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Abstract
Fast searching of content in large motion databases is essential for efficient motion analysis and synthesis. In this
work we demonstrate that identifying locally similar regions in human motion data can be practical even for huge
databases, if medium-dimensional (15–90 dimensional) feature sets are used for kd-tree-based nearest-neighbor-
searches. On the basis of kd-tree-based local neighborhood searches we devise a novel fast method for global
similarity searches. We show that knn-searches can be used efficiently within the problems of (a) “numerical and
logical similarity searches”, (b) reconstruction of motions from sparse marker sets, and (c) building so called
“fat graphs”, tasks for which previously algorithms with preprocessing time quadratic in the size of the database
and thus only applicable to small collections of motions had been presented. We test our techniques on the two
largest freely available motion capture databases, the CMU and HDM05 motion databases comprising more than
750 min of motion capture data proving that our approach is not only theoretically applicable but also solves the
problem of fast similarity searches in huge motion databases in practice.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—[Animation] Information Storage and Retrieval [H.3]: Information Search and Retrieval—

1. Introduction

Searching for similar motion segments is of central impor-
tance for data driven approaches of motion synthesis and
content-based retrieval of motion data. Whereas efficient in-
dexing techniques being linear in the size of the motion
database have been described, for the problem of finding
logically similar motions, methods such as neighbor graphs
or similarity matrices have been used for tasks requiring
numerically similar motions. These however require a pre-
processing time quadratic in the size of the motion cap-
ture database in use and are therefore impractical for larger
databases.

Due to the dimensionality of motion capture data and the
“curse of dimensionality” of search structures such as BSP-
trees or kd-trees [BBK01] these had not been applied for
similarity searches of motions, as was succinctly expressed
by [KG04] (format of references adapted to our references):

One challenge in finding matches is that individ-
ual frames are high-dimensional objects with non-

Euclidean distance metrics [KGP02,LCR∗02]. As
a result, traditional methods for organizing the
data into a spatial hierarchy (such as a BSP-tree)
can not be directly applied [BBK01].

In contrast to kd-trees, which speed up searches using Eu-
clidean distance metrics, R-trees, which efficiently speed up
searches in L1 norms, have already been used in the context
of motion data by [KPZ∗04].

1.1. Our contributions

Devising feature sets for fast similarity searches. In this
paper we describe and analyze medium dimensional fea-
ture sets for human motions (in general 15 to 90 di-
mensional ones). These can be used with naturally occur-
ring Euclidean distance measures in standard spatial data
structures—specifically kd-trees—to perform fast exact and
approximate similarity searches in large motion capture
databases for various purposes.
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Analyzing different distance measures. We systemati-
cally compare previously-described distance measures with
each other and with those induced by our feature sets. This
comparison is done locally, i.e. on single frames, as well
as globally, i.e. on motion segments, on the basis of the
CMU [Car04] and HDM05 [MRC∗07] databases.

Expanding pose matching to motion matching. On the
basis of the fast kd-tree-based pose matching and local mo-
tion matching we devise a novel fast method for global mo-
tion matching. For a motion database of size n and a query
sequence Q consisting of m frames using local k-nearest-
neighbor-searches the overall complexity of the global simi-
larity search is O(km logn), with m� n and k� n.

Moreover, we show that distances on neighboring motion
segments (parameterized by a local distance measure) in-
duced by our novel technique are in general equivalent to
the similarity measures computed by dynamic time warping
(DTW) parameterized by the same local distance measure.
Thus our method can be used as a fast alternative to subse-
quence DTW-based alignment.

Demonstrating the usability of fast similarity searches
for different applications. We apply fast similarity
searches of time complexity O(n logn) in the size of
a database n to the problems of “numerical similarity
searches”, reconstruction of motions from sparse marker
sets, and building so called “fat graphs”, tasks for which
previous algorithms with quadratic preprocessing time have
been proposed.

2. Related Work

Nearest-neighbor-search for human motion. Chai and
Hodgins [CH05] use a neighbor graph in a preprocessing
step on a motion database allowing fast nearest-neighbor-
search. However, the preprocessing step requires time
quadratic to the size of the database and thus does not scale
well to larger motion databases.

Kovar and Gleicher [KG04] perform numerical and “log-
ical” similarity searches on collections of motion capture
data. They build so called “match webs” on dense distance
matrices, thus requiring a preprocessing time quadratic in
the size of motion capture data.

The problem of finding short motion segments that are
similar to a given one is also of central importance when
synthetic transitions between motions are generated. Here
the concept of “motion graphs” [KGP02,SO06,HG07,SH07,
MP07] has become a central tool. However, in all these ap-
proaches the generation of the various variants requires an
effort quadratic to the size of the motion database and thus
cannot be used for large collections of motions.

Müller et al. [MRC05] use binary geometric features and

index structures to address the problem of content-based re-
trieval on large motion databases. Whereas the binary geo-
metric features are well suited for defining notions of logical
similarity of motions and for coming up with “motion tem-
plates” [MR06], they are not suitable in contexts requiring
close numerical similarity of motions.

The use of spatial search structures is well established for
multi-media databases [BBK01]. Also a “generic multime-
dia indexing approach” (GEMINI) [Fal96] has been widely
used for multi-media applications for more than a decade.
However, the crucial step is to have suitable low-dimensional
feature sets that can be used with an efficient spatial access
method. In the context of motion data, its use and the use
of R-trees are abstractly discussed in [FHP07], and Keogh
et al. [KPZ∗04] use R-trees for searching lower and upper
bounds, which naturally yield L1 norms, efficiently. How-
ever, prior to our own work presented here we are not aware
of any practical attempts to define low- or medium dimen-
sional feature sets for human motion data and using them
both for efficient spatial access methods for Euclidean dis-
tance measures and for fast similarity searches in large mo-
tion databases.

The techniques of locality sensitive hashing (LSH) [AI08]
for fast approximate nearest-neighbor-search in high dimen-
sions has recently been applied to the problem of mining
“motion motifs” from medium-sized collections of motion
data (of about 32 000 frames) [MYHW08].

Low and medium dimensional feature sets for human
motion. For small databases it is well known that human
motions have very good 7–10 dimensional approximations
[SHP04, EMMT04, CH05], which can be obtained by sim-
ple techniques like PCA (principal component analysis) on
the angular skeleton representation. However, for large het-
erogenous databases such low-dimensional approximations
are less accurate [CH05] and higher dimensional feature sets
are required. Beaudoin et al. [BCvdPP08] use 18 dimen-
sional PCA approximations of joint angle data.

The suitability of our medium dimensional geometric fea-
tures for describing human poses is closely related to the
well known analysis of the inverse kinematics problem for
anthropomorphic limbs [TGB00]. An evaluation of different
distance metrics for blending purposes is given in [vBE09].

3. Feature Sets for Fast Similarity Searches of Human
Motions

In order to compare our newly-devised feature sets with ex-
isting ones, we will first review various distance measures
for human motions and features sets (with induced distance
measures) that have been described in the literature. Specif-
ically we will fix the notations for them.
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Figure 1: Visualizations of the 256 nearest neighbors for 9 exemplary poses. All results were computed using feature set F 15
E

on the union of CMU and HDM05 motion database. The positions of the wrist and ankle joints as well as head joints are
visualized for the nearest neighbors (with color fading out with increasing distance). In all cases the nearest neighbors have
been computed in a few milliseconds within databases containing more than 750 min of motion capture data.

3.1. Previously described distance measures and feature
sets for human motions

There are purely pose-based distance measures such as the
one measuring distances on joint angles [CH05]. As the
distance measure depends on the encoding of the joint an-
gles, e.g. whether quaternion-based representations or Euler
angle-based representations are used, we denote the former
one by Dquat and the latter one by Deuler. More specifically,
the Euler angles in the standard asf/amc representation of the
mocap data will be used. PCA-based compression of pose-
based feature sets [SHP04, CH05, BCvdPP08] will be de-
noted by Fpn

pca. Here, n means the number of principal com-
ponents on joint positions in body frame—pre-computed
on a fixed database, which will be chosen to be the entire
HDM05 database in all our experiments (n dimensions).

In order to describe not only the properties of a pose stat-
ically but also to encode the kinematic properties of a mo-
tion sequence in the feature set of a frame, Kovar and Gle-
icher [KG04] introduced a point cloud distance measure on
a normalized window of the previous and subsequent n/2
poses. In the following this distance measure will be denoted
by Dpcn.

In [LCR∗02] the authors describe a cost function to deter-
mine transition points in motion streams, defining the dis-
tance between two frames as the sum of weighted differ-
ences of joint angles as well as of joint velocities. Whereas
Lee et al. [LCR∗02] propose a set of weights containing one
and zero only—setting the weights to one for the shoulders,
elbows, hips, knees, pelvis, and spine and setting all others to
zero—Wang and Bodenheimer [WB03,WB08] use a refined
cost metric. By using motion capture data to determine op-
timal values for all weights that modify the transition costs,
they reason that only certain joints are considered important
and thus are associated with non-zero weights–right and left
hip, right and left knee, right and left shoulder, right and left
elbow. The resulting distance measure, which is based on
the optimized weights, will also be investigated and in the
following will be denoted as Dwb.

3.2. Devising novel medium dimensional feature sets

We will devise several medium dimensional feature sets of
increasing dimensionality: we define frame-based geomet-
ric feature sets that can be extended to local feature sets on
frame windows.

Frame-based feature sets For our geometric features we
use normalized root positions and orientations, as is the stan-
dard technique for features of human motion data [KG04,
CH05, AFO03]. Our primary feature set

F15
E consists of the positions of 4 end-effectors and head.

This 15-dimensional feature set is motivated by the follow-
ing considerations:

• As is well known the geometry of anthropomorphic
limbs is fully determined by the positions of the end-
effectors, their orientation, and one single additional
scalar quantity—the so called “swivel angle” [TGB00].
Moreover, the corresponding inverse kinematics problem
can be solved very efficiently using analytic solutions
[TGB00, HJBC05].

• For typical human motions the orientations of the end-
effectors are statistically quite dependent on the end-
effector positions, as are the values of the swivel angles,
so that the positions of the arms and legs should be well
determined.

• Given the positions of the legs, the arms, and the head
as well as the position of the root (due to normalization)
there should be little variability in body positions.

For the sake of comparison (and for statistically validating
the claims made above), we also use the following two pose-
based geometric feature sets:

F30
E Positions of 4 end-effectors, and head, as well as the
5 positions of the elbows, knees and one chest joint (30
dimensions).

F39
E All features of F30

E ; in addition position of the shoul-
ders and one lower-back joint (39 dimensions).

Feature sets on windows of frames Purely pose-based fea-
ture sets such as F15

E give no information about the temporal
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evolution of a motion. In contrast, feature sets including sev-
eral frames on a small window represent the local evolution
in time. Based on this observation it is possible to extend
every frame-based distance measure F n of dimension n to
one on a window of l frames Fn× l of dimension nl. We will
sample the windows sparsely, using only 3 or 5 frames on a
window of fixed length 0.3 sec—a value commonly used in
the literature for the size of local motion windows. The re-
sulting feature sets will be denoted byF 15×3

E , F15×5
E , F30×3

E ,
and F39×3

E .

3.3. Comparing feature sets

Pose based comparisons Our comparisons will be focused
on feature sets designed to identify neighborhoods of a pose,
because they are of main concern in the applications. As the
search using kd-trees can be done efficiently for all of our
feature sets, cf. Table 1, it is possible to do such compar-
isons systematically for large motion capture databases. For
all of our experiments k-nearest-neighbor-searches were per-
formed using the ANN library [MA06].

In Table 1 the computation times for the previously de-
fined feature sets searching for the nearest 16 resp. 256 near-
est neighbors on the HDM05 database (380 813 frames at
30 Hz) and CMU database (1 038 388 frames at 30 Hz) are
given for exact (ε = 0) nearest-neighbor-searches.

Our frame-based (15 to 39 dimensional) feature sets allow
very fast nearest-neighbor-searches and show the expected
good scaling from a database consisting of 380 813 to one
consisting of 1 038 388 frames.

The running times of the previously described features
sets had the expected behavior according to their dimension-
alities.

For the windowed feature sets (of dimension 45 to 90) the
search times are about one order of magnitude higher than
for the ones based on single frames—thus being much better
than worst case theoretical considerations predict. Thus even
if these feature sets do not in general fulfill hard real time
requirements on current PCs for large motion databases, they
are nevertheless practical for many applications.

However, as will be shown below the use of higher-
dimensional feature sets, gives little or no advantage over
the use of lower dimensional ones—specifically the simple
feature set F 15

E .

Pose-based comparisons on a small sample database In
Fig. 2 the correlations between the previously-described fea-
ture sets and distance measures are given. In order to com-
pare the distance measures we use Spearman’s rank correla-
tion coefficient ρ [MW03], which is a robust measure with
respect to commonly used slight but non-linear variations
of the distance measures. This overall comparison is based
on a small sample database as for the high-dimensional
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Figure 2: Rank correlations between various distance mea-
sures and feature sets on an example database based on 76
motion clips taken from the HDM05 database: Average val-
ues for 1024 random samples choosing 256 nearest neigh-
bors according to the feature set given in the vertical axis
with the distance measure given in the horizontal axis.

distance measures we do not have a fast nearest-neighbor-
search method.

Notice that the matrices are not symmetric, as we perform
the correlations on the nearest neighbors according to the
feature set given on the vertical axis. This asymmetric be-
havior is especially prominent for Dquat in comparison to
Deuler and the frame-based feature sets with their counter-
parts involving 3 or 5 frames. These observations are easily
explainable: if the distance on angular representations given
by Euler angles are similar, so are the ones given by quater-
nions, whereas similar quaternion-based distances might re-
sult in bigger differences in Euler angles (especially in “near
gimbal lock” configurations). And if the distances according
to a feature set involving l frames are similar, then so are the
ones involving single frames, whereas vice versa, the simi-
larities in one frame, involving static information only might
result in fewer similar measures based on l frames.

Nevertheless, there is also a rather high rank correlation
between Dpc1 and Dpc11, and frame-based feature sets and
their counterparts involving 3 or 5 frames. Moreover, the dis-
tance measures based on F 15×3

E and F15×5
E are very highly

correlated: using 5 frame samples instead of 3 gives little
additional information, so that the lower dimensional feature
set can be used yielding lower computation times.

The distance measures based on F30
E and F 39

E are very
highly correlated: using the normalized root position, the
head position and the ones of arms and legs there is almost
no additional statistical variety in the body positions. Also
F15

E and F30
E are highly correlated: there is already a very

high statistical determination of the arm and leg positions
from their end-effector positions.
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Table 1: Average computation times (in milliseconds) for searching 16 (256) nearest neighbors using various feature sets on
motions of HDM05 database (380 813 frames at 30 Hz) and CMU database (1 038 388 frames at 30 Hz).

database # NN Fp8
pca Fp16

pca Fp25
pca F15

E F30
E F39

E F15× 3
E F15× 5

E F30× 3
E

HDM05 16 0.19 1.33 2.86 1.11 3.87 5.27 7.95 14.01 18.98
256 1.03 4.99 8.68 4.53 12.50 16.37 23.70 36.22 46.71

CMU 16 0.25 2.15 5.37 1.65 6.37 8.71 20.62 37.08 55.59
256 1.35 8.97 18.10 7.36 24.12 31.68 60.23 96.55 136.29

Whereas Fp16
pca is comparable in general to other feature

sets, the use of only 8 dimensions in Fp8
pca is connected with

a strong loss in correlation. The feature sets Fp16
pca and Fp25

pca

are very highly correlated indicating that most information
on the motions is already contained in the first 16 principal
components.

Pose-based comparisons on large databases Using our
fast similarity searches we can extend the correlation analy-
sis to large motion capture databases for the cases in which
the correlations are computed on nearest neighbors defined
by one of the medium-dimensional feature sets.

In general the findings are similar to the ones on the small
sample database described above. Especially, the correla-
tions between F 15×3

E , F15×5
E , and F30×3

E are still very high,
and these are highly correlated to Dpc11. The single-frame-
based feature sets F30

E and F39
E are still very highly corre-

lated, and there is still a high correlation toF 15
E . Also a rather

high correlation to Dpc1 exists.

On this larger database the correlations to the PCA-based
feature sets are somewhat lower, and so are the correlations
between the single frame based feature sets and their coun-
terparts involving 3 or 5 frames.

A figure showing all rank correlations corresponding to
pose-based comparisons on a large database is given in the
supplementary material.

Motion segment based comparisons We now focus on
comparisons between motion segments, based on several
feature sets and distance measures. These comparisons show
relationships between the definitions of similarity induced
by the feature sets and distance measures.

As example dataset we used 76 hand-cut motion se-
quences from the HDM05 database. This example dataset
contains nine motion classes where at least eight motions of
every class were available.

For direct comparison of the motion sequences we per-
formed a dynamic time warping between each pair of 76
motion sequences for every feature set and distance mea-
sure. Based on this DTW-distances (accumulated pose dis-
tances along the warping path) we performed a ranking. As
a result we get a ranked list of motions for each motion of
the example dataset. Since the use of similar feature sets or
distance measures should give similar rankings of the mo-

tion sequences, we computed rank correlations for the first
eight motions of this ranking.

This rather small number is motivated by the considera-
tion that we are concerned with the distance metrics on simi-
lar motions and not on very different ones (say a walking and
a grasping motion)—and we know that at least eight motions
of every class are available in the database.

In general the correlations are similar to the point-wise
evaluations. There is a higher correlation for Dwb to almost
all other distance measures and feature sets than for the
point wise evaluation, whereas the correlations for the PCA-
feature sets decrease. The correlations between our feature
sets F 15

E , F 30
E , and F39

E in between but especially to their
counterparts involving several frames increase. The latter
observation can be explained by the fact that for a point-wise
evaluation the frame-based feature sets on the level of single
frames do not distinguish directions of the motion in con-
trast to F15×3

E , F15×5
E , or F 30×3

E , but nevertheless the warp-
ing paths are quite similar, cf. Fig. 3.

Motion segment based comparisons on large databases
We could also perform motion segment-based comparisons
on large databases using the fast global motion-matching
methods described in Section 4.

The main differences to the evaluation on a small database
are the higher correlations to the PCA-based feature sets.
This finding might be explained by the fact that the PCA-
based features are computed on the entire database, so that
these perform better on random samples than on specifically-
selected samples.

Conclusions from the comparisons As expected the low-
dimensional feature sets F15

E and the PCA-based feature sets
allow the fastest nearest-neighbor searches. As the correla-
tion of F15

E to the higher-dimensional ones and to Dpc1 as
well as toDpc11 is higher than forFp16

pca the former one should
be preferred.

As F15
E as a purely frame-based feature set does not dis-

tinguish directions of the motion in contrast to F15×3
E , there

will be certain applications for which F15×3
E should be used.

However, we will show in Section 4 and Section 5 that for
several applications, for which a priori one would suspect
that including temporal information in a feature set plays a
major role, nevertheless using the feature setF15

E in the algo-
rithms gives almost the same results as F15×3

E —but requires
much shorter computation times.
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So the simple feature setF15
E seems to be the one of choice—

especially for real-time applications.

4. From Pose Matching to Motion Matching

In many applications regarding analysis and synthesis of
motions the problem of retrieving motion sequences within
large unstructured motion databases, that are similar to
a given query, is of central importance [KGP02, AFO03,
KG04,SO06,HG07,SH07,MP07,BCvdPP08]. In the context
of computer animation this problem was previously tack-
led by applying either subsequence DTW [Mül07] or match
web [KG04] heuristics. Unfortunately, the above methods
are computationally very costly. The construction of match
webs in O(n2) and subsequence DTW has a complexity of
O(nm) where m is the size of the query and n is the number
of frames included in the database.

In this section we are going to present a novel method in
O(m logn) that gives similar results to subsequence DTW
in practical scenarios and is more general and robust than
match webs, since no ad-hoc heuristics are used. Our
new approach is especially suitable for identifying closest
matches to a given query. Practical applications demonstrat-
ing the efficiency of the method are given in section 5.

4.1. A novel approach to fast global motion matching

In order to specify global motion-matching we follow
the literature and define a valid temporal alignment of
two motions as a continuous and monotonic mapping of
poses [KG04]. For an optimal alignment of two motions we
have to search for a sequence of consecutive frames (with
ascending indices), which describes a discrete matching sub-
stitute to subsequence dynamic time warping.

To find similar motion segments included in a database
(a sequential collection of motion clips indexed by frame)
for a given query Q efficiently we propose to use a novel
technique, based on a ”lazy neighborhood graph”. The novel
method consists of four different key steps:

1. preprocessing, where a kd-tree is constructed,
2. search, for identifying local similarities of Q and motions

included in the database,
3. graph construction, for creating a lazy neighborhood

graph,
4. path search, for finding global optimal alignments by

solving a shortest path problem for this neighborhood
graph.

Preprocessing As a preprocessing step we build a kd-tree
for a motion database D (of size n frames) with respect to
the feature set F to be considered.

For each query sequence Q = [q1 · · ·qm] consisting of m
frames we proceed as follows:

Search Find nearest neighbors for each pose in Q us-
ing fixed radius k-nearest-neighbor-search. The radius is
given by r and the maximum number of neighbors is lim-
ited by user defined parameter k. For each pose qi of the
query a set S(qi) of poses that are similar according to F
is retrieved in O(k logn). Thus, in total km neighboring
poses have to be stored, which requires km space.

Graph construction Build a weighted and directed graph
based on the sets S by regarding each reported neighbor
h j(qi), 1 ≤ j ≤ k and 1 ≤ i ≤ m, as a node and adding
edges between nodes that form valid continuations. While
many definitions of valid continuations are thinkable, we
define them equivalent to the basic steps most commonly
used in traversing DTW cost matrices, i.e. a diagonal, a
horizontal and a vertical step. Formally spoken, this leads
to edges between

• h j(qi) and hl(qi+1) with hl(qi+1) = h j(qi)+1 (corre-
sponding to the diagonal step),

• h j(qi) and hl(qi) with hl(qi) = h j(qi)+1 (correspond-
ing to the vertical step), and

• h j(qi) and hl(qi+1) with hl(qi+1) = h j(qi) (corre-
sponding to the horizontal step).

Associating each edge with costs defined by the distance
d j of the node they are pointing at—as reported by the kd-
tree search—the task is now to find the paths with minimal
costs that start in a node h j(q1) ∈ S(q1) and end up in a
node h j(qm) ∈ S(qm).

Path search By adding one additional node to the graph
and connecting it via edges to all h j(q1) ∈ S(q1) this task
turns into a single-source shortest-path problem. Since the
resulting graph is directed and acyclic and a topological
ordering of its nodes—which means, whenever there is an
edge from x to y, the ordering visits x before y—is directly
given by construction, this problem can be solved in linear
time [CLRS01] (chapter 24.2).
This algorithm is parameterized by an arbitrary feature set
F . The global accumulated costs along the path define a
global distance between the query motion and the motion
segments found in the database. Thus the retrieved motion
segments can be ranked by their global distance according
to the selected feature set F . By this algorithm similar
motion segments can be extracted in O(km) time and the
overall complexity for the similarity search is given by
O(km logn).
The algorithm returns a best path for each match. These
paths give a global optimal alignment between the query
motion and the retrieved motion segments with respect to
the local neighborhoods of each frame of the query mo-
tion.
The paths found by our method are equal to the paths
found by subsequence dynamic time warping [Mül07] un-
der the condition that all frames that are assigned to each
other by subsequence DTW are in the neighborhood of
the query motion. On tests on smaller databases such as
the 76 cut motions this assumption was fulfilled in 100 %
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of the cases. For the tests on the entire HDM05 database
the rank correlation between the global distances based on
our approach and the global distances computed by dy-
namic time warping on the same feature sets was bigger
than 0.99 for all feature sets (but not 1.0). Thus, for larger
databases the assumption that all frames that are assigned
to each other by subsequence DTW are in the neighbor-
hood of the query motion fails in in a few rare cases. In
addition this issue becomes less relevant for applications
in which only close matches are required. In such cases
our approach can be seen to be an extremely efficient sub-
stitute for subsequence dynamic time warping.

Remark. Our algorithm was inspired by the trel-
lis approach to extract motion motifs by Meng et
al. [MYHW08]. The trellis approach as well as ours
searches for local nearest neighbors parameterized by
some distance measure. However, in the trellis approach
only constant distances d j independent of the actual local
costs are used. For that reason the original method fails to
provide a temporal alignment of motion segments as it is
achieved by our method. Moreover, there is no ranking of
retrieved subsequences meaning that closest matches can-
not be identified. Another serious drawback of the method
described in [MYHW08] is the use of greedy strategies
that in general fail to find global optimal alignments.

4.2. Comparing the global motion matching for
different feature sets
Based on the algorithm described in the previous section
we compare the results of our global matching with re-
spect to various feature sets. For the sake of simplicity
only a small sample database containing six steps of a
left-turning walking motion, starting with the right foot,
is considered. A motion clip consisting of a two-step left-
turning walking motion, starting with the right foot, is
used as query.
As can be seen from the similarity matrices in Fig. 3 the
pose-based feature sets exhibit forward as well as back-
ward diagonal structures for similar frames of query and
database, as these pose-based feature sets do not incorpo-
rate velocity information and do not distinguish directly
between forward and backward in motions (e.g. walking
and running). Note that the windowed feature sets do not
suffer from this issue. Nevertheless, the global motion-
matching algorithm is able to identify the expected walk-
ing motions regardless of the feature set that was used for
alignment. Note that the motion segments found by our al-
gorithm are similar to the segments found by subsequence
DTW based onDpc1. As the structure of the similarity ma-
trices suggests, the task of finding warping paths is less
constrained for the frame-based feature sets and thus more
costly, since more potential alignments need to be investi-
gated.
We did a more complete evaluation on the entire HDM
database using 128 random motions of length 1 sec and
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Figure 3: Aligning a query motion segment to similar mo-
tions of a small database. The distance matrices implicitly
computed by our approach are plotted for four different fea-
ture sets. A distance matrix based onDpc1 and warping paths
computed by subsequence DTW are shown for compari-
son. Please note that only frames found during k-nearest-
neighbor-search (indicated by shades of grey, the darker the
more similar) need to be considered explicitly and that the
blue regions do not have to be computed. The red lines rep-
resent the recovered warping paths.

128 random motions of length 3 sec as queries. Search-
ing alignments for windowed feature sets (excluding k-
nearest-neighbor-search) was about 1.5 times faster than
for frame-based ones. For the queries of length 1 sec (3-
sec) it took on average 0.03 sec (0.08 sec.) to construct
the alignments using exact nearest-neighbor-searches for
the feature set Fp16

pca . These experiments confirm that the
asymptotic linear complexity in the length of the query of
our algorithm also occurs in practice. Using approximate
(ε = 0.1) instead of exact nearest-neighbor-searches gave
exactly the same results—with computation times for the
kd-tree searches being about 10 % lower. When increasing
epsilon to 0.5 about 99 % of the original alignments for
the window-based feature sets were found. For the frame-
based feature sets this rate dropped to 90 %–95 % and the
times for computing the alignment increased for approxi-
mate k-nearest-neighbor-search: 0.02–0.06 sec on average
for the 1 sec queries (0.09–0.16 sec for the 3 sec queries).
Notice that the total timings for global motion-matching
are dominated by the costs for k-nearest-neighbor-search
(90%) cf. Table 1.

5. Applications
5.1. Numerical and Logical Similarity Searches
Kovar and Gleicher [KG04] presented a technique that al-
lows numerical as well as “logical” similarity searches
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Table 2: Results for numerical similarity searches on the en-
tire HDM05 database. A motion clip semantically classified
to the motion class in the top row was used as query. The
rows show the number of correct hits and in brackets the
number of wrong hits that were not identified by our refer-
ence feature set F15

E , the number of false hits and finally in
brackets the number of false hits not identified by F15

E .

HDM_bk_kickRSide1Reps_007

F15
E Fp8

pca Fp16
pca F30

E F15× 3
E F30× 3

E
correct hits 5(-) 1(0) 4(0) 5(0) 3(0) 4(0)
wrong hits 0(-) 0(0) 0(0) 0(0) 0(0) 0(0)

HDM_tr_punchRSide1Reps_023

F15
E Fp8

pca Fp16
pca F30

E F15× 3
E F30× 3

E
correct hits 6(-) 4(0) 6(0) 8(2) 6(3) 9(6)
wrong hits 0(-) 0(0) 0(0) 0(0) 0(0) 2(2)

HDM_bk_skier1RepsLStart_011

F15
E Fp8

pca Fp16
pca F30

E F15× 3
E F30× 3

E
correct hits 9(-) 8(0) 9(0) 9(0) 10(1) 10(1)
wrong hits 0(-) 0(0) 0(0) 0(0) 0(0) 0(0)

in motion databases. However, their technique does not
scale to larger motion databases, as they have to compute
a dense distance matrix of size O(n2), where n is the num-
ber of frames in the database. Using the novel algorithm
described in Section 4.1 we have a direct substitute for
a “numerical similarity” search that scales well to huge
motion databases. This technique allows for a substantial
speedup of “logical similarity searches” originally pro-
posed by Kovar and Gleicher [KG04]: use the set of found
similar motion segments as queries for new iterations of
similarity searches.
Not only do we avoid the preprocessing step of quadratic
complexity to the size of the database n, but also for each
query the cost of our method is only logarithmic to the
size of the database instead of being linear as is the one
from Kovar and Gleicher [KG04].
The basic properties of our numerical similarity search
approach and results on a very small data sample were
already presented in Section 4.2. A comparison of search
results on a large motion database for different feature sets
is given in table 2.
As could be expected from the prototypical results on
the very small database given in Fig. 3, the results us-
ing the simple feature set F 15

E are the same or almost the
same as for the higher dimensional feature sets F 30

E , F39
E ,

F15× 3
E , F 15× 5

E , and F30× 3
E on the large database. Notice

that there are examples for which the simple feature sets
return more similar motions than the higher-dimensional
ones, and there are examples for which the higher dimen-
sional ones return more similar motions than F15

E . Also
the feature sets Fp16

pca and Fp25
pca yield similar search results,

whereas F p8
pca differs and also returns results not regarded

as being similar by a human classification of the motions.

Table 3: Average (max) reconstruction errors (in cm per
joint) for test motions from CMU and HDM05 database.

motion #frames HDM CMU− CMU
CMU_86_01 1145 2.63 (6.47) 2.06 (4.11) 1.30 (3.42)
CMU_86_08 2302 3.06 (6.67) 2.67 (6.95) 1.96 (6.82)
CMU_86_15 1773 3.37 (6.41) 2.64 (8.01) 2.31 (5.88)
CMU_86_avg 29040 2.79 (7.99) 2.30 (5.58) 1.74 (5.05)
HDM_bk_01-01_01 2571 1.33 (5.13) 2.69 (5.04) 2.70 (5.43)
HDM_bk_02-01_01 912 2.17 (6.45) 3.23 (8.68) 3.22 (8.65)

We give the values for motions 86_01, 86_08, and 86_15
of CMU database, and for motions HDM_bk_01-01_01 and
HDM_bk_02-01_01 of HDM05 database. The average error
over the 15 motions in collection 86 of the CMU database
is denoted as CMU_86_avg. We give the values for different
databases for the pose priors. HDM: entire HDM05 database
(possibly without test motion). CMU−: CMU database with-
out collection 86. CMU: entire CMU database (possibly
without test motion). In all cases feature set F15

E is used for
the nearest-neighbor-search.

5.2. Reconstructions of Motions from Few Markers
Reconstructing motions from only a few markers is a chal-
lenging task that was recently tackled by Chai and Hod-
gins [CH05]. For their approach, identifying poses in a
database as being similar to a given medium-dimensional
control signal (sparse marker position data) is of central
importance. The necessary pose-based nearest-neighbor-
search was implemented by using a neighborhood graph,
which requires a preprocessing effort quadratic to the
size of the underlying motion capture database. Replacing
the nearest-neighbor-search in a static graph by our fast
kd-tree-based search method (on various of our feature
sets) even orders of magnitude larger collections of mo-
tions become practical. Moreover, with kd-trees we can
search around arbitrary, i.e. newly synthesized poses not
included in the original database directly. Hence, we do
not have to approximate the nearest-neighbor-search by
using nearest neighbors of previously synthesized frames,
as has to be done in [CH05].
In order to have ground truths for the quality of the recon-
struction we performed the reconstructions on synthetic
data obtained from test motions from the databases: the
positions of the 4 end effectors, the head, and the root are
taken as “marker positions” randomly disturbed within a
range of 1mm (simulating measurement errors of an opti-
cal marker tracking).
The results given in Table 3 indicate that using the ba-
sic technique of Chai and Hodgins [CH05] a motion can
be reconstructed reliably with 6 markers only, if large
databases can be used to infer local statistics on motions
(e.g. pose priors based on local linear models).
The quality of the reconstructions increases, if more mo-
tions related to the one to be reconstructed from sparse
marker data are available—a result which is certainly ex-
pected but nevertheless shows the need to have fast simi-
larity searches for motions on huge motion databases, a
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Table 4: Average (max) reconstruction errors (in cm per joint) for a test motion using different feature sets for nearest-neighbor-
searches. Entire CMU database without test motion was used for pose prior.

motion F15
E Fp8

pca Fp16
pca Fp25

pca F30
E F39

E F15× 3
E F15× 5

E F30× 3
E

CMU_86_03 1.66 1.71 1.49 1.41 1.35 1.34 1.38 1.40 1.30
(4.73) (5.09) (5.25) (4.80) (4.55) (4.92) (4.80) (4.79) (4.35)

possibility opened by our method but not given by the
original method of Chai and Hodgins [CH05].
As can be seen from the results shown in Table 4 the mo-
tion reconstruction procedure works quite well for all of
the feature sets we have tested: it is enough to build a lo-
cal linear model on a set of somewhat-related neighbors.
Even those computed by a global 8 dimensional pca (as
for featureF 8

pca), which per se do not approximate the cur-
rent motion segment well, are sufficient as a basis for the
used local linear model. On the other hand the windowed
feature sets F 15×3

E , F15×5
E , or F 30×3

E give almost identical
results, as do their frame-based counterparts. Also exact
nearest-neighbor-searches can be substituted with approx-
imate ones using ε= 0.5 without changing the reconstruc-
tion results notably.

5.3. Fast Fat Graphs
We can also come up with a method of substituting
the quadratic preprocessing time in the construction of
so-called “fat graphs” [SO06]—a method for motion
synthesis—with one in O(n logn) by using kd-tree-based
searches. The crucial step in building “fat graphs” is the
computation of so-called “base poses”, a clustering of mo-
tion capture data collections. For a collection of motion
data D = [d1 . . .dn], for which a “fat graph” is to be com-
puted, proceed as follows:

1. Search nearest neighbors for each frame f ∈ D in a
fixed radius r; the maximum number of neighbors is
limited to k. This search can be done in O(kn logn).

2. Find the pose with maximum number of neighbors and
use it as “base pose”. This step can be done in O(n).

As k� n is constant, the complexity of finding the base
poses is only O(n logn) instead of O(n2), as is the method
used in [SO06].
As we have to use a distance measure related to one of
our feature sets, the search criterion will be different from
the one used in the original construction of “fat graphs”.
However, in the experiments we performed, the synthe-
sized motions differ only slightly from the ones generated
using the original fat graph approach. Moreover, the vi-
sual quality of both results is comparable. We refer to the
accompanying video for examples.

6. Conclusion and Future Work
In this work, efficient approaches for local and global
motion matching, which are applicable even to huge
databases, have been presented. Using these novel tech-
niques we have reduced the time complexity of being

quadratic to the size of the motion database n to one of at
most O(n logn) for three very different applications in the
realm of data-driven animation. From a practical point of
view this means an enhanced applicability of these meth-
ods to large databases.
We presume that for other problems something similar
can be achieved. Specifically, we also consider the adap-
tion of our approaches for local and global motion match-
ing to parametric motion graphs [HG07] and interpolated
motion graphs [SH07]. Moreover, the technique described
by Chai and Hodgins [CH07] to generate animations from
user defined constraints, which uses a global preprocess-
ing on a medium-sized database of human motions seems
to be localizable by our technique and thus extendable to
huge databases involving very different motions.
It turned out that fast kd-tree-based nearest-neighbor-
searches together with viable medium-dimensional fea-
ture sets are highly practical even for amounts of motion
capture data two orders of magnitude bigger than has been
done with any previously applied techniques.
The kd-trees for even the largest currently-available mo-
tion capture databases still fit into main memory on cur-
rent standard PCs, and the memory requirements for kd-
trees are much lower than the one required when using
locality sensitive hashing for the same data. Nevertheless,
our techniques would not scale well if the kd-trees did not
fit into the main memory. An adaptation to out-of-core-
techniques, e.g. lazy kd-trees [Nar96, HMF07], will be-
come a topic of future research if the available mocap data
grow faster than the available main memory.
On the basis of our techniques, data-driven approaches
requiring nearest-neighbor-searches on motion data can
work efficiently on much larger collections of motion cap-
ture databases than are currently available.
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