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Abstract

Polyphonic vocal music is an integral part of music cultures around the world. For studying performance
aspects and cultural differences, the analysis of recorded audio material has become of increasing
importance. This thesis contributes several computational tools for processing, analyzing, and exploring
singing voice recordings using methods from signal processing, computer science, and music information
retrieval (MIR). First, we develop an approach for applying time-varying pitch shifts to audio signals
based on non-linear time-scale modification (TSM) and resampling techniques. We show that our
method can be used to adjust intonation (fine-tuning of pitch) in vocal recordings, e.g., in postproduction
contexts. Computational analysis of polyphonic vocal music typically requires annotations of the singers’
fundamental frequency (F0) trajectories, which are labor-intensive to generate and may not be available for
a particular recording collection. As a second contribution, we present an approach to assess the reliability
of automatically extracted F0-estimates by fusing the outputs of several F0-estimation algorithms. In
this way, our approach enables the analysis and exploration of large unlabeled audio collections. One
major challenge for computational analysis of polyphonic singing constitute stylistic elements such as
pitch slides and pitch drifts, which can introduce blurring in analysis results. As a third contribution of this
thesis, we present computational tools for handling such peculiarities. In particular, we develop musically
motivated filtering techniques to detect stable regions in F0-trajectories and compensate for pitch drifts.
Furthermore, our tools offer interactive feedback mechanisms that allow domain experts to incorporate
musical knowledge. Development and evaluation of computational tools for analyzing polyphonic singing
typically require suitable multitrack recordings with one or several tracks per voice, e.g., obtained from
close-up microphones attached to a singer’s head and neck. However, such recordings are challenging to
produce and thus of limited availability. As an additional contribution of this thesis, we introduce carefully
organized and annotated multitrack research corpora of Western choral music and traditional Georgian
vocal music, which are publicly accessible through interactive interfaces. Furthermore, considering these
two culturally different forms of vocal music as concrete application scenarios, we evaluate our interactive
computational tools and demonstrate their potential for corpus-driven research in the field of computational
ethnomusicology.
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Zusammenfassung

Mehrstimmige Vokalmusik ist ein wesentlicher Bestandteil von Musikkulturen auf der ganzen Welt.
Bei der Untersuchung von aufführungs- und kulturspezifischen Aspekten spielt die Analyse von auf-
genommenem Audiomaterial eine zunehmend wichtige Rolle. Diese Dissertation befasst sich mit der
Entwicklung von computergestützten Werkzeugen zur Verarbeitung, Analyse und Erforschung von Ge-
sangsaufnahmen mittels Techniken der Signalverarbeitung und des Music Information Retrieval (MIR).
Als ersten Beitrag wird ein Ansatz zur zeitabhängigen Tonhöhenkorrektur basierend auf Zeitdehnungs- und
Resampling-Verfahren vorgestellt. Zudem wird gezeigt, wie die Techniken zur Anpassung der Intonation
(Feinabstimmung der Tonhöhe) in Vokalaufnahmen, z. B. in der Postproduktion, verwendet werden
können. Die computergestützte Analyse mehrstimmiger Gesänge benötigt in der Regel Annotationen der
Fundamentalfrequenz-Trajektorien (oder F0-Trajektorien) aller Stimmen. Meist stehen solche Annota-
tionen nicht oder nur begrenzt zur Verfügung, da ihre Erstellung sehr arbeits- und zeitintensiv ist. Als
zweiten Beitrag wird ein Ansatz zur Bewertung der Zuverlässigkeit von F0-Schätzungen präsentiert, der
die Ausgaben verschiedener automatischer F0-Schätzalgorithmen kombiniert. Der vorgestellte Ansatz
ermöglicht es, große, nicht-annotierte Audiosammlungen auf Basis von verlässlichen F0-Schätzungen zu
analysieren. Eine besondere Herausforderung für die computergestützte Analyse mehrstimmiger Gesänge
stellen kontinuierliche Tonhöhenänderungen (sog. Glissandi oder Portamenti) und sinkende oder fallende
Intonation über die Dauer eines Stücks dar. Diese musikalischen Phänomene können zu Unschärfe in
den Analyseergebnissen führen. Als dritten Beitrag dieser Dissertation werden Filtertechniken für stabile
Regionen und bestimmte harmonische Intervalle in F0-Trajektorien entwickelt, um diesen Phänomenen
gerecht zu werden. Darüber hinaus bieten die entwickelten Werkzeuge interaktive Feedback-Mechanismen,
die es Domänenexperten ermöglichen, musikalisches Fachwissen in die Analyse einfließen zu lassen.
Entwicklung und Evaluation solcher Werkzeuge erfordern in der Regel geeignete Mehrspuraufnahmen
mit einer oder mehreren Spuren pro Stimme. Diese können z. B. durch Kehlkopf-Mikrofone erzeugt
werden, die am Hals der Sängerinnen und Sänger befestigt sind. Als zusätzlichen Beitrag dieser Arbeit
werden sorgfältig organisierte und annotierte Mehrspur-Datensätze westlicher Chormusik und traditio-
neller georgischer Vokalmusik präsentiert, die über interaktive Schnittstellen zu Forschungszwecken
öffentlich zugänglich gemacht sind. Die zwei kulturell verschiedenen Arten von Vokalmusik dienen
als konkrete Anwendungsszenarien und zur Evaluation der vorgestellten Techniken. Zudem wird das
Potenzial der entwickelten Werkzeuge für die audiobasierte Forschung im Bereich der computergestützten
Musikethnologie aufgezeigt.
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1 Introduction

The human voice can produce a remarkable range of sounds, including speech, laughing, crying,
humming, or singing. Voice sounds can be “as rich and complex as those of conventional musical
instruments” [200, p. 95]. One of the oldest forms of human music-making and a central part of music
cultures worldwide is group singing [215]. Singing in different parts or melodic lines is typically referred
to as polyphonic vocal music [94]. Yet, many facets of this centuries-old cultural asset, e.g., performance
practices and cultural peculiarities, are not fully explored and understood. Musicological research on
polyphonic vocal music is often conducted based on notated musical scores, which are obtained, e.g.,
by manually transcribing vocal performances. Such transcription approaches are limited since they are
susceptible to subjectivity and reproducibility issues. Furthermore, important tonal cues and performance
aspects may get lost in the transcription process [125, 203]. Therefore, when researching polyphonic
vocal music, the analysis of audio recordings seems inevitable. This thesis presents computational
tools for analyzing audio recordings of polyphonic vocal music using techniques from signal processing,
computer science, and music information retrieval (MIR). To bridge the gap between engineering and
musicology [73, 205, 212], our tools go beyond “black box” algorithms: firstly, by providing accessible
and musically interpretable parameters, which allow a user to include musical domain knowledge, and
secondly, by offering interactive feedback mechanisms (e.g., in the form of visualizations) to understand
and guide the algorithms intuitively.

Central to the computational analysis of polyphonic vocal recordings is determining the fundamental
frequencies (F0s) over time that correspond to the sung melodic lines. The obtained sequences of F0-values
are also referred to as F0-trajectories. Research on F0-estimation for monophonic recordings (with only
one singing voice present) is advanced. For instance, there exist many conceptually different estimation
algorithms [27, 48, 68, 97, 109, 169] as well as semi-automatic annotation tools that allow a user to correct
automatically estimated F0-trajectories [111, 126]. In the context of polyphonic singing, recording singers
separately typically requires extensive recording infrastructure and is also not desirable for musical reasons.
One option is to jointly estimate the F0-trajectories of all singers from a polyphonic mixture directly, also
referred to as multiple-F0 or multipitch estimation. This task is particularly challenging for polyphonic
vocal music and is still subject to ongoing research [9, 39, 42, 115]. To circumvent the challenges of
multipitch estimation, following up on previous research on polyphonic vocal music [86, 173], we use
multitrack recordings obtained from close-up microphones, which are attached to a singer’s head and neck.

1



1 Introduction

In particular, we exploit so-called larynx or throat microphones that capture the vibrations of the human
throat and can produce recordings with few cross-talk of individual singers in polyphonic performances.

In this thesis, we consider twomusical application scenarios that motivate the development of computational
tools. In the first scenario, we deal with Western choral music. Choir singers need to have an exact control
over their voice and intonation (fine-tuning of the pitch). In particular, singers have to constantly adjust the
intonation to stay in tune relative to the other singers. In the case of amateur a cappella singing (singing
without instrumental accompaniment), one often observes intonation deficiencies, e.g., in the form of
intonation drifts throughout a performance. To analyze such musical aspects using MIR techniques, we
recorded several amateur a cappella ensembles and created an annotated multitrack research corpus called
Dagstuhl ChoirSet. Furthermore, we present a technique for applying adaptive, time-varying pitch shifts
to audio signals using time-scale modification (TSM) and resampling techniques, which can support sound
engineers with editing choir recordings in postproduction settings.

In the second musical scenario, we consider the analysis of traditional three-part Georgian singing, which
is listed as “Intangible Cultural Heritage of Humanity” by the UNESCO1. The tonal organization of
traditional Georgian music has been at the center of attention of ethnomusicologists for many decades
(cf. [93, p. 101 ff.]) and is still a matter of intense discussion. Parts of this thesis have been conducted
within an interdisciplinary research project of computer scientists and ethnomusicologists, aiming to
advance research on Georgia’s cultural treasure using computational methods. Being an orally transmitted
culture, most sources are available as field recordings. A fundamental, though often underrated task in
MIR and computational musicology is the preparation and annotation of reusable research corpora [188].
Such annotations often need to be created in labor-intensive annotation processes conducted by domain
experts. As part of this thesis, we present a corpus based on historic tape recordings of the former Georgian
master chanter Artem Erkomaishvili, which includes carefully crafted F0-, structure, and note onset
annotations for all 101 recordings. One major challenge for analyzing melodic and harmonic properties
of the Erkomaishvili corpus and traditional Georgian vocal music in general constitute pitch slides,
which introduce blurring in analysis results. As one contribution, we present two conceptually different
approaches for detecting stable regions in F0-trajectories based on morphological filters and binary
time–frequency masks that alleviate such issues. For extensive audio collections (such as a collection
of 216 multitrack field recordings from Georgia, also referred to as the GVM collection [180]) expert
annotations may not be available for all recordings. To enable analysis and exploration of unlabeled audio
collections, we introduce an approach to assess the reliability of automatically extracted F0-trajectories
by fusing the outputs of several F0-estimation algorithms. Finally, in a case study on recordings of
traditional Georgian funeral songs, we present computational tools for determining stable, note-like
objects and correcting pitch drifts in F0-trajectories using filtering techniques for musically important
harmonic intervals. By applying our tools for computing pitch inventories, we show their potential for
ethnomusicological research.

1 https://ich.unesco.org/en/RL/georgian-polyphonic-singing-00008
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1.1 Structure and Main Contributions of this Thesis

In summary, rather than presenting end-to-end solutions, this thesis introduces interactive computational
tools that support domain experts in processing and analyzing polyphonic vocal music recordings.
Furthermore, through explicit mathematical modeling of algorithms and approaches as well as the
visualization of processing steps and analysis results, we support interdisciplinary exchange between
computer science and musicology. Finally, to ensure sustainability of our research, we make our corpora
and tools publicly available for future studies.

1.1 Structure and Main Contributions of this Thesis

This thesis is organized as follows. In Chapter 2, we summarize some fundamentals of signal processing,
including audio representations, multitrack recording techniques, and approaches for fundamental frequency
estimation.

The main body of this thesis is subdivided into two parts covering the two musical scenarios considered.
Part I starts with Chapter 3, where we introduce a novel multitrack dataset of a cappella choral singing
named Dagstuhl ChoirSet (DCS). We created DCS “from scratch” by recording amateur ensembles,
organizing the recorded data, and generating F0-annotations, beat annotations, and time-aligned score
representations. Furthermore, we developed interactive web-based interfaces to access the dataset. We
show the potential of DCS for MIR research in two case studies on measuring choral intonation and
multiple-F0 estimation.

In Chapter 4, we present an approach for applying adaptive (time-varying) pitch shifts to audio recordings.
Our method is based on time-scale modification (TSM) and resampling techniques. Besides providing
a mathematical description of our approach, we present an open-source toolbox that includes Python
implementations of our approach and several TSM algorithms. Furthermore, we show the potential of our
method for adjusting intonation in a cappella recordings using our DCS dataset.

Part II begins with Chapter 5, where we introduce a carefully curated corpus of traditional Georgian
vocal music named Erkomaishvili dataset. To create this dataset, we collated and organized historic
tape recordings of the former master chanter Artem Erkomaishvili, digitized existing transcriptions, and
annotated F0-trajectories and note onsets. In the context of case studies on harmonic intervals and pitch
inventories, we demonstrate the potential of the Erkomaishvili dataset for research on traditional Georgian
vocal music.

In Chapter 6, we introduce two approaches for removing pitch slides and other frequency fluctuations from
F0-trajectories: the first algorithm uses morphological operations inspired by image processing, and the
second one is based on suitably defined binary time–frequency masks. To avoid undesired distortions in
subsequent analysis steps, both approaches keep the original F0-values unmodified while only removing
F0-values in unstable trajectory regions. We evaluate both approaches against manually annotated stable
regions and discuss their potential in the context of interval analysis for traditional Georgian vocal music.

3



1 Introduction

In Chapter 7, we present an approach for assessing the reliability of automatically computed F0-estimates.
To this end, we propose three reliability indicators that fuse the outputs of several algorithms. Besides
providing a mathematical description of the indicators, we analyze the indicators’ behavior using a set
of annotated vocal F0-trajectories. Furthermore, we show the potential of the proposed indicators for
exploring unlabeled audio collections.

In Chapter 8, we present an annotated multitrack corpus based on recordings of Georgian funeral songs
(also called Zär) and interactive tools for explorative corpus-driven research. Following up on Chapter 6,
we present a tool to determine stable, note-like events in F0-trajectories. Furthermore, we introduce a
method for determining and compensating pitch drifts in F0-trajectories based on musically informed
interval filtering techniques. By conducting a case study on pitch inventories (pitch-class histograms) of
our Zär corpus, we demonstrate the potential of our tools for computational ethnomusicology.

Finally, we conclude this thesis in Chapter 9 with a summary and directions of future work.

1.2 Publications Related to Ph.D. Thesis

Major parts of this thesis have previously been published in peer-reviewed journals and conference
proceedings in the field of audio signal processing and music information retrieval ([158, 159, 161, 162,
163].), except for [164], which has been submitted and is currently under review. All publications related
to this thesis are listed in the following:

[158] Sebastian Rosenzweig, Frank Scherbaum, and Meinard Müller. Detecting stable regions in frequency trajectories for
tonal analysis of traditional Georgian vocal music. In Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), pages 352–359, Delft, The Netherlands, 2019. doi: 10.5281/zenodo.3527816

[159] Sebastian Rosenzweig, Helena Cuesta, Christof Weiß, Frank Scherbaum, Emilia Gómez, and Meinard Müller. Dagstuhl
ChoirSet: A multitrack dataset for MIR research on choral singing. Transactions of the International Society for Music
Information Retrieval (TISMIR), 3(1):98–110, 2020. doi: 10.5334/tismir.48

[161] Sebastian Rosenzweig, Frank Scherbaum, David Shugliashvili, Vlora Arifi-Müller, and Meinard Müller. Erkomaishvili
Dataset: A curated corpus of traditional Georgian vocal music for computational musicology. Transactions of the
International Society for Music Information Retrieval (TISMIR), 3(1):31–41, 2020. doi: 10.5334/tismir.44

[162] Sebastian Rosenzweig, Frank Scherbaum, and Meinard Müller. Reliability assessment of singing voice F0-estimates using
multiple algorithms. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 261–265, Toronto, Canada, 2021. doi: 10.1109/ICASSP39728.2021.9413372

[163] Sebastian Rosenzweig, Simon Schwär, Jonathan Driedger, and Meinard Müller. Adaptive pitch-shifting with applications
to intonation adjustment in a cappella recordings. In Proceedings of the International Conference on Digital Audio
Effects (DAFx), pages 121–128, Vienna, Austria, 2021

[164] Sebastian Rosenzweig, Frank Scherbaum, and Meinard Müller. Computer-assisted analysis of field recordings: A case
study of Georgian funeral songs. ACM Journal on Computing and Cultural Heritage (JOCCH), 2022. to appear
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1.3 Additional Publications

1.3 Additional Publications

Along with the main publications, Sebastian Rosenzweig contributed to the development of several
web-based interfaces ([160, 179, 221]) and studies on intonation analysis of choral singing ([185, 214]).
As part of the interdisciplinary collaboration with ethnomusicologists, he also contributed to several
papers with a musicological focus ([126, 176, 177, 180, 181]). Finally, he helped to develop educational
material for a preparation course on Python programming ([121]). These additional publications are listed
in the following.

[160] Sebastian Rosenzweig, Lukas Dietz, Johannes Graulich, and Meinard Müller. TuneIn: A web-based interface for practicing
choral parts. In Demos and Late Breaking News of the International Society for Music Information Retrieval Conference
(ISMIR), Montreal, Canada, 2020

[179] Frank Scherbaum, Sebastian Rosenzweig, Meinard Müller, Daniel Vollmer, and Nana Mzhavanadze. Throat microphones
for vocal music analysis. In Demos and Late Breaking News of the International Society for Music Information Retrieval
Conference (ISMIR), Paris, France, 2018

[221] Frank Zalkow, Sebastian Rosenzweig, Johannes Graulich, Lukas Dietz, El Mehdi Lemnaouar, and Meinard Müller. A
web-based interface for score following and track switching in choral music. In Demos and Late Breaking News of the
International Society for Music Information Retrieval Conference (ISMIR), Paris, France, 2018

[185] Simon Schwär, Sebastian Rosenzweig, and Meinard Müller. A differentiable cost measure for intonation processing in
polyphonic music. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR),
pages 626–633, Online, 2021. doi: 10.5281/zenodo.5624601

[214] Christof Weiß, Sebastian J. Schlecht, Sebastian Rosenzweig, and Meinard Müller. Towards measuring intonation quality
of choir recordings: A case study on Bruckner’s Locus Iste. In Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), pages 276–283, Delft, The Netherlands, 2019. doi: 10.5281/zenodo.3527798

[126] Meinard Müller, Sebastian Rosenzweig, Jonathan Driedger, and Frank Scherbaum. Interactive fundamental frequency
estimation with applications to ethnomusicological research. In Proceedings of the AES International Conference on
Semantic Audio, pages 186–193, Erlangen, Germany, 2017

[176] Frank Scherbaum, Meinard Müller, and Sebastian Rosenzweig. Analysis of the Tbilisi State Conservatory recordings
of Artem Erkomaishvili in 1966. In Proceedings of the International Workshop on Folk Music Analysis (FMA), pages
29–36, Málaga, Spain, 2017

[177] Frank Scherbaum,MeinardMüller, and Sebastian Rosenzweig. RechnergestützteMusikethnologie amBeispiel historischer
Aufnahmen mehrstimmiger georgischer Vokalmusik. In Proceedings of the Jahrestagung der Gesellschaft für Informatik
(GI), pages 163–175, Chemnitz, Germany, 2017

[180] Frank Scherbaum, Nana Mzhavanadze, Sebastian Rosenzweig, and Meinard Müller. Multi-media recordings of traditional
Georgian vocal music for computational analysis. In Proceedings of the International Workshop on Folk Music Analysis
(FMA), pages 1–6, Birmingham, UK, 2019

[181] Frank Scherbaum, Nana Mzhavanadze, Simha Arom, Sebastian Rosenzweig, and Meinard Müller. Tonal Organization
of the Erkomaishvili Dataset: Pitches, Scales, Melodies and Harmonies. Universitätsverlag Potsdam, 2020. doi:
10.25932/publishup-47614
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[121] Meinard Müller and Sebastian Rosenzweig. PCP notebooks: A preparation course for Python with a focus on signal
processing. Journal of Open Source Education (JOSE), 5(47):148:1–5, 2022. doi: 10.21105/jose.00148
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2 Fundamentals of Signal Processing

Section 2.2 of this chapter is based on [179]. Frank Scherbaum developed the

recording setup and conducted the field recordings. Daniel Vollmer prepared

the microphones. Sebastian Rosenzweig and Meinard Müller wrote the

late-breaking demo abstract. El Mehdi Lemnaouar developed the web-based

interface under the supervision of Sebastian Rosenzweig.

In this chapter, we explain the technical background for analyzing and processing audio recordings.
First, we formalize the most important audio representations (Section 2.1). Second, we elaborate on
multitrack recording techniques for polyphonic vocal music (Section 2.2). Finally, we review approaches
for F0-estimation (Section 2.3).

2.1 Audio Representations

In the following, using the notion of Müller [120], we introduce waveform representations (Section 2.1.1),
the discrete Fourier transform (Section 2.1.2), the short-time Fourier transform (Section 2.1.3), and
log-frequency spectrograms (Section 2.1.4).

2.1.1 Waveform

From a physical perspective, sound is a variation of air pressure over time. Sound waves between roughly
20 Hz and 20 000 Hz are typically perceivable by a young and healthy human ear. Through the use of
suitable sound transducers, e.g., microphones, sensors, or pickups, a sound wave can be converted into an
electrical signal, or, in other words, a continuously changing level of electrical voltage. Following [120,
Section 2.2.1], we model such a continuous-time (CT) signal as a function f : R→ R that assigns an
amplitude value f (t) ∈ R to each point in time t ∈ R.

Historically, audio signals were recorded using analog storage media such as wax cylinders, phonograph
discs, or magnetic tapes. Today, one typically records, stores, and processes audio signals in digital form.
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Figure 2.1: Visualization of a singing voice recording. (a) Sheet music. (b) DT-Signal (waveform). (c) Enlarged version of the
region marked in red.

To this end, one uses analogue-to-digital (A/D) converters, as included in audio interfaces or sound cards.
A/D conversion involves two steps: sampling and quantization.

One of the most widespread types of sampling is called equidistant sampling or T-sampling. Given a
CT-signal f : R→ R and a sampling period T ∈ R>0, one defines a function x : Z→ R by setting

x(r) := f (r · T), (2.1)

for a sample index r ∈ Z. The signal x is referred to as discrete-time (DT) signal since it is only defined
on a discrete set of points in time. The value x(r) is called a sample taken at time t = r · T of the analog
signal f . Note that by the above definition, we assume the DT-signal may be of infinite length with a
discrete time axis Z. In practice, to avoid boundary conditions when dealing with signals of finite length,
we assume that all samples outside the signal’s finite range are zero.

Given the sampling period T , the inverse
Fs = 1/T, (2.2)

is referred to as the DT-signal’s sampling rate Fs ∈ R>0 measured in Hz.

In general, sampling leads to a loss of information. The Whittaker–Nyquist–Shannon theorem states that
an original analog signal f can be reconstructed perfectly from its DT-version x, if f does not contain any
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2.1 Audio Representations

frequencies higher than a frequency commonly referred to as the Nyquist frequency Ω ∈ R>0 defined by

Ω := Fs/2 Hz. (2.3)

Thus, theoretically, sampling rates of more than 40 000 Hz are sufficient for representing all sounds that
are audible by the human ear. In practice, one uses higher sampling rates to have an additional safety
margin for aliasing artifacts. For instance, CD recordings use a sampling rate of 44 100 Hz, whereas
professional productions typically use sampling rates of 48 000 Hz, 96 000 Hz, and beyond. For audio
analysis purposes, it is often sufficient to use sampling 22 050 Hz or even 16 000 Hz, since most musically
relevant information is contained in the lower frequency regions.

After discretizing the time axis through sampling, the second step in A/D conversion is discretizing the
amplitude of the signal. This process is called quantization. Following [120, Section 2.2.2.2], a uniform
quantizer can be modeled as a function Q : R→ Λ that maps an amplitude value a ∈ R to a value from a
discrete set of quantized values Λ ⊂ R by

Q(a) := sgn(a) · δ ·
⌊
|a|
δ
+

1
2

⌋
, (2.4)

where sgn(·) is the signum function that yields the sign of a real number and δ ∈ R>0 the quantization
stepsize. The quantization stepsize is dependent on the bit depth, which describes the number of bits
available to store an amplitude value. For instance, CD recordings typically have a bit depth of 16 bit.
Thus, an amplitude value can be quantized to 216 = 65536 different discrete values. Consequently, the
quantization stepsize is δ = 1/216.

Let us assume we have recorded a singer performing the melody as given by the sheet music in Figure 2.1a.
The DT-audio signal of the monophonic recording with Fs = 22050 Hz and 11.5 s duration is visualized
in Figure 2.1b and will serve as a running example in this chapter. From this visualization, the individual
samples are not visible. However, when we zoom into a small region with a duration in the order of a few
milliseconds (see Figure 2.1c), we can see a sampled wave. In general, audio waveforms provide a rough
idea of when a sound event is occurring (indicated through amplitude changes), but no information about
its spectral properties, e.g., the sung notes. In the next section, we will discuss the Fourier transform,
which provides more insights into an audio signal’s frequency content.

2.1.2 Discrete Fourier Transform

The Fourier transform (FT), named after the French mathematician Jean-Baptiste Joseph Fourier, is one of
the most fundamental tools in signal processing. The main idea of the FT is to decompose a signal into its
constituent frequencies. There exist different definitions and variants of the FT, which are comprehensively
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Figure 2.2: Magnitude spectrum of the singing voice recording from Figure 2.1.

discussed in [120, Chapter 2]. Since we are dealing with digital audio signals in this thesis, we focus on
formalizing discrete variants of the FT in the following.

To compute the discrete Fourier transform (DFT), we consider a finite range [0 : N − 1] := {0, ..., N − 1}
of length N ∈ N. Then, the DFT is defined as

X(k) =
N−1∑
r=0

x(r) exp(−2πikr/N), (2.5)

for a frequency index k ∈ [0 : N − 1].

The complex-valued Fourier coefficient X(k) describes the magnitude and phase of sinusoidals with
physical frequencies k · Fs/N . Since the obtained spectrum is symmetric, one typically considers the
frequency range between 0 Hz and the Nyquist frequency Ω. Furthermore, one often uses an efficient
algorithm to compute the DFT, known as the fast Fourier transform (FFT). For an extensive description of
the DFT and the FFT we refer to [120, Chapter 2]. The magnitude spectrum |X | for our singing voice
recording is depicted in Figure 2.2. As one can see, the spectrum exhibits several peaks. The marked
peaks correspond to the F0s of the sung notes (E4, F4, G4, A4, B4, C5). The peaks from roughly 660 Hz
onwards correspond to integer multiples of the F0s, also called harmonics or overtones. In summary, the
DFT reveals the frequency content of the recording, whereas information on when a frequency occurs (or
when a note is sung) is hidden in the phase ot the complex Fourier representation.

2.1.3 Short-Time Fourier Transform

To uncover both the time and frequency information of a digital audio recording, one often uses the
discrete Short-Time Fourier Transform (STFT) [64]. The basic idea behind the STFT is to divide the
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audio signal into short frames of length N ∈ N using a suitable window function w : [0 : N − 1] → R and
calculate the DFT for each of the frames. Following [120, Section 2.5], the STFT is defined as

X(m, k) =
N−1∑
r=0

x(r + mH)w(r) exp(−2πikr/N), (2.6)

where m ∈ Z is the frame index and k ∈ [0 : bN/2c] is the frequency index. The hopsize H ∈ N defines the
number of samples between two consecutive frames. The resulting complex time- and frequency-dependent
coefficients are associated with the physical time position

Tcoef(m) =
m · H

Fs
(2.7)

given in seconds and the physical frequency

Fcoef(k) =
k · Fs

N
(2.8)

given in Hz. The magnitude of the STFT is referred to as magnitude spectrogram and defined by

Y(m, k) := |X(m, k)|. (2.9)

In order to visually enhance regions in the spectrogram with low magnitude, we apply logarithmic
compression to the magnitudes by setting

Υυ(Y) := log(1 + υ · Y), (2.10)

where the compression factor υ ∈ R>0 determines the degree of compression.

Let us revisit our running example. Figure 2.3a shows a magnitude spectrogram of the singing voice
recording with N = 8192 (using a Hann window of length 4096 and suitable zero-padding), H = 256,
and υ = 0.1. The higher the magnitude of a time–frequency coefficient, the darker it is shown in the
spectrogram representation. From this visualization, the melody of the singing voice is clearly recognizable.
For visual support, the F0s that correspond to the sung notes (see the top of the plot) are highlighted in red.
Furthermore, the magnitude spectrogram representation shows the harmonic structure of the singing voice.

2.1.4 Log-Frequency Spectrogram

The spectrogram representation introduced in Section 2.1.3 possesses a linearly sampled frequency
axis with equidistantly spaced center frequencies of neighboring frequency bands. To account for the
logarithmic frequency perception of the human ear, it is desirable to have a logarithmically spaced
frequency axis. In the following, we introduce the so-called log-frequency spectrogram, which can be
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Figure 2.3: Time–frequency representations. (a) Magnitude spectrogram of singing voice recording from Figure 2.1. (b)
Log-frequency spectrogram of singing voice recording from Figure 2.1. (c) Log-frequency spectrogram of four-voice performance
including the singing voice from (a)/(b).

computed in different ways (see [120, Chapter 3, 8] for further information). In the following, we focus on
a basic binning technique.

Let ωref be a reference frequency (given in Hz). Then, an arbitrary frequency value ω is converted into the
logarithmic domain by defining

Fcents (ω) := 1200 · log2

(
ω

ωref

)
, (2.11)

which measures the distance between ω and ωref in the unit cents.
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Following [120, Chapter 8.2.2.1], given a magnitude spectrogram Y of an audio signal, the main idea of
the binning technique is to map the coefficients Y(m, k) to a logarithmic frequency axis. To this end, let
R ∈ R (given in cents) be the desired resolution of the logarithmic frequency axis. Then, a frequency
value given in cents is assigned to a bin index Bin(ω) with Bin : R→ Z by setting

Bin(ω) =
⌊

Fcents(ω)
R

+ 1.5
⌋
. (2.12)

For instance, R = 100 results in a logarithmic frequency axis where the bins are spaced one semitone apart.
Note that although this definition allows us to bin the coefficients with an arbitrary resolution, the overall
frequency resolution of the log-frequency spectrogram is still limited by the frequency grid introduced by
the STFT. Let B ∈ N be the number of bins to be considered and b ∈ [1 : B] the bin index. Then, we
define the set

P(b) = {k : Bin(Fcoef(k)) = b}, (2.13)

which includes all coefficients that are mapped to a specific bin b. Finally, we define the log-frequency
spectrogram by setting

YLF(m, b) =
∑

k∈P(b)
Y(m, k). (2.14)

A log-frequency spectrogram with a resolution of R = 25 cents (a quarter semitone) and a reference
frequency ωref = 55 Hz for our running example is shown in Figure 2.3b. Again we applied logarithmic
compression with υ = 0.1. As one can see, the logarithmic frequency binning blurs the spectral lines
towards the lower frequency range. Furthermore, while the harmonics of the singing voice were spaced
linearly in Figure 2.3a, they are spaced logarithmically in the log-frequency spectrogram in Figure 2.3b.

2.2 Multitrack Recording Techniques

When several people sing together, their voices blend into a polyphonic sound mixture. Vocal ensembles
are typically recorded using a stereo microphone placed a few meters in front of the ensemble [137].
The goal of such recording setups is to capture the ensemble as a cohesive whole in the best possible
acoustic quality. Figure 2.3c shows a logarithmically compressed (υ = 0.1) log-frequency spectrogram of
a vocal performance with four singers recorded with a microphone placed in front of the singers. The
performance includes the singing voice from Figure 2.3a. As one can see, the harmonic structure of the
polyphonic sound mixture is much more complex than the one of the monophonic recording. On closer
inspection, one can also see that the F0s and the harmonics of the singers’ voices partially overlap with
each other. Our example shows that computational analysis, e.g., F0-estimation, is generally far more
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Figure 2.4: Close-up microphone recording setup for one singer.

Larynx 
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challenging for polyphonic recordings (Figure 2.3c) compared to monophonic recordings (Figure 2.3b).
Furthermore, some MIR tasks such as source separation (decomposition of a polyphonic recording into its
monophonic sources) require multitrack recordings with one or several monophonic tracks per voice as
training or evaluation data. Despite the recent advances with decomposing pop music [84, 195], techniques
for decomposing recordings of polyphonic singing still face several issues, not least due to the limited
availability multitrack vocal recordings [77, 138, 171].

To obtain multitrack recordings of polyphonic vocal music, we make use of close-up microphones attached
to the singer’s neck and head. The microphones considered in this thesis are depicted in Figure 2.4.
The most widespread types are hand-held dynamic (DYN) microphones and headset (HSM or HDS)4

microphones. Such microphones typically capture signals of high acoustic quality. However, recorded
signals may suffer from cross-talk of other singers in proximity (which is likely to happen in vocal
ensembles). Thus, DYN and HSM/HDS recordings may not be entirely monophonic.

As a thirdmicrophone type, we consider throat or larynx (LRX)microphones, which exploit the peculiarities
of human voice production. Singing originates from a complex interplay between the different parts of
the vocal apparatus. The lungs and the oscillating vocal folds within the larynx mainly control the pitch
and loudness of a sound, whereas resonances and modulations in the vocal tract influence the timbre
of a sound. During talking or singing, vibrations of the larynx can be recorded by LRX microphones
attached to the skin of the throat. Such microphones typically use electret or piezo pick-ups to sense
vibrations through contact with solid objects. Capturing the human voice directly from the throat skin is
advantageous since the recorded signals are not interfered by other sounds carried by the air (e.g., the
voices of other singers). For this reason, LRX microphones are also used for communication in high-noise
environments (e.g., by military and security agencies) and for speech health monitoring. Furthermore,
because of their simple usage and robustness, the microphones are ideal for mobile and outdoor use. There

4 Both abbreviations are used in different parts of this thesis to stay consistent with the file name conventions in the respective
datasets.
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are some disadvantages of throat microphones as well. Due to the missing contributions of the vocal tract,
the recorded signals sound unnatural and muffled. In addition, the signal quality can be affected by tissue
characteristics and facial hair on the user’s throat. Some singers also complain about unpleasant pressure
on their throats during singing. Despite such disadvantages, LRX microphones have shown great potential
for analyzing vocal music [86, 173]. In particular, due to the predominant pitch of the recorded voice, the
task of F0-estimation is much easier for LRX signals, as we will see in the next section.

2.3 Fundamental Frequency Estimation

In the following, we formalize the notion of an F0-trajectory (Section 2.3.1) and elaborate on the F0-
estimation algorithms YIN (Section 2.3.2), pYIN (Section 2.3.3), Melodia (Section 2.3.4), and CREPE
(Section 2.3.5), which are used in the experiments of this thesis.

2.3.1 Notion of F0-Trajectory

Throughout this thesis, we use a consistent notion of an F0-trajectory. We model an F0-trajectory as a
function

η : Z→ R ∪ {∗} (2.15)

that assigns to a given time index n ∈ Z either a real-valued frequency value η(n) ∈ R (given in cents) or
the symbol η(n) = ∗ (when the frequency value is left to be unspecified). For brevity, we use the notion

η(a : b) :=
{
η(a), η(a + 1), ..., η(b)

}
(2.16)

for integers a, b ∈ N.

2.3.2 YIN

One of the most well-known algorithms for F0-estimation is YIN5, which was first introduced by Cheveigné
and Kawahara [48]. YIN is a time domain algorithm, which produces one F0-estimate for each time
frame following three main steps. In the first step, one computes a function referred to as cumulative
mean normalized difference function (CMNDF). The CMNDF is depicted for one frame of our running
example in Figure 2.5a. As one can see, the CMNDF has local minima at integer multiples of the
period of the signal. In the second step, one sets an absolute threshold and determines the smallest
value of τ for which CMNDF has a local minimum deeper than that threshold. For our example
frame, given a threshold as indicated by the red dotted line in Figure 2.5a, we obtain τ = 42 samples,
corresponding to a frequency of Fs/τ = 22050 Hz/42 = 525 Hz. In the third step, the period estimate
5 The name YIN stems from the Chinese philosophical concept “Yin” and “Yang”.
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Figure 2.5: Illustration of YIN and pYIN F0-estimation for running example. (a) Cumulative mean normalized difference
function for one frame. (b) Log-frequency spectrogram superimposed with F0-trajectory estimated by YIN (red line) and zoom
into a section (right). (c) Log-frequency spectrogram superimposed with F0-trajectory estimated by pYIN.

is refined using parabolic interpolation. Figure 2.5b depicts the F0-trajectory estimated by YIN for
our running example superimposed with a log-frequency spectrogram. Since the algorithm does not
enforce continuity of the estimated F0-trajectories, one often obtains highly fluctuating F0-estimates (e.g.,
see Figure 2.5b at around 6 seconds). In particular, YIN suffers from confusions of the F0 with higher
harmonics (especially the octave). As one of its main benefits, YIN is an algorithm of low computational
complexity. Implemented efficiently, the YIN algorithm can be used to estimate F0-trajectories in real-time
applications. YIN implementations are, for instance, available in librosa [112] (Python), the aubio
library6 (C), Essentia [20, 38] (C, JavaScript), and as Vamp-Plugin7. For further information on the YIN
algorithm, we refer to [48].

6 https://aubio.org/
7 https://vamp-plugins.org/
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Figure 2.6: Illustration of Melodia F0-estimation for running example. (a) Harmonic summation on log-frequency spectrogram
with a refined frequency resolution and zoom into a section (right). (b) Salience representation superimposed with F0-trajectory
estimated by Melodia (red line).

2.3.3 pYIN

Probabilistic YIN, or pYIN, introduced by Mauch and Dixon [109], is a modification of the previously
described YIN algorithm. To increase the robustness and alleviate the continuity problems of the YIN
algorithm, the authors propose two main strategies. First, one applies YIN multiple times with different
thresholds taken from a given threshold distribution. In this way, one obtains multiple F0-candidates per
frame. Second, the authors introduce an additional temporal smoothing step. Using a hidden Markov
model (HMM) and Viterbi decoding, the algorithm determines a smooth trajectory of F0-values from the
F0-candidates. Furthermore, the HMM smoothing includes frame-wise decision whether a frame is voiced
or unvoiced (commonly referred to as voicing detection). Figure 2.5c shows the estimated pYIN-trajectory
for our running example. As one can see, the outliers of the YIN-trajectory have been removed and the
estimated F0-trajectory is smooth. As a downside of pYIN, the algorithm is computationally more complex
than YIN. Furthermore, because of the additional HMM smoothing, pYIN is not real-time capable. pYIN
implementations are, for instance, available in librosa [112] (Python), Essentia [20, 38] (C, JavaScript),
and as Vamp-Plugin. For further information on the pYIN algorithm, we refer to [109].

2.3.4 Melodia

Melodia is a frequency domain algorithm introduced by Salamon and Gómez [169] that is primarily
designed for the task of melody extraction. Given a polyphonic recording, the task of melody extraction
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involves automatically extracting the F0-trajectory of the main (predominant) melodic line. In the close-up
microphone signals considered in this thesis, the vocal F0 is predominant during singing. Melodia relies
on an enhanced time–frequency representation, also called salience representation, of the audio signal,
which can be computed in four main steps. First, an STFT is computed. Second, by making use of the
phase of the complex Fourier-coefficients, the frequency resolution is refined using a technique referred
to as instantaneous frequency (IF) estimation (see [169] and [120, Section 8.2.1] for details). Third,
the IF-estimates are binned onto a logarithmic frequency axis using a conceptually similar technique as
explained in Section 2.1.4. Fourth, one applies a technique called harmonic summation, which exploits the
harmonicity of sounds by accumulating the harmonics of a tone over frequency. The refined log-frequency
spectrogram for our running example and the working principle of harmonic summation are visualized
in Figure 2.6a. The resulting salience representation is visualized in Figure 2.6b. As one can see, harmonic
summation leads to replications of spectral patterns (“ghost components”) appearing particularly in the
lower frequency regions. Subsequently, the F0-trajectory is computed using a peak streaming approach
based on heuristics inspired by auditory streaming cues. Furthermore, Melodia includes a voicing detection
step. Figure 2.6b shows the F0-trajectory estimated by Melodia for our running example. The robustness
of Melodia to the presence of other, non-predominant sound sources in the analyzed signal comes at
the cost of an increased computational complexity of the algorithm. Melodia implementations are, for
instance, available in Essentia [20, 38] (C, JavaScript) and as Vamp-Plugin. For further information on the
Melodia algorithm, we refer to [169].

2.3.5 CREPE

CREPE (Convolutional Representation for Pitch Estimation) is a deep learning-based algorithm introduced
by Kim, Salamon, and Bello [97]. CREPE takes a waveform as input and outputs frame-wise F0-estimates.
The network architecture has over 22 million parameters and consists of six convolutional blocks and a final
fully connected layer. Each convolutional block consists of a 1D-convolution layer, a batch normalization
layer [89], a max-pool layer, and a dropout layer [194]. Figure 2.7a shows the concatenated magnitude
Fourier spectra of the 1024 learned filters in the first convolutional layer. The spectra are sorted according
to the index of their maximal value. As one can see, the learned filters exhibit a bandpass-like characteristic.
Furthermore, the filters’ center frequencies are non-linearly distributed across the frequency range, which
resembles the non-linear resolution of the log-frequency spectrogram (see Section 2.1.4). The final fully
connected layer has 360 nodes that are associated to frequency values on a logarithmic frequency axis
with a 20 cents quantization in the range between the pitches C1 and B7. Each node outputs an activation
value in the range [0, 1], which indicates the likelihood of the input signal to have an F0 that falls within
the associated frequency bin. The output F0-estimates are obtained through averaging of associated
frequencies weighted with their activations. Optionally, the obtained F0-trajectory can be smoothed using
the Viterbi algorithm. Figure 2.7b shows the smoothed F0-trajectory estimated by CREPE for our running
example. Note that CREPE outputs one F0-value per time frame. However, the voicing can be inferred
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Figure 2.7: Illustration of CREPE F0-estimation for running example. (a) Concatenated and sorted magnitude Fourier spectra of
the learned filters in the first convolutional layer. (b) Log-frequency spectrogram superimposed with F0-trajectory estimated by
CREPE (red line) and zoom into a section (right).

from the output layer activations. A stripped-down version of CREPE with roughly 500 000 parameters
can run in real-time in the browser.8 The original CREPE implementation is available on GitHub9 and
PyPi10. For further information on CREPE, we refer to [97]. A detailed analysis of the CREPE network
can be found in [5].

8 https://marl.github.io/crepe/
9 https://github.com/marl/crepe
10 https://pypi.org/project/crepe/
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3 Dagstuhl ChoirSet: Creation of a Corpus for
Analyzing Choral Singing

This chapter is based on [159]. Sebastian Rosenzweig and Helena Cuesta

substantially contributed to the recording process, dataset creation and

writing of the article. Christof Weiß took over the musical coordination as

well as the conducting during rehearsals and recordings. Frank Scherbaum

contributed to the technical coordination of the recording session and provided

his microphones. Emilia Gómez and Meinard Müller supervised this work and

contributed to dataset creation and writing of the article.

MIR research on choral singing benefits from multitrack recordings of the individual singing voices.
However, there exist only few publicly available multitrack datasets on polyphonic singing. In this chapter,
we present Dagstuhl ChoirSet (DCS), a multitrack dataset of a cappella choral music designed to support
MIR research on choral singing. The dataset includes recordings of an amateur vocal ensemble performing
two choir pieces in full choir and quartet settings. The audio data was recorded during an MIR seminar at
Schloss Dagstuhl using different close-up microphones to capture the individual singers’ voices. In this
chapter, we give detailed insights into all stages of creating DCS: recording process, data preparation,
generation of annotations as well as development of suitable interfaces for publicly accessing and reusing
the data. Furthermore, we demonstrate the potential of the dataset for MIR research by discussing case
studies on choral intonation assessment and multiple-F0 estimation.

3.1 Introduction

Choral singing is one of the most widespread types of polyphonic singing [197]. For instance, the
European Choral Association11 reports over 37 million amateur and professional choir singers on the
European continent, while Chorus America12 reports 54 million active singers in the U.S. The great
interest in choral singing motivates the need for MIR technologies to support singers and conductors in

11 https://europeanchoralassociation.org
12 https://www.chorusamerica.org
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Figure 3.1: Dagstuhl ChoirSet—an overview.
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their rehearsal practices13 via mobile applications14,15 and web-based interfaces16. Over the last years,
there has been an increasing number of MIR techniques developed for analyzing polyphonic vocal music
[40, 46, 50, 51, 86, 87, 110, 214] as well as for synthesizing expressive singing [16, 32]. Essential to the
development of such techniques is the availability of suitable datasets and processing tools. In particular,
multitrack recordings are of great value for evaluation purposes. However, due to high demands on
recording equipment and infrastructure, there exist only few publicly available multitrack datasets on
polyphonic vocal music.

The lack of suitable research data was one of the driving motivations to create Dagstuhl ChoirSet (DCS),
a publicly available multitrack dataset of a cappella choral music for MIR research. The audio data
was recorded during a one-week research seminar on “Computational Methods for Melody and Voice
Processing in Music Recordings” [128] at Schloss Dagstuhl17. For the recordings, we assembled a vocal
ensemble of mostly amateur singers (all were participants of the Dagstuhl seminar) covering different
SATB (Soprano, Alto, Tenor, and Bass) voice sections. After several rehearsals with a conductor, we
recorded multiple takes of two choir pieces in a full choir setting and two quartet settings (Quartet A and
Quartet B). Furthermore, we recorded some systematic exercises for practicing choral intonation. As
one main feature of the dataset, individual singers were recorded using multiple close-up microphones,
including larynx, headset, and dynamic microphones (see Figure 3.1). Subsequent to recording and
curating the recorded multitrack data, we annotated beat positions and generated time-aligned score
representations for each of the music recordings. Furthermore, we automatically extracted F0-trajectories
for all close-up microphone signals. The publicly available dataset is archived on Zenodo18 and is

13 https://cordis.europa.eu/project/id/770376
14 https://www.carus-verlag.com/en/digital-media/carus-music-the-choir-app
15 https://www.singerhood.com
16 https://trompamusic.eu/choir-singers
17 https://www.dagstuhl.de/19052
18 https://doi.org/10.5281/zenodo.3897182
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3.2 Prior Work

accessible via an interactive web-based interface with score-following and playback functionality19. In
order to facilitate reproducibility and further research using this dataset, we have created an open source
Python toolbox with helper functions to load, parse, and process dataset files20.

In summary, our annotated dataset has different musical and acoustical dimensions that open up a variety
of research scenarios. Besides being a good basis for studying amateur choral singing, DCS constitutes
a challenging scenario for various fundamental tasks in MIR such as automatic music transcription [7],
score-to-audio alignment [199], and beat tracking [18, 223]. Moreover, the close-up microphone signals
as well as the available F0-trajectories and scores can serve as a baseline to research on (informed) source
separation techniques [30, 31]. Furthermore, it allows for comparisons between multiple choir/quartet
performances, choir settings, and microphone types.

The remainder of this chapter is structured as follows. In Section 3.2, we give an overview on datasets
related to our work. In Section 3.3, we describe DCS by providing details on the choir settings, selected
pieces, technical setup of the recordings, and generated annotations. In Section 3.4, we explain the different
interfaces to access and use the dataset. In Section 3.5, we demonstrate the relevance of this dataset for
MIR research by conducting two case studies on choral intonation assessment and multiple-F0 estimation
using state-of-the-art algorithms. Finally, in Section 3.6, we summarize our contributions and provide
further notes.

3.2 Prior Work

There is an urgent need for datasets in the field of MIR: annotated data are crucial for training data-driven
systems or evaluating methods developed to solve specific tasks. Over the last years, the availability of
suitable datasets has triggered research on tasks such as melody extraction (e.g., MedleyDB [11]), music
style identification (e.g., Ballroom dataset [76]), and automatic chord recognition (e.g., Beatles dataset
[82]).

The datasets closely related to DCS are presented in Table 3.1. Su et al. [196] created a small dataset for
research on choral music. It consists of five short excerpts of Western choral music, ranging from 18 to
40 seconds in length. The dataset contains stereo audio recordings and note event annotations, annotated
by a professional pianist. Although small in size, this dataset is relevant for multiple-F0 estimation in
complex scenarios where sources are similar, (e.g., voices of a choir), and where several sources produce
the same notes (i.e., unisons).

Over the last years, there has been an increasing interest of the MIR community in analyzing world
music [134, 188], including traditional singing [208, 211]. A conceptually similar dataset to DCS in terms
of recording methodology and utilized microphones is a set of multitrack field recordings of three-voice

19 https://www.audiolabs-erlangen.de/resources/MIR/2020-DagstuhlChoirSet
20 https://github.com/helenacuesta/ChoirSet-Toolbox
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Name/Author Multitrack Annotations Publicly # Recordings Duration
Available (hh:mm:ss)

[196] No MIDI On Request 5 excerpts 00:02:11
Barbershop Quartets21 Yes MIDI No 22 songs 00:42:10
Bach Chorales22 Yes MIDI No 26 songs 00:58:20
[180] (see Section 7.2) Yes - On Request 216 songs 06:08:51
Erkomaishvili Dataset [161] No Structure, F0, Score, Onsets Yes 101 songs 07:05:00
(see Chapter 5)
Choral Singing Dataset (CSD) Yes MIDI, F0, Notes Yes 3 songs 00:07:14
[40]

Dagstuhl ChoirSet (DCS) Yes MIDI, F0, Beats Yes 2 songs, exercises 00:55:30

Table 3.1: Comparison of polyphonic singing datasets described in Section 3.2. The reported durations refer to the total recording
duration (not counting multiple tracks per recording if available).

Georgian vocal music [180] (see Section 7.2 for a description). Furthermore, the Erkomaishvili Dataset is
a publicly available corpus based on historic tape recordings of three-voice traditional Georgian songs
performed by the former master chanter Artem Erkomaishvili [161] (see Chapter 5 for a description).

In the context of Western polyphonic vocal music, we find very few multitrack datasets. Two examples are
datasets from a commercial application that have been used by [115, 183, 184]: the Barbershop Quartets21

and the Bach Chorales22. Both datasets contain separate tracks for each of the four SATB singers and an
additional track with a stereo mix. The Barbershop recordings comprise 22 songs with a total length of 42
minutes, whereas the Bach Chorales contain 26 recordings with a total length of 58 minutes. The audio
recordings and the accompanying synchronized MIDI files are not freely available.

The Choral Singing Dataset (CSD) [40] is a publicly available dataset of Western polyphonic vocal music23.
The CSD consists of multitrack recordings of three SATB choral pieces: Locus Iste by Anton Bruckner,
Niño Dios d’Amor Herido by Francisco Guerrero, and El Rossinyol, a popular Catalan song, performed
by a small choir of 16 singers. The four singers of each choir section were recorded simultaneously in
the same room with individual handheld dynamic microphones. However, the different sections were
recorded separately where a MIDI track served as reference. The recording length of the three songs is
around seven minutes. Furthermore, the CSD includes synchronized MIDI files, note annotations per
choir section, and F0-annotations. In summary, the CSD is most similar to our dataset in terms of musical
aspects. Further similarities and differences of the CSD to our dataset are discussed in Section 3.3.3.

3.3 Dagstuhl ChoirSet

In this section, we describe all components of DCS. In Section 3.3.1, we give details on the choir settings
as well as the recorded pieces and exercises. Then, we explain the recording setup of the multitrack

21 https://www.pgmusic.com/barbershopquartet.htm
22 https://www.pgmusic.com/bachchorales.htm
23 https://zenodo.org/record/2649950
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Figure 3.2: Anton Bruckner, Locus Iste WAB 23 (measures 1 to 11). The score was obtained from CPDL and edited by Brian
Marble24.

recordings in Section 3.3.2 and discuss the different dimensions of DCS in Section 3.3.3. Subsequently,
we elaborate on the manually created beat annotations in Section 3.3.4. Furthermore, we provide details
on the time-aligned score representations in Section 3.3.5. Finally, we describe the automatically extracted
F0-trajectories in Section 3.3.6.

3.3.1 Choir Settings and Musical Content

In total, 13 singers (Dagstuhl seminar participants) took part in the recording session. All singers have
provided their consent to publish the recorded material for research purposes under a Creative Commons
license. The Full Choir consisted of two sopranos, two altos, four tenors, and five basses. From the Full
Choir, we selected two soloistic SATB quartets (Quartet A and Quartet B) with four different singers each.
The singers had diverse musical backgrounds (from hobby musicians to such holding a music degree) as
well as varying levels of experience in (choir) singing within different musical genres. These experiences
ranged from singers who had never sung in a choir before to a professional singer with many years of
training. Considering that the singers had not sung in this constellation before the Dagstuhl seminar and
had only few rehearsals together (3 sessions of roughly 1 hour length), the recorded choir and quartets may
be representative of an amateur choir level, with individual skills partly exceeding that level. Rehearsals
and recorded performances were also conducted by a Dagstuhl seminar participant, who is a professional
composer with solid experience in conducting semi-professional choirs, orchestras, and big bands. We
recorded two pieces as well as several intonation exercises with the full choir and the two quartets. The
central piece of DCS is Anton Bruckner’s Locus Iste (WAB 23) in Latin language. Figure 3.2 displays the
first eleven measures of the piece’s score obtained from the Choral Public Domain Library (CPDL)24.
This small choir piece of approximately three minutes’ duration is musically interesting, containing
several melodic and harmonic challenges such as chromatic parts and covering a large part of each voice’s
tessitura (S: B3-G5, A: G3-B4, T: C3-E4, B: F2-C4). Beyond that, the piece is part of the CSD [40]

24 https://www.cpdl.org/wiki/images/9/94/Locus_Iste_rev.pdf
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Table 3.2: Overview of the audio recordings in DCS. The third column
indicates the number of takes available for each piece and the last column
refers to the total duration of all takes together.

Piece Setting # Takes
Duration
(mm:ss)

Locus Iste
Full Choir 3 07:22
Quartet A 7 16:26
Quartet B 6 14:02

Tebe Poem
Full Choir 5 05:27
Quartet A 2 02:30

Exercises
Full Choir 33 06:00
Quartet A 25 03:43

Total 81 55:30

(see Section 3.2), thus allowing for interesting comparative studies across datasets. Furthermore, we
selected the piece Tebe Poem by the Bulgarian composer Dobri Hristov25. Both pieces are written for
SATB choirs in four parts. In addition to these two pieces, the dataset contains a set of vocal exercises of
different difficulties and forms taken from the book Choral Intonation [1]. The exercises include scales,
long and stable notes, chords, cadences, and a variety of intonation exercises. The additional recordings
are potentially interesting to study aspects of ensemble singing such as interval intonation, F0-agreement
in unison singing, and intonation drift in a cappella performances.

3.3.2 Multitrack Recordings

During the recording session, which took place in a Dagstuhl seminar room, we recorded multiple takes of
the different pieces and settings. An overview of the recorded material in DCS is presented in Table 3.2.
The reported durations refer to the accumulated durations of all takes for a specific piece and setting (not
counting multiple tracks per take). The different choir settings were recorded using multiple microphones.
In order to record the overall performance, we used an ORTF stereo microphone (Schoeps MSTC 64 U)
spaced roughly 3 m away from the singers. The recorded stereo microphone signal is referred to as STM
signal in the following. Furthermore, we used dynamic (Sennheiser MD421 II), headset (DPA 4066F),
and throat (Albrecht AE 38 S2a) microphones to record individual singers as illustrated in Figure 2.4. In
the following, we abbreviate the three microphone types as DYN, HSM, and LRX, respectively.

To illustrate the microphone differences, magnitude spectrograms of LRX and DYN microphone signals
for a tenor singer in a quartet setting are shown in Figure 3.3a. The shown excerpts correspond to the
marked Locus Iste passage in Figure 3.2. It can be observed that the LRX signal is cleaner than the DYN
signal. This becomes evident especially in Part II (middle part of the marked passage), where the solo
bass voice leaks more strongly into the DYN signal than into the LRX signal of the tenor.

For our recordings, we had four DYN, three HSM and eight LRX microphones available. The complete
setup as shown in Figure 2.4 could only be used for three singers—other singers were equipped with two,
25 http://www3.cpdl.org/wiki/index.php/Tebe_Poem_(Dobri_Hristov)
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Figure 3.3: Comparison of LRX and DYN signals from a tenor singer. Excerpts correspond to the marked Locus Iste passage
in Figure 3.2. (a) Magnitude spectrograms. CREPE F0-trajectories are plotted on top in the respective colors. (b) Smoothed
CREPE confidence. (c) Binarized trajectory activations obtained by thresholding smoothed confidence (LRX threshold: 0.935,
DYN threshold: 0.9).

one, or no individual microphone(s). Note that we distributed the microphones such that at least one
singer of each part was captured with one LRX and one DYN microphone. The microphone signals were
recorded using one RME Fireface UFX audio interface, two 8-channel RME Micstasy A/D converters, and
the Digital Audio Workstation (DAW) Logic Pro X running on an Apple MacBook Pro (see Figure 3.4).
Furthermore, we created an additional reverb version of the stereo microphone signal using theChromaVerb
plug-in in Logic Pro X with a decay time of 2 seconds. After recording, all tracks were exported from the
DAW and subsequently cut according to manually set cut points using the tool PySox [12]. PySox is an
open source library that provides a Python interface to SoX (Sound exchange)26, a command line tool for
sound processing. The cut tracks are available in DCS as monophonic WAV files with a sampling rate of
22 050 Hz.

3.3.3 Dataset Dimensions

DCS offers different musical and acoustical dimensions, which are summarized in Table 3.3. We refer
to the dimensions as Song, Setting, Take, Voice, and Microphone. The Song dimension consists of the
two choral pieces Locus Iste and Tebe Poem as well as the systematic exercises. The Setting dimension
includes the three choir settings: Full Choir, Quartet A, and Quartet B. The Take dimension indicates the
number of takes. The Voice dimension is defined by the singers present in the signal—either one of the
SATB sections or the mixture of all sections recorded by the STM microphone. Finally, the Microphone
dimension refers to the microphone types used to record the singers.

26 http://sox.sourceforge.net/
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Figure 3.4: Screenshot (detail) of digital audio workstation (Logic
Pro X) with multiple tracks.

Table 3.3: DCS dimensions. Dimension Shortcut Meaning

Song
LI Locus Iste
TP Tebe Poem
SE Systematic Exercises

Setting
FullChoir Full Choir Setting
QuartetA Quartet A Setting
QuartetB Quartet B Setting

Take Take Take Number

Voice

S Soprano
A Alto
T Tenor
B Bass
Stereo Stereo Mic
StereoReverb Stereo Mic Reverb

Microphone

LRX Larynx Mic
DYN Dynamic Mic
HSM Headset Mic
STR Stereo Mic R
STL Stereo Mic L
STM Stereo Mic L+R

The multiple dimensions of DCS make it unique when compared to related datasets such as the CSD [40].
The main differences between the CSD and DCS lie in the Setting, Take, and Microphone dimensions.
The CSD includes one singer setting, a single take per song and one microphone type. Furthermore, the
CSD choir sections were recorded separately, while all singers were captured at the same time in DCS. The
different recording setup in DCS enables studies on interactions between sections. However, as opposed
to the Full Choir setting in DCS, the recorded choir in the CSD is larger and balanced in the number of
singers per section. Therefore, CSD allows for more detailed studies on singer interaction within choir
sections.
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In order to account for the variety of different dimensions, we developed a filename convention for all
audio and annotation files included in DCS. The general format of the filenames is the following (cf. Ta-
ble 3.3): DCS_{Song}_{Setting}_Take{#}_{Voice}{#}_{Microphone}.{Suffix}. For example,
DCS_LI_FullChoir_Take02_T2_LRX.wav refers to the audio signal from the larynx microphone (LRX)
of the second tenor (T2) in the Full Choir setting (FullChoir) during the second take (Take02) of Locus Iste
(LI). Note that the files with microphone shortcut STM contain a mono mix of the left and right channel of
the stereo microphone.

3.3.4 Manual Beat Annotations

The beat is a key unit of the temporal structure of music [75]. As stated by [155], when beat annotations are
manually generated by tapping along to an audio signal, they reflect the ability of the annotator to produce
the beats rather than their perception. In such cases, the produced beat annotations can be subsequently
refined by iteratively listening and modifying them according to perceptual cues. Following this premise,
we generated beat annotations for all STM signals of Locus Iste and Tebe Poem in a two-stage process: in
the first stage, annotations were manually created by an annotator with some musical background. The
annotation by tapping feature in Sonic Visualiser [29] was used for this task. Sonic Visualiser is an open
source software for generating manual annotations of various kinds. In the second stage, annotations were
reviewed and refined by a second, experienced annotator using the same software.

These beat annotations are provided as comma-separated value (CSV) files with two columns. The
first column contains timestamps in seconds, whereas the second column contains beat and measure
information provided as floating point numbers to three decimal places. The part in front of the decimal
point encodes the measure number. The part after the decimal point indicates the beat position inside the
measure. For example, in 4/4 time, each beat is represented as an increment of 1/4 = 0.250, and therefore
the beat positions are given as 1.000, 1.250, 1.500, 1.750, 2.000, 2.250, 2.500, and so on.

3.3.5 Time-Aligned Score Representations

In order to obtain a musical reference for the different performances of Locus Iste and Tebe Poem, we
alignedMIDI representations of the pieces to the STM signals using the beat annotations from Section 3.3.4.
The MIDI files were obtained from the CPDL (see Section 3.3.1). For synchronization, we used the
dynamic time warping pipeline from Ewert et al. [61] and Müller et al. [123] that uses the beat annotations
as anchor points for the alignment. In order to facilitate data parsing and processing, we converted the
aligned MIDI files to CSV files using pretty_midi [144], a Python library for processing and converting
MIDI files. For each STM signal, DCS contains one separate CSV file per section (as opposed to MIDI
files that include all sections). Each CSV file contains three columns, which represent note onset in
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Table 3.4: Evaluation results for pYIN trajec-
tories averaged over two quartet recordings.

Mic VR VFA RPA RCA OA

LRX 0.99 (0.00) 0.11 (0.06) 0.95 (0.02) 0.95 (0.01) 0.93 (0.03)
HSM 0.98 (0.01) 0.33 (0.09) 0.81 (0.10) 0.91 (0.04) 0.77 (0.08)
DYN 0.99 (0.00) 0.16 (0.11) 0.93 (0.04) 0.95 (0.01) 0.90 (0.05)

Table 3.5: Evaluation results for CREPE tra-
jectories averaged over two quartet recordings.

Mic VR VFA RPA RCA OA

LRX 0.96 (0.01) 0.12 (0.02) 0.96 (0.01) 0.96 (0.01) 0.93 (0.02)
HSM 0.92 (0.02) 0.32 (0.08) 0.91 (0.01) 0.91 (0.02) 0.84 (0.02)
DYN 0.93 (0.01) 0.18 (0.07) 0.93 (0.01) 0.93 (0.01) 0.90 (0.02)

seconds, note offset in seconds, and MIDI pitch. The number of rows is equal to the number of notes in
the piece.

3.3.6 Fundamental Frequency Trajectories

One of the most important cues for computational studies on choral singing and choral intonation are
the F0-trajectories of the individual singers’ voices [40, 46, 47]. However, annotating F0-trajectories
from polyphonic mixtures is cumbersome and requires a lot of labor-intensive work. We exploit the
multitrack nature of DCS to automatically compute the F0-trajectories of each singer from the close-up
microphone signals using two state-of-the-art algorithms for monophonic F0-estimation: pYIN [109]
(see Section 2.3.3) and CREPE [97] (see Section 2.3.5).

The pYIN annotations were obtained using the pYIN Vamp Plug-in27 for Sonic Annotator [28]. For pYIN,
we used an FFT size of 2048 and a hop size of 221 samples, which corresponds to around 10 ms for
a sampling rate of 22 050 Hz. We used the algorithm in the smoothedpitchtrack mode, which uses
an HMM and Viterbi decoding to smooth the F0-estimates. In addition, we configured the plugin to
output negative F0-values in frames that are estimated as unvoiced (outputunvoiced=2) as well as the
probability of each frame to be voiced (output=voicedprob). For CREPE, we used the CREPE Python
package28 with the model capacity set to full, Viterbi smoothing activated, a default hop size of 10 ms,
and a default input size of 1024 samples. Similar hop sizes were used with both methods for an easier
comparison. The F0-trajectories are stored in CSV files with three columns. The first two columns contain
the timestamps in seconds and the F0-values in Hz. In the case of pYIN, the third column contains the
probabilities of the frames to be voiced. In the case of CREPE, the third column contains the confidence
as provided by the algorithm. The confidence is a number between 0 and 1 that indicates the reliability of
an F0-estimate.

In order to validate the automatically extracted F0-trajectories, we generated manual F0-annotations for
all voices of two quartet recordings based on the LRX signals. The annotations were made by a sound

27 https://code.soundsoftware.ac.uk/projects/pyin
28 https://github.com/marl/crepe
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engineer with over ten years’ training on saxophone using the tool Tony [111] and are included in DCS as
CSV files. For evaluation, we use common evaluation metrics for melody extraction as detailed by Poliner
et al. [139], Salamon et al. [170]. The metrics Voicing Recall (VR) and Voicing False Alarm (VFA) measure
the accuracy of the algorithm’s voice activity estimation. The metrics Raw Pitch Accuracy (RPA) and
Raw Chroma Accuracy (RCA) measure the proportion of frames for which the estimated F0-trajectory
lies within 50 cents (half a semitone) of the reference (RCA ignores octave errors). Additionally, the
Overall Accuracy (OA) is a combined metric that accounts for both voice activity and F0-accuracy. We
use the open source toolbox mir_eval [145] to compute the evaluation metrics. In our experiments, we
derive the voice activity for F0-trajectories extracted by CREPE by choosing a confidence threshold that
maximizes the overall accuracy. The evaluation results averaged over the two recordings for pYIN and
CREPE (8 LRX, 6 HSM, 8 DYN trajectories per algorithm) are given in Tables 3.4 and 3.5, respectively.
The standard deviations are given in brackets. Both algorithms perform most accurately on the LRX
signals (0.93 of overall accuracy), slightly less accurate on DYN signals and least accurate on HSM signals.
This is expected, since the F0 of the voice is more dominant in LRX signals than in DYN or HSM signals
(see Section 3.3.2). The overall performance of both algorithms is similar on LRX and DYN signals and
deviates for HSM signals, where CREPE performs better than pYIN.

In the following, we further analyze the differences between the microphone signals. Figure 3.3 illustrates
the F0-trajectories from a tenor singer extracted from LRX and DYN signals using CREPE. The CREPE
confidence values are depicted in Figure 3.3b. For visualization purposes, the confidences are smoothed
with a median filter of length 210 ms. Thresholding the smoothed confidence values with a threshold of
0.935 for the LRX confidence and a threshold of 0.9 for the DYN confidence leads to the binary activations
depicted in Figure 3.3c and the F0-trajectories depicted in Figure 3.3a. Note that the thresholds are chosen
exemplarily to show the differences between the microphones. In Part I, CREPE shows similar confidence
values for both microphone signals when the tenor is singing. Part II shows significant differences between
the two microphones. In this part, low confidence values are expected since the tenor is not active. Still,
CREPE shows some confidence for both microphone signals due to cross-talk of the bass voice. However,
one can find a suitable threshold for the LRX confidence to avoid an F0-output. Since the cross-talk is
much stronger in the DYN signal, there exists no meaningful threshold that suppresses any F0-output in
Part II of the DYN signal. In Part III, the F0-trajectory of the DYN microphone suffers from confusions
with the bass voice even though the tenor is singing.

3.4 Interfaces

The main goal of our work is to create a freely available and easy-to-access dataset in order to support
MIR research on a cappella choral music. To this end, we provide several interfaces to interact with the
dataset. As the most important step, we make the dataset publicly available in order to support scientific
exchange and ensure reproducibility of scientific results. We decided to host DCS on Zenodo18 , an Open
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Science platform, which supports sharing and distributing scientific data. As main features, the platform
provides versioning and citeable Digital Object Identifiers (DOIs) for uploaded data.

However, Zenodo is a data repository and does not offer to play back the audio files in the browser. The
interdisciplinary field of MIR benefits from interfaces that help to lower access barriers to datasets by
providing direct, intuitive, and comprehensive access. This can be accomplished by means of interactive
interfaces, e.g., with playback functionalities [66, 91, 167]. As one contribution, we created a publicly
accessible web-based interface19, which hosts the multitrack audio data. The entry page of the interface is
subdivided into a “Music Recordings” section providing links to the Locus Iste and Tebe Poem recordings
as well as a “Systematic Exercises and Additional Recordings” section. Furthermore, the interface allows
for searching and sorting of specific recordings. Each multitrack recording has an individual sub-page
with an open source audio player [216] with score-following functionality [221] that allows for seamless
switching between the different tracks.

Along with web-based interfaces, accompanying dataset-specific processing tools simplify the usage of
datasets [11, 15]. We created a Python toolbox named DCStoolbox20 that accompanies the release of the
dataset. The toolbox provides basic functions to parse and load data from DCS, which are demonstrated
in a Jupyter notebook. Furthermore, it includes scripts to reproduce the computed F0-trajectories
from Section 3.3.6 and an Anaconda29 environment file that specifies all Python packages required to run
the toolbox functions. Additionally, we provide access to DCS via mirdata [15], a Python package that
includes functionalities for downloading, validating, and parsing MIR datasets.

3.5 Applications to MIR Research

In this section, we demonstrate the potential of DCS for MIR research by means of two case studies. In
the first case study discussed in Section 3.5.1, the goal is to evaluate and compare the intonation quality
of quartet performances using a recently published intonation measure [214]. In the second case study,
conducted in Section 3.5.2, we consider the task of multiple-F0 estimation. More specifically, we apply a
state-of-the-art approach [13] on different recordings and show the benefits of our multitrack recordings
for multiple-F0 estimation in polyphonic vocal music.

3.5.1 Intonation Quality of Quartet Performances

A central challenge for a cappella singers is the adjustment of pitch in order to stay in tune relative to
the fellow singers. Even if choirs achieve good local intonation, they may suffer from intonation drifts
slowly evolving over time [50]. Algorithms that attempt to measure intonation quality have to account
for such intonation drifts. A recently published approach measures the distance between the recording’s

29 https://www.anaconda.com/distribution/
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Figure 3.5: Averaged intonation cost (IC) measures for six takes of Locus Iste by Quartet A and five takes by Quartet B. The
local standard deviations are indicated in light grey.

local salient frequency content and a shifted 12-tone equal-temperament (12-TET) grid [214]. Although
choirs often aim for just intonation, the 12-TET scale has been used to approximate intonation in Western
choral performances [69]. The intonation measure requires as input the F0s and harmonic partials (integer
multiples of the F0) together with their respective amplitudes for the four singing voices. In a frame-wise
fashion, a grid-shift parameter is computed that minimizes the distance between the F0s/partials and the
shifted 12-TET grid. As output, the approach returns a frame-wise intonation cost (IC) that reflects the
remaining distance from the optimally shifted 12-TET grid. The IC is bounded in the interval [0, 1], where
small values indicate good local intonation, and large values indicate local intonation deviations. In the
following, we use this approach to compare the performances of Quartet A and B in our DCS.

Weiß et al. [214] show that multitrack recordings of the individual voices are beneficial for estimating the
frequency and amplitude information required to compute the IC. For our case study, we make use of
the recorded LRX and DYN signals as follows. We obtain the frequency information from the extracted
pYIN F0-trajectories of the LRX signals (see Section 3.3.6). Using the time-aligned score representations
from Section 3.3.5, we restrict the trajectories to regions where the respective voices are active. We
obtain the amplitude information from a magnitude spectrogram representation of the DYN signals at
the locations of the extracted LRX F0-trajectories and their harmonic partials. In our experiments, we
consider 16 harmonic partials. Subsequently, we compute IC measure curves for all quartet recordings of
Locus Iste in DCS. In order to compare the different takes, we map the curves on a common time axis in
measures using the measure information encoded in the beat annotations from Section 3.3.4.

The averaged IC curves for six recordings of Quartet A and five recordings of Quartet B are depicted
in Figure 3.5. To remove local outliers, we post-process the IC curves using a moving median filter of
length 21 frames. Note that the IC is zero for silent regions and small for monophonic passages where only
one singer is active (see measures 12, 20/21, and 43). Overall, the curves exhibit a similar progression.
For both curves, we observe higher IC values in the passage from measures 13 to 20. This passage is
challenging to sing due to the highly chromatic voice leading and the jumps in the bass part. Furthermore,
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the passage from measure 40 to 42 exhibits higher ICs for both quartets—a passage which is highly
chromatic. The largest differences between the quartets can be found in the last part of the piece (measures
44 to 48). For this passage, Quartet B achieves a better intonation quality on average than Quartet A,
especially in the intonation of the final chord of the piece.

This short case study indicates the potential of our recordings for studying intonation in polyphonic a
cappella music. Furthermore, our data can form a starting point for future studies on singer interaction in
amateur choirs.

3.5.2 Multiple-F0 Estimation in A Cappella Singing

Multiple-F0 estimation is defined as the task of estimating the F0s of several concurrent sounds in a
polyphonic signal [98, 99]. This task is particularily challenging for polyphonic vocal music [184, 196]. In
a cappella choral singing, we find multiple singers with similar timbres singing in harmony, thus producing
overlapping harmonics [41]. Furthermore, it is very common that several singers sing the same part
(unison), but produce slightly different frequencies. However, MIR research on multiple-F0 estimation in
polyphonic vocal music has so far been focusing on SATB quartets and there exist no suitable methods for
multiple-F0 estimation in larger ensembles with multiple singers per part. The Full Choir recordings in
DCS constitue a starting point for further research in this direction.

In the following, we show the potential of DCS by applying a state-of-the-art multiple-F0 estimation
algorithm on different scenarios offered by the DCS quartet recordings. The first scenario consists of
applying the algorithm on a mix of all DYN signals. In the second and third scenario, the algorithm
is applied on the STM signal (room microphone) with and without additional reverb. In particular, we
consider the recordings of Locus Iste from Quartet A (Take 3).

In our case study, we use the DeepSalience method [13], a deep convolutional neural network trained
to produce a pitch salience representation (enhanced time–frequency representation) of the input signal,
which contains values in the range [0, 1]. This salience representation is thresholded such that only
time–frequency bins with a salience value above the chosen threshold remain. These remaining bins
correspond to the multiple-F0 estimates. Although the model is not specifically trained for polyphonic
vocal music, it was found to obtain the best performance for multiple-F0 estimation in vocal quartets [41].

For the evaluation, we exploit the multitrack nature of DCS. In particular, we take the previously extracted
pYIN F0-trajectories from the LRX signals as reference (see Section 3.3.6). Note that these trajectories
are the output of an algorithm. Although our evaluation reveals they are very accurate (see Table 3.4),
they still contain some errors. As evaluation metrics, we use the standard multiple-F0 estimation metrics
Precision, Recall, and F-Score. For a detailed description of these metrics, we refer to Bittner [9, Chapter
II, Section 6.3]. The evaluation metrics were computed using the mir_eval library [145].
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Figure 3.6: Multiple-F0 estimation using DeepSalience [13] with a threshold of 0.1. (a) Estimation results (excerpts) for the mix
of DYN signals and the STM signal with reverb. (b) Evaluation metrics for all scenarios.

We experimented with several thresholds between 0.05 and 0.5, and found 0.1 to obtain the best results
on the studied quartet recordings with respect to our evaluation metrics. However, instead of comparing
absolute values (which is problematic for automatically extracted reference F0-trajectories), we want to
focus on relative differences between the different scenarios. Figure 3.6a shows excerpts of the computed
multiple-F0 estimates for the mix of DYN signals and the STM signal with reverb obtained by thresholding
the salience representations with a threshold of 0.1. Figure 3.6b shows the evaluation results for all three
scenarios. From the F-Score values, we observe that the algorithm performs best for the DYN signal mix of
Quartet A. Furthermore, we observe that an increasing amount of reverb in the recordings goes along with
a decreasing overall performance of the algorithm. This indicates that reverb further complicates the task
of multiple-F0 estimation. The Precision and Recall measures give further insights into this observation.
While Precision is lower in the scenario with reverb, Recall is not affected. In reverb conditions, sung
notes become temporally smeared, leading to a temporal mismatch between the reference F0-trajectories
from the LRX signals and the audio recording. For this reason, the number of false positives increases,
causing Precision to decrease. This effect can be seen by comparing the red marked areas in Figure 3.6a.
We leave a more detailed analysis of these effects to future studies.

In summary, this brief case study indicates that the DCS is a versatile and challenging resource to develop
and test algorithms for multiple-F0 estimation in polyphonic a cappella vocal music. Furthermore, the
time-aligned score representations could serve as a reference for the evaluation of note-tracking algorithms.
This requires accounting for intonation drifts of the choirs, which can, e.g., be determined from the
F0-annotations.
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3.6 Conclusions and Further Notes

In this chapter, we presented Dagstuhl ChoirSet—a publicly accessible multitrack dataset of a cappella
choral music for MIR research. This work is based on our recordings of an amateur vocal ensemble
we gathered at an MIR seminar at Schloss Dagstuhl. As main feature of the dataset, the singers were
recorded using different close-up microphones including dynamic, headset, and larynx microphones. As
part of our work, we curated the recorded material and manually generated beat annotations as well as
time-aligned sheet music representations. Furthermore, we automatically extracted F0-trajectories for
all close-up microphone tracks. The dataset is released together with an interactive web-based interface
and a Python toolbox to provide convenient access. In summary, the different musical and acoustical
dimensions of DCS open up a variety of new and challenging scenarios for MIR research. Additionally, as
part of the European research project TROMPA30, several multitrack datasets of choral singing have been
created, e.g., the Cantoría Dataset31 and the ESMUC Choir Dataset32. A description of the datasets can be
found in [39]. Together with Dagstuhl ChoirSet, these data sources provide a basis for applying recent
data-driven methods for analyzing choral singing.

30 https://trompamusic.eu/
31 https://zenodo.org/record/5878677
32 https://zenodo.org/record/5848990
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4 An Adaptive Pitch-Shifting Approach for
Intonation Adjustment

This chapter is based on [163]. The first author Sebastian Rosenzweig

is the main contributor of this article. In collaboration with his supervisor

Meinard Müller and Jonathan Driedger, he developed the ideas, formalized

the approach, implemented the toolbox, and wrote the paper. Simon Schwär

conducted some of the experiments under the supervison of Sebastian

Rosenzweig.

A central challenge for a cappella singers is to adjust their intonation and to stay in tune relative to
their fellow singers. During editing of a cappella recordings, one may want to adjust local intonation
problems of individual singers or to account for global intonation drifts over time. This requires applying
a time-varying pitch shift to the audio recording, which we refer to as adaptive pitch-shifting. In this
context, existing (semi-)automatic approaches are either labor-intensive or face technical and musical
limitations. In this chapter, we present automatic methods and tools for adaptive pitch-shifting with
applications to intonation adjustment in a cappella recordings. Motivated by this application, we show
how to incorporate time-varying information into existing pitch-shifting algorithms that are based on
resampling and time-scale modification (TSM). Furthermore, we release an open-source Python toolbox,
which includes a variety of TSM algorithms and an implementation of our method. Finally, we show
the potential of our tools by two case studies on global and local intonation adjustment using a cappella
recordings from Dagstuhl ChoirSet (see Chapter 3).

4.1 Introduction

A cappella singing is a wide-spread vocal performance practice where one or multiple singers sing together
without instrumental accompaniment. Without having an instrumental reference, it becomes crucial that a
cappella singers adjust their pitch relative to their fellow singers [1, 79]. Performances (in particular of
amateur or semi-professional ensembles) can exhibit different kinds of intonation inaccuracies, ranging
from individual, local intonation problems (e.g., singers singing a note too low or too high) to global
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Figure 4.1: F0-trajectories of a four-voice a cappella performance
(soprano=orange, alto=red, tenor=green, bass=blue). The score
reference is indicated in grey.
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intonation drifts over time [1, 50, 86, 110]. Figure 4.1 exemplifies such inaccuracies with an excerpt from
an SATB quartet performance, showing F0-trajectories on top of a reference derived from a musical score
(visualized in gray). The figure illustrates two phenomena: first, the performance exhibits local intonation
inaccuracies such as for the tenor voice (green), which sings the beginning of the first note slightly too low.
Second, the performance exhibits a global intonation drift downwards over the course of the excerpt (all
four F0-trajectories lay below the gray score reference at the end of the excerpt).

During postprocessing of a cappella recordings, one may want to adjust local or global intonation
deviations using pitch-shifting techniques. Pitch-shifting is the task of changing an audio recording’s pitch
without altering its duration. Over the last decades, several conceptually different approaches have been
proposed in the literature, ranging from time-domain algorithms [21, 33, 81, 108] to frequency domain
approaches [56, 182]. An overview on several pitch-shifting approaches can be found in [224]. However,
for adjusting local and global intonation in a cappella recordings, it is not sufficient to apply a single fixed
pitch shift to the recording, as Figure 4.1 demonstrates. Instead, it is necessary to apply a time-varying
pitch shift to the audio recording, which we refer to as adaptive pitch-shifting.

A naïve approach for adaptive pitch-shifting is to apply individual pitch shifts to small sections of an
audio signal, e.g., using user-guided functionalities provided by most digital audio workstations. However,
besides being labor-intensive, this approach can lead to audible “clicking” artifacts at pitch shift transitions
due to phase and other discontinuities. Previous research on adaptive pitch-shifting has been conducted in
the context of audio restoration and “wow” reduction of gramophone and tape recordings [44, 45, 71].
Recently, a deep learning-based approach for adaptive pitch correction of singing performances with
instrumental accompaniment has been proposed in [213]. State-of-the-art commercial tools such as
Melodyne33 or Antares AutoTune34 offer semi-automatic functionalities for pitch correction according
to different scales and tunings. However, due to the presence of global intonation drifts over time and a
varying local intonation depending on the musical context, the assumption of a fixed (time-invariant) scale

33 https://www.celemony.com/en/melodyne
34 https://www.antarestech.com
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or tuning is problematic for a cappella music [1]. Popular open-source music processing libraries such as
librosa [112] are often limited to fixed pitch-shifting functionalities. As an exception, the C++ library
Rubber Band35 provides an interface for real-time pitch-shifting of an audio stream. Furthermore, the
PyTSMod package [220] includes an adaptive pitch shift implementation designed for monophonic audio.

In this chapter, we propose automatic methods and tools for adaptive pitch-shifting with applications to
intonation adjustment in a cappella recordings. We base our work on an existing pitch-shifting method,
which makes use of resampling and time-scale modification (TSM) [56]. As one contribution, we propose
and formalize an extension to this method, which enables time-varying pitch shifts. Furthermore, we
release a Python re-implementation of a Matlab TSM toolbox [55] called libtsm, which we extended with
an implementation of our adaptive pitch-shifting method. In order to show the potential of our method, we
consider two case studies based on Dagstuhl ChoirSet (DCS, see Chapter 3 and [159]), a publicly available
dataset of a cappella performances. The first study targets the adjustment of global intonation, whereas
our second study targets the adjustment of local intonation.

The remainder of this chapter is structured as follows. In Section 4.2, we review pitch-shifting via
resampling in combination with TSM and introduce our adaptive pitch-shifting method. In Section 4.3,
we give details on our Python toolbox and in Section 4.4, we address our two case studies. Finally, we
summarize our work and provide further notes on research based on our toolbox in Section 4.5.

4.2 Pitch-Shifting via Resampling and TSM

Pitch-shifting can be seen as the complementary task to TSM [56, 224]. While TSM attempts to alter the
duration of an audio recording without changing its pitch, pitch-shifting attempts to alter the pitch of an
audio recording without changing its duration. In the following, we summarize existing TSM algorithms
(Section 4.2.1), explain the basic principle of fixed (time-invariant) pitch-shifting using resampling and
TSM (Section 4.2.2), and finally introduce our adaptive pitch-shifting method (Section 4.2.3).

4.2.1 TSM Algorithms

Over the last decades, several TSM algorithms have been proposed. In general, TSM algorithms can
be subdivided into time-domain and frequency-domain approaches. Time-domain approaches typically
rely on variants of the overlap-add (OLA) principle. In this case, an input signal is first decomposed into
overlapping frames, which are relocated on the time axis in a second step to achieve the actual time-scale
modification. Examples of time-domain algorithms are SOLA (Synchronized OLA) [166], TD-PSOLA
(Time-Domain Pitch-Synchronized OLA) [23, 33, 119] or WSOLA (Waveform-Similarity OLA) [210].
A well-known frequency-domain approach is based on the phase vocoder technique [63, 140]. In order

35 https://breakfastquay.com/rubberband/
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4 An Adaptive Pitch-Shifting Approach for Intonation Adjustment

Figure 4.2: Pitch-shifting via resampling and TSM
illustrated using power spectrograms. (a) Input
signal. (b) Resampled signal. (c) Pitch-shifted
signal after TSM application.
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to obtain a time-scaled version of the input signal, the method relocates the frames of the input signal’s
STFT (see Section 2.1.3) and applies a frequency-dependent phase correction. Recent works on TSM
propose modifications of the phase vocoder technique [141] or use the phase vocoder in combination with
non-negative matrix factorization [156]. While time-domain TSM methods are known to be well-suited
for recordings with strong transient sound components, frequency-domain approaches typically perform
well on recordings with strong harmonic sound components. This observation has been exploited by the
approach in [57], which first conducts harmonic–percussive separation (HPS) [62] and then applies OLA
on the percussive component and the technique based on the phase vocoder on the harmonic component.
A more detailed review of several TSM methods can be found in [56].

4.2.2 Fixed Pitch-Shifting

Resampling a given audio signal and playing it back at the original sampling rate changes its duration
and pitch at the same time. In other words, resampling can be interpreted as a TSM procedure that
additionally modifies the pitch of an audio signal. Pitch-preserving TSM algorithms, such as the ones
mentioned in Section 4.2.1, can be used to compensate for the change in duration after resampling. Note
that pitch-shifting can also be achieved by processing in reverse order (first performing TSM and then
resampling) [224].

The processing steps for fixed (time-invariant) pitch-shifting via resampling and subsequent TSM are
illustrated in Figure 4.2. For illustrative purposes, we use a synthetic signal as input signal, which contains
three sequentially played sinusoidal tones. Figure 4.2a shows a power spectrogram of our input signal. Let
us assume our input signal is equidistantly sampled at a rate F in

s and we are given a fixed pitch shift p ∈ R
in cents. In a first step, we resample the given signal to have a new sampling rate Fout

s defined by

Fout
s := F in

s · 2−p/1200. (4.1)
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When playing back the resampled signal at the original sampling rate F in
s , one can observe two effects.

First, the signal’s duration is scaled by a factor αRS ∈ R>0 defined as

αRS :=
Fout

s

F in
s
= 2−p/1200. (4.2)

Second, the signal is pitch-shifted by p cents. These two effects can be seen in Figure 4.2b for a pitch
shift of p = 1200 cents, which is equivalent to an octave in musical terms or a doubling of frequency in
physical terms.

To compensate for the undesired time-scale modification, we then use a suitable pitch-preserving TSM
algorithm to scale the signal to it’s original duration. To this end, we stretch the signal with the factor
αTSM ∈ R>0 defined by

αTSM := α−1
RS = 2p/1200. (4.3)

For a pitch shift of p = 1200 cents we obtain αTSM = 2. The resulting pitch-shifted signal is depicted
in Figure 4.2c.

4.2.3 Adaptive Pitch-Shifting

Adaptive pitch-shifting is the task of applying a time-varying pitch shift to an audio signal. To this end, we
extend the method for fixed pitch-shifting from Section 4.2.2. More specifically, we combine non-linear
resampling with a technique referred to as non-linear TSM [56]. In the following, we explain our approach
along with the example depicted in Figure 4.3.

Let us assume we are given an audio signal, which is equidistantly sampled at a sampling rate of F in
s .

As illustrative example, we again consider an input signal with three sequential sinusoidal tones, as
visualized in Figure 4.3a. For the task of adaptive pitch-shifting, we model the pitch shift p as a continuous
time-varying function p : R → R, which maps a time instance t ∈ R in seconds to a musical interval
given in cents. Figure 4.3b shows p in our example, which consists of three parts: in the first part (0 s to
2 s), the input signal should be left unshifted, in the second part (2 s to 4 s), the signal should be frequency
modulated, and in the third part (4 s to 6 s), a frequency sweep should be applied.

In a first processing step, we perform non-linear resampling of our input signal. As explained earlier,
resampling can be interpreted as a kind of pitch-modifying TSM. In this light, we first define a scaling
factor function αRS : R→ R>0 that maps a time instance t to a scaling factor by

αRS(t) := 2−p(t)/1200. (4.4)

The resulting αRS(t) for our example is depicted in Figure 4.3c. Subsequently, we introduce a non-linear
and strictly monotonously increasing time-stretch function τRS : R→ R, which defines a mapping between
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Figure 4.3: Adaptive pitch-shifting via non-linear resampling and non-linear TSM. (a) Power spectrogram of input signal. (b)
pitch shift function. (c) Scaling factor function. (d) Time-stretch function. (e) Power spectrogram of resampled signal. (f)
Inverse time-stretch function. (g) Power spectrogram of pitch-shifted signal.
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4.3 Python Toolbox

time instances of an input and an output signal, by

τRS(t) :=
∫ t

0
αRS(t) dt. (4.5)

The function τRS for our example is depicted in Figure 4.3d. As one can see, the first part of the function
has a slope equal to one. As a consequence, this part of our example signal is mapped to the output
signal without modification. The overall slope of the function’s second part is slightly larger than one,
leading to an expansion of this region in the output signal. The overall slope of the function’s third part is
slightly smaller than one, leading to a compression of this region in the output signal. By performing
non-linear resampling according to the mapping defined by the function τRS, we obtain the signal depicted
in Figure 4.3e.

Note that in practice, non-linear resampling can be done in many different ways [192, 207]. A comparison
of resampling implementations in digital audio workstations can be found online36. Advanced resampling
methods such as multirate filterbanks include lowpass filtering to avoid aliasing artefacts, but also require
a windowing of the time-stretch function τRS. However, our goal is to adjust intonation with pitch shifts in
the order of a few cents up to roughly a semitone, where aliasing artefacts are less problematic. For the
sake of simplicity, we therefore use cubic interpolation to non-linearly resample the input signal.

In a second processing step, we perform non-linear TSM on the resampled audio signal to retain the
signal’s original duration. To this end, we use a pitch-preserving TSM algorithm to non-linearly stretch
the signal with respect to τ−1

RS , which is depicted in Figure 4.3f. Further details on non-linear TSM can be
found in [56, Section 7.1]. The resulting pitch-shifted audio signal is depicted in Figure 4.3g. As one can
see, the adaptive pitch shift p has been applied to our input signal.

4.3 Python Toolbox

The release of open-source implementations along with scientific publications has become increasingly
important in the field of music signal processing [113, 224]. Besides allowing for reproducing experimental
results, publicly available implementations stimulate and support further research activities. In this spirit,
we ported an exisiting Matlab TSM toolbox [55] to Python and expanded its functionality with our adaptive
pitch-shifting method. Python is currently considered as the most used programming language in data
science and machine learning. Our Python TSM toolbox is released under an open source license37.

36 https://src.infinitewave.ca/
37 https://github.com/meinardmueller/libtsm
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4 An Adaptive Pitch-Shifting Approach for Intonation Adjustment

Algorithm Matlab Function Python Function

WSOLA/OLA [210] wsolaTSM() wsola_tsm()
Phase Vocoder TSM [63, 140] pvTSM() pv_tsm()
Harmonic–Percussive Separation TSM [57] hpTSM() hps_tsm()
Fixed pitch-shifting pitchShiftViaTSM() pitch_shift()
Adaptive pitch-shifting - pitch_shift()

Table 4.1: Main algorithms and implementations of the Matlab TSM toolbox and libtsm.

1 # Load packages
2 import libtsm
3 import librosa
4 import numpy as np
5

6 # Load Audio File
7 fn_in = 'data/three_sinusoidals.wav'
8 x, Fs = librosa.load(fn_in, sr=22050)
9

10 # TSM Algorithms
11 alpha = 1.8 # scaling factor
12

13 y_wsola = libtsm.wsola_tsm(x, alpha)
14 y_pv = libtsm.pv_tsm(x, alpha)
15 y_hps = libtsm.hps_tsm(x, alpha)
16

17 # Fixed pitch-shifting (Figure 2)
18 p = 1200 # cents
19 y_psf = libtsm.pitch_shift(x, p)
20

21 # Adaptive pitch-shifting (Figure 3)
22 t = np.arange(0, len(x)/Fs, 1/Fs) # sec
23 N = len(t)
24 t_1 = t[0:N//3]
25 t_2 = t[N//3:2*N//3]
26 t_3 = t[2*N//3:]
27

28 p = np.concatenate((np.zeros(len(t_1)),
800*np.sin(2*np.pi*1*t_2),
np.linspace(0,1200,len(t_3)))) # cents

↪→
↪→

29 y_psa = libtsm.pitch_shift(x, p, t)

Listing 1: Code example using functions of libtsm.

In our re-implementation of the toolbox, we ensured that the naming conventions and usage of our Python
implementation are basically the same as in the Matlab version. Table 4.1 provides an overview on the
main algorithms, functions, and naming conventions of the Matlab and the Python toolbox. Furthermore,
we tested all Python functions with respect to numerical identity to the Matlab implementations. In the
following, we demonstrate the main functions of the Python toolbox using the code example in Listing 1.
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4.4 Application: Intonation Adjustment in A Cappella Recordings

Figure 4.4: Overview on our intonation adjustment setup.
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As one can see in line 2, the TSM toolbox can be imported as a Python package libtsm. The toolbox
includes short demo audio files, including our synthetic audio example from Section 4.2.2 and Section 4.2.3,
which is loaded in lines 7–8. Lines 11–15 demonstrate the main TSM functions of the toolbox called
with default settings. Note that each of the functions provides various other input arguments to tune the
parameters of the algorithms. The input arguments are documented in the functions’ docstrings.

Along with the TSM implementations, we added a function pitch_shift() to the toolbox, which
implements our fixed and adaptive pitch-shifting algorithm. Lines 18–19 replicate the fixed pitch shift by
1200 cents, as visualized in Figure 4.2. Adaptive pitch-shifting can be achieved using the same function
by handing over two arrays of equal length, as shown in lines 22–28. The first array contains the pitch
shift values in cents, whereas the second array contains the time axis in seconds. Our example replicates
the adaptive pitch shift shown in Figure 4.3. A more detailed demonstration of all toolbox functions can
be found in the Jupyter notebook demo_libtsm.ipynb, which is part of our toolbox.

4.4 Application: Intonation Adjustment in A Cappella Recordings

In the previous sections, we have presented a method for adaptive pitch-shifting (Section 4.2.3) as well as
a Python toolbox with implementations of our method and a variety of TSM algorithms (Section 4.3). In
this section, we show the potential of our method and our tools for adjusting global and local intonation in
a cappella recordings.

As indicated in Section 4.2, the technical realization of our adaptive pitch-shifting method, in particular,
the choice of a suitable resampling and TSM algorithm, depends on the acoustic properties of the input
signal. In our application scenario, the versatility of the human voice imposes additional challenges on our
pitch-shifting setup. Especially, an appropriate handling of fricatives, plosives, and formants is required
to aviod a degradation of the audio quality. In the following, we present an extension to our adaptive
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Figure 4.5: (a) Excerpt of F0-trajectories and score
reference for a performance of Locus Iste (DCS,
Quartet B, Take 3, measures 30–34). (b) Detailed
view of the notes on the first beat in measure 31.
Horizontal lines represent 12-TET pitch of the note
(dark grey) and the median of the respective F0-
trajectories (S=orange, A=red, T=green, B=blue).

(a)

(b)

pitch-shifting method that accounts for these challenges. Our setup is depicted in Figure 4.4. Similar
to the approach in [57], we first apply HPS on the input signal. In a vocal recording, the percussive
component typically includes fricatives, plosives, and other non-tonal background noise, whereas the
harmonic component contains tonal elements. In our setup, we apply adaptive pitch-shifting only on the
harmonic component. We use cubic interpolation for non-uniform resampling and the technique based
on the phase vocoder for TSM. In order to avoid unnatural sounding pitch-shifted voices (sometimes
referred to as the “chipmunk effect”), we include a formant preservation step [23, 119, 224] in our setup
for monophonic input signals (recordings where only one voice is present). The formant preservation step
first involves estimating the spectral envelopes of the original and the pitch-shifted signal from smoothed
spectrogram representations. Subsequently, using the approach outlined in [54], the envelope of the
pitch-shifted signal is corrected.

Note that this technical setup is only one possible way to realize adaptive pitch-shifting for our application
scenario. A comparison of different pitch-shifting setups as well as a detailed evaluation of the musical
quality is beyond the scope of this study and is left for future work. For an evaluation of the perceptual
audio quality of the HPS-TSM approach, we refer to [57].

Given this technical setup, we show in two case studies how suitable pitch shift functions p can be computed
to achieve global intonation adjustments (Section 4.4.1) and local intonation adjustments (Section 4.4.2).
Our studies are based on recordings from Dagstuhl ChoirSet (see Chapter 3). Figure 4.5a shows an excerpt
of an SATB quartet performance of Locus Iste with a global intonation drift and several local intonation
issues, which serves as a running example in our case studies. Figure 4.5b provides a detailed view on
local intonation deviations and pitch fluctuations. Accompanying audio examples for our case studies are
available online38.

38 https://www.audiolabs-erlangen.de/resources/MIR/2021-DAFX-AdaptivePitchShifting
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4.4 Application: Intonation Adjustment in A Cappella Recordings

4.4.1 Case Study 1: Global Intonation Adjustment

In this case study, the task is to compensate a global intonation drift over the course of a performance. To
this end, we first measure the intonation drift over time and then input the inverted drift as a function p to
our adaptive pitch-shifting algorithm. One way to measure intonation drift is to compute the deviations of
the singers’ F0-trajectories from the time-aligned musical score. The singers in our recordings tuned to
tones played on a piano right before the performance (cf. Chapter 3). Therefore, we compute the deviations
to the notes’ MIDI frequencies using 440 Hz as reference frequency for the note A4.

However, computing the deviations on a fine temporal level leads to highly fluctuating drift curves, which
result in an unnatural “wobbling” in the pitch-shifted recording. Therefore, we introduce a temporal
quantization of the measured intonation drifts. More precisely, we first compute the note-wise F0-median
(see horizontal colored lines in Figure 4.5b), and then average the note-wise deviations on a measure-level.
After inverting the measured intonation drift curve, we obtain the pitch shift function p, as depicted in
Figure 4.6a for our excerpt. As one can see, p increases from roughly 77 cents to roughly 110 cents over
the course of the excerpt, since the quartet drifts downwards.

The intonation adjustment can now be conducted either by applying the adaptive pitch shift defined by
the function p on each individual singer’s microphone signal or on the polyphonic room microphone
signal. The drift-corrected F0-trajectories for our example are shown in Figure 4.6b and a detailed view is
provided in Figure 4.6c. As one can see, the drift is adjusted over the course of the four bars, whereas
the local intonation is still fluctuating around the score reference. Furthermore, all note-internal pitch
fluctuations are preserved.

4.4.2 Case Study 2: Local Intonation Adjustment

In our second case study, we show how to use adaptive pitch-shifting to adjust local intonation. As opposed
to Section 4.4.1, we now compute an individual pitch shift function p for each singer in the performance.
To this end, we again compute the note-wise F0-median and its deviation from the aligned score reference.
This time, the temporal quantization of our measured deviations remains on a note-level. By inverting the
measured deviations for the individual voices, we obtain the pitch shift functions depicted in Figure 4.7a
for our example. Note that adjusting local intonation to MIDI pitches in 12-TET is musically problematic
in the context of Western choral music [1]. In general, the task of measuring intonation in a cappella
music using computational tools is subject to ongoing scientific discussions [40, 50, 214]. Therefore, the
above described strategy mainly serves illustrative purposes.

The locally adjusted F0-trajectories are depicted in Figure 4.7b, while a detailed view is provided
in Figure 4.7c. In contrast to the global intonation adjustment in Figure 4.6c, we can see that after
pitch-shifting, the note-wise F0-median now corresponds exactly to the 12-TET reference. Pitch variations
within notes (e. g. vibrati and portamenti at the beginning of notes) are again preserved. In order to adjust
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Figure 4.6: Global intonation adjustment in perfor-
mance of Locus Iste (DCS, Quartet B, Take 3, mea-
sures 30–34). (a) Adaptive pitch-shifting function.
(b) Globally adjusted F0-trajectories. (c) Detailed
view of the notes on the first beat in measure 31.

(a)

(b)

(c)

Figure 4.7: Local intonation adjustment in perfor-
mance of Locus Iste (DCS, Quartet B, Take 3, mea-
sures 30–34). (a) Adaptive pitch-shifting functions
for each voice. (b) Locally adjusted F0-trajectories.
(c) Detailed view of the notes on the first beat in
measure 31.

(a)

(b)

(c)
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4.5 Conclusions and Further Notes

these fluctuations, one would have to apply pitch adjustments on a finer temporal level at the cost of an
increasing unnaturalness of the pitch-shifted recordings.

4.5 Conclusions and Further Notes

In this chapter, we presented an automatic method for adaptive pitch-shifting of audio recordings based
on non-linear resampling and TSM. Furthermore, we created an open source toolbox that includes
implementations of various TSM algorithms and our proposed method. Finally, we showed the potential
of our tools for adjusting global and local intonation in a cappella music. In our study, we measured
(tonal) intonation deficiencies with respect to the 12-TET grid. While 12-TET can only be seen as a rough
approximation of intonation in choral singing [110, 214], in practice, choral intonation is much more
complex [1, 47, 79, 83, 86]. For instance, choir singers tend to aim for just intonation [52].

In the context of a further study using our toolbox [185], we have developed a differentiable intonation cost
measure consisting of a tonal and a harmonic component, which accounts for such challenging intonation
scenarios. The tonal component measures intonation deviations with respect to a fixed musical grid (e.g.,
the 12-TET tuning). The harmonic component uses a model of perceptual dissonance [8, 189] to capture
the deviations to just intonation. A variable weight between the components allows for flexibly tuning our
cost measure anywhere between 12-TET and just intonation. For a mathematical formulation of the cost
measure, we refer to [185]. In combination with our adaptive pitch-shifting approach, the cost measure can
be used as a flexible tool for intonation adaptation in multitrack choral music recordings39. Furthermore,
our cost measure is differentiable and thus suitable for deep learning applications.

In future research, one may evaluate the perceptual quality of different intonation adjustment setups and
investigate further cost measures for intonation processing. Furthermore, our adaptive pitch-shifting
approach and the differentiable cost measure may be used to provide feedback to choir singers in rehearsal
situations. One suitable platform for this scenario are interactive web-based interfaces, which record
a singer’s voice, analyze the intonation, and provide feedback (e.g., through interactive visualizations,
sonifications, or a pitch-adjusted version of the recorded performance). A first prototype that includes a
basic feedback mechanism using an interactive score representation is demonstrated in Appendix A.

39 Audio examples: https://www.audiolabs-erlangen.de/resources/MIR/2021-ISMIR-IntonationCostMeasure
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Part II

Analysis of Georgian Vocal Music
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5 Erkomaishvili Dataset: Curation of a Corpus for
Analyzing Traditional Georgian Singing

This chapter is based on [161]. The first author Sebastian Rosenzweig is the

main contributor to this article. Together with his supervisor Meinard Müller

and Frank Scherbaum, he developed the ideas, coordinated the annotation

process, curated the dataset, conducted the experiments, and wrote the

article. David Shugliashvili kindly provided his transcriptions. Vlora-Arifi Müller

substantially contributed to the annotations of the dataset.

In this chapter, we present a curated dataset of traditional Georgian vocal music for computational
musicology. The corpus is based on historic tape recordings of three-voice Georgian songs performed
by the former master chanter Artem Erkomaishvili. In particular, we give a detailed overview of the
audio material, transcriptions, and annotations contained in the dataset. Beyond its importance for
ethnomusicological research, this carefully organized and annotated corpus constitutes a challenging
scenario for MIR tasks such as F0-estimation, onset detection, and score-to-audio alignment. The corpus
is publicly available and accessible through web-based score-following interfaces.

5.1 Introduction

The analysis of recorded audio material using computational methods has become increasingly important
in musicological research [65, 124, 187]. With the goal to contribute to the preservation of the Georgian
cultural heritage and to support research on Georgian vocal music, we have created a manually annotated
dataset of traditional three-voice Georgian songs. The corpus is based on recordings of the former Georgian
master chanter Artem Erkomaishvili (*October 26, 1887, † February 2, 1967), which were recorded
in 1966 with tape recorders by the ethnomusicologist Kakhi Rosebashvili. The original recordings are
preserved in the archive of the Georgian Folk Music Department of the Tbilisi State Conservatoire. 101
recordings are publicly available.40 Due to a lack of fellow singers, Artem Erkomaishvili sung all three
voices on his own, which was made possible through a three-stage overdubbing recording process. Beyond

40 http://www.alazani.ge/old-archives-Artem-Erkomaishvilis-Sagaloblebi-folk-songs-ans59.html
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5 Erkomaishvili Dataset: Curation of a Corpus for Analyzing Traditional Georgian Singing

Figure 5.1: Erkomaishvili dataset with annotations. Picture of
Artem Erkomaishvili from [190].
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the historic recordings, there exist transcriptions of all songs in Western staff notation created by the
Georgian ethnomusicologist David Shugliashvili [190]. Furthermore, Müller et al. [126] annotated the
three-part recording structure and F0-trajectories for the three voices in all recordings.

Our main contributions to the Erkomaishvili dataset are threefold. First, we have collated existing audio
data and annotations and introduced a uniform filename convention. Second, based on the existing
transcriptions, the sheet music was converted into the digital, machine-readable MusicXML-format.
Subsequently, we manually annotated note onsets of the first voice in each of the recordings. This step
has been carried out by an experienced annotator with the advice of domain experts. Third, in order to
provide a direct and convenient access to the dataset, we developed an interactive web-based interface with
score-following audio players that make use of the annotated data. Complementing the publicly available
audio material, we release all F0-annotations, recording structure annotations, and note onset annotations.
Additionally, we make the MusicXML files of the symbolic transcripts publicly available.

Due to the importance of Artem Erkomaishvili’s recordings for ethnomusicological research, the presented
corpus is a vital source for studying tonal organization, intonation, and harmonic and melodic thinking
in traditional Georgian vocal music. Furthermore, the dataset can be used for developing and testing
algorithms for MIR tasks such as F0-estimation, onset detection, or score-to-audio alignment.

The remainder of this chapter is organized as follows. First, we highlight related corpora and open-source
tools for computational ethnomusicology (Section 5.2). Then, we give an introduction to traditional
Georgian vocal music and explain the importance of Artem Erkomaishvili’s recordings (Section 5.3).
Subsequently, we provide detailed descriptions of the Erkomaishvili recordings, available transcriptions,
and annotations (Section 5.4). Furthermore, we give an overview of the interactive web-based interface
for accessing the dataset (Section 5.5) and show possible applications of the dataset for musicology and
MIR research (Section 5.6). Finally, we conclude our findings and outline further musicological research
on the Erkomaishvili dataset (Section 5.7).
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5.2 Related Datasets and Tools

5.2 Related Datasets and Tools

The goal of increasing the reproducibility and transparency of scientific results has led to the release of
various open datasets and open-source software for computational musicology. In the following, we give
a short summary on related datasets and tools that are fundamental to our work on the Erkomaishvili
dataset. One of the most extensive databases for computational ethnomusicology has been collected
within the CompMusic research project [188]. The collection comprises recordings of Indian Art music
(Carnatic and Hindustani music) [193], Turkish-Makam [58, 186, 206], Jingju [74, 151], and Andalusian
music [153]. The individual corpora, which include annotations of lyrics, scores, and editorial metadata,
are hosted on the web-platform Dunya41. Kroher et al. [104] released the corpus COFLA, a dataset for
the computational study of Flamenco music. The Dutch song database42 hosts a research collection
referred to as the “The Meertens Tune Collections”, which is based on field recordings of Dutch folk
songs [80]. The collection is accompanied with syllabified lyrics, key annotations, phrase annotations,
and transcriptions [208, 211]. Furthermore, the Polyphony Project43 hosts a collection of Ukrainian folk
music recordings which is accessible via a web-based interface with multitrack audio and video players. A
detailed overview of corpora for computational ethnomusicology can be found in [134].

As the number of public datasets increases, so does the number of open-source toolboxes for computational
analysis of music recordings. Prominent examples are librosa [112], Essentia [20], MIR-Toolbox [106]
and Marsyas [202]. Furthermore, tools such as Praat [19], Sonic Visualiser [29] and Tarsos [191] offer
graphical user interfaces to compute and display analysis results. Recently, a collection of implementations,
mathematical descriptions and explanations of music processing algorithms with emphasis on didactic
aspects was released [122].

5.3 Traditional Georgian Vocal Music

Despite its small size, Georgia is home to diverse singing traditions, which form an essential part of its
cultural identity. The disparity of polyphonic Georgian vocal music in comparison to Western music
is—among other aspects—based on the abundant use of “dissonances” and on the fact that the music
is not tuned to the 12-tone equal-tempered scale. While musicologists agree on the not equal-tempered
nature of traditional Georgian vocal music, the peculiarities of the traditional Georgian tuning system
are an ongoing topic of intense and controversial discussions [60, 173, 201]. A related aspect, which
by some musicologists has been considered characteristic for Georgian singing, is the importance of
harmonic intervals, which often goes along with a relaxed precision of melodic intervals, e.g., as discussed
by [34, 176].

41 https://dunya.compmusic.upf.edu/
42 http://liederenbank.nl/
43 https://www.polyphonyproject.com
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Figure 5.2: Illustration of three-stage recording process.
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Table 5.1: Overview on Erkomaishvili’s recordings.
# Songs

Total Duration
(hh:mm:ss)

Mean / Min / Max
Duration (mm:ss)

101 7:04:49 04:12 / 00:40 / 13:37

One key towards understanding these phenomena is the analysis of high-quality audio recordings. A
recently released research corpus of traditional Georgian vocal music [180] meets all the quality criteria
for computational analysis and allows for a systematic investigation of 216 performances (see Section 7.2
for a description of the dataset). However, with few exceptions, it only captures the current performance
practice in Svaneti, a historic province in Georgia. Regarding historical field recordings, the known
publicly available audio material is rather limited. This is true despite the fact that there have been
considerable efforts to record traditional Georgian vocal music, starting with phonograph recordings
more than 100 years ago. Unfortunately, many recordings from the early days of the last century have
not survived the course of time. The audio data that have survived are mostly of insufficient quality for
computational analysis. A notable exception are the 1966 tape recordings of Artem Erkomaishvili—one
of the last Georgian master chanters—which are considered today as “original masterpieces of Georgian
musical thinking” [190, p. XXVII]. A part of the recordings was manually remastered and published on
CD [92]. Today, the recordings of Artem Erkomaishvili are very likely the oldest collection of Georgian
chants of sufficient size and quality for computational studies.

5.4 Erkomaishvili Dataset

In this section, we describe the main components of the Erkomaishvili dataset. More specifically, we first
explain the specific recording procedure and elaborate on existing transcriptions (Section 5.4.1). Then, we
detail on the available manual annotations and the annotation process (Section 5.4.2). Finally, we present
a semi-automatic method for the transfer of note onset annotations using alignment and interpolation
techniques (Section 5.4.3).
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5.4.1 Recordings and Transcriptions

In 1966, shortly before his death, Artem Erkomaishvili was asked to perform three-voice chants on his
own by successively singing each of the individual voices. At the beginning of each recording, Artem
Erkomaishvili announced the name of the song he was about to perform. After recording the top voice,
one tape recorder was used to play back this first voice while a second tape recorder synchronously
recorded the middle voice. Similarly, playing back the first and second voice, the bass voice was recorded,
see Figure 5.2. In this way, Erkomaishvili accompanied his own recordings. However, due to this specific
recording procedure, Artem Erkomaishvili usually began the middle and bass voices with a slight offset
against the top voice. In summary, the Erkomaishvili recordings are not multitrack recordings in a strict
sense (i.e., with isolated recordings for each voice). Only the top voice exists as an isolated (monophonic)
recording. The resulting collection comprises 101 audio recordings with a total length of more than
seven hours (see Table 5.1). Due to the distortions introduced by the tape recorders, the sound quality
decreases with each recording stage. The strongest distortions typically occur in the third part, where it
can sometimes be challenging to distinguish the bass voice from the other two voices. Additionally, since
Artem Erkomaishvili was a bass singer, all songs are performed quite low. Considering the distortions and
low-frequency content in the audio material, the recordings constitute a particularly challenging scenario
for audio processing algorithms.

Transcriptions of Artem Erkomaishvili’s recordings in Western staff notation have been published in the
book “Georgian Church Hymns, Shemokmedi School” by David Shugliashvili [190]. The book contains
118 consecutively numbered transcriptions with song titles given in Georgian and English language,
and song lyrics in Georgian and Latin letters. As opposed to Artem Erkomaishvili’s performances, the
transcriptions are notated in a higher register to account for a wider singer audience. During curation of
the dataset, we used the score numbers in the book as unique file identifiers (Georgian Chant Hymns-IDs,
abbr. GCH-IDs). As a naming convention, we included the GCH-IDs as three digit prefix consistently in
all audio, sheet music, and annotation filenames. Since the publicly available audio collection comprises
only 101 recordings, the Erkomaishvili dataset does not contain data for the following GCH-IDs: 021,
028, 037, 038, 039, 055, 064, 075, 082, 084, 096, 117, 118. Furthermore, recordings with the following
GCH-IDs include two songs (second song in brackets): 022 (023), 043 (044), 058 (059), 102 (103)44.

5.4.2 Manual Annotations

In this section, we explain all manual annotations contained in the Erkomaishvili dataset. From a
previous study [126], we included recording structure annotations (Section 5.4.2.1) and semi-automatically
annotated F0-trajectories of the three voices (Section 5.4.2.2). As one main contribution, we generated
digital sheet music (Section 5.4.2.3) and onset annotations (Section 5.4.2.4) with the help of an experienced
annotator. In the following, we use the song “Da Sulisatsa” (GCH-ID 087) as a running example.
44 Further deviations are documented in the web-based interface (see Section 5.5).
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Figure 5.3: Illustration of available annotations for the song “Da Sulisatsa” (GCH-ID 087). (a) F0-trajectories within annotated
segment boundaries plotted on a logarithmic frequency axis. (b) Activations of F0-trajectories. (c) Onset annotations including
segment end.

5.4.2.1 Segment Annotations

As explained in Section 5.4.1, the first voice appears three times in every recording and marks the beginning
and end of each recording stage. Due to varying tape velocities, the durations of second and third stages
may slightly deviate from the duration of the first stage. However, for most of the recordings with few
exceptions (GCH-ID 004, 015, 107), it is a good approximation to assume the same duration for all three
stages. Following this assumption, Müller et al. [126] determined in all recordings the positions of three
segments with equal duration (see Figure 5.2). Thereby, the segment start is defined by the start of each
recording stage, whereas the segment duration is defined by the duration of the first stage. The segment
annotations are available in CSV-format and contain six timestamps corresponding to the start and end
positions of the three segments.

5.4.2.2 Fundamental Frequency Annotations

As part of the same study on Artem Erkomaishvili’s recordings, Müller et al. [126] annotated F0-trajectories
of the three voices for all 101 songs using a semi-automatic tool with a graphical user interface. The
annotation procedure was as follows: first, the user specified temporal-spectral constraint regions in an
enhanced time–frequency representation of the recording. Subsequently, F0-trajectories were automatically
computed within the specified regions using an F0-estimation algorithm similar to Melodia [169]. In
this way, the annotator could guide the estimation process. Additionally, the tool provides audiovisual
feedback mechanisms for validation purposes and allows for correcting the computed F0-trajectories. The
resulting annotated trajectories have a time resolution of 5.8 ms and a log-frequency resolution of 10 cents.
The two-column annotation files in CSV-format contain equally-spaced timestamps in seconds in the first
column and the F0-estimates in Hertz in the second column. The value of 0 Hz is used to indicate parts
where the voice is inactive. Since the F0-trajectories of the three voices were annotated independently
from the segment annotations, a few F0-values might be annotated outside the segment boundaries. The
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Figure 5.4: Digital score for “Da Sulisatsa” (GCH-ID 087).
The annotated note and rest onsets for the top voice are
highlighted in red. The QNRs are displayed underneath the
lyrics of each voice. Top Voice 

(Segment 1)

Middle Voice 

(Segment 2)

Bass Voice 

(Segment 3)

Onset Annotation

F0-trajectories for our running example, plotted within the segment boundaries on a logarithmic frequency
axis, are depicted in Figure 5.3a. The activations of the F0-trajectories are shown in Figure 5.3b.

5.4.2.3 Digital Sheet Music

Computational comparisons of the transcribed musical scores with the actual performances of Artem
Erkomaishvili require digital scores in machine-readable format. One way to transfer printed sheet music
to digital formats is to use Optical Music Recognition (OMR) systems [26, 149]. However, despite the
advances over the last years, such systems are still error-prone and usually require labor-intensive manual
corrections to obtain good quality results. Furthermore, most systems are not able to recognize characters
from the Georgian writing system that are contained in the lyrics of the scores. Due to these circumstances,
the transcriptions of David Shugliashvili were manually transferred to digital scores in MusicXML-format
using the scorewriter programs Finale45 and Sibelius46. As opposed to Western music, the traditional
Georgian songs do not have a fixed musical time signature and are not organized using measures. However,
a musical reference grid is beneficial for orientation within the scores. Furthermore, it helps to align the
audio with the sheet music domain, as we will see in the following sections. Therefore, we introduce the
concept of Quarter Note References (QNRs)—a concept of rather technical nature which has no further
musical importance in traditional Georgian vocal music. A QNR is assigned to each note and indicates
its position in terms of quarter notes from the beginning of the score. Following this concept, QNR 1
refers to the first note in the score, whereas QNR 2 refers to the note on the second quarter beat, which is
not necessarily the second note in the score. In this way, QNRs are assigned to notes in every system of
the score. In case the system contains shorter notes than quarter notes (e.g., eighth notes), QNRs can
be floating point numbers indicating fractions of quarter notes. For visualization purposes, only integer
QNRs have been added to the lyrics of the individual voices using the music21 Python toolkit [43]. The
generated digital score with QNRs for our running example is depicted in Figure 5.4.

45 https://www.klemm-music.de/makemusic/finale/
46 https://www.avid.com/de/sibelius
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5.4.2.4 Onset Annotations

In order to align the audio recordings with the digital scores, we manually annotated note and rest onset
positions in the recordings using the open source software Sonic Visualiser [29]. Due to practical reasons,
we only annotated note and rest onsets of the first voice. The onsets of the second and third voice were then
derived from the onsets of the first voice and the segment annotations (for more details see Section 5.4.3).
Figure 5.3c depicts the onset annotations of the first voice, which complement the existing manual segment
and F0-annotations. Figure 5.4 shows the correspondences of the onset annotations to note events in the
digital score for our running example. As a convention, the onset annotations include the end of the first
voice (end of first segment) as a last timestamp.

5.4.3 Onset Computation

Generating onset annotations for the middle and bass voices in the Erkomaishvili recordings is challenging
due to the polyphony and the poor audio quality in the second and third recording stages. In addition,
Artem Erkomaishvili’s low voice and the Georgian singing style with the abundant use of pitch slides in
the beginning, end, and in between consecutively sung notes complicates this task. Therefore, instead
of manually annotating the onsets of the middle and bass voices, we computed the onsets using a
semi-automatic approach. As described earlier, due to the overdubbing recording process, the top voice is
played back in the second and third segment and serves as reference for the other two voices. Using the
segment annotations from Section 5.4.2.1, we mapped the onset annotations of the top voice to the other
two segments by calculating the difference between the segment start positions and adding it to the top
voice onset timestamps. In a subsequent step, we determined the onsets of the middle and bass voices
using the previously introduced QNR grid. For notes of the middle and bass voices that share the same
QNR as notes in the top voice (two notes that are exactly on the same score time), we assigned the mapped
onset time of the top voice note. In order to obtain onsets of notes with a unique QNR (such as the notes
between QNR 4 and QNR 5 in the middle and bass voices of our running example in Figure 5.4), we
interpolated between the neighboring note onsets according to the QNR grid. We want to note that this
approach requires the segments to be of equal duration and the tape velocity to stay constant during all
recording stages in order to obtain a close approximation of the onsets for the second and third voices.
Furthermore, the three voices are required to be sung in sync. These requirements can be assumed for most
of the songs in the dataset. However, outliers can be found in the recordings with identifiers GCH-ID 004,
015, and 107. These recordings suffer from strong tape recorder artifacts. Therefore, it would be necessary
to manually correct playback velocity and pitch prior to onset computation. In our Erkomaishvili dataset,
we want to preserve the original recordings while indicating cases where outliers occur. We leave further
modifications of the historic audio material to future studies. For all 101 recordings, the annotated onsets
for the first segments and the computed onsets for the second and third segments are released in CSV
format (one CSV file per segment). In the CSV files, each row contains information for one onset in the
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< >

< >

(a) (b)

Figure 5.5: Web-based interface for accessing the Erkomaishvili dataset. (a) Main page with overview table. (b) Sub-page for
the song “Aghdgomasa shensa” (GCH-ID 002) with score-following player.

following format: onset index, onset time in seconds relative to the segment start, onset “end” in seconds
relative to the segment start (equivalent to the onset time of the next onset), QNR of the corresponding
note or rest, QNR of the next note or rest.

5.5 Web-Based Interface

The public availability of MIR research corpora is essential for the reproducibility of scientific results, as
well as for the preservation and dissemination of audio material and its annotations. Platforms such as
Zenodo47 offer to publicly share and distribute scientific data, while also providing citeable DOI. However,
the interdisciplinary field of computational musicology requires platforms beyond data repositories, which
support a cross-disciplinary scientific exchange by offering a direct, intuitive, and comprehensive access
to the data. This can be accomplished by means of interactive interfaces that bridge the gap between the
musicological and the audio domain, e.g., see [66, 91, 167].

As one main contribution, we developed a publicly accessible web-based interface48 which hosts the full
dataset. The interface provides download links to all segment, F0-, and onset annotations. Each song
in the dataset has its individual sub-page, which is accessible through an interactive table with search
and sorting functionalities as shown in Figure 5.5a. The central element of each sub-page is a multitrack
audio player [216] with score-following functionality [221]. The displayed digital sheet music (given
as an MEI file) is dynamically rendered in the web-browser with the help of Verovio [142]. The user
can seamlessly switch between the three individual recording segments and a mix version of the three
47 https://zenodo.org/
48 https://www.audiolabs-erlangen.de/resources/MIR/2019-GeorgianMusic-Erkomaishvili
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segments. In parallel, sung notes, lyrics, and QNRs are highlighted in the score according to the manually
annotated onsets of the top voice and the automatically generated onset annotations for the middle and
bass voices (see Figure 5.5b). In summary, beyond providing a non-technical and multimodal access to
the Erkomaishvili dataset, the developed interface constitutes a first application scenario based on our
annotations.

5.6 Applications for MIR and Musicology

The Erkomaishvili dataset can be used to address a wide range of research questions including technical as
well as musicological ones. For example, a cappella vocal music is a challenging scenario for various
MIR tasks such as F0-estimation [170], onset detection [17], and score-to-audio alignment [3, 127, 199].
In particular, the not equal-tempered nature of the Georgian songs and the characteristic pitch slides in
traditional Georgian singing constitute challenging test scenarios for MIR algorithms. The Erkomaishvili
dataset is one of few publicly available datasets on polyphonic a cappella singing [40, 180]. Due to the
overdubbing procedure, the audio material provides a suitable scenario for studying source separation [31],
audio segmentation [157], and audio restoration techniques [70].

Computational ethnomusicology is a rather young and still evolving field of research [73, 203, 205]. Its
potential depends strongly on the existence of data collections which on the one hand are musically relevant,
and on the other hand are of sufficient quality for the application of computational tools. The presented
corpus meets both of these criteria. Its musicological relevance is undisputed. Ethnomusicologist John
Graham, for example, writes: “Any theory must account for both the tuning system heard in the 1966
Erkomaishvili recordings and evidence from earlier singers and other regional chant systems seen in
the transcription record” [78, p. 292]. Some musicologists even believe that only through the analysis
of historical recordings (such as the Erkomaishvili collection), the Georgian musical system can be
understood [60].

In the following, we illustrate the potential of our annotations in two case studies using the song “Gushin
Shentana” (GCH-ID 010) as a running example. In the first case study (see Figure 5.6), we analyze the
harmonic content of the Erkomaishvili recordings by computing distributions of sung harmonic intervals
following the approach of Müller et al. [126]. To this end, the annotated F0-trajectories of the top, middle,
and bass voices (see Figure 5.6a) are superimposed using the segment annotation (see Figure 5.6b). Then,
for each time position, the intervals (given in cents) between the F0-trajectories of the top and middle
voices, the top and bass voices, as well as the middle and bass voices are computed. Finally, integrating
the occurrences of the different intervals over time, we obtain for each of the three cases an interval
distribution (see Figure 5.6c). By computing and averaging such distributions over all 101 Erkomaishvili
recordings, we obtain the distributions shown in Figure 5.6d. Besides the peak around 0 cents (unison), the
accumulated distribution exhibits a prominent peak around 700 cents (fifth), which reflects the importance
of the fifth interval in traditional Georgian vocal music. The peak at around 350 cents, located between the
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Figure 5.6: Computation of harmonic intervals. (a) F0-trajectories of “Gushin Shentana” (GCH-ID 010). (b) F0-trajectories
of all three voices superimposed using segment annotation (zoom region). (c) Histogram of harmonic intervals for “Gushin
Shentana” (GCH-ID 010). (d) Histogram of harmonic intervals averaged over all 101 songs of the dataset.

minor third (300 cents) and major third (400 cents), indicates the not equal-tempered nature of traditional
Georgian vocal music. For a more detailed study on traditional Georgian tuning, we refer to [173].
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What adds to the scientific value of the Erkomaishvili dataset is the availability of digital sheet music
in Western staff notation for all songs (see Section 5.4.2.3). Although Western staff notation does not
account for the not equal-tempered nature of traditional Georgian vocal music (see Section 5.3), the
transcriptions can serve as a reference for more detailed studies on traditional Georgian tuning, e.g.,
as approximate guidance for MIR algorithms. Furthermore, qualitative comparisons with acoustical
properties of Erkomaishvili’s recorded performances give insights into the challenges of transcribing not
equal-tempered music. This is illustrated in our second case study (see Figure 5.7).

In this study, we compare the pitch inventory as specified by the score representation with the pitch
inventory as used by Artem Erkomaishvili. To this end, we proceed as follows. First, based on the digital
sheet music (see Figure 5.7a), we generate a piano roll representation as shown in Figure 5.7b. Second, we
extract stable regions in the F0-trajectories that roughly correspond to note events. For this task, we use an
approach with morphological filters, which is described in detail in Section 6.3.2. Third, we temporally
align the filtered F0-trajectories with the piano roll representation using the onset annotations. By making
use of the previously introduced QNR concept (see Section 5.4.2.3), we obtain a QNR axis for both the
score and the audio information. As a common frequency axis, we choose a logarithmic axis in cents
(reference frequency 55 Hz). Fourth, we adapt the filtered and aligned F0-trajectories to the piano roll
representation using a global pitch shift. This step is necessary since the transcriptions are notated in a
higher pitch range than Artem Erkomaishvili’s original performance (see Section 5.4.1). We determine the
global pitch shift by computing the difference between the mean pitch of the piano roll representation and
the mean pitch of the adapted trajectories (considering the trajectories of all voices jointly). In this way, we
determine for our running example a pitch shift of 282 cents. The piano roll representation superimposed
with the filtered and shifted trajectories is depicted in Figure 5.7c. In most of the cases, the extracted
stable trajectory regions match the note events in the piano roll representation. However, a few regions in
the F0-trajectories were not detected as “stable” (e.g., for the middle voice at QNR 10). In other cases
(e.g., for the bass voice between QNR 11 and 13), the F0-values differ from the piano roll representation.
To get an overall view on these deviations, we integrate the occurrences of pitch values of the piano roll
representation and the adapted F0-trajectories over time. The two resulting distributions (“audio” and
“score”) are depicted in Figure 5.7d. In general, both distributions exhibit similar peak locations. However,
there exist two peaks in the audio distribution that deviate substantially from the score distribution. The
most significant deviation can be found between the pitches A[3 and A3. Note that the audio distribution
exhibits only one peak located between A[3 and A3. A similar, but less salient deviation can be observed
in the pitch range between D[3 and D3.

In order to further investigate these discrepancies, we fit a Gaussian Mixture Model (GMM) with 13
Gaussians to the audio distribution from Figure 5.7d. The resulting mixture distribution is shown
in Figure 5.8. The centers of the Gaussian pitch clusters are denoted with black numbers on top of the
peaks, while the intervals between neighboring clusters are indicated with red numbers in between. The
intervals between cluster centers from left to right are 192, 191, 152, 191, 173, 166, 155, 213, 178, 146,
179, and 196 cents. The numbers show that all intervals are all significantly larger than a semi-tone
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Figure 5.7: Comparison of transcribed score representation and annotated F0-trajectories for “Gushin Shentana” (GCH-ID 010).
(a) Sheet music representation (excerpt). (b) Piano roll representation of score with lyrics (excerpt). (c) Adapted F0-trajectories
for all three voices restricted to stable regions. (d) Pitch histograms for piano roll representation and adapted F0-annotation. The
note names are given (A4 = 440 Hz).

(100 cents) and most of them are smaller than a whole tone (200 cents). From these results, we can draw
two conclusions: first, the sung intervals indicate—once more—that Artem Erkomaishvili’s tuning is
clearly not equal-tempered. Second, melodic steps between 100 and 200 cents can sometimes be perceived
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Figure 5.8: GMM with 13 Gaussians fitted to pitch histogram determined from adapted F0-trajectories of the song “Gushin
Shentana” (GCH-ID 010). The black numbers on top of the peaks indicate the peak values in cents, while the red numbers
indicate the intervals between neighboring peaks. The original distribution is indicated in grey color.

and transcribed as minor 2nd, sometimes as major 2nd. As a consequence, this can lead to effects in the
transcription like in Figure 5.7a (QNR 10–14), where A, A[, D, and D[ appear closely together in time.
From a Western (12-TET) perspective, this might seem counter intuitive. However, this is merely an effect
of forcing a not equal-tempered tuning system into tempered Western staff notation. The task gets even
more challenging for the transcriber if additional constraints by the harmonic context are imposed (e.g.,
the harmonic fifth between bass and middle voice at QNR 13).

In summary, these case studies show the potential of our annotations for studies on Artem Erkomaishvili’s
performances, as well as for analyzing tuning, pitch inventory, and musical scales underlying traditional
Georgian vocal music.

5.7 Conclusions and Further Notes

In this chapter, we presented a carefully organized, manually annotated, and publicly available dataset of
traditional Georgian vocal music. The corpus is based on historic recordings of the former master chanter
Artem Erkomaishvili. As part of our work, we collated existing audio data and annotations. Furthermore,
we generated onset annotations based on the digitized transcriptions by [190]. Finally, we developed an
interactive web-based user interface with score-following audio players, which provides convenient access
to the corpus data. Beside contributing to the preservation and dissemination of the rich Georgian musical
heritage, this dataset is a versatile resource for MIR research and empowers musicological research on
traditional Georgian vocal music.

An in-depth musicological analysis of the Erkomaishvili dataset can be found in [181]. In particular,
ethnomusicologists have developed synoptic scale models of traditional Georgian singing considering
harmonic and melodic aspects of the complete Erkomaishvili corpus. Furthermore, the study reveals that
Artem Erkomaishvili may intentionally deviate from the melodic scale quite freely at one instance of time,
while compensating for this deviation in the subsequent melodic steps. This observation suggests that
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Artem Erkomaishvili actively follows a “deviation-compensation strategy,” which honors the scales but
allows for melodic flexibility. In addition to the tangible results of our work, we believe that our study on
the Erkomaishvili recordings has general implications for the determination of tuning models from audio
data, particularly for “non-Western” music.
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6 Filtering Approaches for Detecting Stable
Regions in F0-Trajectories

This chapter is based on [158]. The first author Sebastian Rosenzweig is the

main contributor to this article. In collaboration with his supervisor Meinard

Müller and Frank Scherbaum, he developed the ideas, formalized and im-

plemented the approaches, conducted the experiments, and wrote the paper.

One major challenge in F0-based tonal analysis is introduced by unstable regions in the trajectories
due to pitch slides and other frequency fluctuations. In this chapter, we describe two approaches for
detecting stable regions in F0-trajectories: the first algorithm uses morphological operations inspired by
image processing, and the second one is based on suitably defined binary time–frequency masks. To
avoid undesired distortions in subsequent analysis steps, both approaches keep the original F0-values
unmodified, while only removing F0-values in unstable trajectory regions. We evaluate both approaches
against manually annotated stable regions and discuss their potential in the context of interval analysis for
traditional three-part Georgian singing.

6.1 Introduction

Pitch slides are known to be part of vocal music across musical cultures [101, 103, 110, 176]. For
example, as a stylistic element of traditional Georgian music, sung notes are often continuously connected,
see Figure 6.1a. For tonal analysis based on extracted F0-trajectories, such stylistic elements constitute a
major challenge. For example, when computing harmonic interval statistics (as illustrated by Figure 6.1c),
one observes a blurring and a less salient peak structure in the resulting histograms. Thus, tonal
analysis of traditional Georgian vocal music based on highly fluctuating and error-prone F0-trajectories
is problematic. To alleviate such issues, contributions such as [110, 176] apply (semi-automatic) post-
processing procedures to remove unstable regions in the trajectories and derive note-like events with a
stable pitch. Note that for other scenarios (e. g., the tonal analysis of Hindustani Raga [165]), non-stable
regions may contain musically important information.
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6 Filtering Approaches for Detecting Stable Regions in F0-Trajectories

Figure 6.1: Detection of stable regions in F0-trajectories for
a three-part singing recording. (a) Original F0-trajectories.
(b) F0-trajectories restricted to stable regions. (c) Harmonic
interval histogram based on (a). (d) Sharpened harmonic
interval histogram based on (b). The histograms in (c) and
(d) were computed considering the entire Erkomaishvili
corpus.
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Motivated by such tonal analysis applications, we present in this chapter two automatic approaches that
aim at identifying stable regions in F0-trajectories. Technically speaking, such regions correspond to
horizontal structures (up to some tolerance) of trajectories. In acoustical and musical terms, such regions
relate to pitched sounds where a singer has tuned into a harmonically stable pitch synchronized to other
singers. In this context, our goal is to remove all frequency values in unstable regions, while keeping
the original frequency values unmodified in the stable ones (see Figure 6.1b), resulting in a sharpened
harmonic interval histogram (see Figure 6.1d). For accomplishing this task, we introduce two conceptually
different approaches—one based on morphological operations and the other one based on binary masking.
Furthermore, we evaluate both approaches against manually annotated stable regions and indicate their
potential for interval analysis using the Erkomaishvili corpus (see Chapter 5) as example.

The remainder of this chapter is organized as follows. We discuss related work in Section 6.2, then give a
mathematical description of our approaches in Section 6.3, and report on our experiments in Section 6.4.
Finally, we summarize our findings and provide further notes in Section 6.5.

6.2 Related Work

In the following, we give an overview on work that is related to detecting stable regions in F0-trajectories.
First, we want to note that stable region detection is not equivalent to F0-based transcription. In general,
automated music transcription (AMT) aims at converting a music recording into some form of music
notation [6, 7, 100]. In this process, many AMT systems apply temporal and spectral quantization of
previously extracted F0-trajectories to derive pitches, onsets, and offsets of note events [24, 25, 53, 72,
103, 111, 115, 131, 168]. Rather than using quantized or modified F0-trajectories for our analysis, we aim
at using trajectories restricted to stable regions (that may or may not correspond to note events) while
leaving the original F0-values unmodified.
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Detecting stable, transitional, and fluctuating patterns in F0-trajectories plays an important role for
various tasks such as vibrato detection [35, 150, 219], singing style classification [135, 152], and motif
detection [90, 148]. For example, in [217, 218, 219], the authors address the problem of detecting
portamento (note transition) regions in Chinese string music. In [103], the authors identify stable regions
as an important step towards transcribing recordings of Flamenco singing. In [118], the authors propose a
vocal trajectory segmentation algorithm based on hysteresis defined on pitch–time curves. However, the
underlying octave equivalence assumption may not be fulfilled in traditional Georgian vocal music. For a
recent overview article of singing voice analysis, we refer to [88].

Furthermore, there are various studies on Indian Raga music, which are related to our work. In [65],
a global pitch histogram (“pitch inventory”) of the whole recording is computed. Then, informed by
the histogram’s peaks, stable regions are derived using empirically chosen thresholds for duration and
fluctuation tolerance. In [101], the authors compute the local slope of the F0-trajectory and obtain
stable regions by thresholding and quantization. However, due to the underlying scale assumptions, such
approaches can not be directly applied to analyzing traditional Georgian singing, where pitch drifts may
occur over the course of the song.

6.3 Stable Region Detection

In this section, we introduce our main technical contributions. We follow the notion of an F0-trajectory
from Section 2.3.1. The experiments in this chapter use F0-trajectories with a time resolution of 5.8 msec
per time index and a frequency resolution of 10 cents. Furthermore, we set ωref = 55 Hz. Figure 6.2a
shows an F0-trajectory, which will serve as our running example in the remainder of this section. In the
first two seconds, two notes are played on a piano without interruption. Subsequently, in the next two
seconds, there are two sung notes smoothly connected by a pitch slide. Finally, the recording contains a
note sung with vibrato.

The remainder of this section is structured as follows. To motivate the subsequent procedures, we explain
a simple median-based filtering approach (Section 6.3.1). Then, we introduce two conceptually different
approaches for determining stable regions in F0-trajectories—one based on morphological operations
(Section 6.3.2) and the other one based on binary masking (Section 6.3.3).

6.3.1 Median Filtering

For tonal analysis based on F0-trajectories, one often applies some kind of filtering to remove outliers
and other undesired pitch fluctuations [110, 198]. For example, by applying a median filter of odd length
L ∈ N, one obtains a smoothed trajectory ηMedian defined by

ηMedian(n) := median
{
η(n − L−1

2 : n + L−1
2 )

}
(6.1)
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Figure 6.2: Effect of median filtering. (a) Original trajectory η. (b) Median-filtered trajectory ηMedian. (c) Activation regions of
η (black) and ηMedian (red).

for n ∈ Z. In this definition, the symbol ∗ is handled as −∞. Figure 6.2b shows ηMedian of our running
example using L = 69 (corresponding to 0.4 sec). This example shows how median filtering introduces
smoothing while removing outliers (such as the peak around the third second). However, the non-stable
transition between the two sung notes remains after filtering. This is not what we aim at. First, we do not
want to change frequency values in stable regions (with the goal not to introduce smoothing effects in
subsequent tonal analysis steps). Second, we aim at explicitly detecting unstable regions, which can then
be removed from the F0-trajectory. In the following, we present two conceptually different approaches
that fulfill these requirements.

6.3.2 Morphological Approach

The first approach, which is inspired by work of Vávra et al. [209], uses morphological operations as
known in image processing. Applying these operators to F0-trajectories, dilation corresponds to max
filtering, and erosion to min filtering. Given a trajectory η, this results in a dilated trajectory ηLmax and an
eroded trajectory ηLmin defined by

ηLmax(n) := max
{
η(n − L−1

2 : n + L−1
2 )

}
, (6.2a)

ηLmin(n) := min
{
η(n − L−1

2 : n + L−1
2 )

}
, (6.2b)
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Figure 6.3: Morphological approach for detecting stable regions. (a) F0-trajectories η (black), ηLmax (green), and ηLmin (orange).
(b) Morphological gradient ∆L with threshold τ = 90. (c) Trajectory ηMorph restricted to stable regions. (d) Activation regions
for η (black) and ηMorph (red).

for n ∈ Z, where L ∈ N is assumed to be an odd integer. In max filtering, the symbol ∗ is handled as −∞,
whereas in min filtering it is handled as +∞. Figure 6.3a shows the resulting trajectories ηLmax and ηLmin for
our running example using L = 43 (corresponding to 0.25 sec). In a next step, we define the difference ∆L

between the dilated and eroded trajectories, also termed morphological gradient [154]:

∆
L(n) := ηLmax(n) − ηLmin(n) (6.3)

for n ∈ Z, where we set ∆L(n) = ∗ whenever ηLmax(n) or ηLmin(n) are not defined. As shown in Figure 6.3b,
the difference ∆L is large in non-stable parts (e. g., around the third second), whereas it is small in stable
parts (e. g., within each of the piano notes). Fixing a suitable threshold τ > 0 (given in cents), we define
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the trajectory ηMorph by setting

ηMorph(n) :=

η(n), for |∆L(n)| ≤ τ,

∗, otherwise.
(6.4)

The threshold τ can be seen as a tolerance parameter that specifies the maximally allowed fluctuation
under which a trajectory is still considered to be stable. The resulting trajectory ηMorph for our running
example is depicted in Figure 6.3c using a threshold of τ = 90 cents. As shown in Figure 6.3d, the
morphological approach succeeds in identifying stable regions. However, it also introduces a truncation at
both sides of sudden jumps (e. g., around the first and fourth second) by half the filter length (L − 1)/2. In
the next section, we show how this truncation effect can be reduced by applying a 2D-masking approach
involving some median filtering. Finally, we want to note that considering the morphological gradient
is conceptionally similar to the approach based on Gaussian derivate filtering as described in [103]. In
our approach, the threshold parameter τ can be adjusted dynamically to account for characteristics of
individual trajectories, e. g. by considering the p-quantile of the morphological gradient ∆L .

6.3.3 Masking Approach

We now introduce an alternative approach for detecting stable trajectory regions, which works in the
2D-domain. In a first step, we encode a trajectory η as a binary 2D-representation ΓR : Z × Z→ {0, 1}.
Given a frequency resolution of R ∈ R (given in cents), ΓR is defined by

ΓR(n, b) :=


1, for
⌊
η(n)
R + 0.5

⌋
= b,

0, otherwise,
(6.5)

with time index n ∈ Z and frequency bin index b ∈ Z (corresponding to a logarithmic frequency axis).
Figure 6.4a shows the binary representation ΓR using R = 10 cents for our running example. In the second
step, we introduce some tolerance in frequency direction by vertically applying a max-filtering using a
filter length parameter β ∈ N0 (specified in bins). This results in the representation ΓβR defined by

Γ
β
R(n, b) := max{ΓR(n, b − β : b + β)}. (6.6)

This operation is illustrated by Figure 6.4b using β = 5 (leading to a frequency width of 2β + 1 = 11
bins corresponding to 110 cents). In a third step, inspired by an algorithm for Harmonic–Percussive
Source Separation [62], a median filter of odd length L ∈ N is applied in horizontal direction yielding a
representation Γβ,LR :

Γ
β,L
R (n, b) := median

{
Γ
β
R(n −

L−1
2 : n + L−1

2 , b)
}
. (6.7)
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Figure 6.4: Masking approach for detecting stable regions. (a) Binary representation ΓR . (b) Max-filtered representation Γβ
R
.

(c) Median-filtered binary mask Γβ,L
R

. (d) Trajectory ηMask restricted to stable regions. (e) Activation regions for η (black) and
ηMask (red).

Applying horizontal median filtering suppresses vertical structures (e. g., pitch slides), while enhancing
horizontal structures (corresponding to stable regions), see Figure 6.4c for an illustration when using
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Figure 6.5: Precision, recall, F-Measure, and survival rate ρ of parameter sweeps averaged over five recordings (see Table 6.1).
The parameter settings chosen for subsequent experiments are marked with red stars. (a) Morphological approach. (b) Masking
approach.

L = 43 (corresponding to 0.25 sec). In the fourth step, the output trajectory ηMask is obtained by setting

ηMask(n) :=

η(n), if Γβ,LR (n, b) = 1,

∗, otherwise,
(6.8)

with b = bη(n)/R + 0.5c. This last step can be thought of as “masking” the input trajectory η using the
binary mask Γβ,LR . Figure 6.4d shows the resulting trajectory ηMask for our running example. Note that,
even though the masking procedure involves some quantization parameter R, the final trajectory ηMask

coincides with the original trajectory η in stable regions. Similar to the parameter τ for computing ηMorph,
the parameter β controls the frequency tolerance within stable regions for ηMask. As also indicated by our
running example, the truncation effects at sudden jumps introduced by the morphological approach have
been eliminated by our masking approach (compare ηMorph and ηMask around the first and fourth second).
While the 2D-masking approach is computationally more expensive than the 1D-morphological approach,
it allows for processing multiple (non-overlapping) trajectories at the same time. Furthermore, one may
account for weighted trajectories (e. g., trajectories with assigned amplitude or confidence values) by
using real-valued instead of binary masks. Note that both algorithms do not enforce continuity of output
trajectories. In particular, strict parameter settings (e. g. small τ and small β) may result in fluctuating
sound events (e. g. a note sung with strong vibrato) being split up into several disconnected regions.

6.4 Evaluation

In this section, we report on experiments that indicate the role of the parameters and the behavior of the
morphological and the masking approach. In Section 6.4.1, we numerically compare both approaches
using a set of manually annotated stable regions in F0-trajectories from the publicly available Erkomaishvili
corpus (see Chapter 5). Using suitable parameter settings, we then apply both algorithms to the trajectories
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6.4 Evaluation

Table 6.1:Precision (P), recall (R), F-Measure
(F), and survival rate (ρ) evaluated on the basis
of manually annotated F0-trajectories for five
Erkomaishvili recordings.

ID
ηAnn ηMorph ηMask

ρ P R F ρ P R F ρ

001 61% 0.82 0.94 0.88 70% 0.82 0.94 0.88 71%
002 79% 0.94 0.85 0.89 72% 0.93 0.87 0.90 74%
010 68% 0.87 0.92 0.89 72% 0.84 0.95 0.89 77%
087 78% 0.88 0.98 0.93 87% 0.87 0.98 0.92 88%
110 74% 0.90 0.96 0.93 79% 0.88 0.97 0.92 80%

of all 101 recordings in the corpus (see Section 6.4.2). We hypothesize that a consistent detection of stable
regions using the two conceptually different approaches is a good indicator that the results are musically
meaningful. Finally, in Section 6.4.3, we demonstrate the potential of our approaches for enhancing
harmonic interval distributions.

6.4.1 Evaluation Measures and Parameters

In order to compare the algorithms’ performance, we annotated stable regions of F0-trajectories extracted
from five representative Erkomaishvili recordings. To this end, we used an interactive interface described
in [126] to manually remove all unstable trajectory regions that correspond to note transitions and other
artifacts. As evaluation metrics, we use standard precision (P), recall (R) and F-measure (F) computed
frame-wise on the basis of the trajectories’ activations. First, all frames with no specified frequency value
in the original trajectory (η(n) = ∗) are left unconsidered. Frames classified as stable by our approaches
are counted as true positives (TP) if they agree with frames annotated as stable, otherwise they are counted
as false positives (FP). Furthermore, frames annotated as stable are counted as false negatives (FN), if they
are classified as unstable. Then,

P :=
TP

TP + FP
, R :=

TP
TP + FN

, F :=
2 · P · R
P + R

. (6.9)

Note that P := 0 for TP + FP = 0, R := 0 for TP + FN = 0, and F := 0 for P + R = 0. Furthermore,
we introduce an evaluation measure referred to as survival rate and denoted as ρ. This measure, which
indicates the percentage of remaining trajectory values after filtering, is defined as follows:

ρ :=
|{n : ηStable(n) , ∗}|
|{n : η(n) , ∗}| · 100, (6.10)

with ηStable = ηMorph for the morphological approach, ηStable = ηMask for the masking approach and
ηStable = ηAnn for an annotated trajectory ηAnn.

In order to analyze the algorithms’ behavior for different parameter settings, we conduct parameter sweeps
over L, τ, and β, using a fixed frequency resolution of R = 10 cents. For each evaluation metric, we
construct a matrix with each entry corresponding to a metric’s value for a specific parameter setting
averaged over the five annotated recordings. The resulting matrices for precision, recall, F-measure, and
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Table 6.2: Evaluation of the masking approach against the morpholog-
ical approach considering the trajectories of all 101 recordings of the
Erkomaishvili corpus (with fixed parameter settings from Section 6.4.1).
The mean µ and standard deviation σ refer to statistics taken over the
corpus.

P R F ρ (ηMorph) ρ (ηMask)

µ 0.89 0.94 0.92 73% 77%
σ 0.02 0.01 0.02 5% 5%

survival rate are depicted in Figure 6.5a for the morphological approach and in Figure 6.5b for the masking
approach. The visualizations show that τ and β play a similar role: high values of τ and β make the
approaches more tolerant to local frequency fluctuations in the trajectories, thus increasing the survival
rates. In contrast, when decreasing τ and β, less values remain in the filtered trajectories, leading to lower
survival rates. Furthermore, note that increasing the filter length L leads to an increase in precision and a
decrease in recall for both approaches. In the case of the morphological approach, very large filter lengths
lead to a survival rate of ρ = 0 (nothing is remaining), which also leads to a precision of zero.

For our further experiments, we use fixed parameter settings for both approaches that correspond to
maxima in the F-measure matrices (see red stars in Figure 6.5). The morphological approach reaches a
maximum F-measure of 0.90 for τ = 150 cents and L = 29 bins, whereas the masking approach reaches
a maximum F-measure of 0.90 for β = 2 bins and L = 41 bins. Using these parameter settings, the
evaluation results for our five annotated examples (IDs correspond to songs on the publicly available
website49) are given in Table 6.1. From the table, we can see that both approaches are able to detect stable
regions in all five examples. We want to note that the optimal parameter settings vary from song to song,
depending on the occurring note durations, characteristics of pitch slides, and other performance aspects.
As an alternative to a fixed setting, one may chose the parameters in a song-dependent way, e. g., by fixing
the survival rate. In summary, our experiments on the Erkomaishvili corpus showed that the specific
choice of parameters is not crucial within a certain range (see also the F-measure matrices of Figure 6.5).

6.4.2 Consistency

The two approaches for detecting stable regions in trajectories are conceptually different. Nevertheless,
in the case of the five annotated recordings, both approaches worked successfully and performed in a
similar fashion. Based on the hypothesis that a consistent performance of both approaches is a necessary
condition for obtaining meaningful results, we applied both approaches independently to all 101 recordings
of the Erkomaishvili corpus. We then compared the results by evaluating the trajectories obtained by the
masking approach against the trajectories obtained by the morphological approach using the evaluation
metrics defined in Section 6.4.1. The mean µ and standard deviation σ (taken over the corpus) of the
evaluation results are shown in Table 6.2. The numbers indicate that both approaches deliver similar
results on average with a small standard deviation. Furthermore, both approaches roughly exhibit the same
average survival rate for the chosen parameter settings. Beyond these overall measures, we also looked at
recordings where the two approaches delivered less consistent results. A manual inspection revealed that

49 https://www.audiolabs-erlangen.de/resources/MIR/2017-GeorgianMusic-Erkomaishvili
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6.5 Conclusions and Further Notes

Figure 6.6: Harmonic interval dis-
tributions obtained from the entire
Erkomaishvili corpus.
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these recordings often contain speech-like passages (rather than singing) and extremely short notes such
as in the songs with ID 022 and ID 074. Results for all 101 recordings are publicly available through
audio–visual interfaces.50

6.4.3 Harmonic Interval Analysis

In the following, we want to demonstrate the potential of the presented approaches for interval analysis
of Georgian vocal music by computing harmonic interval size distributions from the filtered trajectories
(cf. Chapter 5.6, [126, 176]). To this end, we superimpose the filtered trajectories of lead, middle and bass
voice and determine the frame-wise intervals for each voice pair (as indicated in Figure 6.1). Then, by
accumulating the occurrences of the different intervals over time, we obtain interval histograms. These
histograms are normalized (using the `1-norm) to obtain distributions. Figure 6.6 shows three such
distributions obtained by considering all 101 recordings of the Erkomaishvili corpus. The first distribution
(black solid line) is based on the original F0-trajectories. The second distribution (solid red line) is
obtained by considering only stable regions after morphological filtering. Here, we use the parameter
settings discussed in Section 6.4.1. Filtering with the masking approach leads to similar distributions.
Note that the filtering leads to a sharper interval distribution emphasizing the peaks at the harmonically
relevant intervals while not changing the respective peak locations. Using stricter parameter settings
leads to a further sharpening (see red doted line in Figure 6.6). However, overdoing the filtering may
drastically reduce the survival rate. This, in turn, may lead to a distortion or even a loss of peak structures
corresponding to relevant harmonic intervals.

6.5 Conclusions and Further Notes

In this chapter, we presented two conceptually different approaches for detecting stable regions in F0-
trajectories, which perform equally well with respect to a set of manually annotated trajectories. Rather
50 https://www.audiolabs-erlangen.de/resources/MIR/2019-ISMIR-StableF0
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than advocating a specific parameter setting, our goal was to introduce these concepts in a mathematical
rigorous way while highlighting their potential using the Erkomaishvili corpus as example scenario.
In Chapter 7, we will show that stable regions can also be exploited as an indiactor for reliability of
F0-estimates when considering multiple, automatically estimated F0-trajectories. In Chapter 8, we will
expand our morphological approach for detecting note-like objects in F0-trajectories and show how this
approach can be applied in an interactive fashion for tonal analysis (see also Figure 8.4).
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7 A Fusion Approach for Reliability Assessment of
F0-Estimates

This chapter is based on [162]. The first author Sebastian Rosenzweig

is the main contributor to this article. In collaboration with his supervisor

Meinard Müller and Frank Scherbaum, he developed the ideas, formalized

the approach, and wrote the paper. Furthermore, Sebastian Rosenzweig

implemented the approach and conducted the experiments.

Over the last decades, various conceptually different approaches for F0-estimation in monophonic audio
recordings have been developed. The algorithms’ performances vary depending on the acoustical and
musical properties of the input audio signal. A common strategy to assess the reliability (correctness)
of an estimated F0-trajectory is to evaluate against an annotated reference. However, such annotations
may not be available for a particular audio collection and are typically labor-intensive to generate. In
this chapter, we consider an approach to automatically assess the reliability of F0-trajectories estimated
from monophonic singing voice recordings. As main contribution, we propose three reliability indicators
that are based on the outputs of several algorithms. Besides providing a mathematical description of the
indicators, we analyze the indicators’ behavior using a set of annotated vocal F0-trajectories. Furthermore,
we show the potential of the proposed indicators for exploring unlabeled audio collections on the example
of field recordings of traditional Georgian vocal music.

7.1 Introduction

F0-estimates often serve as mid-level representation [14, 37] in MIR tasks such as automatic music
transcription [7] and performance analysis [46, 50]. There exist a variety of approaches for monophonic
F0-estimation, ranging from model-based methods [27, 48, 109] to more recent deep learning-based
methods [68, 97]. A monophonic F0-estimation algorithm typically outputs one F0-value per time instance
together with a confidence value that indicates the algorithm’s certainty whether the sound source is active
or not (sometimes referred to as “voicing”). However, high confidence does not necessarily imply high
reliability (correctness) of an estimated F0. For example, typical estimation errors are confusions of the
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Figure 7.1: Illustration of reliability indicators for an artifi-
cial example. I1: F0-agreement. I2: Overall confidence.
I3: F0-trajectory stability.
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F0 with higher or lower harmonics (in particular octaves). The performance of a specific F0-estimation
algorithm depends on the audio signal’s acoustic properties (e.g., microphone characteristics, recording
conditions) and musical properties (e.g., instrumentation, singing/playing styles).

In order to assess the accuracy of F0-estimates, a commonly used strategy is to evaluate an algorithm’s
output against a manually annotated reference, e.g., using the standard metrics defined in [139, 170] or
a recently proposed variant [10]. However, manual F0-annotations are labor-intensive to generate and
sometimes not available. This motivates the need for automatic approaches that deliver cues on the
reliability of F0-estimates. In prior work [49], the authors have suggested a deep-learning-based approach
for reliability assessment of F0-estimates from speech recordings. The approach requires access to the
algorithms’ internal computations, as well as algorithm-specific adaptation and training.

In the following, we develop a more generic approach that is independent of the algorithms’ working
principle and available implementations. Conceptually similar to the studies in [4, 22], our approach
makes use of F0- and confidence outputs of several algorithms. As one main contribution, we introduce
three reliability indicators (denoted as I1, I2, and I3) that measure the reliability of an F0-estimate with
respect to three different criteria. The working principle is illustrated in Figure 7.1 using an artificial
example with two algorithms. I1 measures the agreement of the algorithms’ F0-estimates. In our artificial
example, it indicates low agreement in Part A and high agreement in Part B (and for some time instances
in Part C). I2 measures the overall confidence of the algorithms. In our example, I2 indicates medium to
high confidences in Parts A and B, and low confidences in Part C. I3 measures the stability of the estimated
F0-trajectories in a temporal context. This criterion is based on the observation that some algorithms
tend to output random-like values in parts where no singing voice is active. Furthermore, in parts where
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7.2 GVM Collection

Figure 7.2: Impressions of the GVM collection. (Reprinted by kind permission of Frank Scherbaum, Potsdam University).

F0-estimation is ambiguous or problematic (e.g., for consonants), estimated F0-trajectories often exhibit
abrupt jumps. In our artificial example, I3 indicates low stability for Part A (due to vibrato) and Part C
(due to noise), and high stability for Part B. As a test scenario for our indicators, we consider a collection
of multitrack field recordings of polyphonic Georgian vocal music (GVM), also referred to as the GVM
collection [178, 180], which will be introduced in Section 7.2. Subsequently, we provide mathematical
definitions of the reliability indicators in Section 7.3 and evaluate the indicators’ performance on a set of
manual F0-annotations extracted from selected songs of the GVM collection in Section 7.4. Finally, we
indicate the potential of the proposed indicators for exploring unlabeled audio collections in Section 7.5
and summarize this chapter in Section 7.6.

7.2 GVM Collection

Traditional Georgian vocal music has been an active field of ethnomusicological research since more
than 100 years. Besides the musically invaluable recordings of Artem Erkomaishvili (see Chapter 5),
the availability of high quality audio recordings of this orally transmitted music is still limited [180].
During the summer of 2016, Frank Scherbaum (in collaboration with Nana Mzhavanadze), performed
a three-month field expedition in Georgia with focus on the region Svaneti. Musicologists believe that
Svaneti is home to the first stages of Georgian vocal music development.51 During the expedition, the

51 https://www.uni-potsdam.de/de/soundscapelab/about-seismosoundscape-lab/people/
frank-scherbaum/my-personal-travelogue
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Table 7.1: Overview of the multitrack audio recordings in the GVM collection.
Microphone # Tracks

Duration
(hh:mm:ss)

LRX 548 16:52:07
HDS 477 15:21:55
Room 203 06:08:51
Total 1228 38:22:54

ethnomusicologists recorded a new research corpus of traditional Georgian vocal music, including singing,
praying, and lamenting, also referred to as the GVM collection.

The GVM collection comprises in total 216 performances, among which there are 37 performances of
prayers and 11 performances of funeral songs (see Chapter 8 for a case study on these recordings). The
rest are performances of a diverse range of song types, including hymns, ballads, dance songs, and table
songs [180]. In total 85 performances stem from the region Svaneti. Figure 7.2 provides an impression of
the diversity of the recorded ensembles.

What adds to the uniqueness of the GVM collection is the systematic use of close-up microphones (in
particular, headset and throat microphones, see Section 2.2), room microphones, and video cameras for
recording the singers. In the following, we will refer to headset and throat microphones as HDS and LRX,
respectively. An overview about the multitrack recordings included in the GVM collection is provided
in Table 7.1, which shows the outstanding amount of recordings in the collection. To enable an easy and
direct access to the collection, we created a interactive web-based interface52, which hosts the data. The
start page of the interface includes an interactive table of all performances, listing their unique GVM-IDs,
song and ensemble names, available multitrack data, and recording dates. For each performance, the
interface provides a multimedia player based on the library trackswitch.js [216], which allows for seamless
switching and mixing of the individual tracks (see Figure 7.3). To ensure the preservation for future
research, the GVM collection is permanently stored within the long-term archive of regional scientific
research data (LaZAR), hosted at the University of Jena, Germany [178]. For further details on the GVM
collection, we refer to [180].

7.3 Reliability Indicators

In Section 7.3.1, we formalize the notion for our scenario. Then, we summarize the algorithms and
annotations used in our investigations in Section 7.3.2. Subsequently, we introduce our three reliability
indicators that measure F0-agreement (Section 7.3.3), overall confidence (Section 7.3.4), and F0-trajectory
stability (Section 7.3.5).

52 https://www.audiolabs-erlangen.de/resources/MIR/2017-GeorgianMusic-Scherbaum

88

https://www.audiolabs-erlangen.de/resources/MIR/2017-GeorgianMusic-Scherbaum
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Figure 7.3: Web-based interface for accessing the multitrack and
video recordings of the GVM collection. Figure taken from [179].

7.3.1 Formalization

In our experiments, we consider several F0-estimation algorithms applied to one audio recording. Let
M be the number of algorithms. Let us assume, a given F0-estimation algorithm outputs a frequency
value as well as a confidence value (a value between 0 and 1) for each discrete time index n ∈ [1 : N]
with N ∈ N. Then, let η : [1 : N] → R be the resulting frequency trajectory and γ : [1 : N] → [0, 1] the
corresponding confidence trajectory. Note that this definition can be understood as special case of the
definition in Section 2.3.1 by requiring an algorithm to output one frequency and confidence value for
each time index n ∈ [1 : N]. For our M algorithms, let

T := {η1, ..., ηM} (7.1)

and
C := {γ1, ..., γM} (7.2)

be the corresponding sets of trajectories, where ηm is the frequency trajectory and γm the confidence
trajectory for the mth algorithm, m ∈ [1 : M].

Furthermore, let ηAnn : [1 : N] → R ∪ {∗} be an F0-annotation, with ηAnn(n) = ∗ where the frequency
value is left unspecified. We denote the set of all time frames where the annotation is active as
µ(ηAnn) := {n ∈ [1 : N] : ηAnn(n) , ∗}.
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Figure 7.4: Estimated F0-trajectories, confidences, annota-
tions, and reliability indicators for the middle voice in the
song “Kriste Aghsdga”.
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7.3.2 Algorithms and Annotations

In our investigations, we consider the three (M = 3) algorithms YIN [48] (see Section 2.3.2), Melodia [169]
(see Section 2.3.4), and CREPE [97] (see Section 2.3.5). While YIN and CREPE are designed for
monophonic F0-estimation, Melodia was originally developed for the task of predominant melody
estimation. Note that the selection of algorithms in this work is exemplary and our measures are
not restricted to this specific set of algorithms. For extracting F0- and confidence trajectories, we
use the publicly available YIN and Melodia Vamp plugins53 together with the open-source tool Sonic
Annotator [28], as well as the CREPE Python package54. All algorithms are applied with default parameter
settings. For YIN and CREPE, we use the continuous confidence output of the implementations, whereas
for Melodia, we derive binary confidence trajectories from the voice activity decision made by the
algorithms.

Additionally, we consider two types of manual annotations. ηAnn
VA assumes annotated F0-values in cents

for parts where the singing voice is active (VA) and the symbol ‘∗’ elsewhere. Similarly, ηAnn
SR assumes

annotated F0-values in cents for roughly stable regions (SR) of the F0-trajectory and the symbol ‘∗’
elsewhere. Note that typically, the F0-values in ηAnn

SR form a subset of the F0-values in ηAnn
VA . We

manually generate ηAnn
SR using the publicly available tool Tony [111], which is based on the algorithm

pYIN [109] (see Section 2.3.3). Furthermore, we generate ηAnn
VA by restricting automatically extracted

53 https://vamp-plugins.org/
54 https://github.com/marl/crepe
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pYIN trajectories (also obtained using a Vamp plugin) to manually annotated regions where the singing
voice is active using Sonic Visualiser [29]. In order to account for different hop sizes of the algorithms and
annotations, we resample all F0-trajectories, annotations, and confidences to a time grid with a resolution
of 10 ms. Furthermore, we quantize the F0-trajectories and annotations to a frequency resolution of
10 cents using ωref = 110 Hz.

As a running example in this section, we consider a recording of the three-voice song “Kriste Aghsdga”
(GVM-ID 097) of the GVM collection. The three performing singers frequently use pitch slides at
the beginning and end of sung notes, which is a characteristic stylistic element in traditional Georgian
vocal music. Figure 7.4 shows a superposition of the resulting F0-trajectories extracted from the throat
microphone recording of the middle voice for a short excerpt from our running example. Furthermore, the
color-coded activities µ(ηAnn

VA ) and µ(η
Ann
SR ) are visualized.

Given the sets T and C, we now introduce three reliability indicators I1, I2, and I3. The frame-wise
arithmetic mean of the three indicators is denoted as IMean.

7.3.3 F0-Agreement

For measuring the agreement of the F0-trajectories, we consider P =
(M

2
)
trajectory pairs (ηi, ηj) ∈ T × T ,

with i < j. For each pair, we compute the difference between the trajectories by

∆p(n) =


1, for |ηi(n) − ηj(n)| ≤ εI,

0, otherwise,
(7.3)

with pair-index p ∈ [1 : P] and εI being a threshold in cents which defines the strictness of the measure.
In our experiments, we set εI = 10 cents. Compared to a 50 cents tolerance, which is typically used in
standard evaluation metrics for evaluating pitch accuracy [10, 170], the chosen threshold is rather strict.
Considering the 10 cents quantization of our trajectories, the threshold accounts for possible rounding
artifacts caused by quantization. For practical reasons, we work with a fixed εI in our experiments and
leave further investigations on the role of εI to future research. Our first reliability indicator is defined as
the arithmetic mean of the differences over all pairs:

I1(n) :=
∑P

p=1 ∆p(n)
P

. (7.4)

Only if the F0-estimates of all algorithm pairs agree, I1(n) = 1, as shown in our running example
in Figure 7.4. In parts where the F0-estimates strongly deviate (e.g., at 2.5 sec) one obtains I1(n) = 0. In
the part between 2.5–4 sec, there are some octave jumps by YIN and CREPE, which cause the agreement
to decrease.

91



7 A Fusion Approach for Reliability Assessment of F0-Estimates

7.3.4 Overall Confidence

Our second reliability indicator combines the confidence outputs of the algorithms and is defined as the
arithmetic mean of the confidences over all algorithms:

I2(n) :=
∑M

m=1 γm(n)
M

. (7.5)

Note that in order for I2 to deliver meaningful indications, all trajectories are required to have values in the
same value range, ideally making use of the entire [0, 1] interval. If this requirement is not fulfilled, we use
suitable normalization techniques or a binarization of the confidence using the algorithm’s voice activity
decision to balance out the confidence value distributions. In particular, we use binarized confidence
trajectories for Melodia. In Figure 7.4, I2 indicates high overall confidence in most of the parts where the
voice is active, thus showing high agreement with µ(ηAnn

VA ).

7.3.5 F0-Trajectory Stability

Our third indicator I3 measures reliability with respect to the local stability of the estimated F0-trajectories.
A trajectory region is considered stable if it exhibits a roughly horizontal structure (up to some tolerance).
In order to detect such stable regions in an F0-trajectory, we make use of the automatic approach based
on morphological filters described in Section 6.3.2. In a first step, we compute two filtered versions
of the trajectory, one by using a min-filter (erosion) and one by using a max-filter (dilation) with filter
lengths L ∈ N. L controls the smoothness of the filtered trajectories and affects the sensitivity of the stable
region detection to sudden jumps in the trajectories. For practical reasons, we fix L = 15 (150 ms) in our
experiments. The value roughly corresponds to the filter length determined in the study in Section 6.4.1
and might need to be adapted to other application scenarios. We leave further investigations on the
role of L to future work. In a second step, we compute the frame-wise absolute difference between the
max- and the min-filtered trajectory (also referred to as envelope width). All regions where the envelope
width is lower than or equal to a certain threshold τ given in cents are considered stable. The algorithm
outputs an activity function µSR : [1 : N] → {0, 1}, where µSR(n) = 1 in stable regions and µSR(n) = 0 in
unstable regions. In order to account for trajectory fluctuations of different extent, we consider a set of
envelope-width thresholdsW = {20, 40, 60, 80, 100}, with 20 cents being a very strict threshold allowing
for almost no trajectory fluctuations, and 100 cents being a generous threshold allowing for fluctuations of
up to a semitone (e.g., vibrato).

Let µτSR,m be the stability indicator for the mth algorithm m ∈ [1 : M] and threshold τ ∈ W. Then, I3 is
defined as the arithmetic mean as follows:

I3(n) :=
∑M

m=1
∑
τ∈W µτSR,m(n)

M · |W| , (7.6)
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Figure 7.5: F-measure and F0-accuracy for all indicators and algorithms with respect to reliability threshold κ averaged over five
recordings.

Figure 7.6: Survival rates for LRX and HDS microphones with respect to threshold κ averaged over 249 tracks.

for n ∈ [1 : N]. As one can see in Figure 7.4, I3 indicates high reliability in regions where all estimated
F0-trajectories are roughly stable and therefore strongly coincides with µ(ηAnn

SR ).

7.4 Evaluation Using Labeled Data

In order to study the behavior of our indicators, we apply different thresholds κ ∈ [0, 1] on our reliability
indicators I : [1 : N] → [0, 1]. The resulting (enduring) subsets of our discrete time axis are given as
Eκ = {n ∈ [1 : N] : I(n) ≥ κ}. The higher κ, the smaller is the obtained subset. For a given subset Eκ ,
we evaluate the agreement with an annotated voice activity µ(ηAnn) using the standard retrieval metrics
precision (P), recall (R), and F-measure (F) defined as

P :=
|Eκ ∩ µ(ηAnn)|

|Eκ |
, R :=

|Eκ ∩ µ(ηAnn)|
|µ(ηAnn)|

, F :=
2 · P · R
P + R

. (7.7)

Furthermore, we set P := 0 for |Eκ | = 0, R := 0 for |µ(ηAnn)| = 0, and F := 0 for P + R = 0. The
standard definition of the F-measure equally weights precision and recall. The weighting may have to be
adapted depending on the application scenario. As a further analysis step, we evaluate the F0-accuracy of
estimated F0-trajectories within the subsets with respect to a reference annotation. Given an F0-trajectory
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η restricted to the given subset Eκ and an annotation ηAnn, we define the F0-accuracy φ as

φ :=
|Eκ ∩ µ(ηAnn) ∩ {n ∈ [1 : N] : |η(n) − ηAnn(n)| ≤ εe}|

|Eκ ∩ µ(ηAnn)|
, (7.8)

with εe being the evaluation tolerance parameter in cents. In our experiments, we use a strict value of
εe = 10 cents, to basically allow for quantization errors.

In our evaluation, we expand the scenario described in Section 7.3.2 to all five songs of the GVM subset.
In the following, we consider the three algorithms YIN, CREPE, and Melodia applied on the throat
microphone recordings of the middle voices. Furthermore, we manually generated the annotations ηAnn

VA
and ηAnn

SR for these middle voice tracks (we crosschecked the annotations in spot-checks). The F-measure
and F0-accuracy with respect to ηAnn

VA are denoted as FVA and φVA, whereas the evaluation measures with
respect to ηAnn

SR are denoted as FSR and φSR, respectively.

Figure 7.5 shows the evaluation metrics for all algorithms averaged over all five recordings for each
reliability indicator and algorithm with respect to the threshold κ. For almost all algorithms and reliability
indicators, we observe an increasing F0-accuracy along with an increasing κ. The sudden drop in Melodia’s
φ curves for I2 occurs due to a high number of octave errors in regions with high confidence in one of the
five recordings. For CREPE, the F0-accuracy is close to 1 for all values of κ, which indicates that the
algorithm performs well on our annotated data. Note that the F-measure curves for a specific reliability
indicator are identical for all algorithms, since the F-measure only depends on the chosen indicator I,
threshold κ, and annotation ηAnn. For high values of κ, only few F0-values remain, which causes the voice
activity F-measures to decrease.

In conclusion, our indicators give cues on the reliability of F0-estimates at a given time instance in the
audio signal. However, they are less suitable to assess the accuracy of a specific algorithm’s estimate, since
high reliability does not guarantee correct estimates (e.g., in the case of all algorithms outputting wrong
estimates). The choice of a suitable threshold κ depends on the algorithms’ individual performances, the
chosen reliability indicator, and the target annotation or application.

7.5 Exploring Unlabeled Audio Collections

In this section, we want to demonstrate the potential of our reliability indicators for exploring unlabeled
datasets. When approaching new audio collections, one may want to have a compact overview on how
reliably automatic F0-extraction algorithms perform under the acoustical and musical conditions provided
by the data. As already shown in Section 3.3.2, HDS and LRX microphone recordings constitute two
different acoustic conditions.

In the following, we consider a subset of the GVMcollection constituting 85 performances (all performances
from the region Svaneti). More specifically, the subset includes 249 tracks (ca. 9 hours duration) for each
microphone type. In order to explore the reliabilities measured by our indicators for the two different
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microphone types, we introduce a measure referred to as survival rate and denoted as ρ. The measure
indicates the portion of remaining trajectory values after thresholding I : [1 : N] → [0, 1] with κ ∈ [0, 1]
and is defined as follows:

ρ :=
|Eκ |
N

. (7.9)

The survival rates for LRX and HDS microphone signals are denoted as ρLRX and ρHDS, respectively. In
this experiment, we expand the setup described in Section 7.3.2 by adding pYIN to our set of algorithms.
Figure 7.6 shows the two survival rates averaged over all 249 tracks with respect to the threshold κ. The
graphs show that for high values of κ, ρLRX is larger than ρHDS, whereas for low values of κ, ρHDS is larger
than ρLRX. This suggests a slightly better discriminability between reliable and unreliable frames for LRX
signals.

Rather than advocating a specific indicator or a specific threshold κ, we see the proposed reliability
indicators as a toolkit for measuring reliability of automatically extracted F0-trajectories with respect to
F0-agreement, overall confidence, and F0-trajectory stability. Depending on the application, one may
consider different indicators or suitably weighted combinations of them. Furthermore, one may adapt the
selection of F0-extraction algorithms and fine-tune the individual indicators’ parameters (εI , L, and τ) to
account for the specific acoustical and musical properties of the audio material.

7.6 Conclusions

In this chapter, we presented three indicators for measuring the reliability of F0-trajectories extracted
from singing voice recordings. The indicators are based on the outputs of several algorithms and measure
reliability with respect to F0-agreement, overall confidence, and F0-trajectory stability. As one of our main
contributions, we introduced the reliability indicators in a mathematically rigorous way. Furthermore, we
evaluated the behavior of the indicators on a set of manually annotated vocal F0-trajectories. While our
indicators cannot replace manual F0-annotations, they can be used as an efficient tool to obtain cues on
the reliability of automatically extracted F0-trajectories. In this way, our work paves the way for tonal
analysis (e.g., melodic or harmonic intervals) and exploration of large unlabeled audio collections such as
the GVM collection.
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8 Towards Computational Ethnomusicology: A
Case Study of Georgian Funeral Songs

This chapter is based on [164]. The first author Sebastian Rosenzweig

is the main contributor to this article. In collaboration with his supervisor

Meinard Müller and Frank Scherbaum, he developed the ideas, formalized

and implemented the approaches, conducted the experiments and wrote the

article. Frank Scherbaum and Nana Mzhavanadze created the annotations.

In this chapter, we show how computational methods, such as the approach for detecting stable regions in
F0-trajectories from Section 6.3.2, can be interactively applied for research in the field of computational
ethnomusicology. To this end, we conduct a case study on three-voiced funeral songs from Svaneti in
North-West Georgia (also referred to as Zär). As one contribution of this chapter, we present an annotated
multitrack dataset of Zär recordings which we release under an open-source license for research purposes.
As a second contribution, we introduce two interactive computational tools for detecting stable, note-like
events and compensating pitch drifts in performances. Our tools were developed in close collaboration with
ethnomusicologists and allow for incorporating domain knowledge (e.g., on singing styles or musically
relevant harmonic intervals) in the different processing steps. In a case study using our Zär dataset, we
evaluate our tools by computing pitch inventories (pitch-class histograms) and subsequently discuss the
potential of interactive computational tools for interdisciplinary research.

8.1 Introduction

Three-voiced funeral songs (or dirges, also referred to as Zär) from the region Svaneti in North-West
Georgia have gained special attention among ethnomusicologists since they represent one of the oldest
forms of collective music-making in Georgia [95]. Zär performances exhibit two musical peculiarities,
which can be observed when looking at the F0-trajectories of the singers’ voices as depicted in Figure 8.1a.
First, the singers tend to use pitch slides at the beginning and end of sung notes (also referred to as
portamento). Second, throughout a Zär performance, the singers may jointly and intentionally drift
upwards in pitch by even more than 500 cents [174]. The presence of pitch slides and pitch drifts constitutes
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Figure 8.1: Pitch inventory computation for a three-voiced Zär performance. (a) Original F0-trajectories. (b) Pitch Inventory
based on (a). (c) Annotated stable note events and pitch drift curve (black line). (d) Drift-corrected stable note events. (e) Pitch
inventory based on (d).

a challenge for tonal analysis or transcription, as we will illustrate in the following. An important part of
tonal analysis is the determination of pitch inventories (or pitch-class histograms) [67, 102, 105, 172, 204],
which can be computed by accumulating the F0-values over time. As one can see in Figure 8.1b, pitch
slides and drifts may result in noisy and blurry pitch inventories, which are hard to interpret or even
meaningless for tonal analysis.

To tackle this problem, one strategy is to remove pitch slides and to compensate for pitch drifts prior
to computing pitch inventories. Such tasks typically need to be conducted by experts with domain
knowledge. In the context of four ethnomusicological studies on a set of eleven multitrack recordings of
Zär performances [129, 130, 174, 175], domain experts annotated stable note events (F0-values between
pitch slides) for all voices, as depicted in Figure 8.1c. Subsequently, the ethnomusicologists selected
note events that best reflect the pitch drift of the performances (see the black boxes in Figure 8.1c) and
determined pitch drifts through polynomial curve fitting (see the black line in Figure 8.1c). After drift
correction with the (suitably normalized) drift curve, one obtains the drift-corrected stable note events as
depicted in Figure 8.1d and the pitch inventory as depicted in Figure 8.1e. As one can see, in contrast to
the uncorrected pitch inventory from Figure 8.1b, the pitch inventory based on the annotated material
exhibits a sharper distribution. Through comparison of the pitch inventories for all eleven performances
(determined in the same way), ethnomusicologists could show that the melodic step sizes in Zär vary
between approximately 150 and 180 cents, which is an important cue towards understanding the traditional
Georgian tuning system [174, 181]. However, conducting such annotation processes using existing
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semi-automatic annotation tools is labor-intensive and requires manual corrections. This also makes it
hard to conduct similar studies on larger corpora.

In this chapter, we show that computational tools can support the analysis of field recordings by automizing
some of the labor-intensive annotation tasks under the guidance of a domain expert. As one contribution,
we compiled a dataset including the multitrack recordings and the carefully crafted annotations from
the musicological studies, which we release under an open-source license for research purposes.55 As
our main technical contribution of this chapter, we present two computational tools with visual feedback
mechanisms that allow for incorporating musical expert knowledge to the different processing steps. Our
first tool, based on the approach for detecting stable regions in F0-trajectories from Section 6.3.2, enables
the user to determine stable, note-like events. The method’s parameters can be tuned according to musical
characteristics such as the singing style. Our second tool is based on a filtering technique for musically
relevant harmonic intervals (such as the unison or the fifth in Georgian vocal music [34, 161, 176])
to compensate for the pitch drift of a performance. In a case study based on our Zär dataset, we
compare pitch inventories computed with our computational tools to the ones obtained from the expert
annotations [129, 130, 174].

The remainder of this chapter is structured as follows. We describe related work in Section 8.2 and introduce
our Zär dataset in Section 8.3. In Section 8.4, we formalize our computational tools. In Section 8.5, we
describe our case study and discuss the potential of computational tools for ethnomusicological research.
Finally, we summarize this chapter und outline future work in Section 8.6.

8.2 Related Work

Pitch slides and pitch drifts are a frequently observed phenomenon in a cappella singing, not least due
to the great versatility of the human voice [197]. However, the musicological perspective on these
phenomena often depends on the cultural context. For instance, pitch slides are often considered a sign of
insufficient voice control in Western amateur choral singing while being a frequently and consciously
used stylistic element in other music cultures such as traditional Georgian vocal music (see Chapter 5) or
Indian Raga music [65, 101]. Similarly, pitch drifts are typically seen as unintended artifacts of tuning
in Western ensemble singing [1, 86] while they are known to be a part of the performance practice in
several non-Western music traditions [2, 96, 114, 117], including Georgian Zär [129, 130, 174, 175].
Thus, computational analysis of field recordings requires tools that can be adapted to the musical scenario
by including musical or culture-specific knowledge [73]. Additionally, such tools need to offer suitable
feedback mechanisms, e.g., visualizations or sonifications [205], which help to understand and guide
computational methods.

55 https://www.audiolabs-erlangen.de/resources/MIR/2022-GeorgianMusic-Zaer
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Over the last years, a variety of tools for annotating and analyzing music recordings with a focus onWestern
music has been released [29, 107, 116, 126, 133, 146]. One of the most popular tools for transcribing
monophonic audio recordings is the open source software Tony [111]. After loading an audio file, the
tool automatically computes an F0-trajectory using the algorithm pYIN [109] (see Section 2.3.3). Via
an interactive graphical user interface (GUI) with audiovisual feedback, the user can remove F0-values
or choose alternative estimates. For transcription purposes, Tony automatically detects sung notes by
segmenting the estimated F0-values into note objects using an HMM. Each note object is defined by a start
time and end time in seconds, as well as an assigned F0-value (corresponding to the note’s pitch). Using
the interactive GUI, a user can split, merge, create or delete note objects. Finally, annotated F0-trajectories
and note objects can be exported in a variety of text formats, including CSV and TXT. Tony does not offer
functionalities to account for pitch drifts in performances.

The increasing scientific interest in non-Westernmusic traditions [65, 73, 103, 132, 136, 188, 203, 205, 208]
has led to the development of tools designed for processing and analyzing music in tuning systems other
than 12-TET. One prominent example is Tarsos [191], a platform for analyzing pitch inventories and
musical scales. Its GUI offers interactive sonifications and visualizations as well as sliders to control the
included computational tools. After loading an audio file, the tool automatically computes an F0-trajectory
(using the YIN algorithm [48] by default) and a pitch histogram. As opposed to Tony, Tarsos does not
include functionalities to correct F0-estimates. However, it includes a tuneable “steady state filter” which
allows a user to remove pitch slides in F0-trajectories. F0-trajectories and pitch histograms can be exported
to different text formats and images. As for Tony, Tarsos lacks the functionality to compensate for pitch
drifts in performances, which is essential for our Zär scenario.

8.3 Zär Dataset

In the following, we describe our Zär dataset consisting of multitrack recordings (Section 8.3.1), as
well as F0-annotations (Section 8.3.2), stable note events (Section 8.3.3), and pitch drift annotations
(Section 8.3.4). We also discuss how we cimpute pitch inventories from the annotations (Section 8.3.5).

8.3.1 Multitrack Recordings

Our Zär dataset is based on eleven recordings (GVM-IDs 198–208) from the GVM collection (see Sec-
tion 7.2). We include the multitrack recordings of these performances as mono WAV files with a sampling
frequency of 22 050 Hz and 16-bit encoding. For all performances, the dataset contains at least three throat
microphone signals of at least three singers (the recordings are named with suffixes ALRX1M, ALRX2M,
ALRX3M). The number of headset and room microphone signals varies for each performance. The eleven
performances have a total duration of roughly 42 minutes.
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Figure 8.2: Annotation process for the Zär performance with GVM-ID 201. The right column shows zoomed regions. (a)
F0-trajectories of top, middle, and bass voice. (b) F0-trajectories corresponding to Tony note objects. (c) Stable note events. (d)
Selected stable note events (black rectangles) and fitted drift curve (black line).

8.3.2 F0-Annotations

In the context of previous studies [129, 130, 174], a Georgian ethnomusicologist semi-automatically
annotated F0-trajectories of the three voices for all of the performances using the open-source tool
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8 Towards Computational Ethnomusicology: A Case Study of Georgian Funeral Songs

Tony [111]. Subsequently, a domain expert double-checked the annotations. Figure 8.2a shows the
F0-annotation for the top, middle, and bass voice of the performance with GVM-ID 201, which serves as
our running example in the remainder of this chapter. The trajectories show that sung notes often start, end,
or are continuously connected with pitch slides, which is a frequently used stylistic element of traditional
Georgian music (see Chapter 6). The F0-annotations are included as CSV files in our Zär dataset with a
frequency resolution of 10 cents and a time resolution of 10 msec.

8.3.3 Stable Note Events

As mentioned in Section 8.2, Tony automatically segments the annotated F0-trajectories into note objects.
The F0-trajectories corresponding to the note objects are depicted in Figure 8.2b. As one can see, Tony’s
automatic segmentation algorithm shortens most of the pitch slides. However, during tonal analysis or
transcription of Zär performances, the remaining slides can still lead to a significant amount of blurring and
inaccuracies. One way to remove the remaining pitch slides is to use the manual correction functionalities
of Tony. However, this is a time-consuming and tedious task, which is infeasible when considering larger
collections. In [174], the ethnomusicologists used a heuristic to remove pitch slides by cutting off 0.15 sec
at the beginning and the end of each F0-trajectory within each note object. We refer to the shortened
F0-trajectories as “stable note events.” The stable note events for our running example are depicted
in Figure 8.2c. As one can see, most of the pitch slides have been removed using this simple heuristic.
In Section 8.4.1, we present a computational tool that helps to automize the detection of stable regions in
F0-trajectories using interactive filtering techniques.

8.3.4 Pitch Drift Annotations

For determining the pitch drift in Zär performances, one can exploit the importance of specific harmonic
intervals in traditional Georgian vocal music. For instance, parallel fifths, which are often avoided in
Western composed music, frequently occur in Georgian polyphonic singing [34, 161, 176]. Often, the
top and bass voice sing a fifth apart (700 cents), representing the “harmonic frame” of the performance.
Additionally, the unison interval (0 cents) is of great relevance in Zär performances. Essentially all songs
from the region Svaneti (not only funeral dirges) end in unison. In addition, throughout a performance, the
three voices of a Svan song repeatedly meet in unison, which gives the associated pitches a particular
musical importance (ethnomusicologists also consider unisons as “reference pitches” in traditional
Georgian singing). As a consequence, ethnomusicologists hypothesize that the pitch drift of a performance
can be documented through such musically important harmonic intervals [129, 130, 174].

In [174], the ethnomusicologists followed a two-step process to determine the pitch drift in the performances.
First, using a visualization as depicted in Figure 8.2c, the experts visually identified a small number of
stable note events in one of the voices that, according to their musical expertise, best reflect the pitch drift
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Figure 8.3: Pitch inventory computation for performance with GVM-ID 201. (a) Drift-corrected stable note events. (b)
Max-normalized pitch inventories.

of the performance. For our running example, the experts selected stable note events of the top voice,
which are indicated with black rectangles in Figure 8.2d. As one can see, the note events were chosen to
correspond to the same scale degree (a group of note events that roughly correspond to the same pitch
after removing the drift of the performance). For instance, in Figure 8.2d, the four scale degrees of the
bass voice are marked using numbers in ascending order. We see that not all scale degrees are equally
suitable to determine the pitch drift of the performance since some scale degrees (such as scale degree 1 of
the bass voice) contain only a few stable note events. The identification of scale degrees and the selection
of suitable note events require musical knowledge and need to be done with care. On closer inspection of
our example, we also see that the selected note events often go along with parallel fifths of top and bass
voice (see blue arrows), which shows the relevance of the fifth interval for recognizing the pitch drift of
the performance.

Second, to model the pitch drift of the performance, the ethnomusicologists fitted a polynomial curve
through the selected stable note events. The study in [174] revealed that polynomials of third order are
sufficiently suited to describe the pitch drift of the performances. Figure 8.2d shows the fitted polynomial
(black solid line) for our example performance. Our Zär dataset includes computed drift curves with
a time resolution of 10 msec as CSV files. In Section 8.4.2, we present a computational tool based on
interactive filtering techniques for harmonic intervals and scale degrees that supports the manual selection
process of note events for determining the pitch drift.

8.3.5 Pitch Inventories

One key towards understanding traditional Georgian tuning lies in analyzing the pitch inventories of
the singers. To compute pitch inventories, the ethnomusicologists in [174] first drift-corrected the
annotated stable note events with the pitch drift curve. Figure 8.3a shows the drift-corrected stable
regions from Figure 8.2c using the drift curve from Figure 8.2d. As one can see, the scale degrees of
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8 Towards Computational Ethnomusicology: A Case Study of Georgian Funeral Songs

the three voices follow a roughly horizontal line. Subsequently, the experts computed histograms over
the drift-corrected stable note events. The black line in Figure 8.3b shows the obtained max-normalized
pitch inventory with a binning resolution of 10 cents. In contrast to the pitch inventory computed on
the original F0-trajectories without drift correction (gray line), the annotated pitch inventory exhibits a
heptatonic peak structure (seven melodic intervals per octave). The spacing between the peaks of a pitch
inventory reflects the average melodic step sizes used in the performance. The pitch inventory of our
running example reveals step sizes of 150–180 cents, which coincides with step sizes measured in the
other Zär performances, as well as in historic recordings of liturgical chants by the former master chanter
Artem Erkomaishvili [181]. Through such analysis, ethnomusicologists can obtain important cues on the
tonal organization of traditional Georgian vocal music. For an in-depth musicological analysis of Zär, we
refer to [129, 130, 174, 175].

8.4 Interactive Computational Tools

In the following, we first introduce our computational tool for detecting stable regions (Section 8.4.1) and
subsequently our tool for determining pitch drift (Section 8.4.2).

8.4.1 Stable Region Detection

In the following, we describe a computer-assisted approach for detecting stable regions in F0-trajectories.
The method is based on an the approach described in Section 6.3.2 [158]. To better discuss the properties
of our tool, we will recapitulate the basic steps of our approach. Furthermore, we follow the mathematical
notion of an F0-trajectory as introduced in Section 2.3.1. We explain our method using an excerpt of the
top voice in the performance with GVM-ID 201. Figure 8.4a shows the given trajectory η (black line),
which contains several pitch slides. In a first step, we compute a dilated (max-filtered) trajectory ηLmax and
an eroded (min-filtered) trajectory ηLmin defined by

ηLmax(n) := max
{
η(n − L−1

2 : n + L−1
2 )

}
, (8.1a)

ηLmin(n) := min
{
η(n − L−1

2 : n + L−1
2 )

}
, (8.1b)

for n ∈ Z, where L ∈ N is assumed to be an odd integer. In max-filtering, the symbol ∗ is handled as −∞,
whereas in min-filtering it is handled as +∞. Figure 8.4b shows the resulting trajectories ηLmin (orange) and
ηLmax (green) for our running example using L = 15 (150 msec). In a next step, we compute the difference
∆L between the dilated and eroded trajectories, also termed morphological gradient [154]:

∆
L(n) := |ηLmax(n) − ηLmin(n)|, (8.2)
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Figure 8.4: Interactive detection of stable regions for the example of the top voice in performance with GVM-ID 201. The right
column shows zoomed regions. (a) Original trajectory. (b) Min-filtered trajectory ηLmin (orange) and max-filtered trajectory ηLmax
(green) for given filter length L = 15 (150 msec). (c) Morphological gradient ∆L (d) Activation function µL,τ after thresholding
with τ = 50 cents. (e) Trajectory ηStable restricted to stable regions (red). (f) Activation function µL,τ,S after smoothing with
S = 9 (90 msec).
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for n ∈ Z, where we set ∆L(n) = ∗ whenever ηLmax(n) or ηLmin(n) are not defined. Figure 8.4c shows ∆L for
our running example. As one can see, ∆L is large in non-stable parts (e.g., during pitch slides), whereas it
is small in stable parts. After thresholding ∆L with a chosen threshold τ > 0 (given in cents), we obtain an
activation function µL,τ defined by

µL,τ(n) :=


1, for ∆L(n) ≤ τ,

0, otherwise,
(8.3)

with µL,τ(n) = 1 indicating stable regions and µL,τ(n) = 0 indicating unstable (or undefined) regions.
Figure 8.4d shows the activations µL,τ for our running example after thresholding with τ = 50 cents. As
one can see, most of the stable regions of the trajectory have been correctly identified. However, there are
some short passages that have been wrongly identified as stable regions (false positives). These passages
result from filtering artifacts and can often be found at the beginning and end of pitch slides (e.g., at
around 65.5 sec) or in between two fastly succeeding notes (e.g., at around 79 sec). Also, there are some
short interruptions in stable regions (false negatives), e.g., at 66 sec.

In practice, one may want to remove these outliers and obtain coherent entities of F0-values, similar to
the stable note events from Section 8.3.3. Therefore, as an extension to the original approach described
in Chapter 6, we propose an optional smoothing step of the trajectory activations µL,τ by applying a
median filter:

µL,τ,S(n) := median
{
µL,τ(n − S−1

2 : n + S−1
2 )

}
, (8.4)

where S ∈ N is assumed to be an odd integer and the symbol ∗ is handled as −∞. Note that by setting
S = 1, no smoothing is applied. In a final step, we compute the trajectory restricted to stable regions ηStable

by

ηStable(n) :=

η(n), for µL,τ,S(n) = 1,

∗, otherwise.
(8.5)

Figure 8.4e,f show the resulting trajectory and its activation function after smoothing with a median filter
of length S = 9 (90 msec). As one can see, most of the outliers have been removed (only the outlier at
around 79 sec remains). One may further tackle such outliers by applying additional heuristics such
as removing detected stable regions that fall below a certain minimal length or that exceed a certain
variance. Note that the algorithm leaves the frequency values of the original F0-trajectory unaltered (e.g.,
no quantization or smoothing of frequency values), which is important for subsequent tonal analysis steps.

In practice, an ethnomusicologist (without explicit knowledge in signal processing) can use interactive
visualizations similar to Figure 8.4 for tuning the three parameters L, τ, and S of our algorithm. The
min-/max- filter length L controls the sensitivity of the method to (sudden) fluctuations in the F0-trajectory.
Small L may lead to an increased number of false positives, while large L lead to an increased number of
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Figure 8.5: Interactive drift estimation illustrated by the performance with GVM-ID 201. (a) Stable note events. (b) Interval-
filtered F0-trajectories with interval I = 700 cents using the top and bass voice (M = 2). (c) Polynomial fitting using the
F0-values of a manually specified scale degree.

false negatives (in particular at the beginning and end of stable regions), see Section 6.3.2. The threshold
τ can be seen as a tolerance parameter that specifies the maximally allowed fluctuation under which a
trajectory is still considered to be stable. Therefore, τ may be tuned according to the singing style (e.g.,
the amount of vibrato) used in the performance or the singing proficiency. After determining L and τ,
the smoothing filter of length S can be tuned to refine the detection by removing outliers observed in the
activation function µL,τ , which results in stable, note-like events. In summary, the three parameters of
our tool have an explicit and easy-to-understand meaning, which is important for use in interdisciplinary
research.
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8.4.2 Drift Estimation

In the following, we describe a computer-assisted approach for estimating the pitch drift of a Zär
performance using interactive filtering techniques for harmonic intervals and scale degrees. Our approach
is based on the hypothesis that certain (musically important) harmonic intervals capture the pitch drift
of a performance (see Section 8.3.4). We explain our method along with Figure 8.5, using again the
performance with GVM-ID 201 as an example. In the following, we assume a set of M trajectories

T := {η1, ..., ηM }, (8.6)

where ηm is the F0-trajectory of the mth voice, m ∈ [1 : M]. In our example, we consider F0-trajectories
restricted to stable regions for the top, middle, and bass voice (M = 3) as depicted in Figure 8.5a. As one
can see, the three singers continuously drift upwards over the course of the performance.

As discussed in Section 8.3.4, the pitch drift of a Zär performance is captured by certain musically
important harmonic intervals (e.g., the unison or the fifth). Therefore, in a first step, we filter the given
F0-trajectories with respect to a user-specified harmonic interval. For a given m ∈ [1 : M] and an interval
I in cents, let H I

m denote the set that contains all time indices n for which there is at least one other
trajectory ηk , k ∈ [1 : M] \ {m} that is I cents apart up to a tolerance ε in cents. In other words:

H I
m :=

{
n ∈ Z|∃k ∈ [1 : M] \ {m} : I − ε ≤ |ηm(n) − ηk(n)| ≤ I + ε

}
. (8.7)

We then define the interval-filtered F0-trajectory ηIm for voice m by

ηIm(n) :=

ηm(n), for n ∈ H I

m,

∗, otherwise.
(8.8)

Figure 8.5b illustrates our interval-filtering for the fifth interval (I = 700 cents) with ε = 20 cents for the
top and bass voice (M = 2). It can be seen that the remaining F0-values of top and bass voice are spaced
roughly 700 cents apart (as indicated by the blue dotted arrows).

Similar to Section 8.3.4, in the next step, the user selects a scale degree that best reflects the pitch drift of
the performance. In our example, the user chooses the third scale degree of the bass voice (counting the
remaining scale degrees after interval filtering from low to high). The F0-values corresponding to the
chosen scale can be obtained using a suitable clustering algorithm.

In our work, we use a simple two-step clustering method inspired by the Radon Transform [143]: first, we
rotate the interval-filtered trajectories around the coordinate origin such that the entropy of a computed
pitch inventory is minimized. The entropy indicates the peakedness of a distribution while being low
for peaked distributions and high for flat distributions. Thus, the rotation angle that minimizes entropy
constitutes an approximation of the linear drift slope of the performance. This entropy-minimizing rotation
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angle can be determined automatically through an exhaustive search over a musically meaningful range of
angles. In our experiments, we assume that the singers do not drift more than ±1200 cents (or an octave)
over the course of a performance, which is a reasonable choice for Zär performances [129, 174]. Second,
we perform k-means clustering on the interval-filtered and rotated trajectories, with k corresponding to
the number of scale degrees of each voice (k = 3 in our example). As in Section 8.3.4, we fit a polynomial
of third order using the F0-values that correspond to the chosen scale degree. The resulting drift curve for
our example is indicated by the blue line in Figure 8.5c. Note that polynomial fitting through a certain
scale degree of the bass voice should result in a similar drift curve than polynomial fitting through the
same scale degree of the top voice.

In practice, using our tool and visualizations similar to Figure 8.5, an ethnomusicologist can interactively
explore and analyze how different harmonic intervals I and scale degrees reflect the pitch drift of the
performance. An additional indicator for the correctness of a determined pitch drift are pitch inventories.
The blue line in Figure 8.3b shows the pitch inventory of our running example obtained through drift-
correcting the detected stable regions from Figure 8.5a with the normalized drift curve from Figure 8.5c.
As one can see, the computed pitch inventory has a similar peak structure to the annotated pitch inventory,
which indicates that the pitch drift has correctly been determined.

8.5 Computer-Assisted Analysis of Zär Performances

In this section, we discuss how our interactive computational tools can be applied to support ethnomusico-
logical research. First, in a case study on Georgian Zär, we use our tools to reproduce pitch inventories of
a previous study (Section 8.5.1). Second, in the light of our experimental results, we discuss the potential
of computational tools for ethnomusicological research (Section 8.5.2).

8.5.1 A Case Study on Pitch Inventories

We now show how a domain expert can use our computational tools to reproduce the pitch inventories
from the previous study on Georgian Zär [174]. Since the musical meaning of pitch inventories is hard to
quantify and evaluate, we discuss different qualitative aspects of our work along with the visualizations
in Figure 8.6. Figure 8.6a shows the annotated stable note events and pitch drifts (black lines) from our
Zär dataset (Section 8.3.4) as reference.

In our case study, we start with the F0-annotations of the three voices described in Section 8.3.2. Note
that in case no F0-annotations are at hand, one can use automatic approaches such as the one proposed
in Chapter 7 to obtain reliable F0-estimates. In a first step, we use the tool introduced in Section 8.4.1
to determine stable regions in the F0-trajectories. Using interactive visualizations such as Figure 8.4, a
domain expert can tune parameters L, τ, and S such that the pitch slides are removed. In our study, we set
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Figure 8.6: Pitch inventory computation for all eleven Zär performances. (a) Manually annotated stable note events and reference
pitch drift. (b) Trajectories restricted to stable regions using the interactive tool from Section 8.4.1. (c) Interval-filtered trajectories
and estimated pitch drift using the interactive tool from Section 8.4.2. (d) Pitch inventories (for legend, see Figure 8.3b).
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L = 15 bins (150 msec), which corresponds to the value that the domain experts chose for determining
stable note events from Section 8.3.3. Furthermore, we set τ = 50 cents, which is a reasonable value
for Georgian singing. To refine the detection, we empirically determined S = 9 bins (90 msec), which
removes short outliers. Finally, we remove stable regions that are shorter than 100 msec to further refine
the detection. The resulting trajectories restricted to stable regions are depicted in Figure 8.6b. Overall,
the filtered trajectories resemble the manually annotated stable note events from Figure 8.6a.

In a second step, we use the tool introduced in Section 8.4.2 to determine the pitch drifts of the performances.
Using musical domain knowledge and interactive visualizations such as Figure 8.5, an expert can choose
an interval I and a scale degree that best capture the pitch drift of a performance. As explained in
Section 8.3.5, the unison and the fifth interval are of special musical importance in Georgian Zär. For the
performances with GVM-ID 199–206, which exhibit very prominent parallel fifths, we filtered for the fifth
interval (I = 700± 20 cents) of top and bass voice. For the performances with GVM-ID 198, 207, and 208,
which exhibit less prominent parallel fifths, we chose to filter for the unison interval (I = 0 ± 20 cents)
considering all voices. The interval filtered trajectories of all performances are depicted in Figure 8.6c.
Subsequently, we use the clustering algorithm described in Section 8.4.2 to automatically determine the
scale degrees of the interval filtered trajectories. For the performances 199–206, we determined k = 6
clusters (3 for each voice), and for the performances 198, 207, and 208, we determined k = 3 clusters. In
our case study, we selected similar scale degrees as the domain expert in the manual study. The fitted
polynomial drift curves through the selected scale degrees are shown as blue lines in Figure 8.6c. As one
can see, the drift curves have a similar progression compared to the annotated pitch drifts in Figure 8.6a.
Note that instead of advocating a specific interval or scale degree, this case study shows only one way how
the pitch drift in Zär performances can be determined. For instance, our computational tools enable domain
experts to explore interval filtering for different harmonic intervals as well as suitable combinations, which
may lead to more accurate drift estimates. We leave an investigation of these aspects for future work.

In a final step, we compensate for the pitch drift of the trajectories restricted to stable regions from
Figure 8.6b with the normalized drift curves from Figure 8.6c before computing pitch inventories. In our
experiments, we use a binning resolution of 10 cents and max-normalize all pitch inventories. Note that for
tonal analysis, one is mainly interested in the relative peak positions of pitch inventories (see Section 8.3.5).
In order to facilitate the visual comparison of pitch inventories across performances, we shift all F0-values
by a constant amount (which differs for each Zär) in such a way that the final long note (with a duration
of at least 1 sec) in the middle voice has a pitch of 1500 cents. Figure 8.6d shows the pitch inventories
obtained from the original F0-trajectories without drift correction (gray), the pitch inventories based on
the reference annotations (black), and the pitch inventories obtained using our copmuter-assisted tools
(blue). We can see that the pitch inventories computed with the help of our interactive tools are very
similar to the reference pitch inventories.
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8.5.2 Applications to Computational Ethnomusicology

The study described in Section 8.3 exemplifies many of the challenges that ethnomusicological studies on
field recordings face. Even relatively basic analysis tasks, such as the computation of pitch inventories,
typically require multiple annotation steps conducted by domain experts. State-of-the-art annotation tools
such as Tony or Praat face several limitations since they are either designed for Western music or lack
necessary functionalities. This often leads to labor-intensive annotation processes with tedious manual
correction steps. While these efforts were made for the eleven performances of our Zär dataset, similar
studies on larger corpora, such as the whole GVM collection [180] (see Section 7.2), would be very
time-consuming to perform. Also, such highly manual annotation and analysis processes can suffer from
subjective decisions, thus making it hard to reproduce the results.

As our case study showed, computational tools can support ethnomusicological studies on field recordings
by taking over specific, well-defined tasks of the annotation process under the guidance of a domain
expert. Through tuning a few musically motivated parameters and suitable interactive visualizations, a
domain expert could reproduce the pitch inventories that were obtained by tedious manual annotations
in significantly less time. In this way, our computer-assisted procedure can accelerate and simplify
musicological analyses as well as enable the exploration of large music corpora to gain new musicological
insights.

8.6 Conclusions and Future Work

In this chapter, we presented a publicly available dataset based on eleven performances of three-voice
Georgian Zär, which includes expert annotations of F0-trajectories, stable note events, and pitch drifts.
The dataset is of high value for ethnomusicological research and the preservation of the Georgian musical
heritage. Furthermore, we introduced two computational tools based on interactive filtering techniques
for detecting stable regions in F0-trajectories and determining the pitch drift of the performances. In
a case study on pitch inventories of Zär performances, we showed that our computational approaches
can help to make ethnomusicological research on Georgian Zär and possibly other non-Western singing
traditions more efficient. Furthermore, our tools open up new ways to explore data collections. To make
our tools reusable in future research, we plan to release a publicly available toolbox for computational
ethnomusicology. Furthermore, in close collaboration with ethnomusicologists, we will further explore
and expand our toolbox for tonal analysis of the complete GVM collection.
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In this thesis, we developed computational tools that can be used in an interactive fashion for analyzing
multitrack recordings of polyphonic vocal music. To test and evaluate these tools, we considered two
concrete musical scenarios.

In Part I, we addressed Western choral music. The lack of suitable publicly available multitrack research
corpora on choral singing motivated us to record and create Dagstuhl ChoirSet (Chapter 3). In two
case studies on intonation analysis and multiple-F0 estimation, we showed that the different musical
and acoustical dimensions of DCS open up a variety of scenarios for MIR research. As one technical
contribution of this thesis, we formalized a method for applying time-varying pitch shifts to audio signals
using non-linear TSM and resampling techniques (Chapter 4). Furthermore, we implemented our approach
as part of a publicly available toolbox called libtsm. Using DCS recordings as an application scenario,
we showed that our adaptive pitch-shifting approach is a powerful tool to compensate local and global
intonation deviations in recordings of polyphonic singing. Additionally, our work has set the foundation
for further research on intonation processing in choral singing, such as for developing a differentiable
intonation cost measure [185].

In Part II, we considered traditional Georgian vocal music. In this context, we have curated a corpus of
historic tape recordings of the former master chanter Artem Erkomaishvili (Chapter 5). The carefully
annotated and organized corpus constitutes a vital basis for studying traditional Georgian singing as
well as MIR tasks such as F0-estimation, source separation, and score following. By providing public
access to the Erkomaishvili corpus via an interactive web-based interface, we contributed to preserving
and disseminating the rich yet endangered cultural heritage. As further technical contributions of this
thesis, we formalized, implemented, and experimentally validated interactive signal processing tools
for analyzing multitrack singing voice recordings. First, we developed two approaches for detecting
stable regions in F0-trajectories based on morphological filters and binary masks (Chapter 6). The two
approaches perform equally well with respect to reference annotations and constitute an important tool
for tonal analysis of traditional Georgian vocal music. Second, we developed three indicators that fuse
the outputs of several F0-estimation algorithms for assessing the reliability of automatically extracted
F0-estimates (Chapter 7). We evaluated the behavior of our indicators on a set of manually annotated vocal
F0-trajectories and showed their potential for analyzing large unlabeled audio collections such as the GVM
collection (see Section 7.2). Third, through close collaboration with ethnomusicologists, we developed
interactive computational tools for identifying note-like events in F0-trajectories as well as measuring and

113



9 Summary and Future Work

compensating pitch drifts in F0-trajectories through interval-based filtering techniques (Chapter 8). In the
context of a case study on Zär recordings, we demonstrate how domain experts can interactively apply
these tools to obtain drift-corrected stable note-like events as required for subsequent tonal analysis.

In summary, this thesis demonstrated that interactive computational tools and suitable feedbackmechanisms
(e.g., visualizations) can substantially support interdisciplinary research on polyphonic singing. Following
good scientific practices for transparent, reproducible, and sustainable research [113], we made our corpora
and accompanying tools publicly available and accessible. One tangible task for future research consists
in applying our tools for tonal analysis of the complete GVM collection. In conjunction with the analysis
of Artem Erkomaishvili’s recordings, such studies will allow musicologists to gain a more profound
understanding of the traditional Georgian tuning system. Using Georgian singing and other (non-Western)
vocal music traditions as application scenarios, one may further expand and improve our computational
tools. A promising research direction is the development of hybrid approaches for singing voice analysis
that combine classical signal processing concepts (as used in this thesis) with the benefits of recent
data-driven techniques [36, 59, 147]. Such methods may learn, e.g., culture-specific scales to improve
(multiple-)F0 estimation and intonation processing tasks. In this context, the interdisciplinary exchange
with musicologists is crucial to ensure the acceptance, applicability, and interpretability of the developed
models (as also shown in Chapter 8). Additionally, for recording polyphonic vocal performances, one
may explore different sensor types that overcome some limitations of the larynx microphones used in
this thesis. For instance, contact microphones based on piezo sensors of high sensitivity [85] have shown
great potential for recording singing voice signals with high acoustic quality and few cross-talk while
also capturing a singer’s heartbeat. In combination with suitable computational tools, such recording
techniques would open up new paths for understanding how singers perform and interact with each other.
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Appendix

A A Web-Based Interface for Practicing Choral Parts

This chapter is based on [160]. The first author Sebastian Rosenzweig is

the main contributor to this late-breaking demo abstract. Together with his

supervisor Meinard Müller, he developed the ideas and wrote the paper.

Lukas Dietz implemented the web-based interface under the supervision of

Sebastian Rosenzweig. The recordings used for demonstration purposes

have been provided by the Carus publishing house.

Choir singers typically practice their choral parts individually in preparation for joint rehearsals. Over
the last years, applications have become popular that support individual rehearsals, e.g., with sing-along
and score-following functionalities. In the following, we present a web-based interface with real-time
intonation feedback for choir rehearsal preparation. The interface combines several open-source tools of
the MIR community.

A.1 Introduction

Choirs aim at blending the voices of different choral parts to create a cohesive whole. To this end, choirs
spend a significant amount of rehearsal time on improving timing and intonation. Since joint rehearsal
time is limited, singers often need to practice their parts individually (e.g., at home) as preparation for
the rehearsals. However, individual rehearsals face several practical limitations due to the lack of fellow
singers, interaction, and feedback.

Over the last years, interactive applications that support choristers in individual rehearsals have become
popular. Three popular commercial examples are Singerhood56, cantāmus57, and carus music58. The
general concept of these apps is similar: after selecting a piece, the user can sing along to a choir recording
of the selected piece while reading its score on the screen. Singerhood includes multitrack choir recordings

56 https://singerhood.com
57 https://cantamus.app/
58 https://www.carus-verlag.com/en/digital-media/carus-music-the-choir-app
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Appendix

Figure A.1: Web-based interface for practicing choral parts on the example of the piece “Come on, sing with me now” composed
by Werner Rizzi, which is part of the Carus songbook SingSangSong III.

and allows for adjusting the volumes of different choral parts for playback. cantāmus offers synthesized
singing voice accompaniments generated from uploaded scores. carus music is based on scores of music
editions by the Carus publishing house and includes a score following functionality (music-synchronous
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A A Web-Based Interface for Practicing Choral Parts

highlighting of notes in the score during playback). Furthermore, carus music offers a piano playback of
the chosen choral part as “coach” for the singer.

Similar to these applications, we have developed a web-based interface to support choir singers during
individual rehearsals. Beyond playback and score following functionalities, our interface provides real-time
feedback on the singer’s intonation. Our interface combines several open-source tools that have been
developed by the MIR community. For demonstration purposes, we use recordings and sheet music of
choral pieces with piano accompaniment from the Carus music editions. The pieces are arranged for vocal
training with children and youth.59

A.2 Technical Realization

Our web-based interface, called “TuneIn”, can be accessed via the following link:

https://www.audiolabs-erlangen.de/resources/MIR/TuneIn

The interface is organized into different modules (see Figure A.1). In the first module, the user can
configure the training session by choosing a piece and a choral part. The second module contains an
HTML5 audio player with controls and a progress bar that plays back a mix of all voices. The third module
contains a score follower. We use the tool proposed in [222], which displays a digital scan of the sheet
music and highlights the currently played back measure. To this end, we annotated measure positions in
the audio recordings and the scanned sheet music (in the form of bounding boxes given in pixel positions).

As the main feature, which is often not offered by other rehearsal applications, the fourth module includes
a piano roll representation that indicates real-time intonation feedback during the singer’s performance.
The piano roll shows the notes of the chosen part obtained from a music XML version of the score.
The representation is synchronized with the audio recording using beat annotations. When the user
sings along to the playback, the interface records the singers’ voice and estimates its F0 in real-time
using CREPE (see Section 2.3.5 and [97]) and the JavaScript library tensorflow.js60. Furthermore, we
determine deviations in cents of the estimated F0-values from the MIDI center frequency. Since the piano
accompaniment prevents the choir from drifting in intonation in the chosen recordings, the computed
deviations can serve as an indicator for the intonation quality of the singer’s performance. The singer’s
F0-trajectory and the color-coded deviations are visualized superimposed with the piano roll representation
(red: positive deviation, blue: negative deviation). The singer can download the performance as an image
or the estimated F0-trajectory as a CSV file for later analysis.

59 https://www.carus-verlag.com/en/focus/singing-with-children-and-young-people/
60 https://www.tensorflow.org/js

117

https://www.audiolabs-erlangen.de/resources/MIR/TuneIn
https://www.carus-verlag.com/en/focus/singing-with-children-and-young-people/
https://www.tensorflow.org/js


Appendix

A.3 Conclusions

Seen individually, the utilized tools are not novel. However, their combination to a web-based, platform-
independent interface with intonation feedback can be beneficial for choir singers during individual
rehearsals. The modular structure of the interface and the usage of open source tools simplifies expanding
functionality and repertoire in future work. Furthermore, our interface can serve as a starting point for
exploring different (multitrack) audio players and score following techniques as well as a platform for
interactive evaluation of F0-estimation algorithms.
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Abbreviations

12-TET Twelve-Tone Equal Temperament

AMT Automatic Music Transcription

CMNDF Cumulative Mean Normalized
Difference Function

CPDL Choral Public Domain Library

CSD Choral Singing Dataset

CSV Comma-Separated Values

DAW Digital Audio Workstation

DCS Dagstuhl ChoirSet

DFG Deutsche Forschungsgemeinschaft

DFT Discrete Fourier Transform

DOI Digital Object Identifier

DYN Dynamic Microphone

F0 Fundamental Frequency

FT Fourier Transform

FFT Fast Fourier Transform

GCH Georgian Chant Hymns

GMM Gaussian Mixture Model

GVM Georgian Vocal Music

HDS Headset Microphone

HPS Harmonic–Percussive Separation

HMM Hidden Markov Model

HSM Headset Microphone

IC Intonation Cost

ID Identifier

IF Instantaneous Frequency

LRX Larynx/Throat Microphone

MEI Music Encoding Initiative

MIDI Musical Instrument Digital Interface

MIR Music Information Retrieval

OLA Overlap-Add

OMR Optical Music Recognition

ORTF Office de Radiodiffusion Télévision
Française

QNR Quarter Note Reference

SATB Soprano, Alto, Tenor, Bass

STFT Short-Time Fourier Transform

TROMPA Towards Richer Online Music
Public-Domain Archives

TSM Time-Scale Modification

UNESCO United Nations Educational,
Scientific and Cultural Organization

WAB Werkverzeichnis Anton Bruckner

WSOLA Waveform-Similarity Overlap-Add
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