paragraph, benefit from the use of weighted masking.

A good example how masking in general improves the

classification results are the jump classes FRF, FTW, and

STR. Here, the variances, within the jump classes are very

high among actors and result in misclassified jumps, when

no masking is used. On the contrary, the jump class TJP

does not benefit from masking out variant regions, since, in

this case, these regions also contain the only information

that is able to discriminate this jump class from other jump

classes.

8 Conclusion and future work

In this paper, a system for the automatic segmentation and

classification of trampoline routines based on inertial sen-

sor input has been introduced. Here, the motivation for

using inertial sensors was that such sensors better deal with

dynamic motions and do not impose constraints as far as

the recording volume or lighting conditions are concerned.

As the main contribution, suitable feature representations

have been discussed that are invariant to spatial variations

and robust to measurement noise. Based on this feature

representations, real-valued motion templates were intro-

duced that grasp the characteristics of an entire jump class.

To handle significant performance variations, a masking

scheme based on variance templates was introduced. Fur-

thermore, a weighting strategy to enhance the influence of

certain features was presented. For future work it is plan-

ned to apply these techniques in an online scenario, where

the performance of an athlete is assessed and feedback for

performance improvement is given directly. A possible

means of such feedback might be the sonification of certain

motion parameters with respect to a learned reference

performances.

(a)

(b)

(c)

Fig. 8 Classification results for routine scenario (filled rectangles
automatic classification, outlined rectangles manual annotation). The

class representations where learned using database D0C; while the

classified routines are taken from database DR: a Classification result

for an example routine when using quantile masks. b Classification

result for the same routine when using weighted masks. c Classifica-

tion accuracy for the 13 learned jump classes using different masking

techniques
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Appendix: feature computation

In the following, it is shown how the features /s, hs,t, ws,t

and ~xs can be computed. To this end, it is assumed that

the sensor data stream is defined as shown in Sect. 3 The

rotations inside the sensor data stream must be given in a

suitable rotation representation as for example unit qua-

ternions (see [10]). Furthermore, if q is a rotation in a

given representation, then let q½m� be the 3D vector v

rotated by q. The features /s, hs,t, ws,t and ~xs are now

defined as

/s ¼ 1� 2

p
arccos ð0; 0; 1ÞT ; qs ð1; 0; 0ÞT

� �� �
; ð9Þ

hs;t ¼ 1� 2

p
arccos qs ð1; 0; 0ÞT

� �
; qt ð1; 0; 0ÞT
� �� �

; ð10Þ

ws;t ¼ 1� 2

p
arccos qs ð�1; 0; 0ÞT

� �
; qt ð1; 0; 0Þ

T� �� �
; and

ð11Þ

~xs ¼
2

3p
xsð Þx
		 		: ð12Þ

Here, h�; �i denotes the scalar product of two vectors, while

ð�Þx is the x-component of a vector. Please note, that the

features as defined above have roughly a range of [ -1, 1].

Note that this normalization is data-independent. This is

required, as mentioned in Sect. 6.
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