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Abstract
We present a data-driven method for completion of corrupted marker-based motion capture data. Our novel ap-
proach is especially suitable for challenging cases, e.g. if complete marker sets of multiple body parts are missing
over a long period of time. Without the need for extensive preprocessing we are able to fix missing markers across
different actors and motion styles. Our approach can be used for incrementally increasing prior-databases, as the
underlying search technique for similar motions scales well to huge databases.
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1. Introduction

Optical motion capture is the standard technique for creat-
ing realistic human motions in computer animation: Multi-
ple cameras are used to track markers which are attached
to an actor’s body. Finally, 3D trajectories of the individual
markers are reconstructed from the two dimensional images
by triangulation techniques. Using fitting techniques, skele-
ton abstractions may be computed.

Although the topic of cleanup of motion capture data is a
classical one and various cleaning techniques are available in
commercial mocap system software, the problem is far from
being solved and has obtained renewed attention in the last
years [LMPF10, LC10, XFH11].

If gaps in several markers occur for a longer period of
time—a scenario quite common if closely interacting ac-
tors are captured simultaneously or interaction with the en-
vironment is essential and hence occlusion of several mark-
ers over longer time periods occur—all of the existing ap-
proaches have major limitations, especially if no previously
captured motions of the same actor which are similar to the
one to be cleaned are available.

In this paper we present a general framework for data-
driven filling of gaps in marker-based mocap data. The novel
approach can handle challenging cases, especially if com-
plete marker sets of multiple body parts are missing over a
long period of time. Without the need for extensive prepro-
cessing we are able to fix missing markers across different
actors and motion styles. The results agree with human intu-
ition and key features of the original input motion are greatly
retained.

2. Related Work

Rudimentary gap filling is available in commercial software
systems like Vicon IQ or Blade [Vic]. These methods rely on
simple interpolation techniques, such as linear and spline in-
terpolation of marker trajectories and thus fail if curvature
changes sign. Moreover, such simple methods do not ac-
count for correlated motion of markers (e.g. for markers at-
tached to the same body segment). For this reason, the above
mentioned software systems also provide methods to recover
a missing marker from a group of other markers if a rigid re-
lationship between both the marker and the group may be
assumed. However, this requires at least three other markers
or joint positions relative to the missing marker’s segment to
be present in the gap.

Herda et al. [HFP∗00] developed a skeleton based marker
tracking and reconstruction technique to infer the positions
of missing markers by using kinematic information provided
by the underlying skeleton and the markers’ positional data
from previous frames that are attached to the same bone.
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This method is applicable to short time occlusions of sin-
gle markers, but it fails if entire segments are occluded for
extended periods of time.

Kalman filters have been used in [DU03] to predict the tra-
jectories of missing markers. However, Kalman filter based
approaches fail when markers are missing for an extended
time period or are missing entirely.

Li et al. [LMPF10] propose a method for occlusion filling
of marker data by learning a linear dynamical system that
respects inter-marker distances. However, this method relies
on the existence of other markers on the same segment to
make inter-marker distance measurements possible at all.

A data-driven method, which uses a piecewise linear mod-
eling approach, was proposed by Liu and McMillan [LM06]
for estimating missing markers.
Recently, additional data-driven methods for cleaning mo-
tion capture data have been proposed [LC10, XFH11]. Lou
and Chai [LC10] were able to filter corrupted motion data
by learning a series of spatial-temporal filter bases from
prerecorded motion data. Using their filtering approach in
a nonlinear optimization framework they were able to re-
duce noise, remove outliers and fill gaps while keeping the
spatial-temporal patterns of the filtered human motion in-
tact. Their method requires building of a training database
in a time consuming pre-processing step which exclusively
contains motions similar to the motion to be cleaned. Thus,
in contrast to our method, it cannot handle different mo-
tion styles simultaneously without expensive preprocessing.
Xiao et al. [XFH11] devised a method for filling gaps by
representing incomplete poses by a linear combination of
a few poses from a training set. Their approach as well as
the work in [LC10] requires the training mocap data to be
cleaned and to contain similar motion patterns (of the same
actor) as the input motion. Moreover, the robustness of their
approach to additional unrelated data in the training set was
not discussed.

The problem of pose and motion reconstruction from
sparse markers has also been the topic of various papers.
In [GMHP04] and its accompanying video, the authors show
the reconstruction of motion from sparse marker data. Al-
though the results of their method are visually appealing, it
largely depends on a specifically learned model that fails to
capture the natural diversity of human motion. In [CH05],
Chai and Hodgins show how to transform the positions of a
small number of markers to full body poses. They construct
a neighbor graph with the poses of the prior database as ver-
tices. In a preprocessing step, an edge between two poses
is added to the graph if the poses are near each other. This
limits the NN-search to poses already in the database and
can give only approximate results if the query pose is not
contained within the available example motions. Due to its
quadratic preprocessing time, it does not scale well with re-
spect to the size of the database. Moreover, in the optimiza-
tion step, the synthesized motion depends on the positional

information contained in the prior database while completely
ignoring the temporal evolution (e.g. velocities and acceler-
ations) of the local model. This might be an issue at turning
points in the motion’s trajectory. In our method, we incor-
porate this additional information yielding smooth and natu-
ral results. Krüger et al. [KTWZ10] improve on the method
presented in [CH05] by using a kd-tree for determining the
neighborhood of a query pose resulting in exact neighbor-
hoods for arbitrary query poses.

Since our method is data-driven, it uses motions from
a mocap database to construct a prior-database. Currently,
the largest freely available database is the Carnegie Mellon
University mocap database [Car04], which contains 2605
trials in 6 categories and 23 subcategories. Another large
database, the HDM05 library [MRC∗07], was recorded at
the Hochschule der Medien in Stuttgart and contains more
than three hours of systematically recorded and well docu-
mented motion capture data. Both of these databases provide
the data in c3d as well as asf/amc data format.

3. Overview

Our approach takes advantage of data driven techniques.
For that reason we need a mocap-database containing mo-
tions which are comparable to the clip to be processed by
our method. One fundamental assumption of the proposed
method is that all poses contained in the database as well
as the motion to be cleaned share the same marker set. Fur-
thermore, we assume that valid markers — i.e. the set of
markers that are assumed to contain reliable positional in-
formation — are given for each frame of the input motion to
be completed.

In a preprocessing step all mocap data from the prior-
database is first normalized with respect to global position
and orientation. Based on normalized positional data of valid
markers we then build an efficient spatial indexing struc-
ture (kd-tree). In addition, linear marker velocities as well
as accelerations are stored. These quantities are required for
prior-based motion synthesis. For more details regarding this
preprocessing step we refer to Sect. 4.1.

Subsequently, missing markers are synthesized for a given
motion clip using nonlinear optimization. To this end similar
examples from the database are retrieved by kd-tree based
nearest neighbor search. These examples serve as priors to
drive the synthesis process as discussed in Section 4.2. The
whole pipeline of the proposed method is sketched in Fig. 1.

4. Workflow

4.1. Preprocessing

Our method is inspired by the solution to the pose matching
problem presented by Krüger et al. [KTWZ10]. Here, the
key idea was to analyze similarity of poses by employing
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Figure 1: Workflow of the proposed method.

kd-tree based k-nearest-neighbor-search in dedicated feature
spaces. Please note that this approach requires normalizing
all poses with respect to global orientation and position. As
— in contrast to Krüger et al. [KTWZ10] — no skeleton
representation but point cloud data is given these quantities
are estimated by exploiting rigid connectivity between valid
markers.

Let x be a pose vector involving M markers, where com-
ponents are given by positional marker data. We then search
for the k nearest neighboring poses (yi), i ∈ {1, . . . ,k} using
a subset of all markers. The actual choice of the subset is
based on two different criteria. First of all we consider only
reliable markers where the placement is well-defined accord-
ing to the markerset, such as knee and elbow markers for the
standard markerset we use. We will formalize this first cri-
terion by a static bitvector (m̃ = m̃i), i ∈ {1, . . . ,M} that de-
termines if a marker is suitable for k-nn search (one) or not
(zero). Second, we only consider markers that are valid ac-
cording to the capturing logic. In particular we assume that
marker data is available. Such markers are indicated by an-
other bitvector m = (mi), i ∈ {1, . . . ,M}. In contrast to m̃,
which is independent of the motion to be cleaned, the bitvec-
tor m is computed per gap.

Once we have selected viable markers, i.e. markers with
m̃i =mi = 1, their respective coordinates form a vector space
that is used for building a kd-tree from all motion data in-
cluded in the database. As missing markers may depend on
the actual motion, this kd-tree is build from scratch for each
cleaning process. Please note, that building this tree takes
only a few seconds even for the largest currently available
databases and thus not resembles a bottleneck of our method.

4.2. Gap Filling

We perform a search for k nearest neighbor poses for each
pose that requires to be cleaned by our technique. To this
end each of the given frames is normalized with respect to
position and orientation, similar to the data in the knowledge

Table 1: List of markers usable as features. To determine
reliable markers that are (if valid) suitable for k-nearest-
neighbor-search, a bitvector m̃ is used. Here, for each
marker of the markerset, a component indicates if a marker
is usable (1) or not reliable (0).

Label m̃

LFHD 1
RFHD 1
LBHD 1
RBHD 1

C7 1
T10 0

CLAV 0
STRN 1
RBAC 0
LSHO 0
LUPA 0
LELB 1
LFRM 0
LWRA 1

Label m̃

LWRB 1
LFIN 1
RSHO 0
RUPA 0
RELB 1
RFRM 0
RWRA 1
RWRB 1
RFIN 1
LFWT 0
RFWT 0
LBWT 0
RBWT 0
LTHI 0

Label m̃

LKNE 1
LSHN 0
LANK 1
LHEE 1
LTOE 0
LMT5 0
RTHI 0
RKNE 1
RSHN 0
RANK 1
RHEE 1
RTOE 0
RMT5 0

base. We retrieve a set (yi), i = [1..k] of k nearest neighbors
that can be used for the data-driven gap filling procedure.

The gap filling procedure employs prior-driven optimiza-
tion to synthesize the positional data of missing markers. We
use an energy minimization formulation which is frequently
used in data driven computer animation. Our specific choice
of the energy terms to be minimized most closely resembles
the one used in [TZK∗11]. Here, the objective function is
consisting of three different terms: pose Epose and motion
priors Esmooth and Emotion enforcing positions, acceleration
and velocities of the missing markers to be comparable to
examples retrieved from the database.

xbest = argmin
x

(

Epose(x)+Emotion(x)+Esmooth(x) ) (1)

4.2.1. Prior Terms

Linear velocities and accelerations have been previously
computed for all motion clips contained in the mocap
database used for cleaning. Let (yi), i = [1..k] be the poses
retrieved from the database by k-nearest-neighbor search and
(νi), i = [1..k] and (αi), i = [1..k] the respective velocities
and accelerations and let ν(x) and α(x) be the velocity and
acceleration of a given pose. We then use kernel regression
for each of the prior terms along the lines of [TZK∗11] con-
sidering only markers that are assumed to be invalid:

Epose(x) =
k

∑
i=1

(m̄◦ (yi−x))2, (2)

Emotion(x) =
k

∑
i=1

(m̄◦ (νi−ν(x)) ·∆t)2, (3)
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Esmooth(x) =
k

∑
i=1

(m̄◦ (αi−α(x)) ·∆t2)2 (4)

with m̄ denoting the component wise inversion of the bitvec-
tor m. Please note that for all the above priors only markers
that are assumed to be invalid are considered by Hadamard
vector multiplication.

4.3. Optimization Procedure

The objective function (1) is minimized using gradient de-
scent. To improve efficiency, only a subset of all frames is
considered during optimization. This includes frames with
the highest associated costs as well as neighboring frames
indirectly affecting reconstruction results through temporal
derivatives occurring in motion and smoothness priors. We
refer to this as scheduling.

To improve the robustness of our method and to speed up
the process of optimization, we employ a multi-resolution
approach, where the optimization takes place on subse-
quently higher resolutions of the motion to be cleaned, start-
ing with the lowest. This requires resampling the motion to
a predefined number of lower resolutions. When the error on
a certain resolution cannot be improved by at least a certain
threshold (that we set to 1 %), the algorithm upsamples the
results and switches to the next higher resolution. Given the
number of resolutions n and the highest resolution rmax, we
calculate lower resolutions ri by

ri =
rmax

2i . (5)

For every possible resolution, positions, velocities and ac-
celerations have to be precomputed in the prior-database.
Moreover, separate kd-trees have to be created. Please note
that the memory requirements of the multiscale approach is
bounded by twice the original data.

5. Results

In our tests, in order to evaluate the effectiveness of our
method, we took originally artifact-free mocap data and dis-
carded certain markers or sets of markers representing body
segments for various time spans. The reconstruction results
were analyzed both visually and numerically. Besides syn-
thetic test cases our method was also employed on data con-
taining real gaps.

For a visual comparison we refer to the accompanying
video, showing:

1. Examples of real gaps in original marker data taken from
the HDM05 database [MRC∗07].

2. Reconstruction of a motion with missing left arm mark-
ers.

3. Gap-filled Cartwheel motion with leg markers missing.
4. Comparison of databases according to section 5.1.2.
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Figure 2: Scatter plot of computation times for various ex-
amples with respect to the length of the filled gap.

5. Example of a running motion that was presented and re-
constructed in [LMPF10]. For this example the complete
CMU database [Car04] was used as prior-database.

6. Comparison of reconstructions of a walking motion
based on [KTWZ10] and our method.

7. Reconstructions of gaps found in real mocap data.

In Fig. 2 we give the computation times for various exam-
ples in dependency of the length of the filled gaps. As had
to be expected, the computation time scales linearly with the
length of the gaps. There are certain variations with respect
to the used motion classes and numbers of missing mark-
ers, but these effects yield much smaller variations than the
primary dependency on the gap length.

The computation times are obtained using a single
threaded implementation on a Dual Core 3 GHz PC with
8GB of memory. Roughly speaking the computation times
are about 10 times the length of the longest gaps for this
implementation. Hence it is already practical for interactive
applications even without having performed code optimiza-
tion and using multi-threading.

Our experiments show that our method is able to fill gaps
in motions ranging from a single marker missing to multiple
body segments missing for up to several seconds.

5.1. Evaluation on synthetic examples

In this section we report on a series of tests on synthetic ex-
amples. We evaluate several aspects of the proposed method.
For this reason we removed markers from intact motion se-
quences to compare our results with ground truth data. We
computed all results on motions resampled to 30 Hz.

5.1.1. Tests on single missing markers

We systematically removed each marker for three test mo-
tions taken from the HDM05 database. The test motions are:
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Figure 3: Mean distances (blue bars) between original marker trajectories and synthezised trajectories and the corresponding
standard deviations (red lines) are shown for three testing motions, where the indicated marker was removed.

1. walk: HDM_bd_01_01-01_120.c3d,
frames 650 – 1100

2. jump: HDM_tr_01-05_01_120.c3d,
frames 1000 – 1350

3. cartwheel: HDM_tr_05-03_03_120.c3d,
frames 2550 – 3000

The database used for these experiments included all mo-
tions from the HDM05 database except the whole take the
test sequence was taken from. Figure 3 shows the results of
this test. The mean distance between the original and the
synthesized markers as well as the standard deviation of this
distance is presented. As can be seen on the left of Figure 3,
the walking motion gives very good results, showing a mean
of 0.77 cm over all examples. For the more complex jump
and cartwheel motions the means are 1.27 cm and 1.81 cm,
respectively.

5.1.2. Tests on groups of missing markers

On the three motions that were used on the single marker
tests we performed tests where several groups of markers
were removed simultaneously. For each test, we removed the
six markers of the segments of the left arm. For the walk and
jump motion, these markers will not be in contact with the
ground, whereas for the cartwheel motion a contact of the
left arm with the ground occurs. For these tests we regarded
the following scenarios

1. The prior-database does not contain motions of the actor
of the test motion.

2. The prior-database contains motions of various perform-
ers, including motions of the actor (other than the test
motion).

3. Only motions of the actor were included in the prior-
database.

The results of the tests are summarized in Fig. 4. If mo-
tions of the actor are not contained in the prior-database, the
average reconstruction errors are more than twice as high as
in the other cases for all three examples. However, the re-
construction results are still good, with a mean error ranging
from 2.5 cm for the walking motion to 5 cm for the cartwheel
motion. Moreover, the reconstructed motions have a high vi-
sual fidelity (see accompanying video).

In another test suite to estimate the influence of proper-
ties of the performing actor, we performed left-out tests for
any of the five actors performing walking motions in the
HDM05 database. Again, we reconstructed removed marker
positions for the left arm. For this experiment we used
the takes HDM_**_01_01_01_120.C3Dwhich were per-
formed by each actor for this test.

5.2. Comparison with previous work

We compared our results with the motion reconstruction
technique described by Krüger et al. [KTWZ10] which is
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Figure 4: Mean distances over all markers for three motion sequences. The distances are presented for three different databases:
The full database, excluding only the test motion (blue), a database where the actor was completely removed (green) and a
database where only motions from the actor were included (red).

1.84 1.86 1.90 1.97 2.000

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

m
ea

n 
er

ro
r [

m
]

actor size [m]

Figure 5: Results of test with actors of different sizes. We
plot the mean reconstruction error for a walking sequence
(HDM_**_01_01_01_120.C3D) versus the body size of
the actors. The actors were not included in the database for
this experiment.

an extension, based on fast similarity searches, of the tech-
nique originally described by Chai and Hodgins [CH05]. For
this comparison we regarded six scenarios of missing data:
left arm, right arm, both arms, left leg, right leg and both
legs. Since our method only reconstructs missing marker
positions, a skeleton was fitted to the ground truth and re-
constructed marker data using the method of de Aguiar et
al. [dATS06]. To make the marker fitted skeleton compara-
ble to the standard asf/amc skeleton used in the HDM05 li-
brary, a set of joints was selected as the intersecting set of
joints of both skeleton topologies.

A standard error measure to compare different reconstruc-
tions is to calculate the average distance between this set of
joints of the reconstructed and the ground truth motion for
every frame. The mean reconstruction error is then calcu-
lated as the mean over all frames. The numeric results of
both reconstructions are given in table 2.

Our approach uses multi resolution optimization com-
bined with scheduling and a more sophisticated prior model
to produce natural looking results while Krüger et al. use ad-
hoc smoothness and framewise optimization combined with
a kd-tree nearest neighbor search. Although in most cases
our method proves to be numerically better using the stan-
dard error measure, the difference in the visually perceived
quality of the results can be seen in the accompanying video.
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Table 2: Results for motion reconstructions based on the method presented in this paper (our), compared to reconstructions
based on the method of Krüger et al. [KTWZ10]. The table gives the mean reconstruction error in centimeters.

scenario
motion method left arm right arm both arms left leg right leg both legs
HDM_bd_01-01_01_120 our 0.64 0.59 1.23 0.88 0.82 2.47
Frames: 650 – 1100 KTWZ10 1.00 1.56 2.29 1.35 1.48 4.55
HDM_bd_01-02_03_120 our 1.20 1.18 3.63 1.60 2.20 4.00
Frames: 450 – 750 KTWZ10 1.81 2.43 4.71 1.63 2.19 4.62
HDM_bk_01-01_03_120 our 1.29 1.47 4.80 1.27 1.61 4.24
Frames: 6300 – 6600 KTWZ10 2.05 2.44 5.91 1.86 2.65 6.26
HDM_mm_02-03_02_120 our 1.00 3.50 10.20 0.95 1.11 2.00
Frames: 450 – 750 KTWZ10 2.89 4.46 12.07 0.97 1.37 1.85
HDM_dg_01-06_01_120 our 1.20 0.94 1.81 1.70 1.58 3.56
Frames: 1000 – 1300 KTWZ10 1.68 1.26 3.69 1.42 1.59 4.68

6. Conclusion and Future Work

We have presented a data driven method for filling large
gaps in marker based mocap data. Our method works well
even for large gaps from the perspective of required compu-
tational resources as well as quality of results—provided that
there are sufficiently similar motions available in the prior-
database. The basic mechanism can be extended to other
cleaning and reconstruction tasks, such as optimal skeleton
fitting and correcting marker-mislabelings. These extensions
will be one topic of future work.

In contrast to previous approaches we can keep all avail-
able and cleaned motion capture data in our prior-database,
and our approach scales well to huge prior-databases. The
quality of our gap filling methods depends on the similarity
of data contained in the prior-database and we obtain some-
what better results if motions of the performing actor of the
clip to be cleaned are already contained in the prior-database.
Nevertheless, our method also works quite well if such data
is not available. In our approach it is possible in principle
to incorporate model knowledge about skeleton constraints
and contact constraints. Using a good algorithmic heuristic
to estimate contact constraints from motion data—e.g. the
method presented in [LCB06]—the contact information can
be incorporated into the search and all defined constraints
can be incorporated into the optimization procedure. We pre-
sume that such information is useful in all settings and might
be crucial if for a gap-filling the information of body seg-
ments such as lower-body parts or upper body parts only are
considered. Such restrictions to body parts allow an exten-
sion of the notion of “similar motion” to ones being similar
for body parts only.

In our future work we will explore the algorithmic tech-
niques and will perform empirical investigations for in-
cremental extension of the prior-databases: cleaned motion
clips can be incrementally added to the prior-database po-
tentially allowing a step-wise extension of the expressibility
of the prior-database. With such extensions motions which

could not be handled by an original prior-database might be-
come tractable by the newly added clips.

The scenario of missing markers on entire body segments
for longer periods of capture-time is a common challenge
even for single user capture using practical low-cost equip-
ment such as the KINECT. The integration of our algorithms
into a capturing and processing pipe-line for such low-cost
devices will be a topic of our future work.
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