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Overview

This textbook provides both profound technological knowledge and a comprehen-
sive treatment of essential topics in music processing and music information re-
trieval. Including numerous examples, figures, and exercises, this book is suited for
students, lecturers, and researchers working in audio engineering, computer science,
multimedia, and musicology.

The book consists of eight chapters. The first two cover foundations of music
representations and the Fourier transform—concepts that are then used throughout
the book. In the subsequent chapters, concrete music processing tasks serve as a
starting point. Each of these chapters is organized in a similar fashion and starts
with a general description of the music processing scenario at hand before inte-
grating it into a wider context. It then discusses, in a mathematically rigorous way,
important techniques and algorithms that are generally applicable to a wide range of
analysis, classification, and retrieval problems. At the same time, the techniques are
directly applied to a concrete music processing task. By mixing theory and practice,
the book’s goal is to convey both profound technological knowledge and a solid
understanding of music processing applications. Each chapter ends with a section
that includes links to the research literature, suggestions for further reading, a list
of references, and exercises. The chapters are organized in a modular fashion, thus
offering lecturers and readers many ways to choose, rearrange or supplement the
material. Accordingly, selected chapters or individual sections can easily be inte-
grated into courses on general multimedia, information science, signal processing,
music informatics, or the digital humanities.

The following figure gives an overview of the individual chapters and the main
topics.



Chapter
Music
Processing 
Scenario

Notions, Techniques & 
Algorithms

1 Music 
Representations

Music notation, MIDI, audio signal, 
waveform, pitch, loudness, timbre

2 Fourier Analysis 
of Signals

Discrete/analog signal, sinusoid, 
exponential, Fourier transform, 
Fourier representation, DFT, FFT,
STFT

3 Music 
Synchronization

Chroma feature, dyamic
programming, dyamic time warping
(DTW), alignment, user interface

4 Music Structure
Analysis

Similarity matrix, repetition,
thumbnail, homogeneity, novelty, 
evaluation, precision, recall, F-
measure, visualization, scape plot

5 Chord
Recognition

Harmony, music theory, chords, 
scales, templates, hidden Markov
model (HMM), evaluation

6 Tempo and Beat 
Tracking

Onset, novelty, tempo, tempogram, 
beat, periodicity, Fourier analysis, 
autocorrelation

7 Content-Based
Audio Retrieval

Identification, fingerprint, indexing, 
inverted list, matching, version, cover
song

8
Musically
Informed Audio 
Decomposition

Harmonic/percussive component, 
signal reconstruction, instanteneous
frequency, fundamental frequency
(F0), trajectory, nonnegative matrix
factorization (NMF)
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Chapter 1
Music Representations

Exercise 1.1. Assume that a pianist exactly follows the specifications given in the
Beethoven example from Figure 1.1. Determine the duration (in milliseconds) of a
quarter note and a measure, respectively.

Solution to Exercise 1.1. The tempo is given by the metronome specification of
108 half notes per minute. Therefore, a measure (which equals a half note) has a
duration of 1000 ·60/108 = 555.56 ms. Furthermore, a quarter note has a duration
of 277.78 ms.

Exercise 1.2. Specify the MIDI representation (in tabular form) and sketch the
piano-roll representation (similar to Figure 1.13) of the following sheet music rep-
resentations. Assume that a quarter note corresponds to 120 ticks. Set the velocity to
a value of 100 for all active note events. Furthermore, assign the notes of the G-clef
to channel 1 and the notes of the F-clef to channel 2.

(a) (b)

[Hint: In this exercise, we assume that the reader has some basic knowledge of
Western music notation.]

Solution to Exercise 1.2.
Time

(Ticks)
Message Channel Note

Number
Velocity

0 NOTE ON 1 67 100
60 NOTE OFF 1 67 0
0 NOTE ON 1 66 100

60 NOTE OFF 1 66 0
0 NOTE ON 1 67 100

60 NOTE OFF 1 67 0
0 NOTE ON 1 71 100

60 NOTE OFF 1 71 0
0 NOTE ON 1 69 100

60 NOTE OFF 1 69 0
0 NOTE ON 1 71 100

60 NOTE OFF 1 71 0

(a)

71/B4

67/G4

69/A4

0 120 360
Time (ticks)

240

Time
(Ticks)

Message Channel Note
Number

Velocity

0 NOTE ON 2 60 100
30 NOTE ON 2 64 100
30 NOTE ON 1 67 100
30 NOTE OFF 1 67 0
0 NOTE ON 1 72 100

30 NOTE OFF 1 72 0
0 NOTE ON 1 76 100

30 NOTE OFF 1 76 0
0 NOTE ON 1 67 100

30 NOTE OFF 1 67 0
0 NOTE ON 1 72 100

30 NOTE OFF 1 72 0
0 NOTE ON 1 76 100

30 NOTE OFF 1 76 0
0 NOTE OFF 2 64 0
0 NOTE OFF 2 60 0

(b)

76/E5

72/C5

64/E4

60/C4

67/G4

0 120 240
Time (ticks)

1
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Exercise 1.3. In this exercise, a melody is regarded as a linear succession of musi-
cal notes. A transposition of a given melody moves all notes up or down in pitch
by a constant interval. Furthermore, an inversion of a melody turns all the intervals
upside-down. For instance, if the original melody rises by three semitones, the in-
verted melody falls by three semitones. Finally, the retrograde of a melody is the
reverse, where the notes are played from back to front. Let us consider the following
two melodies given in piano-roll representation:

(a)

71/B4

67/G4

69/A4

(b)

71/B4

67/G4

69/A4

Specify for each of the two melodies the piano-roll representation of the transposi-
tion by two semitones upwards, the inversion (keeping the first note fixed), the ret-
rograde, and the retrograde of the inversion. Furthermore, regarding melodies only
up to pitch classes (by ignoring octave information), determine the number of dif-
ferent melodies that can be generated by successively applying an arbitrary number
of transpositions, inversions, and retrogrades.

Solution to Exercise 1.3.
(a)

73/C#4

69/A4

71/B4

(b)

73/C#4

69/A4

71/B4

65/F4

67/G4

63/D#4

69/A4

71/B4

67/G4

71/B4

67/G4

69/A4

71/B4

67/G4

69/A4

65/F4

67/G4

63/D#4

69/A4

71/B4

67/G4

Transpostion by two
semitons upwards

Inversion keeping
the first note fixed 

Retrograde

Inversion followed
by retrograde

For the fist melody, one can generate 48 different melodies (ignoring octave infor-
mation). For the second melody, inversion and retrograde lead to the same melody.
Altogether, one obtains 24 different melodies (ignoring octave information).

Exercise 1.4. The speed of sound is the distance traveled per unit of time by a
sound wave propagating through an elastic medium. Look up the speed of sound in
air. Assume that a concert hall has a length of 50 meters. How long does it take for
a sound wave to travel from the front to the back of the hall?
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Solution to Exercise 1.4. In dry air at 20◦C (68◦F ), the speed of sound is 343.2
meters per second. For a distance of 50 meters, a sound wave requires roughly
145.7 ms.

Exercise 1.5. Using (1.1), compute the center frequencies for all notes of the C-
major scale C4, D4, E4, F4, G4, A4, B4, C5 and for all notes of the C-minor scale
C4, D4, E[4, F4, G4, A[4, B[4, C5 (see also Figure 1.5).

Solution to Exercise 1.5.

C-major scale
Note p Fpitch(p)

C4 60 261.63
D4 62 293.66
E4 64 329.63
F4 65 349.23
G4 67 392.00
A4 69 440.00
B4 71 493.88
C5 72 523.25

C-minor scale
Note p Fpitch(p)

C4 60 261.63
D4 62 293.66
E[4 63 311.13
F4 65 349.23
G4 67 392.00

A[4 68 415.30
B[4 70 466.16
C5 72 523.25

Exercise 1.6. Using (1.1), compute the frequency ratio Fpitch(p+1)/Fpitch(p) of two
subsequent pitches p+1 and p (see (1.2)). How does the frequency Fpitch(p+k) for
some k ∈ Z relate to Fpitch(p)? Furthermore, derive a formula for the distance (in
semitones) for two arbitrary frequencies ω1 and ω2.

Solution to Exercise 1.6. The ratio is compuated via

Fpitch(p+1)/Fpitch(p) = 2(p+1−69)/12 ·440 ·2−(p−69))/12 · (1/440)

= 21/12 ·2(p−69)/12 ·2−(p−69))/12

= 21/12 ≈ 1.059463.

Futhermore, one obtains

Fpitch(p+ k) = 2k/12 ·Fpitch(p).

As in (1.4), the distance (in semitones) between two frequencies ω1 and ω2 is

log2

(
ω1

ω2

)
·12.

Exercise 1.7. Let us have a look at Figure 1.18b, which shows a waveform obtained
from a recording of Beethoven’s Fifth. Estimate the fundamental frequency of the
sound played by counting the number of oscillation cycles in the section between
7.3 and 7.8 seconds. Furthermore, determine the musical note that has a center fre-
quency closest to the estimated fundamental frequency. Compare the result with the
sheet music representation of Figure 1.1.
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Solution to Exercise 1.7. The section between 7.3 and 7.8 seconds contains roughly
37 oscillation cycles. This corresponds to a fundamental frequency of 74 Hz. This
frequency is closest to the musical note D2 (p = 38), which has a center frequency
of Fpitch(38) = 73.4 Hz. This is the lowest note of the fourth and fifth measure shown
in Figure 1.1.

Exercise 1.8. Assume an equal-tempered scale that consists of 17 tones per octave
and a reference pitch p = 100 having a center frequency of 1000 Hz. Specify a
formula similar to (1.1), which yields the center frequencies for the pitches p ∈
[0 : 255]. In particular, determine the center frequency for the pitches p= 83, p= 66,
and p = 49 in this scale. What is the difference (in cents) between two subsequent
pitches in this scale?

Solution to Exercise 1.8. As in (1.1), one obtains

F17
pitch(p) = 2(p−100)/17 ·1000.

In particular, one has F17
pitch(83) = 500, F17

pitch(66) = 250, and F17
pitch(59) = 125. By

(1.4), the difference (in cents) between two subsequent pitches is given by

log2

(
F17

pitch(p+1)

F17
pitch(p)

)
·1200 = log2(2

1/17) ·1200 = 1200/17≈ 70.6.

Exercise 1.9. Write a small computer program to calculate the differences (in cents)
between the first 16 harmonics of the note C2 and the center frequencies of the
closest notes of the twelve-tone equal-tempered scale (see Figure 1.20). What are
the corresponding differences when considering the harmonics of another note such
as B[4?

Solution to Exercise 1.9. For some pitch p, the center frequency of the mth har-
monic, m ∈ N0, is given by m ·Fpitch(p). Furthermore, by Exercise 1.6, the center
frequency of some pitch p+ k, k ∈ Z, is given by Fpitch(p+ k) = 2k/12 ·Fpitch(p).
Therefore, by (1.4), the difference (in cents) between the mth harmonic of pitch p
and the closest note of the twelve-tone equal-tempered scale is given by

min
k∈Z

(
log2

(
m ·Fpitch(p)

2k/12 ·Fpitch(p)

)
·1200

)
= min

k∈Z

(
log2(m)− k

12

)
·1200.

This shows that the differences are independent of the pitch p. In other words, the
differences are the same when starting with the note C2 or when starting with an-
other note such as B[4. The differences can be computed by the following computer
program using MATLAB:

for m=1:16

diff = (log2(m)-1/12)*1200;
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diff = rem(diff,100);

if diff > 50

diff = diff-100;

end

fprintf('m = %2i, diff = %+6.2f \n ',m,diff);

end

This program yields the following output:

m = 1, diff = -0.00

m = 2, diff = +0.00

m = 3, diff = +1.96

m = 4, diff = +0.00

m = 5, diff = -13.69

m = 6, diff = +1.96

m = 7, diff = -31.17

m = 8, diff = +0.00

m = 9, diff = +3.91

m = 10, diff = -13.69

m = 11, diff = -48.68

m = 12, diff = +1.96

m = 13, diff = +40.53

m = 14, diff = -31.17

m = 15, diff = -11.73

m = 16, diff = +0.00

Exercise 1.10. Pythagorean tuning (named after the ancient Greek mathematician
and philosopher Pythagoras) is a system of musical tuning in which the frequency
ratios of all intervals are based on the ratio 3 : 2 as found in the harmonic series. This
ratio is also known as the perfect fifth. A Pythagorean scale is a scale constructed
from only pure perfect fifths (3 : 2) and octaves (2 : 1). To obtain such a scale, start
with the center frequency of the note C2, successively multiply the frequency value
by a factor of 3/2, and if necessary, divide it by two such that all frequency values lie
between C2 and C3. Repeat this procedure to produce 13 frequency values (includ-
ing the one for C2). As in Exercise 1.9, determine for each such frequency value the
closest note of the equal-tempered scale (along with the difference in cents). The last
of the produced frequency values is closest to the fundamental frequency of the note
C3. The difference between the produced frequency and the center frequency of C3
is known as the Pythagorean comma, which indicates the degree of inconsistency
when trying to define a twelve-tone scale using only perfect fifths.

Solution to Exercise 1.10. The following table yields the ratios of the Pythagorean
tuning as well as the frequency ratios with regard of the twelve-tone equal-tempered
scale of the closest notes.
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# Pytagorean ratio Equal-tempered scale Difference
(cents)Note Frequency ratio

0 1:1 1:1 1.0000 C2 1 1.0000 +0.00

1 3:2 3:2 1.5000 G2 27/12 1.4983 +1.96

2 32:23 9:8 1.1250 D2 22/12 1.1225 +3.91

3 33:24 27:16 1.6875 A2 29/12 1.6818 +5.87

4 34:26 81:64 1.2656 E2 24/12 1.2599 +7.82

5 35:27 243:128 1.8984 B3 211/12 1.8877 +9.78

6 36:29 729:512 1.4238 F♯2 26/12 1.4142 +11.73

7 37:211 2187:2048 1.0679 C♯2 21/12 1.0595 +13.69

8 38:212 6561:4096 1.6018 G♯2 28/12 1.5874 +15.64

9 39:214 19683:16384 1.2014 D♯2 23/12 1.1892 +17.60

10 310:215 59049:32768 1.8020 A♯2 210/12 1.7818 +19.55

11 311:217 177147:131072 1.3515 F2 (E♯2) 25/12 1.3348 +21.51

12 312:219 531441:524288 1.0136 C2 (B♯2) 1 1.0000 +23.46

The Pythagorean comma is the frequency ratio 312/219 = 531441/524288 ≈
1.0136, which corresponds to approximately 23.46 cents.

Exercise 1.11. Investigate the typical frequency range as well as pitch range of
musical instruments (including the human voice) and graphically display this in-
formation as indicated by the following figure. For example, consider the ranges
of standard instruments as used in Western orchestras including the piano, human
voice (bass, tenor, alto, soprano), double bass, cello, viola, violin, bass guitar, guitar,
trumpet. Similarly, consider instruments you are familiar with.

C0 C1 C2 C3 C4 C5 C6 C7 C8

Human voice

Piano

Bass

Tenor

Alto

Soprano

Double bass

Viola

Cello

Violin

Bass guitar

Guitar

Trumpet

20 30 44 70 100 150 200 300 440 700 1000 1500 2000 3000 4400 Hz

Solution to Exercise 1.11.

C0 C1 C2 C3 C4 C5 C6 C7 C8

Human voice

Piano

Bass

Tenor

Alto

Soprano

Double bass

Viola

Cello

Violin

Bass guitar

Guitar

Trumpet

20 30 44 70 100 150 200 300 440 700 1000 1500 2000 3000 4400 Hz

Exercise 1.12. Suppose that the intensity of a sound has been increased by 17 dB
as defined in (1.6). Determine the factor by which the sound intensity has been
increased.
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Solution to Exercise 1.12. Let Iref be the reference sound intensity and I be the
sound intensity increased by 17 dB. By (1.6), this means that

17 = 10 · log10

(
I

Iref

)
.

Therefore the I differs from Iref by a factor of 1017/10 ≈ 50.119.





Chapter 2
Fourier Analysis of Signals

Exercise 2.1. Let 〈 f |g〉 :=
∫

t∈R f (t) ·g(t)dt be the similarity measure for two func-
tions f : R → R and g : R → R as defined in (2.3). Consider the following six
functions fn : R→ R for n ∈ [1 : 6], which are defined to be zero outside the shown
interval:

-1 -0.5 0 0.5 1

1

-1

0

-1 -0.5 0 0.5 1

1

-1

0

-1 -0.5 0 0.5 1

1

-1

0

-1 -0.5 0 0.5 1

1

-1

0

-1 -0.5 0 0.5 1

1

-1

0

-1 -0.5 0 0.5 1

1

-1

0

1 2 3

4 5 6

Determine the similarity values 〈 fn| fm〉 for all pairs (n,m) ∈ [1 : 6]× [1 : 6].

Solution to Exercise 2.1.
〈 fn| fm〉 f1 f2 f3 f4 f5 f6

f1 2 1 1 0 0 0
f2 1 1 0 1 -1 0
f3 1 0 1 -1 1 0
f4 0 1 -1 2 -2 0
f5 0 -1 1 -2 2 0
f6 0 0 0 0 0 2

Exercise 2.2. Sketch the magnitude Fourier transform of the following signals as-
suming that the signals are zero outside the shown intervals (see Figure 2.6 for sim-
ilar examples):

9
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(a)

(b)

(c)

Time (seconds)

Solution to Exercise 2.2.

(a)

(b)

(c)

Frequency (Hz)

Exercise 2.3. Based on (2.27) and (2.28), compute the time resolution (in ms) and
frequency resolution (in Hz) of a discrete STFT based on the following parameter
settings:

(a) Fs = 22050, N = 1024, H = 512
(b) Fs = 48000, N = 1024, H = 256
(c) Fs = 4000, N = 4096, H = 1024

What are the respective Nyquist frequencies?
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Solution to Exercise 2.3. The time resolution (in ms) is given by 1000 ·H/Fs, the
frequency resolution (in Hz) by Fs/N, and the Nyquist frequency by Fs/2. From this
one obtains:

(a) Time resolution: 23.22 ms. Frequency resolution: 21.53 Hz. Nyquist frequency:
11025 Hz.

(b) Time resolution: 5.33 ms. Frequency resolution: 46.88 Hz. Nyquist frequency:
24000 Hz.

(c) Time resolution: 256.00 ms. Frequency resolution: 0.98 Hz. Nyquist frequency:
2000 Hz.

Exercise 2.4. Let Fs = 44100, N = 2048, and H = 1024 be the parameter settings of
a discrete STFT X as defined in (2.26). What is the physical meaning of the Fourier
coefficients X (1000,1000), X (17,0), and X (56,1024), respectively? Why is the
coefficient X (56,1024) problematic?

Solution to Exercise 2.4. According to (2.27) and (2.28), the coefficient
X (1000,1000) corresponds to the physical time Tcoef(m) = 23.22 sec and the phys-
ical frequency Fcoef(1000) = 21533 Hz. Similarly, one obtains Tcoef(17) = 0.39 sec
and Fcoef(0) = 0 Hz for X (17,0). Furthermore, one obtains Tcoef(56) = 1.30 sec and
Fcoef(1024) = 22050 Hz for X (56,1024). The frequency expressed by the coeffi-
cient X (56,1024) corresponds to the Nyquist frequency. In general, this coefficient
yields a poor approximation of the actual frequency of the underlying analog signal.

Exercise 2.5. Sketch the magnitude Fourier transform (as in Figure 2.9) for each of
the three signals shown in Exercise 2.2. Assume a window length that corresponds
to a physical duration of about one second.

Solution to Exercise 2.5.

(a)

(b)

(c)

Fr
eq

ue
nc

y
(H

z)
Fr

eq
ue

nc
y

(H
z)

Fr
eq

ue
nc

y
(H

z)

Time (seconds)

Exercise 2.6. The naive approach for computing a DFT requires about N2 oper-
ations, while the FFT requires about N log2 N operations. Compute the factor for
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the savings when using the FFT for various N. In particular, consider N = 2n for
n = 5,10,15,20,25,30.

Solution to Exercise 2.6. Let N = 2n. The factor for the savings is N2/(N log2 N) =
N/n. The following table yields the factors (rounded to integers) for various N = 2n:

n 5 10 15 20 25 30
N/n 6 102 2185 52429 1342177 35791394

Exercise 2.7. Let f1 and f2 be two periodic analog signals with integer periods λ1 ∈
N and λ2 ∈ N, respectively. Show that g = f1 + f2 is periodic with periods that are
integer multiples of λ1 as well as λ2. In general, g may have additional periods not
necessarily being integer multiples of λ1 and λ2. As an example, specify two signals
f1 and f2 with prime period λ1 = λ2 = 2 such that g = f1+ f2 is periodic with prime
period λ = 1.

Solution to Exercise 2.7. First note that a periodic function f with period λ is also
periodic with period nλ for any integer n∈N. Now, let λ ∈Z be a number that is an
integer multiple of λ1 as well as of λ2. Then there exist integer numbers n1,n2 ∈ Z
such that λ = n1λ1 = n2λ2 and

g(t +λ ) = f1(t +λ )+ f2(t +λ )
= f1(t +n1λ1)+ f2(t +n2λ2)

= f1(t)+ f2(t) = g(t).

This shows that g is periodic for each such period λ . The following example shows
that two functions f1 and f2 with prime period 2 may sum up to some function
g = f1 + f2 with prime period 1:

0 2

1

-1

01

4-5 -3 -1-4 -2 1 3 5

0 2

1

-1

0

4-5 -3 -1-4 -2 1 3 5

0 2

1

-1

0

4-5 -3 -1-4 -2 1 3 5

2

1 2+

Time (seconds)

Exercise 2.8. In this exercise, we show that there are periodic functions that do not
have a prime period (i.e., that do not have a least positive constant being a period).
The easiest example of such a function is a constant function. Show that the function
f : R→ R defined by
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f (t) :=
{

1, for t ∈Q,
0, for t ∈ R\Q

is also periodic without having a prime period.
[Hint: In this exercise, we assume that the reader is familiar with the properties of
rational numbers (Q) and irrational numbers (R\Q).]

Solution to Exercise 2.8. Adding a rational number to another rational number
yields a rational number. Furthermore, adding a rational number to an irrational
number yields an irrational number. Therefore, f (t+q) = f (t) for any rational num-
ber q ∈ Q. This shows that f is periodic with regard to any rational number q ∈ Q.
Since there are arbitrarily small rational numbers, f has no prime period.

Exercise 2.9. Sketch the graph of the quantization function Q : R→ R defined by

Q(a) := sgn(a) ·∆ ·
⌊ |a|

∆
+

1
2

⌋

for a ∈ R and some fixed quantization step size ∆ > 0 (see (2.33)). Furthermore,
sketch the graph of the absolute quantization error.

Solution to Exercise 2.9.

0.5∆ 1.5∆ 2.5∆-2.5∆ -1.5∆ -0.5∆ 0

-∆

-2∆

-2∆

-∆

0

Amplitude aQ
ua

nt
iz

ed
am

pl
itu

de
Q

(a
) /

 Q
ua

nt
iz

at
io

n
er

ro
r

Exercise 2.10. In mathematics, the term “operator” is used to denote a mapping
from one vector space to another. Let V and W be two vector spaces over R. An
operator M : V →W is called linear if M[a1v1 +a2v2] = a1M[v1]+a2M[v2] for any
v1,v2 ∈V and a1,a2 ∈R. Show that V := { f | f : R→R} and W := {x | x : Z→R}
are vector spaces. Fixing a sampling period T > 0, consider the operator M that
maps a CT-signal f ∈V to the DT-signal M[ f ] := x ∈W obtained by T -sampling as
defined in (2.32). Show that this defines a linear operator.

Solution to Exercise 2.10. For two CT-signals f1, f2 ∈V and real numbers a1,a2 ∈
R, one obtains a CT-signal a1 f1 + a2 f2 ∈ V by (2.30) and (2.31). This shows that
V is a vector space. Similar definitions show that W is a vector space. Next, let
x1 := M[ f1] and x2 := M[ f2] be the DT-signals obtained by T -sampling. From
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M[a1 f1 +a2 f2](n) = (a1 f1 +a2 f2)(n ·T )
= a1 f1(n ·T )+a2 f2(n ·T )
= a1M[ f1](n)+a2M[ f2](n)

= (a1M[ f1]+a2M[ f2])(n)

for all n ∈ Z, it follows that M(a1 f1 +a2 f2) = a1M( f1)+a2M( f2). This proves that
T -sampling is a linear operator.

Exercise 2.11. Show that the quantization operator Q : R → R as defined in
Exercise 2.9 and (2.33) is not a linear operator.

Solution to Exercise 2.11. For example, one has 4 ·Q(0.25) = 0 6= 1 = Q(1) =
Q(4 ·0.25). This shows that Q is not linear.

Exercise 2.12. In this exercise we discuss various computation rules for complex
numbers and their conjugates. The complex multiplication is defined by c1 · c2 =
a1a2−b1b2+ i(a1b2+a2b1) for two complex numbers c1 = a1+ ib1,c2 = a2+ ib2 ∈
C (see (2.34)). Furthermore, complex conjugation is defined by c = a− ib for a
complex number c= a+ ib∈C (see (2.35)). Finally, the absolute value of a complex
number c is defined by |c|=

√
a2 +b2. Prove the following identities:

(a) Re(c) = (c+ c)/2
(b) Im(c) = (c− c)/(2i)
(c) c1 + c2 = c1 + c2

(d) c1 · c2 = c1 · c2

(e) cc = a2 +b2 = |c|2
(f) 1/c = c/(cc) = c/(a2 +b2) = c/(|c|2)

Solution to Exercise 2.12.

(a) Follows from c+ c = a+ ib+a− ib = 2a = 2Re(c).
(b) Follows from c− c = a+ ib−a+ ib = 2ib = 2iIm(c).
(c) c1 + c2 = (a1 +a2)− i(b1 +b2) = (a1− ib1)+(a2− ib2) = c1 + c2

(d) c1 · c2 = a1a2−b1b2− i(a1b2 +a2b1) = (a1− ib1)(a2− ib2) = c1 · c2

(e) cc = (a+ ib)(a− ib) = a2 +b2 + i(−ab+ba) = a2 +b2 = |c|2
(f) Follows from 1 = cc/(cc) = c · (c/(cc)) and (e).

Exercise 2.13. We have seen in Section 2.2.3.2 that the set CZ = {x|x : Z→ C} of
complex-valued DT-signals defines a vector space. Show that the subset `2(Z)⊂CZ

of DT-signals of finite energy is a linear subspace. To this end, you need to show
that x+ y ∈ `2(Z) and ax ∈ `2(Z) for any x,y ∈ `2(Z) and a ∈ C.

Solution to Exercise 2.13. Let x,y ∈ `2(Z) and a ∈ C. By definition (2.42), one
has E(x) < ∞ and E(y) < ∞. This implies E(ax) = |a|2E(x) < ∞, i.e., ax ∈ `2(Z).
Furthermore,
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E(x+ y) = ∑
n∈Z
|x(n)+ y(n)|2 ≤ ∑

n∈Z
(|x(n)|+ |y(n)|)2

≤ ∑
n∈Z

(2max{|x(n)|, |y(n)|})2 ≤ 4 ∑
n∈Z

(|x(n)|2 + |y(n)|2)

= 4(E(x)+E(y))< ∞.

This shows that x+ y ∈ `2(Z).

Exercise 2.14. In Section 2.3.1, we defined the set {1,sink,cosk | k ∈ N} ⊂
L2
R([0,1)). Prove that this set is an orthonormal set in L2

R([0,1)), i.e., that it sat-
isfies (2.50) and (2.51).
[Hint: Use the following trigonometric identities:

(a) cos(α)2 + sin(α)2 = 1
(b) cos(α)cos(β ) = (cos(α +β )+ cos(α−β ))/2
(c) sin(α)sin(β ) = (cos(α−β )− cos(α +β ))/2
(d) sin(α)cos(β ) = (sin(α +β )+ sin(α−β ))/2

To show (2.51), use (a) and the fact that cos2
k and sin2

k have the same area over a full
period. The proof of (2.50) is a bit cumbersome, but not difficult when using (b),
(c), and (d).]

Solution to Exercise 2.14. First, we prove (2.51). Obviously, one has ||1||2 = 1.
Furthermore, from identity (a), one obtains

2 = 2(cos(2πkt)2 + sin(2πkt)2) = cosk(t)2 + sink(t)2

for all t ∈ [0,1). Therefore,

2 =
∫

t∈[0,1)
cosk(t)2 + sink(t)2dt = 〈cosk|cosk〉+ 〈sink|sink〉.

Both functions cos2
k and sin2

k are 1-periodic and shifted versions from each other.
Therefore, integration of both functions over a full period yields the same value. As
a result, one obtains 〈cosk|cosk〉= 〈sink|sink〉= 1.

Next, we prove (2.50).

〈1|cosk〉 =
∫

t∈[0,1)

√
2cos(2πkt)dt =

[√
2sin(2πkt)/(2πk)

]1

0
= 0

〈1|sink〉 =
∫

t∈[0,1)

√
2sin(2πkt)dt =

[
−
√

2cos(2πkt)/(2πk)
]1

0
= 0

Using (b), one obtains for k 6= `:
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〈cosk|cos`〉 =
∫

t∈[0,1)

√
2cos(2πkt)

√
2cos(2π`t)dt

= 2
∫

t∈[0,1)

cos(2π(k+ `)t)+ cos(2π(k− `)t)
2

dt

=

[
sin(2π(k+ `)t)

2π(k+ `)
+

sin(2π(k− `)t)
2π(k− `)

]1

0
= 0

Similarly, using (c), one shows 〈sink|sin`〉= 0 for k 6= `. For k 6 `, one obtains

〈cosk|sin`〉 =
∫

t∈[0,1)

√
2cos(2πkt)

√
2sin(2π`t)dt

= 2
∫

t∈[0,1)

sin(2π(k+ `)t)+ sin(2π(k− `)t)
2

dt

=

[
cos(2π(k+ `)t)

2π(k+ `)
+

cos(2π(k− `)t)
2π(k− `)

]1

0
= 0.

Finally, for k = `, one obtains

〈cosk|sink〉 =
∫

t∈[0,1)

√
2cos(2πkt)

√
2sin(2πkt)dt

= 2
∫

t∈[0,1)

sin(2π(2k)t)
2

dt =
[−cos(2π(2k)t)

2π(k+ `)

]1

0
= 0.

This concludes the proof.

Exercise 2.15. Let exp(iγ) := cos(γ)+ isin(γ), γ ∈ R, be the complex exponential
function as defined in (2.67). Prove the following properties (see (2.68) to (2.71)):

(a) exp(iγ) = exp(i(γ +2π))
(b) |exp(iγ)|= 1
(c) exp(iγ) = exp(−iγ)
(d) exp(i(γ1 + γ2)) = exp(iγ1)exp(iγ2)

(e)
d exp(iγ)

dγ
= iexp(iγ)

[Hint: To prove (d), you need the trigonometric identities cos(α + β ) =
cos(α)cos(β )− sin(α)sin(β ) and sin(α +β ) = cos(α)sin(β )+ sin(α)cos(β ). In
(e), note that the real (imaginary) part of a derivative of a complex-valued function
is obtained by computing the derivative of the real (imaginary) part of the function.]

Solution to Exercise 2.15. Property (a) follows from

exp(iγ) = cos(γ)+ isin(γ) = cos(γ +2π)+ isin(γ +2π) = exp(i(γ +2π)).

Using cos(α)2 + sin(α)2 = 1, property (b) follows from

|exp(iγ)|=
√

cos(γ)2 + sin(γ)2 = 1.
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Using cos(α) = cos(−α) and sin(α) =−sin(−α), property (c) follows from

exp(iγ) = cos(γ)− isin(γ) = cos(−γ)+ isin(−γ) = exp(−iγ).

Using the two trigonemetric identities specified in the hint, property (d) follows
from

exp(i(γ1 + γ2)) = exp(iγ1)exp(iγ2)

= cos(γ1 + γ2)+ isin(γ1 + γ2)

= cos(γ1)cos(γ2)− sin(γ1)sin(γ2)+ i(cos(γ1)sin(γ2)+ sin(γ1)cos(γ2))

= (cos(γ1)+ isin(γ1)) · (cos(γ2)+ isin(γ2))

= exp(iγ1)exp(iγ2).

The property (e) follows from

d exp(iγ)
dγ

=
d cos(γ)

dγ
+ i

d sin(γ)
dγ

=−sin(γ)+ icos(γ)

= i(cos(γ)+ isin(γ)) = iexp(iγ).

Exercise 2.16. In (2.77), we defined for each k ∈ Z the complex-valued exponen-
tial function expk : [0,1)→ C by expk(t) := cos(2πkt)+ isin(2πkt), t ∈ R. As in
Exercise 2.14, show that the set {expk | k ∈ Z} ⊂ L2([0,1)) is an orthonormal set,
i.e., ||expk||2 = 1 for k ∈ Z (see (2.51)) and 〈expk|exp`〉= 0 for k 6= `, k, ` ∈ Z (see
(2.50)).
[Hint: Use the properties of the exponential function introduced in Exercise 2.15.
Furthermore, note that the real (imaginary) part of an integral of a complex-valued
function is obtained by integrating the real (imaginary) part of the function.]

Solution to Exercise 2.16. By (2.47) and the property |exp(iγ)|= 1, we obtain

||expk||2 = E[0,1)(expk) =
∫

t∈[0,1)
|exp(2πkt)|2dt = 1.

Next, let k 6= `. Then, from (2.49) and the properties in Exercise 2.15, we obtain

〈expk|exp`〉 =
∫

t∈[0,1)
exp(2πikt)exp(2πi`t)dt =

∫

t∈[0,1)
exp(2πi(k− `)t)dt

=

[
exp(2πi(k− `)t)

2πi(k− `)

]1

0
= 0.

Exercise 2.17. Let atan2 be the function as defined in (2.76). For a complex number
c = a+ ib ∈C, we set atan2(c) := atan2(b,a). Show that atan2(λ ·c) = atan2(c) for
any positive constant λ ∈ R>0. Furthermore, show that atan2(c) =−atan2(c).
[Hint: Use the fact that the arctan function is an odd function, i.e., arctan(−v) =
−arctan(v) for v ∈ R.]
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Solution to Exercise 2.17. When considering λ · c instead of c, the six cases con-
cerning the relation between a and b in the definition of (2.76) do not change. Fur-
thermore, λb/λa = b/a. From this, one obtains atan2(λ · c) = atan2(c).

Furthermore, when considering c instead of c, one has−b instead of b. Therefore,
the cases two and three in the definition of (2.76) are interchanged. Suppose b≥ 0,
then

atan2(−b/a) = arctan(−b/a)−π =−arctan(b/a)−π
= −(arctan(b/a)+π) =−atan2(b/a).

Suppose b < 0, then

atan2(−b/a) = arctan(−b/a)+π =−arctan(b/a)−π
= −(arctan(b/a)−π) =−atan2(b/a).

Furthermore, the cases four and five in the definition of (2.76) are interchanged.
Again, one obtains atan2(−b/a) = −atan2(b/a). Altogehter, we have shown that
atan2(c) =−atan2(c).

Exercise 2.18. In this exercise, we consider the geometric series for compex num-
bers, which is needed in (2.112). Prove that ∑N−1

n=0 an = (1− aN)/(1− a) for any
complex number a 6= 1.
[Hint: For the proof, use mathematical induction on N.]

Solution to Exercise 2.18. For N = 1, one obtains ∑0
n=0 an = 1 = a0 = (1−a)/(1−

a) and the assertion is true. Now, let N > 1 and assume that the assertion is true for
N−1. Then we obtain

N−1

∑
n=0

an = aN−1 +
N−2

∑
n=0

an = aN−1 +
1−aN−1

1−a

=
aN−1−aN +1−aN−1

1−a
=

1−aN

1−a
.

Exercise 2.19. We have seen that two sinusoids of similar frequency may add up
(constructive interference) or cancel out (destructive interference); see Figure 2.19.
Let f1(t) = sin(2πω1t) and f2(t) = sin(2πω2t) be two such sinusoids with distinct
but nearby frequencies ω1 ≈ ω2. In the following figure, for example, ω1 = 1 and
ω2 = 1.1 is used.
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Time (seconds)

Beating period

The figure also shows that the superposition f1 + f2 of these two sinusoids results
in a function that looks like a single sine wave with a slowly varying amplitude, a
phenomenon also known as beating. Determine the rate (reciprocal of the period) of
the beating in dependency on ω1 and ω2. Compare this result with the plot of f1+ f2
in the figure.
[Hint: Use the trigonometric identity sin(α)+sin(β ) = 2cos

(
α−β

2

)
sin
(

α+β
2

)
for

α,β ∈ R.]

Solution to Exercise 2.19. Setting α = 2πω1t and β = 2πω2t, one obtains:

sin(2πω1t)+ sin(2πω2t) = 2cos
(

2π
ω1−ω2

2
t
)

sin
(

2π
ω1 +ω2

2
t
)

This shows that if the difference ω1−ω2 is small, the cosine term has a low fre-
quency compared with the sine term. As a result the signal f1 + f2 can be seen as
a sine wave of frequency (ω1 +ω2)/2 with a slowly varying amplitude envelope
of frequency |ω1−ω2|. Note that this rate is twice the frequency (ω1−ω2)/2 of
the cosine term. In the example with ω1 = 1 and ω2 = 1.1 shown in the figure, the
beating rate is 0.1 Hz and the beating period is 10 sec.

Exercise 2.20. Let f ∈ L2(R) be a signal of unit energy || f ||2 = 1. Show that the
scaled signal g defined by g(t) := s1/2 f (s · t) also has unit energy for a positive
real scaling factor s > 0. Furthermore show that ĝ(ω) = s−1/2 f̂ (ω/s) for ω ∈ R.
Discuss this result. Describe how one can obtain a Dirac sequence by changing the
parameter s (see Section 2.3.3.2).

Solution to Exercise 2.20. The assertion ||g||2 = 1 follows from

||g||2 =
∫

t∈R
|g(t)|2dt =

∫

t∈R
s| f (st)|2dt =

∫

t∈R
| f (t)|2dt = || f ||2.

For the Fourier transform ĝ holds:
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ĝ(ω) =
∫

t∈R
g(t)exp(−2πiωt)dt =

∫

t∈R
s1/2 f (st)exp(−2πiωt)dt

=
∫

t∈R
s−1/2 f (t)exp(−2πiωt/s)dt = s−1/2 f̂ (ω/s).

For increasing s, the function g becomes narrower and the function ĝ wider. For
example, if f is the Gaussian as defined in (2.94), one obtains a Dirac sequence
when using an increasing sequence of scaling factors approaching infinity.

Exercise 2.21. Show that the Fourier transform of the rectangular function in (2.95)
is the sinc function in (2.96). Also prove that the sinc function is continuous at t = 0.
[Hint: Use the fact that the derivative of t 7→ exp(−2πiωt) is given by t 7→
−2πiω exp(−2πiωt); see Exercise 2.15. From this, one can derive the indefinite
integral of the exponential function. To prove the continuity at t = 0, look at the first
terms of the Taylor series of the sine function.]

Solution to Exercise 2.21. For ω 6= 0 one obtains

f̂ (ω) =
∫

t∈R
f (t)exp(−2πiωt)dt =

∫ 1/2

−1/2
exp(−2πiωt)dt

=

[
1

−2πiω
exp(−2πiωt)

]1/2

−1/2

=
1

−2πiω
(exp(−πiω)− exp(πiω))

=
1

2πiω

(
exp(πiω)− exp(πiω)

)
=

sin(πω)

πω
.

For ω = 0 we get

f̂ (0) =
∫ ∞

−∞
f (t)dt = 1.

This shows that the derivative of the rectangular function is the sinc function. Fur-
thermore, from sin(t) = t− t3

3! +
t5

5! ∓ . . . follows that limt→0
sin(t)

t = 1, which proves
the continuity of the sinc function.

Exercise 2.22. For a signal f ∈ L2(R), consider the translation ft0 defined by
ft0(t) := f (t−t0) for t ∈R (see (2.97)) and the modulation f ω0 defined by f ω0(t) :=
exp(2πiω0t) f (t) for t ∈R (see (2.98)). Show that || f ||= || ft0 ||= || f ω0 ||. Furthermore,
prove the properties (2.99) and (2.100):

f̂t0(ω) = exp(−2πiωt0) f̂ (ω) and f̂ ω0(ω) = f̂ (ω +ω0)

for ω ∈ R.

Solution to Exercise 2.22. The identity || f || = || ft0 || follows from a simple sub-
stitution of t − t0 by t in the integration. The identity || f || = || f ω0 || follows from
|exp(2πiω0t)|= 1. Furthermore,
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f̂t0(ω) =
∫

t∈R
f (t− t0)exp(2πiωt)dt

=
∫

t∈R
f (t)exp(2πiω(t + t0))dt

= exp(2πiωt0)
∫

t∈R
f (t)exp(2πiωt)dt

= exp(2πiωt0) f̂ (ω).

Finally, one obtains

f̂ ω0(ω) =
∫

t∈R
exp(2πiω0t) f (t)exp(2πiωt)dt

=
∫

t∈R
f (t)exp(2πi(ω +ω0)t)dt

= f̂ (ω +ω0).

Exercise 2.23. Any complex number c ∈ C with cN = 1 for a given N ∈ N is called
an Nth root of unity. If in addition ck 6= 1 for 1 < k < N, the root c is called prim-
itive. Show that ρN := exp(−2πi/N) defines a primitive Nth root of unity. Further-
more, describe all Nth roots of unity. Which of these roots are primitive? Determine
for N ∈ {4,7,12} all primitive Nth roots of unity.
[Hint: In this exercise, one needs to know that a (nonzero) polynomial of degree
N has at most N different roots, where a root of a function is an input value that
produces an output of zero.]

Solution to Exercise 2.23. For ρN := exp(−2πi/N), we consider the powers ρk
N =

exp(−2πik/N) for k ∈ [0 : N−1]. Suppose ρk
N = ρ`

N for some k, ` ∈ [0 : N−1] with
k ≥ `. Then 1 = ρ(k−`)

N = exp(−2πi(k− `)/N) implies that ((k− `)/N) ∈ Z. Since
(k− `) < N, this is only possible for k = `. This shows that the numbers ρk

N , k ∈
[0 : N−1], are all distinct and that ρN is primitive.

Furthermore, (ρk
N)

N = exp(−2πik/N)N = exp(−2πik) = 1. Since the polyno-
mial XN − 1 has at most N distinct roots, there can be at most N roots of unity.
Therefore, the numbers ρk

N , k ∈ [0 : N−1], cover all Nth roots of unity.
Let us now fix a k ∈ [0 : N−1]. Suppose that (ρk

N)
` = 1 for some ` ∈ [1 : N−1].

This is equivalent to exp(−2πik`/N) = 1 or k`/N ∈ Z. In other words, the product
k` is then divisible by N. Since 0 < ` < N, this is equivalent for k and N having a
common divisor larger than 1.

From this, we obtain the following primitive roots of unity. For N = 4, ρk
N for

k∈{1,3}. For N = 7, ρk
N for k∈{1,2,3,4,5,6}. For N = 12, ρk

N for k∈{1,5,7,11}.
Exercise 2.24. Let x = (x(0), . . .x(N − 1))> be a real-valued vector consisting of
samples x(n) ∈ R for n ∈ [0 : N−1]. Show that

X = DFTN ·x

with X = (X(0), . . .X(N − 1))> fulfills the symmetry property X(k) = X(N− k)
for all k ∈ [1 : N−1] and X(0) ∈R. This shows that the upper half of the frequency
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coefficients are redundant if x is real-valued. Furthermore, show the converse. Given
a spectral vector X with X(0) ∈ R and X(k) = X(N− k) for all k ∈ [1 : N−1], then

x = DFT−1
N ·X

is a real-valued vector (see (2.118)).
[Hint: Use the computation rules for complex numbers from Exercise 2.12.]

Solution to Exercise 2.24. Let x be real-valued, then x(n) = x(n) for all n ∈
[0 : N−1]. From the computation rules for complex numbers (see Exercise 2.12)
and (2.70) follows:

X(N− k) =
N−1

∑
n=0

x(n)exp(−2πi(N− k)n/N)

=
N−1

∑
n=0

x(n) · exp(−2πin) · exp(2πikn/N)

=
N−1

∑
n=0

x(n)exp(−2πikn/N)

= X(k)

for k ∈ [1 : N−1]. Furthermore X(0) = ∑N−1
n=0 x(n) ∈ R in case all samples are real-

valued. Now, let us suppose that we are given a spectral vector X with X(0)∈R and
X(k) = X(N− k) for all k ∈ [1 : N−1]. Then, using (2.118), we obtain

x(n) =
1
N

N−1

∑
k=0

X(k)exp(2πink/N)

=
1
N

N−1

∑
k=0

X(k)exp(−2πink/N)

=
1
N

X(0)+
1
N

N−1

∑
k=1

X(N− k)exp(2πin(N− k)/N)

=
1
N

X(0)+
1
N

N−1

∑
k=1

X(k)exp(2πink/N)

= x(n).

This shows that all samples are real numbers and x is a real-valued vector.

Exercise 2.25. Specify the DFTN matrix explicitly for N ∈ {1,2,4}. Count the num-
ber of multiplications and additions when performing the usual matrix–vector prod-
uct DFT4 · x for a vector x = (x1,x2,x3,x4)

>. Then conduct all steps of the FFT
algorithm (two recursions are needed) and again count the overall number of multi-
plications and additions needed to compute DFT4 ·x.
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Solution to Exercise 2.25. For N = 1, we obtains DFT1 = (1). For N = 2, we have
ω := exp(−2πi/2) =−1 and

DFT2 =

(
1 1
1 −1

)
.

For N = 4, we have ω := exp(−2πi/4) = i and

DFT4 =




1 1 1 1
1 i −1 −i
1 1 −1 1
1 −i −1 i


 .

When computing the usual matrix–vector product DFT4 ·x, one needs 16 multipli-
cations and 12 additions.

Applying the FFT algorithm from Table 2.1, the first recursion involves the com-
putation of two DFT2. Furthemore, to assemble the result, one requires 4 multipli-
cations for the twiddle factors and 4 additions.

In the second recursion, each of DFT2 involves the computation of two DFT1,
which is free of cost (as DFT1 of a number is just the number itself). Furthemore,
to assemble the result, one requires 2 multiplications for the twiddle factors and 2
additions.

Altogether, using the FFT for DFT4, one requires 4+ 2 · 2 = 8 multiplications
and 4+2 ·2 = 8 additions.

Exercise 2.26. Let N = 2n be a power of two. In (2.127), we derived the estimate
µ(N)≤ 2µ(N/2)+1.5N for the number of multiplications and additions needed to
compute the matrix–vector product DFTN ·x. Using µ(1) = 0 (the case n = 0), show
by a mathematical induction on n that this implies µ(N)≤ 1.5N log2(N).

Solution to Exercise 2.26. Suppose that the assertion has been shown for N = 2n

for n≥ 0 . Then, one obtains for the case 2N = 2n+1:

µ(2N) ≤ 2µ(N)+1.5(2N)

≤ 2(1.5N log2(N))+1.5(2N)

≤ 3N(log2(N)+1)
≤ 1.5(2N) log2(2N).

Exercise 2.27. In the spectrograms shown in Figure 2.32 one can notice vertical
stripes at t = 0 and t = 1. Why?

Solution to Exercise 2.27. The signal f is defined in the time interval [0,1] by
(2.142). Furthermore, it is assumed to be zero outside this interval. Now, in a neigh-
borhood of t = 0, the signal is zero for t < 0 and it is a superposition of two sinusoids
for t > 0. In the Fourier representation, two exponential functions are needed to rep-
resent the signal for t > 0. However, for t < 0 these oscillations need to compensated
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to generate the zero function. To this end, based on the principles of destructive in-
terference, many different frequency components spread over the entire spectrum
are needed, which explains the vertical stripe in the spectrogram at t = 0. The same
explanation applies for t = 1.

Exercise 2.28. In this exercise, we prove the sampling theorem. A CT-signal f ∈
L2(R) is called Ω -bandlimited if the Fourier transform f̂ vanishes for |ω| > Ω ,
i.e., f̂ (ω) = 0 for |ω| > Ω . Let f ∈ L2(R) be an Ω -bandlimited function and let x
be the T -sampled version of f with T := 1/(2Ω), i.e., x(n) = f (nT ), n ∈ Z. Then f
can be reconstructed from x by

f (t) = ∑
n∈Z

x(n)sinc
(

t−nT
T

)
= ∑

n∈Z
f
( n

2Ω

)
sinc(2Ω t−n) ,

where the sinc function is defined in (2.96). In other words, the CT-signal f can be
perfectly reconstructed from the DT-signal obtained by equidistant sampling if the
bandlimit is no greater than half the sampling rate.
[Hint: Note that one may assume Ω = 1/2 (and T = 1) by considering the scaled
function t 7→ f (t/Ω). In this case, f is 1/2-bandlimited and can be extended to a 1-
periodic function g. Represent g by its Fourier series (2.79) and compute the Fourier
coefficients cn = 〈g|expn〉, n ∈ Z. Compare these coefficients with the Fourier rep-
resentation (2.91) of f evaluated at t = n for n ∈ Z (again using the fact that f is
1/2-bandlimited). As a result, one obtains cn = f (−n). Finally, reconstruct f from
the Fourier series of g. To this end, you need the result of Exercise 2.21.]

Solution to Exercise 2.28. Let f be an Ω -bandlimited signal with Ω = 1/2. Then
f̂ can be extended to a 1-periodic function, which we denote by g. The function g
can be represented by its Fourier series (2.79) as

g(t) = ∑
n∈Z

cn exp(2πint).

By (2.80), the coefficients are

cn = 〈g|expn〉=
∫

ω∈[0,1)
g(ω)exp(−2πinω)dω =

∫

|ω|≤1/2
g(ω)exp(−2πinω)dω.

Next, since f is (1/2)-bandlimited, the Fourier representation (2.91) for CT-signals
yields:

f (t) =
∫

ω∈R
f̂ (ω)exp(2πiωt)dω =

∫

|ω|≤1/2
f̂ (ω)exp(2πiωt)dω

and therefore
f (−n) =

∫

|ω|≤1/2
f̂ (ω)exp(−2πiωn)dω.

It follows that cn = f (−n) and therefore



2 Fourier Analysis of Signals 25

g(t) = ∑
n∈Z

f (n)exp(−2πint).

Using the result of Exercise 2.21, we obtain from this:

f (t) =
∫

|ω|≤1/2
g(ω)exp(2πiωt)dω

=
∫

|ω|≤1/2
∑
n∈Z

f (n)e−2πinω exp(2πiωt)dω

= ∑
n∈Z

f (n)
∫

|ω|≤1/2
exp(2πiω(t−n))dω

︸ ︷︷ ︸
=sinc(t−n)

.





Chapter 3
Music Synchronization

Exercise 3.1. In Section 3.1.1, we computed a log-frequency spectrogram based on
a semitone resolution using (3.3) and (3.4). In this exercise, we want to specify
a log-frequency spectrogram with a resolution of half a semitone (resulting in 24
bands per octave). Write a small computer program that calculates the correspond-
ing center frequencies, the cutoff frequencies, and the bandwidths for the various
log-frequency bands, each corresponding to a half semitone (as in Table 3.1). Out-
put all numbers for the resulting 25 bands between C4 and C5. Then, do the same
for a log-frequency spectrogram with a resolution of a third semitone (resulting in
36 bands per octave). Again, output all numbers for the resulting 37 bands between
C4 and C5.

Solution to Exercise 3.1.
SemitoneRes = 1/2;

for p = 60:SemitoneRes:72

CF = 2ˆ((p-69)/12)*440;

CutL = 2ˆ((p-SemitoneRes/2-69)/12)*440;

CutU = 2ˆ((p+SemitoneRes/2-69)/12)*440;

BW = CutU - CutL;

fprintf('p = %4.2f, ',p);

fprintf('CF = %6.2f, ',CF);

fprintf('CutL = %6.2f, ',CutL);

fprintf('CutU = %6.2f, ',CutU);

fprintf('BW = %4.2f\n',BW);
end

p = 60.00, CF = 261.63, CutL = 257.87, CutU = 265.43, BW = 7.56

p = 60.50, CF = 269.29, CutL = 265.43, CutU = 273.21, BW = 7.78

p = 61.00, CF = 277.18, CutL = 273.21, CutU = 281.21, BW = 8.01

...

SemitoneRes = 1/3;

...

p = 60.00, CF = 261.63, CutL = 259.12, CutU = 264.16, BW = 5.04

p = 60.33, CF = 266.71, CutL = 264.16, CutU = 269.29, BW = 5.14

p = 60.67, CF = 271.90, CutL = 269.29, CutU = 274.53, BW = 5.24

27
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Exercise 3.2. Assuming a sampling rate of Fs = 44100 Hz and a window length of
N = 4096, determine the largest pitch p for which the set P(p) defined in (3.3) is
empty. What are the center frequency, the cutoff frequencies, and the bandwidth of
the corresponding log-frequency band?

Solution to Exercise 3.2. For p = 51, one obtains, Fpitch(p) = 155.56 Hz, Fpitch(p−
0.5) = 151.13 Hz, Fpitch(p+ 0.5) = 160.12 Hz, and BW(p) = 8.99. Furthermore,
by (2.28), we have Fcoef(k) = (k ·Fs)/N = k ·44100/4096≈ k ·10.77 Hz. From this,
one obtains Fcoef(15) = 150.73 Hz and Fcoef(16) = 161.50 Hz, which shows that
P(p) is empty for p = 51. To show that p = 51 is largest p with this property, one
checks that BW(p) is nonempty for p = {52,53,54}. Furthermore, for p ≥ 55 one
obtains BW(p)> Fs/N, which shows that BW(p) is nonempty for p≥ 55.

Exercise 3.3. Let BW(p) = Fpitch(p+ 0.5)−Fpitch(p− 0.5) be the bandwith for a
pitch p as defined in (3.5). What is the relation between the bandwidths BW(p+12)
and BW(p) of two pitches that are one octave apart? Give a mathematical proof for
your claim. Similarly, determine the relation between the bandwidths BW(p+ 1)
and BW(p) of two neighboring pitches.

Solution to Exercise 3.3. Using (3.2), we obtain

Fpitch(r+12) = 2(r+12−69)/12 ·440 = 2 ·Fpitch(r)

for any r ∈ R. Applying this to r = p−0.5 and r = p+0.5, we obtain from (3.5):

BW(p+12) = Fpitch(p+12+0.5)−Fpitch(p+12−0.5)
= 2 ·Fpitch(p+0.5)−2 ·Fpitch(p+0.5)
= 2 ·BW(p).

In other words, increasing the pitch by one octave increases the bandwith by a
factor of two. Similarly, one shows that BW(p + 1)/BW(p) = 21/12 (see also
Exercise 1.6).

Exercise 3.4. Given an audio signal at a sampling rate of Fs = 22050 Hz, we want
to compute a log-frequency spectrogram as in (3.4). As a requirement, all sets P(p)
(as defined in (3.3)) for all pitches corresponding to the notes C2 (p = 36) to C3
(p = 48) should contain at least four Fourier coefficients. To meet this requirement,
what is the minimal window length N (assuming that N is a power of two) to be
used in the STFT? For this N, determine the elements of the set P(36) explicitly.

Solution to Exercise 3.4. For pitch p = 36 (corresponding to C2), one obtains
Fpitch(p) = 65.41 Hz, Fpitch(p− 0.5) = 63.54 Hz, Fpitch(p+ 0.5) = 67.32 Hz, and
BW(p) = 3.78. Furthermore, for Fs = 22050 Hz and N = 32768, it follows from
(2.28) that Fcoef(96)= 63.93 Hz, Fcoef(101)= 67.29 Hz, and P(36)= {96, . . . ,101}.
In other words, P(36) contains six elements for N = 32768. This also shows, that
P(p) must contain at least four elements for p > 36. Finally, for the window size
N = 16384, the set P(36) contains only three elements. Therefore, N = 32768 is the
minimal window length with the desired property.



3 Music Synchronization 29

Exercise 3.5. The tuning of musical instruments is usually based on a fixed refer-
ence pitch. In Western music, one typically uses the concert pitch A4 having a
frequency of 440 Hz (see Section 1.3.2). To estimate the deviation from this ideal
reference, a musician is asked to play the note A4 on his or her instrument over
the duration of four seconds. Describe a simple FFT-based procedure for estimating
the tuning deviation of the instrument used. How would you choose the parameters
(sampling rate, window size) to obtain an accuracy of at least 1 Hz in this estima-
tion?

Solution to Exercise 3.5. Playing a note A4, one can expect dominant frequencies
in a neighborhood of 440 Hz (corresponding to the fundamental frequency) and
its integer multiples (corresponding to the harmonics). One basic procedure is to
first compute a DFT of the recorded signal to obtain a spectral representation. Then,
one may look for the frequency index k0 that yields a maximal magnitude coefficient
|Fcoef(k0)| in a neighborhood of 440 Hz (e.g., plus/minus a semitone). The difference
Fcoef(k0)−440 Hz then yields an estimate of the tuning deviation.

Assuming a sampling rate of Fs = 44100 Hz, one may compute a DFT using a
window size of N = 217 = 131072 (corresponding to 2.97 sec). This yields a spectral
resolution of Fs/N ≈ 0.34 Hz.

To obtain a more robust estimate, one may also consider spectral peak positions
in suitably defined neighborhoods of the harmonics. The resulting deviations from
the ideal positions of the individual harmonics can be used to derive a single tuning
estimate using a suitable fusion strategy.

Exercise 3.6. Assume that an orchestra is tuned 20 cents upwards compared with
the standard tuning. What is the center frequency of the tone A4 in this tuning? How
can a chroma representation be adjusted to compensate for this tuning difference?

Solution to Exercise 3.6. The detuning of 20 cents corresponds to a fifth of a semi-
tone. Therefore, by (3.2), the center frequency of the tone A4 in the given tuning
is

Fpitch(69.2) = 2(69.2−69)/12 ·440≈ 445.1 Hz.

Using this frequency as a new reference, we define the function

F ′pitch(p) = 2(p−69)/12 ·445.1.

Based on this modified function, we define a modified set

P′(p) := {k : F ′pitch(p−0.5)≤ Fcoef(k)< F ′pitch(p+0.5)}

for each pitch p∈ [0 : 127] (see 3.3). From this, we obtain an adjusted log-frequency
spectrogram (see (3.4)), from which we can derive an adjusted chroma representa-
tion as before (see (3.6)).

Exercise 3.7. Show that the DTW distance as defined in (3.21) is symmetric (i.e.,
DTW(X ,Y ) = DTW(Y,X) for any two given sequences X = (x1,x2, . . . ,xN) and
Y = (y1,y2, . . . ,yM)) in the case that the local cost measure c is symmetric.
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Solution to Exercise 3.7. Let P = (p1, . . . , pL) with p` = (n`,m`) ∈ [1 : N]× [1 : M]
for ` ∈ [1 : L] be an (N,M)-warping path. Setting p′` := (m`,n`), one easily checks
that the conditions (3.16), (3.17), and (3.18) are satifisfied for P′ := (p′1, . . . , p′L). In
other words, P′ defines an (M,N)-warping path. By this assignment, one obtains a
one-to-one correspondence between the set of (N,M)-warping paths and the set of
(M,N)-warping paths. Furthermore, in the case that c is symmetric, one obtains

cP′(Y,X) =
L

∑̀
=1

c(ym`
,xn`) =

L

∑̀
=1

c(xn` ,ym`
) = cP(X ,Y ).

Therefore, an (M,N)-warping path P′ has minimal cost if and only if the corre-
sponding (N,M)-warping path P has minimal cost. From this and (3.21), we obtain
DTW(Y,X) = DTW(X ,Y ), which proves the symmetry of the DTW distance.

Exercise 3.8. Let P = (p1, p2, . . . pL) be an arbitrary (N,M)-warping path. Specify
the smallest possible lower bound as well as the largest possible upper bound for the
length L of P in terms of N and M.

Solution to Exercise 3.8. Because of the boundary condition (3.16) and the step size
condition (3.18), each element of the first sequence must be assigned to an element
of the second sequence, which implies L≥N. Similarly, each element of the second
sequence must be assigned to an element of the first sequence, which implies L≥M.
This proves

max(N,M)≤ L.

Because of the monotonicity condition (3.17), a warping path must increase in either
the first or the second dimension (or both). This implies

L≤ N +M−1.

The following examples indicate that the specified upper and lower bounds may be
assumed by warping paths, which shows that the bounds are optimal.

1 2 3 4 5 6 7
1
2
3
4
5
6

8 9 1 2 3 4 5 6 7
1
2
3
4
5
6

8 9

Exercise 3.9. In this exercise, we show that there is a large number of theoretically
possible warping paths. Let µ(N,M) be the number of possible (N,M)-warping
paths for some given N and M. Obviously, in the case N = 1 or M = 1, there is
only one possible warping path, i.e., µ(1,M) = µ(N,1) = 1. Show that µ(2,2) = 3,
µ(2,3) = 5, and µ(3,3) = 13. Derive a general recursive formula for µ(N,M) for
N > 1 and M > 1. Compute µ(N,M) for (N,M) ∈ [1 : 6]× [1 : 6].

Solution to Exercise 3.9. Let N > 1 and M > 1. To reach the cell (N,M) by a
warping path, one has three possibilities: either one comes from (N−1,M), or from
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(N,M−1), or from (N−1,M−1). Therefore, µ(N,M) = µ(N−1,M)+µ(N,M−
1)+ µ(N− 1,M− 1) for N > 1 and M > 1. From this, one obtains the following
values µ(N,M) for (N,M) ∈ [1 : 6]× [1 : 6]:




1 11 61 231 681 1683
1 9 41 129 321 681
1 7 25 63 129 231
1 5 13 25 41 61
1 3 5 7 9 11
1 1 1 1 1 1




Exercise 3.10. Let F =R be a feature space and c :F×F →R≥0 a local cost mea-
sure defined by c(x,y) = |x−y| for x,y ∈R. Compute DTW(X ,Y ) for the following
sequences X and Y as well as all optimal warping paths. Also specify the cost matrix
C and the accumulated cost matrix D.

(a) X = (1,7,4,4,6) and Y = (1,2,2,7).
(b) X = (1,2,2,1) and Y = (1,0,0,1).

Solution to Exercise 3.10. The cost matrix C and the accumulated cost matrix D
are as follows:

5 4 4 1

3 2 2 3

3 2 2 3

6 5 5 0

0 1 1 6

1 2 2 7

(a)

17 13 13 9

12 9 9 8

9 7 7 5

6 5 6 2

0 1 2 8

1 2 2 7

C D

0 1 1 0

1 2 2 1

1 2 2 1

0 1 1 0

1 0 0 1

(b)

2 3 4 4

2 3 4 4

1 2 3 3

0 1 2 2

1 0 0 1

C D

6
4

4
7

1

6
4

4
7

1

1
2

2
1

1
2

2
1

For (a), one obtains DTW(X ,Y ) = 9. The only optimal warping is given by
((1,1),(1,2),(1,3),(2,4),(3,4),(4,4),(5,4)). For (b), one obtains DTW(X ,Y ) = 4.
There exist the following seven optimal warping paths:

1.) ((1,1),(2,1),(3,1),(4,1),(4,2),(4,3),(4,4)).
2.) ((1,1),(2,1),(3,1),(4,2),(4,3),(4,4)).
3.) ((1,1),(2,1),(3,2),(4,3),(4,4)).
4.) ((1,1),(2,2),(3,3),(4,4)).
5.) ((1,1),(1,2),(1,3),(1,4),(2,4),(3,4),(4,4)).
6.) ((1,1),(1,2),(1,3),(2,4),(3,4),(4,4)).
7.) ((1,1),(1,2),(2,3),(3,4),(4,4)).

Exercise 3.11. In this excercise, we show that the DTW distance generally does
not satisfy the triangle inequality. Let F := {α,β ,γ} be an abstract feature space
consisting of three different elements. Define a cost measure c : F ×F → {0,1}
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by setting c(x,y) := 1− δxy for x,y ∈ F . In other words, c(x,y) := 0 if x = y and
c(x,y) := 1 if x 6= y for x,y ∈F . Note that c defines a metric on F and, in particular,
satisfies the triangle inequality. Now, consider the three sequences X := (α,γ,γ),
Y := (α,β ,γ), and Z := (α,β ,β ,γ) over F . Compute DTW(X ,Y ), DTW(Y,Z),
and DTW(X ,Z). Furthermore, show that the triangle inequality does not hold in
this example.

Solution to Exercise 3.11. The following figure indicates the cost matrices and
optimal warping paths:

(c)(a) (b)

0

1

X Y X

Y Z Z

γ
γ

α

α β γ

γ
γ

α

γ
β

α

α β β γ α β β γ

This yields DTW(X ,Y ) = 1, DTW(Y,Z) = 0, and DTW(X ,Z) = 2. Furthermore,
one has

DTW(X ,Z) = 2 > 1 = DTW(X ,Y )+DTW(Y,Z),

which shows that the triangle inequality does not hold in this example.

Exercise 3.12. Let F = {α,β ,γ} and c : F ×F → {0,1} be as in Exercise 3.11.
Specify the DTW distances DTW(X ,Y ), DTW(X ,Z), and DTW(Y,Z) for the se-
quences X = (γ,α,β ), Y = (α,α,γ,α), and Z = (α,β ,γ,α,β ,γ). Instead of using
the dynamic programming approach, try to “guess” the DTW distances by specify-
ing suitable warping paths. Then, argue that the specified warping paths are indeed
optimal.

Solution to Exercise 3.12. The following figure specifies warping paths all of which
having a total cost of three:

α α γ α

β
α

γ

β
α

γ

α β γ α β γ α β γ α β γ

α
γ

α
α

We now need to argue that there are no warping paths of lower total cost.
As for X and Y , the boundary condition implies that x1 = γ needs to be aligned

to y1 = α and x3 = β to y4 = α , which already leads to a cost of two. Furthermore,
y3 = γ is either aligned to x1 = γ without cost, but then y2 = α needs also to be
aligned to x1 = γ because of the monotonicity condition, thus resulting in another
cost of one. Or y3 = γ is aligned to x2 or x3, both resulting in a cost of one. Altogether
we have shown that any warping path has at least a total cost of three.

As for X and Z, the boundary condition again implies a cost of two. Furthermore,
z2 = β is either aligned to x3 without cost, which then implies that z3 = γ needs also
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to be aligned to x3. Or z2 = β is aligned to x2 or x3, both being a mismatch resulting
in a cost of one. Again the total cost is at least three.

As for X and Z, the boundary condition implies a cost of one. Since Z contains
β two times and Y does not contain this element at all, this results in an additional
cost of two. Again the total cost is at least three.

Altogether, we have shown that DTW(X ,Y ) = 3, DTW(X ,Z) = 3, and
DTW(Y,Z) = 3.

Exercise 3.13. Extend the accumulated cost matrix D from Section 3.2.1.3 by an
additional row and column indexed by 0. Define D(n,0) := ∞ for n ∈ [1 : N],
D(0,m) := ∞ for m ∈ [1 : M], and D(0,0) := 0. Show that one obtains the origi-
nal accumulated cost matrix when applying the recursion of (3.25) for n ∈ [1 : N]
and m ∈ [1 : M].
[Hint: When computing with the value ∞, we assume that the sum of the value ∞
with a finite value is defined to be ∞. Furthermore, the minimum over a set contain-
ing finite values as well as the value ∞ is defined to be the minimum over the finite
values.]

Solution to Exercise 3.13. Let us first consider the case n = 1 and m = 1. Applying
(3.25), one obtains

D(1,1) = C(1,1)+min{D(0,0),D(0,1),D(1,0)}
= C(1,1)+min{0,∞,∞}
= C(1,1).

Next, for n > 1 and m = 1, one obtains

D(n,1) = C(n,1)+min{D(n−1,0),D(n−1,1),D(n,0)}
= C(n,1)+min{∞,D(n−1,1),∞}
= C(n,1)+D(n−1,1).

From this and D(1,1) = C(1,1), one obtains D(n,1) = ∑n
k=1 C(k,1) for n ∈ [1 : N],

which is (3.23). Similarly, one shows D(1,m) = ∑m
k=1 C(1,k) for m ∈ [1 : M], which

is (3.24). In other words, one obtains the same initialization as for the original ap-
proach. As a consequence, the recursion (3.25) for n ∈ [2 : N] and m ∈ [2 : M] yields
the same values as the original approach.

Exercise 3.14. In this exercise, we consider DTW with the step size condition
Σ = {(2,1),(1,2),(1,1)} (see (3.30)). As in Exercise 3.13, we extend the accu-
mulated cost matrix D, this time by two additional rows and columns indexed
by −1 and 0. Then we set D(1,1) := C(1,1), D(n,−1) := D(n,0) := ∞ for n ∈
[−1 : N], and D(−1,m) := D(0,m) := ∞ for m ∈ [−1 : M]. D is then computed
using the recursion of (3.31) for n ∈ [1 : N] and m ∈ [1 : M]. Specify the cells
(n,m) ∈ [−1 : N]× [−1 : M] for which one obtains D(n,m) = ∞. Furthermore, de-
scribe some meaningful constraints for the lengths N and M in this alignment sce-
nario.
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Solution to Exercise 3.14 . By definition D(1,1) = C(1,1)< ∞. For the cells (n,1)
for n ∈ [2 : N] and (1,m) for m ∈ [2 : M], the recursion (3.31) yields D(n,1) =
D(1,m) = ∞. For general n ∈ [1 : N] and 1 ∈ [1 : M], as illustrated by the follow-
ing figure, one obtains D(n,m) = ∞ if (n/m)≤ 1/2 or (n/m)≥ 2.

∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 2 3 4 5 6 7 8 9

1

2

3

4
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6

10 11

7

12 13-1 0

8

-1

0

n
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As a consequence, when N ≥ 2M or M ≥ 2N, all cells of D have a value of
∞, which reflects the fact that no alignment is possible in this case using the step
size condition Σ = {(2,1),(1,2),(1,1)}. Therefore, in this alignment scenario, one
needs to enforce 1/2 < N/M < 2.

Exercise 3.15. Let F = R be a feature space and c : F ×F → R≥0 a local cost
measure defined by c(x,y) = |x− y| for x,y ∈ R (see Exercise 3.10). Compute
DTW(X ,Y ) for the sequences X = (1,7,4,4,6) and Y = (1,2,2,7) as well as all
optimal warping paths using the step size condition Σ = {(2,1),(1,2),(1,1)} from
(3.30). Also specify the cost matrix C and the accumulated cost matrix D using two
additional rows and columns initialized with ∞ (see Exercise 3.14).

Solution to Exercise 3.15.

5 4 4 1

3 2 2 3

3 2 2 3

6 5 5 0

0 1 1 6

1 2 2 7

∞ ∞ ∞ ∞ 6 5

∞ ∞ ∞ ∞ 4 5

∞ ∞ ∞ 2 7 8

∞ ∞ ∞ 5 5 ∞
∞ ∞ 0 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞

1 2 2 7

C: D:

6
4

4
7

1

6
4

4
7

1

Therefore, DTW(X ,Y ) = 5. The only optimal warping is given by
((1,1),(3,2),(4,3),(5,4)).

Exercise 3.16. In software such as MATLAB, an operation expressed as a matrix
product can often be computed more efficiently than, e.g., using nested loops over
the matrix indices. This motivates the following exercise. Let c : F ×F → R be
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the cosine distance for F = R12 \ {0} (see (3.14)). Given two feature sequences
X = (x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM) over F , let C(n,m) := c(xn,ym) be the
resulting cost matrix for n ∈ [1 : N] and m ∈ [1 : M] (see (3.13)). Show how C can
be computed using matrix products (instead of a nested loop over the indices n and
m to compute the individual entries C(n,m)).

Solution to Exercise 3.16 . Let D = 12 be the dimension of the feature space F .
We construct an (N ×D) matrix X by taking the normalized vectors xn/||xn|| as
columns. Similarly, we construct an (M×D matrix Y by taking the normalized
vectors ym/||ym|| as columns. Let Y> denoted the transposed matrix of Y. Then the
matrix product

X ·Y>

defines an (N×M) matrix. Let 1 be the all-ones matrix of dimension N×M. Then
we obtain

(1−X ·Y>)(n,m) = 1(n,m)−
D

∑
d=1

X(n,d)Y>(d,m)

= 1−
D

∑
d=1

xn(d)
||xn||

ym(d)
||ym||

= 1− 〈xn|ym〉
||xn||||ym||

= C(n,m)

In other words, C = 1−X ·Y>.

Exercise 3.17. Assume that, for two given sequences X = (x1, . . . ,xN) and Y =
(y1, . . . ,yM), there is exactly one optimal (N,M)-warping path denoted by P∗. Fur-
thermore, let R⊆ [1 : N]× [1 : M] be a global constraint region (see Section 3.2.2.3).
Show that the constrained optimal warping path P∗R coincides with P∗ if and only if
P∗ is contained in R.

Solution to Exercise 3.17. If P∗ is not contained in R, then it is clear that P∗R cannot
coincide with P∗. Next, let us assume that P∗ is contained in R. Since cP∗(X ,Y ) has
minimal cost over all possible (N,M)-warping paths in [1 : N]× [1 : M], it must also
have minimal cost over all possible (N,M)-warping paths that lie in the constraint
region R⊆ [1 : N]× [1 : M]. Therefore, P∗R = P∗.

Exercise 3.18. In this exercise, we analyze the multiscale approach to DTW
(MsDTW) as outlined in Section 3.2.2.4. Let X = (x1,x2, . . . ,xN) and Y =
(y1,y2, . . . ,yM) be sequences of length N and M, respectively. For simplicity, we
assume that N = M = 2K for a natural number K ∈ N. Let ADTW(N) = N2 de-
note the number of evaluations of the local cost measure that are required in the
classical DTW algorithm. Furthermore, we assume that we have a coarsening and
downsampling procedure for computing the coarsened sequences X1,X2, . . . ,XK
and Y1,Y2, . . . ,YK , where the sampling rates are successively reduced by factors
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f1 = f2 = . . . = fK = 2. In the subsequent analysis, we neglect the operations re-
quired for the coarsening and downsampling procedure. Let AMsDTW(N) denote the
number of evaluations of the local cost measure that are required in the MsDTW
algorithm. Specify a recursive equation for AMsDTW(N). Derive from this equation
an upper bound for AMsDTW(N).
[Hint: Look at an upper bound for the length of a warping path at level k, 1≤ k≤K.]

Solution to Exercise 3.18. At level k, 1 ≤ k ≤ K, both of the sequences Xk and Yk
have length 2K−k+1. Let Lk be the length of the warping path between Xk and Yk,
then

Lk ≤ 2 ·2K−k+1 = 2K−k+2.

In other words, L1 ≤ 2N, L2 ≤ 2(N/2) = N, and so on. Then the following holds:

AMsDTW (N) = AMsDTW
(

N
2

)
+ f 2

1 ·L2

≤ AMsDTW
(

N
2

)
+4 ·N

= AMsDTW
(

N
22

)
+ f 2

2 ·L3 +4 ·N

≤ AMsDTW
(

N
22

)
+4 ·

(
N
2

)
+4 ·N

≤ . . .

≤ AMsDTW
(

N
2K−1

)
+4 ·

(
N

2K−2

)
. . .+4 ·

(
N
22

)
+4 ·

(
N
2

)
+4 ·N

≤ ADTW (2)+4 ·
(
4+ . . .+2K−2 +2K−1 +2K)

≤ 4 ·
K

∑
k=0

2k

≤ 4 ·2K+1

= 8N

Exercise 3.19. In computer science, the edit distance (sometimes also referred to as
the Levenshtein distance) is a string metric for measuring the difference between
two sequences X = (x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM) over an alphabet F .
The sequences are also often called words, and the elements of the alphabet are
called characters. The edit distance Edit(X ,Y ) between X and Y is defined to be
the minimum number of single-character edits required to change one sequence into
the other. One allows three kinds of single-character edits referred to as insertion
(including an additional character), deletion (omitting a character of a word), and
substitution (replacing a character of a word by another character). Develop an
algorithm based on dynamic programming (as in Table 3.2) that computes the edit
distance between two given sequences X and Y .
[Hint: Define an accumulated cost matrix using (3.22). Let ε denote the empty word
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of length zero. Use this empty word as a recursion start to compute the accumulated
cost matrix. For an example application, see Exercise 3.20.]

Solution to Exercise 3.19. Let X(1 : n) := (x1, . . .xn) denote the prefix of length
n ∈ [0 : N] of X and Y (1 : m) := (y1, . . .ym) the one of length m ∈ [0 : M] of Y . In
the cases n = 0 and m = 0, the prefix consists of the empty word ε . Building upon
(3.22), we define the accumulated cost matrix by setting

D(n,m) := Edit(X(1:n),Y (1:m))

for n∈ [0 : N] and m∈ [0 : M]. By definition, one has Edit(X ,Y ) =D(N,M). Further-
more, one obviously has D(n,0) = n for n ∈ [0 : N] and D(0,m) = m for m ∈ [0 : M].
The remaining values of D can be computed by the following recursion:

D(n,m) = min





D(n−1,m−1)+1−δ (xn,ym)
D(n−1,m)+1
D(n,m−1)+1

for n∈ [1 : N] and m∈ [1 : M], where δ (xn,ym) assumes the value one if xn = ym and
the value zero if xn 6= ym. In this recursion, the first case accounts for a substitution,
the second case for a deletion, and the third case for an insertion. The sequence of
edits that are applied to change one sequence into the other are obtained by applying
a backtracking procedure, similar to the construction of an optimal warping path in
the case of DTW (see Table 3.2).

Exercise 3.20. The edit distance as introduced in Exercise 3.19 finds applications in
biochemistry to compare the primary structures of biological molecules. In this ex-
ercise, we consider the case of deoxyribonucleic acid or DNA, which is a molecule
that encodes the genetic instructions used in the development and functioning of
living organisms. The primary structure of DNA can be specified by a sequence
of simpler units called nucleotides, which are associated to base components re-
ferred to as adenine (A), cytosine (C), guanine (G), and thymine (T). Therefore, the
primary structure of a DNA molecule can be specified by a sequence over the al-
phabet F := Σ := {A,C,G,T}. In evolutionary biology, homology is the similarity
between attributes of organisms (e.g., genes) that results from their shared ancestry.
In genetics, homology is measured by comparing DNA sequences. A high sequence
similarity between two DNA sequences is an indicator for a high probability of
being homologous (e.g., sharing a common ancestor). Typical differences of ho-
mologous sequences caused by mutation are substitutions (e.g., TGAT  GGAT),
insertions (e.g., TGAT  TĊGAT), and deletions (e.g., TGAT  T=GAT). This illus-
trates why the edit distance is suitable for comparing the distance (or similarity) of
DNA sequences.

By applying Exercise 3.19, compute the edit distance, the accumulated cost ma-
trix, as well as the sequence of edits for the two sequences X = TGAT and Y = CGAGT.

Solution to Exercise 3.20. Let ε denote the empty word. Then D is given by the the
following table:
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ε C G A G T

ε 0 1 2 3 4 5
T 1 1 2 3 4 4
G 2 2 1 2 3 4
A 3 3 2 1 2 3
T 4 4 3 2 2 2

Therefore, Edit(X ,Y ) = D(4,5) = 2. As for the edits, there is one optimal sequence
indicated by the bold entries in the table. This information is obtained by backtrack-
ing the minimizing cells starting with (N,M) = (4,5). As a result, X = TGAT is
transformed by replacing the first character (T C) and then inserting a character
(G before the last character): TGAT CGAĠT.

Exercise 3.21. Another problem related to DTW and the edit distance is known
as the longest common subsequence (LCS) problem. Given two sequences X =
(x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM) over an alphabet F , the goal is to find
a longest subsequence common to both sequences. For example, the sequences
X = (b,a,b,c,b) and Y = (a,b,b,c,c,b) over the alphabet F = {a,b,c} have the
longest common subsequence (a,b,c,b). Develop an algorithm based on dynamic
programming (as in Table 3.2) for determining the length LCS(X ,Y ) of a longest
common subsequence of X and Y . Then, determine a longest common subsequence
via backtracking. Finally, apply the algorithm to the two sequences X = (b,a,b,c,b)
and Y = (a,b,b,c,c,b).
[Hint: Define an accumulated similarity matrix as in (3.22). Let ε denote the empty
sequence of length zero. Use this empty sequence as a recursion start for computing
the accumulated similarity matrix.]

Solution to Exercise 3.21. As before, let X(1 : n) := (x1, . . .xn) be the prefix of
length n ∈ [0 : N] of X and Y (1:m) := (y1, . . .ym) the prefix of length m ∈ [0 : M] of
Y . In the cases n = 0 and m = 0, the prefix consists of the empty sequence denoted
by ε . As in (3.22), we define an accumulated similarity matrix by setting

D(n,m) := LCS(X(1:n),Y (1:m))

for n∈ [0 : N] and m∈ [0 : M]. By definition, one has LCS(X ,Y )=D(N,M). Further-
more, one obviously has D(n,0) = 0 for n ∈ [0 : N] and D(0,m) = 0 for m ∈ [0 : M].
The remaining values of D can be computed by the following recursion:

D(n,m) = max





D(n−1,m−1)+δ (xn,ym)
D(n−1,m)
D(n,m−1)

for n ∈ [1 : N] and m ∈ [1 : M], where δ (xn,ym) assumes the value one if xn = ym
and the value zero if xn 6= ym. The longest common subsequence can be obtained by
a backtracking procedure, similar to the construction of an optimal warping path in
the case of DTW (see Table 3.2). In this backtracking, a new common character is
found whenever a diagonal step has been performed.
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As for the example sequences, the accumulated similarity matrix D is given by
the following table:

ε a b b c c b
ε 0 0 0 0 0 0 0
b 0 0 1 1 1 1 1
a 0 1 1 1 1 1 1
b 0 1 2 2 2 2 2
c 0 1 2 2 3 3 3
b 0 1 2 3 3 3 4

The longest common subsequence is indicated by bold values, which have been ob-
tained by performing a diagonal step. Note that, as in this example, the backtracking
may not yield a unique solution. In general, there may be several optimal solutions.





Chapter 4
Music Structure Analysis

Exercise 4.1. Let F = RD be the real vector space of dimension D ∈ N. Typical
similarity measures are based on the Euclidean norm (also referred to as the `2-
norm) defined by

||x||2 :=
(
∑D

i=1 |x(i)|2
)1/2

for a vector x = (x(1),x(2), . . . ,x(D))>. From this norm, one can derive the similar-
ity measures sa,b : F ×F → R for constants a ∈ R and b ∈ N by setting

sa,b(x,y) = a−||x− y||b2

for x,y ∈ F . In the following, we consider the case a = 2 and b = 2. Furthermore,
assume that x and y are normalized with respect to the `2-norm. Show that, in this
case, the measure sa,b is simply twice the inner product 〈x|y〉, which measures the
cosine of the angle between x and y.

Solution to Exercise 4.1. Assuming that x and y are normalized with respect to the
`2-norm, we obtain 1 = ||x||22 = 〈x|x〉 and 1 = ||y||22 = 〈y|y〉. From this, it follows that

||x− y||22 = 〈x− y|x− y〉
= 〈x|x〉−2〈x|y〉+ 〈y|y〉
= 2−2〈x|y〉.

Exercise 4.2. In (4.11), we have introduced a forward smoothing procedure. This
procedure results in a fading out of the paths, in particular when using a large length
parameter. To avoid this fading out, one idea is to additionally apply the averag-
ing filter in backward direction. The final self-similarity matrix is then obtained by
taking the cell-wise maximum over the forward-smoothed and backward-smoothed
matrices. Formalize this procedure by giving a mathematical description. Further-
more, show how the backward smoothing can be realized by forward smoothing
considering the time-reversed feature sequence.
[Hint: To avoid boundary considerations, assume that S is suitably zero-
padded. The effect of the forward–backward smoothing procedure is illustrated by
Figure 4.12d. Another example is shown in Figure 4.15c.]

Solution to Exercise 4.2. Let L be the length parameter. As formalized by (4.11),
forward smoothing is given by

41
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SFor
L (n,m) :=

1
L

L−1

∑̀
=0

S(n+ `,m+ `),

for n,m ∈ [1 : N] assuming that S is suitably zero-padded. Similarly, backward
smoothing is given by

SBack
L (n,m) :=

1
L

L−1

∑̀
=0

S(n− `,m− `).

Combining forward and backward smoothing, the final self-similarity matrix is
given by

SComb
L (n,m) := max

(
SFor

L (n,m),SBack
L (n,m)

)
.

The matrix SBack
L can also be obtained as follows. First revert the feature sequence

X = (x1,x2, . . . ,xN) to obtain XRev = (xN , . . . ,x2,x1). Then compute a self-similarity
matrix SRev from XRev. Apply forward smoothing to SRev to obtain SRev,For

L . Finally,
reverting the matrix SRev,For

L in both directions (horizontally as well as vertically)
one obtains SBack

L .

Exercise 4.3. Let F = RD as in Exercise 4.1 and s : F ×F → R be the similar-
ity measure defined by s(x,y) := |〈x|y〉| for x,y ∈ F (see (4.3)). Show that the
transposition-invariant self-similarity matrix STI (see (4.15)) is symmetric. Is the
transposition index matrix I (see (4.16)) symmetric? Describe the relation between
the matrix I and its transposed matrix I>.

Solution to Exercise 4.3. First note that the inner product is symmetric, which im-
plies s(x,y) = s(y,x) for x,y ∈ F . Furthermore, the inner product is invariant under
cyclic rotations, which implies s(ρ i(x),ρ i(y)) = s(x,y) for i ∈ Z and x,y ∈ F . Now,
let X = (x1, . . . ,xN) be a feature sequence. From the above two properties and (4.14),
it follows that

ρ i(S)(n,m) = s(ρ i(xn),ym)

= s(xn,ρ−i(ym))

= s(ρ−i(ym),xn)

= ρ−i(S)(m,n)

for i ∈ Z and n,m ∈ [1 : N]. In other words, a maximizing index i at coordinate
(n,m) induces a maximizing index −i (or (−i mod 12)) at coordinate (m,n). Using
the definition in (4.15), we obtain
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STI(n,m) = max
i∈[0:11]

ρ i(S)(n,m)

= max
i∈[0:11]

ρ−i(S)(m,n)

= max
i∈[0:11]

ρ i(S)(m,n)

= STI(m,n).

This shows that STI is symmetric. Furthermore, we have seen that

I>(n,m) = I(m,n) = (−I(n,m) mod 12).

In particular, this shows that the transposition index matrix I is in general not sym-
metric.

Exercise 4.4. For computing the matrix SL,Θ in (4.13), a set Θ of relative tempo
differences needs to be specified. Assume that θmin is a lower bound and θmax is an
upper bound for the expected relative tempo differences. For a given number K ∈N,
determine a set

Θ = {θ1 = θmin,θ2, . . . ,θK−1,θK = θmax}
consisting of increasing tempo values that are logarithmically spaced. Write a small
computer program for computing this set for the parameters θmin = 0.66, θmax = 1.5,
and K = 5, as well as for θmin = 0.5, θmax = 2, and K = 7.
[Hint: Convert the tempo bounds θmin and θmax into the log domain by applying
a logarithm. Then, linearly sample the resulting interval using K samples and apply
an exponential function to the samples.]

Solution to Exercise 4.4. The following program (in MATLAB) computes the
tempo values for the paramters θmin = 0.66, θmax = 1.5, and K = 5:

tempoNum = 5; tempoMin = 0.66; tempoMax = 1.5;

logTempoMin = log10(tempoMin);

logTempoMax = log10(tempoMax);

logTempo = linspace(logTempoMin,logTempoMax,tempoNum);

tempo = 10.ˆlogTempo;

From this, one obtains the following result:

Θ = {0.6600,0.8104,0.9950,1.2217,1.5000}.

For the paramters θmin = 0.5, θmax = 2, and K = 7, one obtains

Θ = {0.5000,0.6300,0.7937,1.0000,1.2599,1.5874,2.0000}.

Exercise 4.5. In this exercise, we look at the various thresholding strategies intro-
duced in Section 4.2.2.4. Given the matrix
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S =




1 1 2 2
4 3 4 3
1 1 2 2
5 6 6 5


 ,

compute the matrices that are obtained by applying the following thresholding op-
erations:

(a) Global thresholding using τ = 4
(b) Global thresholding using τ = 4 as in (a) with subsequent linear scaling of the

range [τ,µ] to [0,1] using µ := max{S(n,m) | n,m ∈ [1 : 4]}
(c) Global thresholding with subsequent linear scaling as in (b) and applying the

penalty parameter δ =−1
(d) Relative thresholding using the relative threshold parameter ρ = 0.5
(e) Local thresholding in a column- and rowwise fashion using ρ = 0.5

Solution to Exercise 4.5.
(a) (b) (c) (d) (e)




0 0 0 0
4 0 4 0
0 0 0 0
5 6 6 5







0 0 0 0
0 0 0 0
0 0 0 0

0.5 1 1 0.5







−1 −1 −1 −1
0 −1 0 −1
−1 −1 −1 −1
0.5 1 1 0.5







0 0 0 0
4 3 4 3
0 0 0 0
5 6 6 5







0 0 0 0
4 0 4 0
0 0 0 0
0 6 6 0




Exercise 4.6. Let X = (x1,x2, . . . ,xN) be a sequence and α = [s : t] ⊆ [1 : N] a seg-
ment of length M := |α|. Show that the optimization procedure for computing an
optimal path family over α (as described in Section 4.3.1.2) has a complexity of
O(MN) regarding the memory requirements as well as the running time.

Solution to Exercise 4.6. In the procedure, one needs to compute the submatrix
Sα ∈RN,M , the accumulated score matrix D ∈RN,M+1, and the optimal path family
P∗. Obviously, all these objects can be stored using O(MN) real numbers. The most
expensive part for computing D is the recursion (4.26). Note that the set of prede-
cessors Φ(n,m) contains at most three elements for each cell (n,m). Therefore, to
compute the recursion (4.26), one requires one addition and the maximization over a
set that contains at most three elements for each cell (n,m), n ∈ [2 : N], m ∈ [2 : M].
Altogether this requires O(MN) operations. The compuation of the remaining val-
ues of D (initialization) obviously requires less operations. Finally, the backtracking
procedure for computing P∗ requires a number of operations that is linear in the
total length of P∗—a number that depends linearly on N and M. This proves the
claim.

Exercise 4.7. Let X = (x1, . . . ,xN) be a feature sequence and S the resulting SSM
satisfying the normalization properties (4.18) and (4.19). Let P∗ be an optimal path
family over a given segment α . Show that |α| ≤ σ(P∗) ≤ N. In particular, this
shows that σ(P∗) = N for α = [1 : N].
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Solution to Exercise 4.7. For α = [s : t], let P0 =
(
(s,s),(s+1,s+1), . . . ,(t, t)

)
be

the path over α running along the main diagonal. Let P0 := {P0} be the path familiy
over α consisting of the single path P0. The normalization property (4.19) implies
that σ(P0) = σ(P0) = |α|. This shows that σ(P∗) ≥ σ(P0) = |α| for an optimal
path family P∗ (see (4.24)).

Because of the step size condition Σ = {(2,1),(1,2),(1,1)} used in the proce-
dure (see Section 4.3.1.2), it follows that the total length of any path family is at
most N. From the normalization property (4.18), it follows that σ(P∗)≤ N.

Exercise 4.8. For two given real numbers a,b∈R, the arithmetic mean is defined by
A(a,b) = (a+b)/2, the geometric mean by G(a,b) =

√
ab, and the harmonic mean

by H(a,b) = 2ab/(a+b). Show that H(a,b)≤G(a,b)≤ A(a,b), i.e., the geometric
mean always lies between the harmonic mean and the arithmetic mean. Furthermore,
compute A(a,b), G(a,b), and H(a,b) for the numbers a = 1 and b ∈ {1,2,3,4}.

Solution to Exercise 4.8. For a,b ∈ R, we have (a− b)2 ≥ 0, which implies a2 +
2ab+b2≥ 4ab, and hence (a+b)2/4≥ ab. Taking the square root on both sides, this
implies A(a,b)≥G(a,b). Furthermore, (a+b)2 ≥ 4ab yields ab≥ 4a2b2/(a+b)2.
Again, taking the square root on both sides, this implies G(a,b) ≥ H(a,b). For the
numbers a = 1 and b ∈ {1,2,3,4}, one obtains the following values for A(a,b),
G(a,b), and H(a,b):

a b A(a,b) G(a,b) H(a,b)
1 1 1 1 1
1 2 1.5

√
2≈ 1.41 4/3≈ 1.33

1 3 2
√

3≈ 1.73 1.5
1 4 2.5 2 1.6

Exercise 4.9. (a) Let us consider a piece of music having the musical structure
A1B1B2A2A3, where we assume that corresponding parts are repeated in exactly the
same way. Furthermore, assume that the A-part and B-part segments are completely
unrelated to each other and that a B-part segment has exactly twice the length of
an A-part segment. Sketch an idealized SSM for this piece (as in Figure 4.18). Fur-
thermore, determine the fitness values of the segments corresponding to A1 and B1,
respectively.
(b) Next, consider a piece having the musical structure A1A2A3A4, where the four
parts are repeated with increasing tempo. Assume that A1 lasts 20 seconds, A2 lasts
15 seconds, A3 lasts 10 seconds, and A4 lasts 5 seconds. Again sketch an idealized
SSM and determine the fitness values of the four segments corresponding to the four
parts.

Solution to Exercise 4.9. The following figure shows the idealized SSMs of the
cases (a) and (b):
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A1 B1 A2B2

A1

B1

A2

B2

A3

A3 A1 A2 A4A3

A1

A2

A4

A3

(a) (b)

We assume that the idealized SSMs have the value one on the indicated paths
and otherwise the value zero (similar to Figure 4.18). Then, for the segments in
question, the normalized score coincides with the normalized coverage, thus also
coinciding with the fitness value. As for (a), one obtains γ(α) = 3/7, γ̄(α) = 2/7,
and ϕ(α) = 2/7 for α corresponding to A1. Furthermore, one obtains γ(α) = 4/7,
γ̄(α) = 2/7, and ϕ(α) = 2/7 for α corresponding to B1.

As for (b), one obtains ϕ(α) = 3/5 for α corresponding to A1, ϕ(α) = 7/10 for
α corresponding to A2, ϕ(α) = 4/5 for α corresponding to A3, and ϕ(α) = 9/10
for α corresponding to A4.

Exercise 4.10. Let [1 : N] be a sampled time axis. Show that the number of different
segments α = [s : t] with s, t ∈ [1 : N] and s≤ t is (N +1)N/2.

Solution to Exercise 4.10. There is one segment of length N, two segments of length
N−1, three segments of length N−2, and so on, and finally N segments of length
1. Therefore, altogether, the number of segments is ∑N

n=1 n = (N +1)N/2.

Exercise 4.11. Determine the overall computational complexity of calculating the
fitness scape plot as introduced in Section 4.3.2 for a feature sequence X =
(x1,x2, . . . ,xN) of length N.
[Hint: Use Exercise 4.6 and Exercise 4.10.]

Solution to Exercise 4.11. In Exercise 4.6, we showed that the computational com-
plexity for calculating the fitness of a segment α of length M = |α| is O(MN). To
derive the scape plot, one needs to calculate the fitness of all possible segments. By
Exercise 4.10, there are (N + 1)N/2 segments. Since M ≤ N, this shows that the
overall computation complextity is O(N4).

Exercise 4.12. Given a triangular representation of all segments within [1 : N] as in
Figure 4.19b, visually indicate the following sets of segments:

(a) All segments having a minimal length above a given threshold θ ≥ 0
(b) All segments that contain a given segment α
(c) All segments that are disjoint to a given segment α
(d) All segments that contain the center c(α) of a given segment α

Solution to Exercise 4.12. In the following triangular representations, the relevant
sets of segments are indicated by the colored regions:
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(a) (b) (c) (d)

Exercise 4.13. Sketch the similarity matrix S and the circular time-lag matrix L◦ as
in Figure 4.26c for pieces with the following musical structure:

(a) AB1B2B3, where all segments have the same length
(b) AB1B2, where the A-part and B1-part segments have the same length and the

B2-part segment has twice the length (played with half the tempo of B1)

Solution to Exercise 4.13. The following figure shows the similarity matrix S (left)
and the circular time-lag matrix L◦ (right) for the two cases:
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Exercise 4.14. Sketch the similarity matrix S, the circular time-lag matrix L◦, and
the resulting novelty function ∆Structure for pieces with the following musical struc-
ture (assuming that all segments corresponding to a musical part have the same
length and that the kernel size used for computing the novelty function is much
smaller than this length):

(a) A1A2A3A4

(b) A1B1A2B2

(c) A1B1A2A3

(d) A1A2B1B2
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Solution to Exercise 4.14. The following figure shows the similarity matrix S (top),
the circular time-lag matrix L◦ (middle), and the novelty function ∆Structure (bottom)
for the four cases:
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Exercise 4.15. LetA= {α1,α2, . . . ,αK} be a segment family together with a label-
ing λk ∈ Λ , k ∈ [1 : K]. Let µ(A) :=

⋃K
k=1 αk be the union of all segments. Show

that one may assume µ(A) = [1 : N] by suitably extending the segment family, the
label set Λ , and the labeling.

Solution to Exercise 4.15. Regard each frame n ∈ [1 : N] \ µ(A) as an additional
segment of length 1, which keeps the disjointness condition of a segment family.
Furthermore, extend the label set by introducing for each such frame n an additional
label λn /∈ Λ . Assign to the additional segment corresponding to this frame the la-
bel λn. As an alternative, one may use only one additional label with the meaning
“unannotated” and use this label for all frames λn /∈Λ . However, depending on the
evaluation measure, the two extensions (one with individual labels and one with a
joint label) may lead to different results.

Exercise 4.16. In (4.51), we defined the set I = {(n,m) ∈ [1 : N]× [1 : N] | n < m}
to serve as a set of items for defining the pairwise evaluation measure. Deter-
mine the size of I. Furthermore, let ϕ : [1 : N]→ Λ be a label function, and let
IRef
+ = {(n,m) ∈ I | ϕ(n) = ϕ(m)} be the set of positive items with regard to ϕ .

Derive a general formula for the size of IRef
+ .

[Hint: Note that the size of IRef
+ does not depend on the original order of the frames.

Given a specific label, consider the number of frames assigned to that label. To de-
rive a formula for the size of IRef

+ , one needs to consider all possible labels assumed
by ϕ .]
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Solution to Exercise 4.16. The size of I corresponds to the number of two-element
subsets of [1 : N]. This number is given by

|I|=
(

N
2

)
=

N(N−1)
2

.

Suppose that ϕ assumes K different values, and let λ1, . . . ,λK ∈ Λ be these values.
Furthermore, let Nk := |ϕ−1(λk)| be the number of frames assigned to the label λk,
k ∈ [1 : K]. Then there are

(Nk
2

)
pairs (n,m) ∈ I with ϕ(n) = ϕ(m) = λk. Therefore,

the size of IRef
+ is given by

|IRef
+ |= ∑

k∈[1:K]

(
Nk

2

)
= ∑

k∈[1:K]

Nk(Nk−1)
2

.

Exercise 4.17. In this exercise, we investigate how the pairwise labeling evaluation
behaves with respect to under- and oversegmentation. To this end, let us consider the
following structure annotations of a piece of music (similar to our Brahms example
shown in Figure 4.28):

a a a a b c b c d d e e e e a a b c b c

A1 A2 B1 B2 C A3 B3 B4

G minor G major G minor

(a)

(b)

(c)

Compute the size |I+| for each of the three annotations. Then, assume that (a) is the
reference annotation. Compute the pairwise precision, recall, and F-measure for the
case that (b) is the estimated annotation (“oversegmentation”) and for the case that
(c) is the estimated annotation (“undersegmentation”).
[Hint: Use the results of Exercise 4.16.]

Solution to Exercise 4.17. In this example, we have N = 20. By Exercise 4.16, the
number of positives with respect to annotation (a), (b), and (c) are:

(a) : |I(a)+ | =
(

6
2

)
+

(
8
2

)
+

(
6
2

)
= 15+28+15 = 58,

(b) : |I(b)+ | =
(

6
2

)
+

(
4
2

)
+

(
4
2

)
+

(
2
2

)
+

(
4
2

)
= 15+6+6+1+6 = 34,

(c) : |I(c)+ | =
(

14
2

)
+

(
6
2

)
= 91+15 = 106.

First, let us compare annotation (b) against the reference annotation (a). Since (b) is
a refinement of (a), all positive items with regard to (b), are also positive with regard
to (a). Therefore, #TP = 34, #FP = 0, and #FN = 24. From this, one obtains P = 1,
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R = 34/58 ≈ 0.586, and F ≈ 0.739. Next, let us compare annotation (c) against
the reference annotation (a). Since (c) is a coarsening of (a), all positive items with
regard to (a) are also positive with regard to (c). Therefore, #TP = 58, #FP = 48,
and #FN = 0. From this, one obtains P = 58/106≈ 0.547, R = 1, and F≈ 0.707.

Exercise 4.18. Let [1 : N] be a sampled time axis with N = 50. Furthermore,
let BRef = {7,13,19,28,40,44} be a reference boundary annotation and BEst =
{6,12,21,29,42} be an estimated boundary annotation. Compute the boundary
evaluation measures (precision, recall, F-measure) as in Section 4.5.4 for the tol-
erance parameter τ = 0, τ = 1, and τ = 2, respectively. Why is the case τ = 2
problematic for this example?

Solution to Exercise 4.18. In the case τ = 0, none of the boundaries agree resulting
in P = R = F = 0. In the case τ = 1, one has #TP = 3, #FP = 2 , and #FN = 3, which
yields P= 3/5, R= 1/2, and F= 6/11. In the case τ = 2, one obtains P=R= F= 1.
This case is problematic, since the boundary b = 42 of the estimated annotation
agrees with the two boundaries b = 40 and b = 44 of the reference annotation. Note
that the condition |bk+1−bk|> 2τ of (4.58) is violated for the reference annotation,
where one one obtains |bk+1−bk|= |44−40|= 4 for k = 5 and 2τ = 4 for τ = 2.

Exercise 4.19. Let [1 : N] be a sampled time axis with N = 100. Furthermore,
let ARef = {[16 : 26], [40 : 49], [50 : 60], [75 : 84]} be a reference thumbnail family.
Compute the thumbnail F-measure as introduced in Section 4.5.5 for the following
estimated thumbnail segments:

(a) αEst = [18 : 27]
(b) αEst = [45 : 54]
(c) αEst = [60 : 75]

Solution to Exercise 4.19. First note that the F-measure between two nonoverlap-
ping segments is zero.

(a) The only segment of ARef overlapping with estimated thumbnail segment
αEst = [18 : 27] is α = [16 : 26]. For these two segments, one obtains Pα = 9/10,
Rα = 9/11, and FThumb = Fα = 6/7≈ 0.857.

(b) The estimated thumbnail segment αEst = [45 : 54] overlaps with the two seg-
ments [40 : 49] and [50 : 60] of ARef. For α = [40 : 49], one obtains Pα = 5/10,
Rα = 5/10, and Fα = 1/2. For α = [50 : 60], one obtains Pα = 5/10, Rα = 5/11,
and Fα = 10/21. Therefore, one obtains FThumb = 1/2.

(c) The estimated thumbnail segment αEst = [60 : 75] overlaps with the two seg-
ments [50 : 60] and [75 : 84] in a single frame, respectively. The F-measure will
be higher for the shorter segment α = [75 : 84], from which obtains Pα = 1/16,
Rα = 1/10, and FThumb = Fα = 1/13.



Chapter 5
Chord Recognition C

FG

Exercise 5.1. Determine, for each of the following intervals, the number of semi-
tones and the interval name (as specified in Figure 5.3):

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Solution to Exercise 5.1. The number of semitones is given in brackets []. (a) Per-
fect fourth [5]. (b) Tritone [6]. (c) Major second [2]. (d) Minor seventh [10]. (e) Mi-
nor second [1]. (f) Major sixth [9]. (g) Major third [4]. (h) Major seventh [11].
(i) Perfect octave [12]. (j) Tritone [6].

Exercise 5.2. The complement of an interval is the interval which, when added
to the original interval, spans an octave in total. Specify the complement for each
interval in Figure 5.3. In which way is the tritone interval special?

Solution to Exercise 5.2. One obtains the following pairs of complementary inter-
vals: perfect unison – perfect octave, minor second – major seventh, major second –
minor seventh, minor third – major sixth, major third – minor sixth, perfect fourth –
perfect fifth, tritone – tritone. The tritone interval is special in the way that it is the
only interval that coincides with its complement. It splits the octave in exactly two
halves.

Exercise 5.3. Determine the chord symbol for each of the following chords (similar
to Figure 5.6):

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Solution to Exercise 5.3. (a) G (b) Dm (c) E[ (d) Am (e) B (f) Fm (g) Cm (h) F
(i) A[ (j) Gm

Exercise 5.4. In this exercise, we compare the size of the intervals obtained from
different definitions. First, assuming the twelve-tone equal-tempered scale, deter-
mine the size (given in cents) and frequency ratios for each of the 13 intervals
shown in Figure 5.3. Next, assuming just intonation, determine the size (given in
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cents) and the frequency ratios of the intervals (see Figure 5.3). Finally, compute
the difference of the interval sizes (given in cents) between the just intonation and
the equal-tempered case.
[Hint: Write a small computer program that helps you with the calculations.]

Solution to Exercise 5.4. In the twelve-tone equal-tempered scale, a semitone cor-
responds to 100 cents. Therefore, an interval consisting of ∆ semitones has the size
∆ · 100 cents (see Section 1.3.2). Furthermore, the frequency ratio of an interval
consisting of ∆ semitones is given by 1 : 2∆/12.

The frequency ratios of the intervals with respect to just intonation are speci-
fied in Figure 5.3. Applying (1.4), one obtains the interval sizes given in cents. The
following table yields the results:

Interval name Interval Equal-tempered scale Just intonation Difference
Size (cents) Freq. ratio Size (cents) Freq. ratio (cents)

(Perfect) unison C4–C4 0 1 : 1.0000 0.0 1 : 1 0.0000
Minor second C4–D[4 100 1 : 1.0595 111.7 15 : 16 11.7313
Major second C4–D4 200 1 : 1.1225 203.9 8 : 9 3.9100
Minor third C4–E[4 300 1 : 1.1892 315.6 5 : 6 15.6413
Major third C4–E4 400 1 : 1.2599 386.3 4 : 5 -13.6863
(Perfect) fourth C4–F4 500 1 : 1.3348 498.0 3 : 4 -1.9550
Tritone C4–F]4 600 1 : 1.4142 590.2 32 : 45 -9.7763
(Perfect) fifth C4–G4 700 1 : 1.4983 702.0 2 : 3 1.9550
Minor sixth C4–A[4 800 1 : 1.5874 813.7 5 : 8 13.6863
Major sixth C4–A4 900 1 : 1.6818 884.4 3 : 5 -15.6413
Minor seventh C4–B[4 1000 1 : 1.7818 1017.6 5 : 9 17.5963
Major seventh C4–B4 1100 1 : 1.8877 1088.3 8 : 15 -11.7313
(Perfect) octave C4–C5 1200 1 : 2.0000 1200.0 1 : 2 0.0000

Exercise 5.5. In this exercise, we investigate the dependency between the degree
of consonance of an interval and the coincidence of partials of the two notes un-
deryling the interval. Assuming the twelve-tone equal-tempered scale, we look at
the intervals that are formed by the root note C4 and each of the following seven
notes: C4, E[4, E4, F4, F]4, G4, and C5. Consider for each of these notes the first
eight harmonics. Determine for each of the resulting harmonics the closest musi-
cal note along with the difference (given in cents) between the harmonic’s actual
frequency and the center frequency of the musical note (see also Figure 1.20). For
example, the following table shows these results for the two notes C4 and E[4 (with
the differences being specified in brackets):

1 2 3 4 5 6 7 8

C4 [0] C5 [0] G5 [+2] C6 [0] E6 [-14] G6 [+2] B[6 [-31] C7 [0]

E[4 [0] E[5 [0] B[5 [+2] E[6 [0] G6 [-14] B[6 [+2] D[6 [-31] E[7 [0]
...

...
...

...
...

...
...

...

Then investigate, for each of the seven intervals, which of the harmonics of the two
involved notes coincide (or, to be more precise, are close together with respect to
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frequency). For example, the coincidences of harmonics between the notes of the
interval C4–C4 and the interval C4–E[4 are indicated by frameboxes in the above
table (where the first row represents the interval C4–C4 and the second one the
interval C4–E[4). Note that G6 appears as the sixth harmonic of C4 and as the fifth
harmonic of E[4. However, this coincidence is “tarnished” by the fact that the sixth
harmonic of C4 deviates by +2 cents from the center frequency of G6, whereas the
fifth harmonic of E[4 deviates by −14 cents from G6. Similarly, discuss the results
for the other intervals.

Solution to Exercise 5.5. The following table specifies the first eight harmonics
for each of the seven notes (listed in the first column, corresponding to the first
harmonics). The differences between the harmonics’ frequencies and the respective
notes’ center frequencies are given by Figure 1.20. The values (given in cents) are
specified in brackets following the respective musical notes.

1 2 3 4 5 6 7 8

C4 [0] C5 [0] G5 [+2] C6 [0] E6 [-14] G6 [+2] B[6 [-31] C7 [0]

E[4 [0] E[5 [0] B[5 [+2] E[6 [0] G6 [-14] B[6 [+2] D[6 [-31] E[7 [0]

E4 [0] E5 [0] B5 [+2] E6 [0] G]6 [-14] B6 [+2] D6 [-31] E7 [0]

F4 [0] F5 [0] C5 [+2] F6 [0] A6 [-14] C6 [+2] E[6 [-31] F7 [0]

F]4 [0] F]5 [0] C]5 [+2] F]6 [0] A]6 [-14] C]6 [+2] E6 [-31] F]7 [0]

G4 [0] G5 [0] D5 [+2] G6 [0] B6 [-14] D7 [+2] F7 [-31] G7 [0]

C5 [0] C6 [0] G6 [+2] C7 [0] E7 [-14] G7 [+2] B[7 [-31] C8 [0]

The coincidence of harmonics between the notes of the seven intervals are indi-
cated by frameboxes. Obviously, the (perfect) unison C4–C4 is the most consonant
interval, where all eight harmonics of both notes agree. Next, the (perfect) octave
C4–C5 is highly consonant, where the harmonics of C5 are also harmonics of C4.
The (perfect) fifth C4–G4 is consonant. For example, the note G5 appears as the
third harmonic of C4 and as the second harmonic of G4. Similarly, G6 appears as
the sixth harmonic of C4 and as the fourth harmonic of G4.

As a typical dissonant interval, let us consider the tritone C4–F]4. For this inter-
val, there is hardly any overlap in the harmonics. The only note appearing in the first
eight harmonics of C4 and F]4 is the note E6, which appears as the fifth harmonic
of C4 and as the seventh harmonic of F]4. However, this relation is “tarnished” by
the fact that the fifth harmonic of C4 deviates by −14 cents from E6, whereas the
seventh harmonic of F]4 deviates by−31 from E6. Therefore, despite coinciding on
the note level, these two harmonics do not really agree on the frequency level.

Exercise 5.6. In Figure 5.20b, one can observe many misclassifications and chord
label changes in the recognition result. Explain why these errors only occur in the
second and third measure, while the first and fourth measure have been classified
correctly.
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Solution to Exercise 5.6. As explained in Section 5.2.3.4, the misclassifications and
chord label changes are the result of using short analyis frames (200 ms), which are
dominated by the sound of only one or two notes. Now, the first and fourth measures
are labeled as C. Also, the first note of each broken chord in these measures is a C,
the root of C. These notes are held throughout the duration of the respective broken
chord. Recall from Section 5.2.3.2 that the harmonics of the single note C already
produce a chroma pattern close to C. This yields an explanation of why the broken
chords in the first and fourth measure have been correctly labeled as C, even for
frames where not all notes of the chord have been active. As for the second and
third measures, the situation is different. In these measures, the first notes do not
coincide with the root notes of the corresponding chords. For example, in the second
measure, the first note is a C, whereas the chord is Dm. In the third measure, the
first note is a B, whereas the chord is G. This leads to local misclassifications.

Exercise 5.7. Let Λ be the set of the major and minor triads (see (5.5)). Further-
more, for a given chord λ ∈ Λ , let th

λ be the chord template with harmonics based
on the first eight harmonics (see (5.13) and (5.14)). Compute th

λ for λ = C and
λ = Cm, respectively, using the parameter α = 1.

Solution to Exercise 5.7. The major triad λ = C consists of three notes belonging
to the pitch classes C, E, and G. For each of these pitch classes, the following table
specifies the template with harmonics according to (5.13) using the parameter α = 1
as well as the chord template th

C = th
C + th

E + th
G according to (5.14):

C C] D D] E F F] G G] A A] B
th
C 4 0 0 0 1 0 0 2 0 0 1 0

th
E 0 0 1 0 4 0 0 0 1 0 0 2

th
G 0 0 2 0 0 1 0 4 0 0 0 1

th
C 4 0 3 0 5 1 0 6 1 0 1 3

The minor triad λ = Cm consists of three notes belonging to the pitch classes C,
E[, and G (where we identify E[ with D] due to enharmonic equivalence). Similar
to the major case, the following table shows the result for the chord template th

Cm =
th
C + th

E[ + th
G:

C C] D D] E F F] G G] A A] B
th
C 4 0 0 0 1 0 0 2 0 0 1 0

th
E[ 0 1 0 4 0 0 0 1 0 0 2 0
th
G 0 0 2 0 0 1 0 4 0 0 0 1

th
Cm 4 1 2 4 1 1 0 7 0 0 3 1

Exercise 5.8. In this exercise, we extend the chord template model as defined by
(5.13) and (5.14) by introducing some additional weight parameters. For the C-
major chord λ = C, we define the template

th,w
C = w1 · th

C +w2 · th
E +w3 · th

G
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for w = (w1,w2,w3)
> ∈ R3. Similarly, using the same weights, we define the chord

templates th,w
λ for the other major and minor chords λ ∈ Λ (see (5.5)). We now

compare these new chord templates with the original binary templates tλ (see (5.7))
using the similarity measure s as defined in (5.8). Write a small computer program
to compute the similarity values s(th,w

C , tλ ) and s(th,w
Cm, tλ ) for all 24 major and minor

chords λ ∈Λ using the following parameters:

(a) α = 0 and w = (1,1,1)
(b) α = 1 and w = (1,1,1)
(c) α = 0 and w = (1,0.2,1)
(d) α = 1 and w = (1,0.2,1)

In which case is there a confusion between the C-major and C-minor chord? Explain
the reason for this confusion in words.

Solution to Exercise 5.8. The following table shows the distances s(th,w
C , tλ ) as well

as s(th,w
Cm, tλ ) for λ ∈ Λ based on the four different settings (a) to (d) used for the

computation of th,w
λ :

(a) (b) (c) (d)
C Cm C Cm C Cm C Cm

Bm 0 0 0.3499 0.1750 0 0 0.2596 0.2164
A]m 0 0 0.1166 0.2916 0 0 0.1442 0.1875
Am 0.6667 0.3333 0.5249 0.2916 0.4851 0.4042 0.4183 0.3606
G]m 0 0.3333 0.2333 0.2916 0 0.0808 0.1154 0.1298
Gm 0.3333 0.3333 0.5832 0.6999 0.4042 0.4042 0.6635 0.6924
F]m 0 0 0 0.0583 0 0 0 0.0144
Fm 0.3333 0.3333 0.3499 0.2916 0.4042 0.4042 0.3750 0.3606
Em 0.6667 0.3333 0.8165 0.5249 0.4851 0.4042 0.6635 0.5914
D]m 0 0.3333 0.0583 0.4082 0 0.0808 0.0721 0.1587
Dm 0 0 0.2333 0.1750 0 0 0.2308 0.2164
C]m 0.3333 0 0.3499 0.1166 0.0808 0 0.1442 0.0865
Cm 0.6667 1.0000 0.5832 0.8748 0.8085 0.8893 0.7212 0.7934
B 0 0.3333 0.1750 0.2916 0 0.0808 0.1010 0.1298
A] 0 0 0.2916 0.3499 0 0 0.3029 0.3173
A 0.3333 0 0.2916 0.1166 0.0808 0 0.1298 0.0865
G] 0.3333 0.6667 0.2916 0.4666 0.4042 0.4851 0.3029 0.3462
G 0.3333 0.3333 0.6999 0.5832 0.4042 0.4042 0.6924 0.6635
F] 0 0 0.0583 0.2333 0 0 0.0721 0.1154
F 0.3333 0.3333 0.2916 0.2916 0.4042 0.4042 0.3606 0.3606
E 0.3333 0 0.5249 0.1166 0.0808 0 0.2452 0.1442
D] 0.3333 0.6667 0.4082 0.8165 0.4042 0.4851 0.5049 0.6058
D 0 0 0.1750 0.1166 0 0 0.1587 0.1442
C] 0 0 0.1166 0.1166 0 0 0.0865 0.0865
C 1.0000 0.6667 0.8748 0.6999 0.8893 0.8085 0.8511 0.8078

The only major-minor confusion occurs in the case (d) for the chroma pattern of
th,w
Cm. In this case, the similarity value s(th,w

Cm, tCm) = 0.7934 is smaller than the value
s(th,w

Cm, tC) = 0.8078. The reason is that the minor third E[ has been weighted by
the relatively small factor of w2 = 0.2, which leads to a small value in the chroma
band E[ in th,w

Cm. On the other side, the chroma band E in th,w
Cm has a relatively large
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value because E appears as a harmonic partial of the tonic C, which is weighted by
w1 = 1. Altogether, this explains the confusion.

Exercise 5.9. Let us consider a Markov chain with I states {α1,α2, . . . ,αI} and tran-
sition probability coefficients ai j, i, j ∈ [1 : I] (see (5.20)). The goal of this excercise
is to determine how long the resulting system stays (on average) in a given state.
To this end, consider an observation sequence S = (αi, . . . ,αi,α j) of length d + 1
consisting of d states αi for some i ∈ [1 : I] and a final state α j for some j 6= i.
Compute the probability Pi(d) := P[S |Model,s1 = αi], where the condition s1 = αi
means that the system is assumed to start with state αi. From this, compute the
expected duration di for state i, which is defined by di := ∑∞

d=1 d ·Pi(d). Finally, de-
termine the expected durations for the states α1, α2, and α3 of the system specified
in Figure 5.24.
[Hint: Use the fact that ∑∞

d=1 d ·ad−1 = 1/(1−a)2 for a number a ∈ [0,1).]

Solution to Exercise 5.9. For the probability Pi(d) one has

Pi(d) = (aii)
d−1 · (1−aii).

From this, one obtains the following formula for the expected duration:

di :=
∞

∑
d=1

d ·Pi(d) = (1−aii)
∞

∑
d=1

d · (aii)
d−1 =

1−aii

(1−aii)2 =
1

1−aii
.

For the system specified in Figure 5.24, one obtains d1 = 1/(1− 0.8) = 5, d2 =
1/(1−0.7)≈ 3.33 and d3 = 1/(1−0.6) = 2.5.

Exercise 5.10. Let us consider the HMM as specified in Figure 5.28a. Com-
pute the optimal state sequence and its probability for the observation sequence
O = (β1,β3,β1,β3,β3), which is a prefix of the observation sequence used in
Figure 5.28b. Compare the result with the one obtained in Figure 5.28b.

Solution to Exercise 5.10. The matrices D and E are the same as in Figure 5.28b
except for deleting the last column, respectively. The probability of the optimal
state sequence is Prob∗ = 0.0033 (rounded up to four decimal points) with i5 = 1
being the maximizing argument. Starting with this index, backtracking yields the
index sequence (1,1,1,1,1) corresponding to the optimal state sequence S∗ =
(α1,α1,α1,α1,α1). Note that this is not simply the prefix of the optimal state se-
quence in (5.45), even though this holds for the observation sequence.

Exercise 5.11. Let us consider the HMM as specified in Figure 5.28a. Determine
the optimal state sequence for the observation sequence O = (β1,β N−1

3 ) for each
N ∈ N. Argue why the respective state sequence is optimal.

Solution to Exercise 5.11. One has the following optimal state sequences:

• N = 1: S∗ = (α1)
• N = 2: S∗ = (α1,α1)
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• N = 3: S∗ = (α1,α1,α1)
• N = 4: S∗ = (α1,α3,α3,α3)
• N > 4: S∗ = (α1,αN−1

3 )

For N ∈ 1,2,3,4, the optimality follows by applying the Viterbi algorithm from
Table 5.2, which yields the following matrices D and E:

D o1= β1

α1 0.4200
α2 0.0200 
α3 0

E
α1

α2

α3

D o1= β1 o2= β3

α1 0.4200 0.1008 
α2 0.0200 0
α3 0 0.0336

E o1= β1

α1 1
α2 1
α3 1

D o1= β1 o2= β3 o3= β3

α1 0.4200 0.1008 0.0242 
α2 0.0200 0 0
α3 0 0.0336 0.0161 

E o1= β1 o2= β3

α1 1 1
α2 1 1
α3 1 3

D o1= β1 o2= β3 o3= β3 o4= β3

α1 0.4200 0.1008 0.0242 0.0058
α2 0.0200 0 0 0
α3 0 0.0336 0.0161 0.0077

E o1= β1 o2= β3 o3= β3

α1 1 1 1
α2 1 1 3
α3 1 3 3

i4 = 3

i3 = 1

i2 = 1

i1 = 1

For N = 4, the optimal state sequence ends with state α3. This state yields a higher
emission probability for the observation symbol β3 than the other two states α1
and α2. Furthermore, staying in state α3 yields a higher transition probability than
changing to one of the other states α1 or α2. In other words, the joint probability
of staying in state α3 and emitting β3 is higher than changing to another state and
emitting β3. Since the optimal state sequence is S∗ = (α1,α3,α3,α3) for N = 4, it
follows that the optimal state sequence is S∗ = (α1,αN−1

3 ) for the case N > 4.





Chapter 6
Tempo and Beat Tracking

Exercise 6.1. Let x : Z→R be a signal with the nonzero samples (x(0), . . . ,x(6)) =
(0.1,−0.1,0.1,0.9,0.7,0.1,−0.3) (all other samples being zero). Furthermore, let
w : Z→ R be a rectangular window function with nonzero coefficients w(−1) =
w(0) = w(1) = 1 (i.e., M = 1; see Section 6.1.1). Compute all nonzero coefficients
of the energy-based novelty function ∆Energy : Z→ R as defined in (6.3).

Solution to Exercise 6.1. The following table specifies relevant values for the signal
x, the squared signal |x|2, the local energy Ex

w (see (6.1)), and the energy-based nov-
elty function ∆Energy (see (6.3)). For each function, only the values for n ∈ [−2 : 8]
are given (all other values being zero).

n −2 −1 0 1 2 3 4 5 6 7 8
x(n) 0.0 0.0 0.1 −0.1 0.1 0.9 0.7 0.1 −0.3 0.0 0.0
|x|2(n) 0.00 0.00 0.01 0.01 0.01 0.81 0.49 0.01 0.09 0.00 0.00
Ex

w(n) 0.00 0.01 0.02 0.03 0.83 1.31 1.31 0.59 0.10 0.09 0.00
∆Energy(n) 0.01 0.01 0.01 0.80 0.48 0.00 0.00 0.00 0.00 0.00 0.00

Exercise 6.2. Let x : Z→ R be a discrete signal. Furthermore, let w : Z→ R be a
rectangular window function of length 2M+1 centered at time zero, i.e., w(m) = 1
for m ∈ [−M : M] and w(m) = 0 otherwise. Then the local energy Ex

w (see (6.1)) is
given by

Ex
w(n) :=

M

∑
m=−M

x(n+m)2

for n ∈ Z. In the following, an operation refers to a multiplication, an addition, or
a subtraction of two real-valued samples. Determine the overall number of opera-
tions that are required to compute Ex

w(n) for n ∈ [0 : N−1] using a naive approach.
Then, describe an improved procedure that reduces the overall number of required
operations. How many operations are needed by your procedure?

Solution to Exercise 6.2. Using a naive approach, one needs 2M + 1 multiplica-
tions and 2M additions for each n ∈ [0 : N−1]. Overall, this amounts to (2M+1)N
multiplications and 2MN additions, thus 4MN +N operations in total. First of all,
to improve the naive approach, one can precompute and store the values x(n)2 for
n ∈ [−M : M+N−1], which requires 2M+N multiplications. Then, one can com-
pute Ex

w(0) using 2M additions. Now, the trick is to derive Ex
w(1) from Ex

w(0) by
using only one additional subtraction and addition:

Ex
w(1) = Ex

w(0)− x(−M)2 + x(1+M)2.

59
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More generally, one can recursively proceed to compute Ex
w(n) from Ex

w(n−1) by

Ex
w(n) = Ex

w(n−1)− x(n−1−M)2 + x(n+M)2

for n = 1, . . . ,N− 1, each time using only one subtraction and one addition. Thus,
the overall procedure requires 2M+N+2M+2(N−1) = 3N+4M−2 operations.

Exercise 6.3. Let Y be an (N×(K+1)) matrix with coefficients Y(n,k) indexed by
n∈ [0 : N−1] and k ∈ [0 : K]. In the following, we consider the matrix Y defined by

Y> =




0 0.1 0.1 0 0.2 0.1
0 0 0.1 0.1 0.2 0.1
0 0.8 0.7 0.5 0.6 0.4
0 0 0 0 0.8 0.7
0 0 0 0.1 0 0



,

where N = 6 and K = 4. (Note that the transposed matrix has been specified.) In-
terpreting this matrix as a magnitude spectrogram, compute the novelty function
∆Spectral as defined in (6.6). Furthermore, compute the local average function µ us-
ing M = 1 (see (6.7)) and the enhanced novelty function ∆̄Spectral (see (6.8)).

Solution to Exercise 6.3. We first compute the values |Y(n+1,k)−Y(n,k)|≥0 for
n∈ [0 : N−2] and k∈ [0 : K] as in (6.6) yielding an ((N−1)×(K+1)) matrix YDiff.
This matrix is given by

(YDiff)
> =




0.1 0 0 0.2 0
0 0.1 0 0.1 0

0.8 0 0 0.1 0
0 0 0 0.8 0
0 0 0.1 0 0




From this one obtains the following values for ∆Spectral, µ , and ∆̄Spectral (using a
suitable zeropadding for YDiff). For each function, only the values for n ∈ [−1 : 5]
are given (all other values being zero).

n −1 0 1 2 3 4 5
∆Spectral(n) 0 0.9 0.1 0.1 1.2 0 0

µ(n) 0.300 0.333 0.367 0.467 0.433 0.400 0
∆̄Spectral(n) 0 0.567 0 0 0.767 0 0

Exercise 6.4. Realize a bandwise approach for spectral-based novelty detection as
outlined at the end of Section 6.1.2. More concretely, let x denote the given music
signal sampled at a rate of Fs = 22050 Hz and Y the resulting (possibly compressed)
magnitude spectrogram (as in (6.5)) using an STFT window length of N = 4096 and
a hop size of H = N/2. In a first step, divide the frequency range into bands with the
first band covering 0–500 Hz, the second 500–1000 Hz, the third 1000–2000 Hz,
the fourth 2000–4000 Hz, and the fifth band 4000–11025 Hz. Determine for each of
the bands the set of spectral coefficients (similar to (3.3)). Then, compute a novelty
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function for each of the bands separately (similar to (6.6)). Finally, compute a single
overall novelty function by considering a weighted sum over the bandwise novelty
functions using the weighting factor w` ∈ R>0 for the `th band, ` ∈ [1 : 5]. Give a
formal description of this procedure by specifying the mathematical details.

Solution to Exercise 6.4. Recall from (2.28) that Fcoef(k)= (k ·Fs)/N is the physical
frequency associated with index k of the STFT coefficient X (n,k), where k ∈ [0 : K]
and K = 2048. (Recall that K = N/2 corresponds to the Nyquist frequency.) Let
F low

band(`) be the lower and Fup
band(`) be the upper frequency bound (given in Hertz) for

the `th frequency band, `∈ [1 : 5]. Similar to (3.3), we define for each band `∈ [1 : 5]
the set

P(`) := {k ∈ [1 : K] : F low
band(`)≤ Fcoef(k)< Fup

band(`)}.
Given the parameters Fs = 22050 Hz and N = 4096, we obtain the following sets:

P(1) = {0, . . . ,92},
P(2) = {93, . . . ,185},
P(3) = {186, . . . ,371},
P(4) = {372, . . . ,743},
P(5) = {744, . . . ,2048}.

From this, we compute for each band a novelty function ∆ `
Spectral by setting

∆ `
Spectral(n) := ∑

k∈P(`)
|Y(n+1,k)−Y(n,k)|≥0

for n ∈ Z. Finally, the overall novelty function ∆ Overall
Spectral is defined by

∆ Overall
Spectral(n) := ∑

`∈[1:5]
w` ·∆ `

Spectral(n).

Exercise 6.5. In this exercise, we consider the novelty functions corresponding to
the click tracks shown in the following figure:
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0

(a) (b) (c)

For each of these novelty functions, sketch the Fourier tempogram (see
Section 6.2.2) in the tempo range between 20 and 250 BPM. In particular, specify
the tempo parameters for which one expects large tempogram coefficients. What
is the smallest such parameter (corresponding to the lowest relevant tempo) for
each case? Finally, for each of the three novelty functions, indicate visually (as
in Figure 6.13) the correlation with the analyzing sinusoid corresponding to this
smallest, yet relevant tempo.
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Solution to Exercise 6.5.
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For the novelty function shown in (a), the only relevant tempo parameters in the
range considered correspond to τ = 120 BPM and τ = 240 BPM. The sinusoid
shown corresponds to τ = 120 BPM.

In case (b), every second click of the click track has a lower amplitude. There-
fore, correlating the novelty function with a sinusoid that corresponds to tempo
τ = 60 BPM (half the tempo of τ = 120 BPM) yields a positive coefficient (see
also the sinusoid shown in red). This leads to large tempo coefficients for the tempo
τ = 60 BPM. However, the size of these coefficients is smaller than the one for the
coefficients for the tempo τ = 120 BPM. Furthermore, there are coefficients at the
tempo harmonics τ = 180 BPM and τ = 240 BPM.

For the novelty function shown in (c), the lowest, yet relevant tempo is τ =
40 BPM (see also the sinusoid shown in red), which is one third of the tempo of
τ = 120 BPM. Furthermore, one may expect relevant coefficients at the harmonics
of this tempo value.

Exercise 6.6. Let x ∈ `2(Z) be a real-valued discrete-time signal. Furthermore, let
Rxx be the autocorrelation of x, which is given by Rxx(`) = ∑n∈Z x(n)x(n− `) for
each lag parameter ` ∈ Z (see (6.27)). Show that Rxx(0) = E(x) (see (2.41)) and
|Rxx(`)| ≤ Rxx(0). Furthermore, show that Rxx is symmetric, i.e., Rxx(`) = Rxx(−`).
[Hint: Use the Cauchy–Schwarz inequality |〈x|y〉| ≤ ||x||||y|| from (2.40), which
holds for any x,y ∈ `2(Z).]

Solution to Exercise 6.6. By definition, one obtains

Rxx(0) = ∑
n∈Z

x(n)x(n) = ∑
n∈Z
|x(n)|2 = E(x).

For a given ` ∈ Z, define the signal y by setting y(n) := x(n− `), n ∈ Z. Then,
Rxx(`) = 〈x|y〉 and ||y||= ||x||. Furthermore, by the Cauchy–Schwarz inequality, one
obtains

|Rxx(`)|= |〈x|y〉| ≤ ||x||||y||= ||x||2 = Rxx(0).

Finally, the symmetry follows from

Rxx(`) = ∑
n∈Z

x(n)x(n− `) = ∑
n∈Z

x(n+ `)x(n+ `− `) = ∑
n∈Z

x(n)x(n+ `) = Rxx(−`),
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where we have exploited the fact that one can apply an index shift when summing
over the integers.

Exercise 6.7. Let x : Z→ R be a real-valued signal. Assume that the support of
x lies in the interval [−M : M] for some M ∈ N. Let Rxx be the autocorrelation as
defined in (6.27). Show that Rxx(`) = 0 for |`| ≥ 2M+1. Furthermore, show that at
most 2M+1−|`| of the summands in (6.29) are nonzero.

Solution to Exercise 6.7. As for the number of summands, note that in the sum
of Rxx(`) = ∑m∈Z x(m)x(m− `), the first factor x(m) is possibly nonzero only for
m ∈ [−M : M] and the second factor x(m− `) is possibly nonzero only for m ∈
[−M+ ` : M+ `]. For `≥ 0, one obtains

[−M : M]∩ [−M+ ` : M+ `] = [−M+ ` : M].

Note that [−M+ ` : M] = /0 for `≥ 2M+1. For `≤ 0, one obtains

[−M : M]∩ [−M+ ` : M+ `] = [−M : M+ `].

Note that [−M : M+ `] = /0 for ` ≤ −(2M + 1). This implies that the number of
nonzero summands is at most

∣∣[−M : M]∩ [−M+ ` : M+ `]
∣∣= max(2M+1−|`|,0).

In particular, the number of nonzero summands is zero in the case that |`| ≥ 2M+1.
This shows that Rxx(`) = 0 for |`| ≥ 2M+1.

Exercise 6.8. Let ∆ : Z→ R be a novelty function with a feature rate of 10 Hz.
Furthermore, let T A be the autocorrelation tempogram derived from ∆ (see (6.31)).
What is the maximal tempo that is captured by T A?

Solution to Exercise 6.8. Having a feature rate of 10 Hz, each time frame of the
resulting time-lag representation corresponds to r = 0.1 sec. Let τmax denote the
maximal tempo that is captured by T A. This tempo corresponds to time lag ` = 1
(given in frames). By (6.30), one obtains

τmax =
60
r · ` = 600 BPM.

Exercise 6.9. In this exercise, we consider a discrete cyclic tempogram representa-
tion Cτ0 using a reference tempo τ0 = 60 BPM (see (6.35)). For computing Cτ0 , we
use four tempo octaves ranging from τ = 30 to τ = 480 BPM, where each octave
is logarithmically sampled using M ∈ N tempo parameters. Specify a formula for
the tempo values that are needed to compute Cτ0 . Furthermore, using M = 10, deter-
mine the eleven tempo values between τ = 60 and τ = 120 BPM. Next, assume that
Cτ0 is derived from an autocorrelation tempogram based on a feature rate of 10 Hz.
Determine the lag parameters corresponding to the eleven computed tempo values.
Which problems arise? Make suggestions to alleviate these problems.
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Solution to Exercise 6.9. The four tempo octaves starting with 30 BPM can be
logarithmically sampled with M ∈ N parameters per octave via

2m/M ·30 BPM

for m = [0 : 4M]. Thus, using M = 10, one obtains the following eleven (rounded)
tempo values (given in BPM) for m ∈ [10 : 20]:

60.0, 64.3, 68.9, 73.9, 79.2, 84.9, 90.9, 97.5, 104.5, 112.0, 120.0.

Having a feature rate of 10 Hz, each time frame of the resulting time-lag representa-
tion corresponds to r = 0.1 sec. From (6.30), one obtains the formula `= 60/(r · τ)
for a given tempo value τ . This yields the following eleven lag values:

10.0, 9.3, 8.7, 8.1, 7.6, 7.1, 6.6, 6.2, 5.7, 5.3, 5.0.

Since a lag parameter is an integer, these values need to be further quantized or
rounded. This leads to inaccuracies in the tempo values to be considered. In par-
ticular, for small lags (high tempi), the resolution becomes poor. To alleviate this
problem, one may increase the feature rate of the novelty function. This not only
increases the feature rate of the resulting autocorrelation tempogram, but also the
resolution of the lag axis.

Exercise 6.10. For a given parameter N ∈N, let BN be the space of all possible beat
sequences within the interval [1 : N] (see Section 6.3.2). Determine the number |BN |.
Furthermore, given a length parameter L ∈ [0 : N], determine the number of beat
sequences of length L. Finally, let BN

n ⊂ BN denote the subset of all beat sequences
that end in n ∈ [0 : N] (where the case n = 0 refers to the empty beat sequence).
Determine the number |BN

n |. Finally, show that BN = ∪n∈[0:N]BN
n (see (6.44)).

Solution to Exercise 6.10. The beat sequences in [1 : N] correspond to subsets of
[1 : N]. Therefore, the number of beat sequences equals the number of possible sub-
sets of [1 : N], which is 2N . Similarly, the number of beat sequences of length L
corresponds to the number of subsets of [1 : N] having size L. This number is

(N
L

)
.

Note that ∑N
L=0
(N

L

)
= 2N .

The beat sequence ending with n = 0 is, by definition, the empty beat sequence.
Next, the beat sequences ending in some n ∈ [1 : N] are in a one-to-one correspon-
dence to subsets of [1 : n−1]. Therefore, |BN

n | = 2n−1. Obviously, a beat sequence
(b1, . . . ,bL)∈BN is contained in BN

n with n = bL. This shows that BN =∪n∈[0:N]BN
n .

Note that the sets BN
n are pairwise disjoint, i.e., BN

n ∩BN
m = /0 for n,m ∈ [0 : N] with

n 6= m. This is also reflected by the fact that

N

∑
n=0
|BN

n |= 1+
N

∑
n=1

2n−1 = 1+2N−1 = 2N .
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Exercise 6.11. Given a novelty function ∆ : [1 : N] → R, analyze the computa-
tional complexity of the beat tracking procedure described in Section 6.3.2 (see also
Table 6.1) in terms of memory requirements as well as in terms of the number of
required operations. Assume that an operation is an addition, a multiplication, an
evaluation of Pδ̂ , or a maximization (where maximization over a set of M ∈ N ele-
ments counts as M operations).

Solution to Exercise 6.11. As for the memory requirements, one essentially needs
to store the novelty function ∆ , the accumulated score values D, the predecessor
information P, and the beat sequence B∗. This requires O(N).

The number of operations is dominated by the recursion (6.47), which is applied
for n = 1, . . . ,N. In the nth step, one needs to maximize over a set consisting of n−1
elements and perform n additions, n−1 multiplications, and n−1 evaluations of Pδ̂ .
This leads to an overall number of operations on the order of O(∑N

n=1 n) = O(N2).

Exercise 6.12. Apply the beat tracking procedure described in Section 6.3.2 (see
also Table 6.1) to the novelty function ∆ : [1 : N]→ R with N = 11 given by the
following values:

n 1 2 3 4 5 6 7 8 9 10 11
∆(n) 0.1 0.0 1.0 0.0 1.0 0.8 0.0 0.2 0.4 1.0 0.0

For the computations, use the weight parameter λ = 1 and the following values for
the penalty function Pδ̂ which favors the beat period δ̂ = 3 (note that, for the sake
of simplicity, these values are not obtained from (6.40)):

n 1 2 3 4 5 6 7 8 9 10 11
Pδ̂ (n) −2 −0.2 1.0 0.5 −0.1 −1 −1.5 −3 −5 −8 −12

Compute the accumulated score values D(n) and the predecessors P(n) for n ∈
[1 : N]. Furthermore, derive the optimal beat sequence B∗.

Solution to Exercise 6.12. Applying the recursion (6.48), one obtains the following
values:

n 1 2 3 4 5 6 7 8 9 10 11
∆(n) 0.1 0.0 1.0 0.0 1.0 0.8 0.0 0.2 0.4 1.0 0.0
D(n) 0.1 0.0 1.0 1.1 2.0 2.8 2.1 3.2 4.2 4.3 4.2
P(n) 0 0 0 1 2 3 4 5 6 6 8

The maximizing index for D is n∗ = 10, which determines the last beat bL of the
optimal beat sequences. Backtracking through P yields P(10) = 6, P(6) = 3, and
P(3) = 0. This yields B∗ = (b1,b2,b3) = (3,6,10) and L = 3.

Exercise 6.13. The penalty function Pδ̂ defined in (6.40) (see also Figure 6.21) de-
creases rapidly with larger deviations from the ideal beat period δ̂ . Therefore, it
becomes unlikely that the predecessor m of some beat position n lies far from the
position n− δ̂ . This observation can be used to achieve significant savings by re-
stricting the search space m ∈ [1 : n−1] in the maximization (6.47). For example,
assuming that the next beat to be estimated has at least the distance δ̂/2 and at
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most the distance 2δ̂ from its predecessor beat, one may replace the search space
m∈ [1 : n−1] by the constrained search space m∈ [1 : n−1]∩ [n−2δ̂ ,n− δ̂/2]. An-
alyze the computational complexity of the modified procedure (as in Exercise 6.11).
Compare the result with the original procedure.

Solution to Exercise 6.13. As in the original approach, the number of operations
is dominated by the recursion (6.47), which is applied for n = 1, . . . ,N. Now, in the
nth step of the constrained procedure, one considers [1 : n−1]∩ [n− 2δ̂ ,n− δ̂/2]
instead of [1 : n−1]. Thus, in each step, the number of required operations is at
most linear in the size of the interval [n− 2δ̂ ,n− δ̂/2], which is O(δ̂ ) (instead of
O(n) as in the original approach). This leads to an overall number of operations
on the order of O(δ̂ ·N) = O(N), since δ̂ is a constant independent of N. Thus,
the overall complexity is linear in N (as opposed to being quadratic in N as for the
original approach).

Exercise 6.14. Recall that a beat sequence B = (b1,b2, . . . ,bL) is a sequence of in-
creasing indices b` ∈ [1 : N], `∈ [1 : L]. Mathematically, this is identical to the notion
of a boundary annotation, which we introduced for evaluating novelty-based seg-
mentation procedures in the context of music structure analysis (see Section 4.5.4).
Therefore, to evaluate a beat tracking procedure, one can use exactly the same eval-
uation measures as for novelty detection. Following Section 4.5.4, let BRef be a ref-
erence beat sequence and BEst an estimated beat sequence. Furthermore, let τ ≥ 0
be a tolerance parameter for the maximal acceptable deviation. Similar to (4.57), an
estimated beat bEst ∈ BEst is considered correct if it lies within the τ-neighborhood
of a reference beat bRef ∈ BRef:

|bEst−bRef| ≤ τ.

Following Section 4.5.4, introduce the notions of true positives, false positives, and
false negatives, and then derive the precision, recall, and F-measure. Furthermore,
using τ = 1, compute these measures for the following beat sequences:

BRef = (10,20,30,40,50,60,70,80,90)
BEst = (10,19,26,34,42,50,61,70,78,89)

Solution to Exercise 6.14. The true positives (TP) are defined to be the beats
bEst ∈ BEst that are correct, and the false positives (FP) are the beats bEst ∈ BEst

that are not correct. Furthermore, the false negatives (FN) are defined to be the beats
bRef ∈ BRef with no estimated beat in a τ-neighborhood. For the example, the true
positives are {10,19,50,61,70,89}, the false positives are {26,34,42,78}, and the
false negatives are {30,40,80}. Based on these definitions, one obtains the follow-
ing precision, recall, and F-measure:

P = #TP/(#TP+#FP) = 6/10 = 3/5,
R = #TP/(#TP+#FN) = 6/9 = 2/3,
F = 2PR/(P+R) = (2 · (3/5) · (2/3))/(3/5+2/3) = 12/19.
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Exercise 6.15. In the evaluation measure considered in Exercise 6.14, the beat posi-
tions were evaluated independently of each other. However, when tapping to the beat
of music, a listener obviously requires the temporal context of several consecutive
beats. Therefore, in evaluating beat tracking procedures, it seems natural to consider
beats in the temporal context instead of looking at the beat positions individually.
To account for these temporal dependencies, we now introduce a context-sensitive
evaluation measure. Let BRef = (r1,r2, . . . ,rM) be a reference beat sequence with
rm ∈ [1 : N], m ∈ [1 : M]. Similarly, let BEst = (b1,b2, . . . ,bL) be an estimated beat
sequence with b` ∈ [1 : N], ` ∈ [1 : L]. Furthermore, let K ∈ N be a parameter that
specifies the temporal context measured in beats, and let τ ≥ 0 be a tolerance param-
eter for the maximal acceptable deviation. Then, an estimated beat b` is considered
a K-correct detection if there exists a subsequence bi, . . . ,bi+K−1 of BEst containing
b` (i.e., ` ∈ [i : i+K−1]) as well as a subsequence r j, . . . ,r j+K−1 of BRef such that

|bi+k− r j+k| ≤ τ

for all k ∈ [0 : K−1]. Intuitively, for a beat to be considered K-correct, one requires
an entire track consisting of K consecutive estimated beats that match (up to the
tolerance τ) a track of K consecutive reference beats. Note that a single outlier in
the estimated beats voids this property. Let LK be the number of K-correct estimated
beats. Then, we define the context-sensitive precision PK := LK/L, recall RK :=
LK/M, and F-measure FK := 2PKRK/(PK +RK). For BRef and BEst as specified in
Exercise 6.14, determine the set of K-correct beat sequences as well as the context-
sensitive precision, recall, and F-measure for τ = 1 and K ∈ {1,2,3,4}.

Solution to Exercise 6.15. In the following table, the K-correct estimated beats are
indicated by the symbol ‘×.’ Furthermore, PK , RK , and FK are shown in the last
three columns for K ∈ {1,2,3,4}.

BRef 10 20 30 40 50 60 70 80 90
K BEst 10 19 26 34 42 50 61 70 78 89 PK RK FK
1 1-correct × × × × × × 3/5 2/3 12/19
2 2-correct × × × × × 1/2 5/9 10/19
3 3-correct × × × 3/10 1/3 6/19
4 4-correct 0 0 0
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Exercise 7.1. Consider the constellation maps C(D) (left) and C(Q) (right) as spec-
ified by the figure below. Determine the resulting matching function ∆C : Z→ N0
as defined in (7.3) by shifting C(Q) over C(D) (see Figure 7.5).
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Solution to Exercise 7.1. The values ∆C(m) for the shift indices m ∈ [−2 : 8] of the
matching function ∆C are given by the following table. The values for all other shift
indices are zero.

Shift index m
-2 -1 0 1 2 3 4 5 6 7 8

Matching
function 0 2 2 2 1 1 5 0 1 1 0

Exercise 7.2. Let F(D) := C(D) and F(Q) := C(Q) be specified as in the fig-
ure of Exercise 7.1. Determine the inverted lists and the indicator functions as in
Figure 7.6. Then compute the matching function ∆F as in (7.8).

Solution to Exercise 7.2. The following figure shows the five inverted lists forF(D)
(left) and illustrates the computation of the matching function ∆F using the indicator
functions of the suitably shifted inverted lists (right):

Query
(n,h) L(h) - n

Indicator functions
… -1 0 1 2 3 4 5 6 7 …

(1,3) (0,4) 0 0 1 0 0 0 1 0 0 0 0

(2,1) (-1,1,4,7) 0 1 0 1 0 0 1 0 0 1 0

(2,5) (1,3,4) 0 0 0 1 0 1 1 0 0 0 0

(3,4) (-1,4,6) 0 1 0 0 0 0 1 0 1 0 0

(4,2) (0,2,4) 0 0 1 0 1 0 1 0 0 0 0

Matching function 0 2 2 2 1 1 5 0 1 1 0

L(1) = (1,3,6,9)

L(2) = (4,6,8)

L(3) = (1,5)

L(4) = (2,7,9)

L(5) = (3,5,6)

69
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Exercise 7.3. In this exercise, we look at the survival probability of a hash that con-
sists of two frequency stamps and a time stamp difference (see Section 7.1.4). Let
p∈ [0,1] be the probability of a spectral peak surviving in the query audio fragment,
and let F ∈N denote the fan-out of the target zone. Assuming that the peak survival
probability is independent and identically distributed, show that the joint probability
of the anchor point and at least one target point in its target zone surviving is given
by (7.16):

p · (1− (1− p)F).

Furthermore, compute the number (1− (1− p)F) for p ∈ {0.1,0.2,0.3,0.4,0.5} in
combination with different F ∈ {1,5,10,20,40}. Discuss the results and the kind of
trade-offs involved.

Solution to Exercise 7.3. The probability that one peak survives is p. Now, let us
consider a set of F peaks (the ones contained in a target zone). Assuming that the
peak survival probability is independent and identically distributed, the probability
that none of those peaks survive is (1− p)F . Therefore, the probability that at least
one of these peaks survives is 1− (1− p)F . Therefore, the probability that at least
one of these peaks survives, combined with the anchor peak surviving is p ·(1−(1−
p)F). This proves (7.16). The values (1− (1− p)F) for p ∈ {0.1,0.2,0.3,0.4,0.5}
and F ∈ {1,5,10,20,40} are as follows (rounded to four decimal places):

p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5
F = 1 0.1000 0.2000 0.3000 0.4000 0.5000
F = 5 0.4095 0.6723 0.8319 0.9222 0.9688
F = 10 0.6513 0.8926 0.9718 0.9940 0.9990
F = 20 0.8784 0.9885 0.9992 1.0000 1.0000
F = 40 0.9852 0.9999 1.0000 1.0000 1.0000

The survival probability of at least one target point surviving increases drastically by
increasing F . However, increasing the fan-out F also increases the storage require-
ments on the database side (which depends linearly on F) and reduces the effect on
the speed up (which depends on F2 in a reciprocal fashion); see also (7.15).

Exercise 7.4. Let F = R be a feature space and c : F ×F → R≥0 be a local
cost measure defined by c(x,y) = |x− y| for x,y ∈ R (see also Exercise 3.10).
Given the sequences X = (x1, . . . ,xN) = (3,0,6) of length N = 3 and Y =
(y1, . . . ,yM) = (2,4,0,4,0,0,5,2) of length M = 8, compute the matching function
∆Diag : [0 : M−N]→ R (see (7.20)) as well as the resulting best match (see (7.23)).
Furthermore, compute the DTW-based matching function ∆DTW : [1 : M]→ R us-
ing the step size set Σ = {(1,0),(0,1),(1,1)} (see (7.29)) as well as the resulting
optimal subsequence Y (a∗ : b∗) (see (7.25)).

Solution to Exercise 7.4. The following figure shows the cost matrix C as well the
accumluated cost matrix D:
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From C, one obtains

∆Diag(0 : 5) =
1
3
(13,5,13,7,4,12).

The index m∗ ∈ [0 : M−N] that minimizes the matching function is m∗ = 4. The
best match is Y (1+m∗ : N +m∗) = Y (5 : 7) = (0,0,5) (see (7.23) ). From D, one
obtains

∆DTW(1 : 8) =
1
3
(7,3,7,3,7,7,2,6),

which yields b∗ = 7. By backtracking, one obtains a∗ = 4. Thus the optimal subse-
quence is Y (4 : 7) = (4,0,0,5).

Exercise 7.5. In this exercise, we show how the matching procedures of Section 7.2
can be applied to a concatenated feature sequence of different recordings,
while avoiding matches across different recordings. As in Section 7.2.2, let X =
(x1, . . . ,xN) be a feature sequence of a query audio fragment. Furthermore, let
Y i = (yi

1, . . . ,y
i
Mi
) be feature sequences of length Mi ≥ N of two database record-

ings indexed by i ∈ {1,2}. Let ∆ i
Diag be the two matching functions obtained by

comparing X and Y i for i ∈ {1,2} (see (7.20)). Next, we concatenate both feature
sequences by defining

Y := (y1
1, . . . ,y

1
M1
,y∞,y2

1, . . . ,y
2
M2
),

where y∞ denotes a feature vector consisting of ∞ entries. Assume that c(x,y∞) := ∞
for any feature vector x. Furthermore, assume that the sum of the value ∞ with
a finite value is defined to be ∞ and that the minimum over a set containing finite
values as well as the value ∞ is defined to be the minimum over the finite values (see
also Exercise 3.13). Using these calculation rules, let ∆Diag be the matching function
obtained by comparing X and Y . Describe the relation between ∆Diag, ∆ 1

Diag, and
∆ 2

Diag. What happens in the case that Y is simply defined as the concatenation of Y 1

and Y 2 (without the additional y∞ vector)?
Similarly, define the matching functions ∆DTW, ∆ 1

DTW, and ∆ 2
DTW based on the

step size set Σ = {(1,0),(0,1),(1,1)} (see (7.29)) and discuss their relations. What
happens when the step size condition Σ = {(2,1),(1,2),(1,1)} is used? Describe a
strategy to avoid matches across different recordings in this setting.

Solution to Exercise 7.5. Let M = M1 +M2 + 1 be the length of the concatenated
sequence Y . Recall that the matching function ∆Diag : [0 : M−N]→ R is defined
by ∆Diag(m) := 1

N ∑N
n=1 c(xn,yn+m) for m ∈ [0 : M−N] (see (7.20)). Similarly, one
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obtains the matching functions ∆ i
Diag : [0 : Mi−N]→R for i∈ {1,2}. The following

figure illustrates the cost matrix C and the computation of ∆Diag:

m=0 m=M1-N…

…

…

m=M1+1 m=M1+M2+1-N…

…

…1 1 1 1 2 2 2 2
21

∞

∞
∞

……

∞

From this, one can see that

∆Diag(m) :=





∆ 1
Diag(m) for m ∈ [0 : M1−N],

∞ for m ∈ [M1−N +1 : M1],
∆ 2

Diag(m−M1−1) for m ∈ [M1 +1 : M−N].

Without the feature y∞, one would obtain matches across Y 1 and Y 2 with a cost less
than ∞, which may lead to false positives. In the case of the matching functions
∆DTW : [1 : M]→ R, ∆ 1

DTW : [1 : M1]→ R, and ∆ 2
DTW : [1 : M2]→ R based on the

step size set Σ = {(1,0),(0,1),(1,1)}, one obtains

∆DTW(m) :=





∆ 1
DTW(m) for m ∈ [1 : M1],

∞ for m = M1 +1,
∆ 2

Diag(m−M1−1) for m ∈ [M1 +2 : M].

This follows by a similar argumentation as the one in Exercise 3.13. In the case of
the step size set Σ = {(2,1),(1,2),(1,1)}, the feature y∞ may be skipped by going
from the cell (n,M1) (matching xn with y1

M1
) to the cell (n+ 1,M1 + 2) (matching

xn+1 with y2
1) using the step (1,2). This leads to matches across Y 1 and Y 2 with a

cost less than ∞. To avoid such matches, one needs to include the feature y∞ twice
in the concatenation:

Y := (y1
1, . . . ,y

1
M1
,y∞,y∞,y2

1, . . . ,y
2
M2
).

Exercise 7.6. Let X = (x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM) be two feature se-
quences over the feature spaceF , and let c :F×F →R be a local cost measure. The
task of subsequence DTW is to determine the subsequence of Y that best matches
the sequence X . This subsequence is given by

(a∗,b∗) := argmin
(a,b):1≤a≤b≤M

DTW
(
X , Y (a : b)

)

(see (7.25)). Following Section 7.2.3, specify the subsequence DTW algorithm (us-
ing the step size set Σ = {(1,0),(0,1),(1,1)}) similar to Table 3.2. Given the cost
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matrix C, the algorithm should output the accumulated cost matrix D, the indices
a∗,b∗ ∈ [1 : M], as well as an optimal warping path between X and Y (a∗ : b∗).

Solution to Exercise 7.6. The following table shows a specification of the algorithm
for subsequence DTW:

Algorithm: SUBSEQUENCE DTW

Input: Cost matrix C of size N×M
Output: Accumulated cost matrix D

Indices a∗,b∗ ∈ [1 : M] of an optimal subsequence of Y
Optimal warping path P∗ between X and Y (a∗ : b∗)

Procedure: Initialize (N ×M) matrix D by D(n,1) = ∑n
k=1 C(k,1) for n ∈ [1 : N] and

D(1,m) = C(1,m) for m ∈ [1 : M]. Then compute in a nested loop for n = 2, . . . ,N and
m = 2, . . . ,M:

D(n,m) = C(n,m)+min{D(n−1,m−1),D(n−1,m),D(n,m−1)}.
Set b∗ = argminb∈[1:M] D(N,b). (If ‘argmin’ is not unique, take smallest index.)
Set `= 1 and q` = (N,b∗).
Then repeat the following steps until q` = (1,m) for some m ∈ [1 : M]:

Increase ` by one and let (n,m) = q`−1.
If m = 1, then q` = (n−1,1),
else q` = argmin{D(n−1,m−1),D(n−1,m),D(n,m−1)}.

(If ‘argmin’ is not unique, take lexicographically smallest cell.)

Set L = ` and a∗ = m. Return D, a∗, b∗, and P∗ = (qL,qL−1, . . . ,q1).

Exercise 7.7. The goal of this exercise is to show how diagonal matching is re-
lated to DTW-based matching. Let X = (x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM) be
two sequences, and let ∆Diag be the matching function based on diagonal matching
(see Section 7.2.2). Furthermore, let ∆DTW be the DTW-based matching function
using the step size set Σ = {(1,1)} (instead of using Σ = {(1,0),(0,1),(1,1)} as in
Section 7.2.3). First, describe how the DTW-based procedure needs to be modified
when using Σ = {(1,1)}. Then, explain how ∆Diag and ∆DTW are related.

Solution to Exercise 7.7. When using the step size set Σ = {(1,1)}, one can ini-
tialize the DTW-based procedure in a fashion similar to Exercise 3.13. In the sub-
sequence DTW case, one extends the accumulated cost matrix D by an additional
column indexed by 0 and then defines D(n,0) := ∞ for n ∈ [1 : N]. The first row of
D is initialized as before by setting D(1,m) := C(1,m) for m ∈ [1 : M] (see (7.27)).
In the recursion, the step size set Σ = {(1,1)} enforces that only diagonal steps are
allowed. As a result, this procedure yields a matching function ∆DTW : [1 : M]→ R
with ∆DTW(m) = ∞ for m ∈ [1 : N−1]. Furthermore, one obtains

∆DTW(m) =
1
N

D(N,m) =
1
N

N

∑
n=1

c(xn,ym−N+n)

for m ∈ [N : M] (see also (7.29)). Recall from (7.20) that diagonal matching yields a
function ∆Diag : [0 : M−N]→ R with
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∆Diag(m) =
1
N

N

∑
n=1

c(xn,yn+m)

for m ∈ [1 : M−N] (see (7.20)). Therefore, ∆Diag(m) = ∆DTW(m + N) for m ∈
[0 : M−N].

Intuitively speaking, in diagonal matching, the subsequences of Y are compared
with X in a “forward” manner, where the index m in ∆Diag(m) indicates the begin-
ning of the considered matching subsequence. In contrast, in DTW-based matching,
the subsequences of Y are compared with X in a “backward” manner, where the
index m in ∆DTW(m) indicates the end of the considered matching subsequence.

Exercise 7.8. For a sequence S = (s1, . . . ,sL), let Rev(S) = (r1, . . . ,rL) with r` :=
sL−`+1, ` ∈ [1 : L] denote the reversed sequence. Now, let X = (x1,x2, . . . ,xN) and
Y = (y1,y2, . . . ,yM) be two feature sequences as in Section 7.2.3. Using the step size
set Σ = {(1,0),(0,1),(1,1)}, let ∆DTW[X ,Y ] be the DTW-based matching function
for X and Y and ∆DTW[Rev(X),Rev(Y )] be the one for Rev(X) and Rev(Y ). Assume
that the indices

(a∗,b∗) := argmin
(a,b):1≤a≤b≤M

DTW
(
X , Y (a : b)

)

(see (7.25)) are uniquely determined. In Section 7.2.3, we showed that

b∗ = argmin
m∈[1:M]

∆DTW[X ,Y ](m),

whereas a∗ was obtained via backtracking. Show that a∗ can also be computed with-
out backtracking using the matching function ∆DTW[Rev(X),Rev(Y )].
[Hint: Study the relation between optimal paths that align X with subsequences of
Y and optimal paths that align Rev(X) with subsequences of Rev(Y ).]

Solution to Exercise 7.8. Let P = (p1, . . . , pL) be a path with p` = (n`,m`) ∈
[1 : N]× [1 : M], ` ∈ [1 : L], and n1 = 1 and nL = N. Define Q = (q1, . . . ,qL) by
setting

q` := (q1
` ,q

2
`) := (N−nL−`+1 +1,M−mL−`+1 +1)

for ` ∈ [1 : L]. Then, Q defines a path with q1 = (1,M−mL +1) and qL = (N,M−
m1 +1). Next, we show that the total cost cP(X ,Y ) of the path P (see (3.20)) coin-
cides with the total cost cQ(Rev(X),Rev(Y )):
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cQ(Rev(X),Rev(Y )) =
L

∑̀
=1

c(xN−q1
`+1,yM−q2

`+1)

=
L

∑̀
=1

c(xN−(N−nL−`+1+1)+1,yM−(M−mL−`+1+1)+1)

=
L

∑̀
=1

c(xnL−`+1 ,ymL−`+1)

=
L

∑̀
=1

c(xn` ,ym`
) = cP(X ,Y ).

From this, it follows that P is an optimal warping path for the sequence X and the
subsequence Y (m1 : mL) of Y if and only if Q is an optimal warping path for the
sequence Rev(X) and the subsquence Rev(Y )(M−mL +1 : M−m1+1) of Rev(Y ).
In particular, let P = (p1, . . . , pL) be the optimal warping path for the subsequence
Y (a∗ : b∗), i.e., p1 = (1,a∗) and pL = (N,b∗). Then, Q = (q1, . . . ,qL) is an opti-
mal warping path for the subsequence Rev(Y )(M− b∗ + 1 : M− a∗ + 1). There-
fore, minimizing over the matching funtion ∆DTW[Rev(X),Rev(Y )] yields the index
M−a∗+1. In other words, a∗ can be obtained via

a∗ = M−
(

argminm∈[1:M] ∆DTW[Rev(X),Rev(Y )](m)
)
+1.

Exercise 7.9. Let F = R be a feature space and s := sa : F ×F → R a similarity
measure defined by sa(x,y) := a−|x−y| for a constant a ∈R and x,y ∈R (see also
Exercise 4.1). Given the sequences X = (x1, . . . ,xN) = (1,0,4,2,1,3,0) of length
N = 7 and Y = (y1, . . . ,yM) = (2,3,1,3,6) of length M = 5, compute the optimal
local alignment (best matching subsequences) of X and Y using the procedure de-
scribed in Section 7.3.2. To this end, compute the similarity matrix S (see (7.31))
using s = s1 (i.e., a = 1), the accumluated score matrix D (see (7.33)), the score-
maximizing path P∗ (see (7.32)), and the two induced segments π1(P∗) and π2(P∗)
(see also Figure 7.20).

Then, in the same fashion, compute the optimal local alignment using the simi-
larity measure s = s2 (i.e., a = 2). What do you expect when further increasing the
number a? Why is it problematic when all entries of S are positive?

Solution to Exercise 7.9. The following figure shows the similarity matrix S as well
the accumluated cost matrix D for the case a = 1 as well as the case a = 2:
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In the case a = 1, one obtains P∗ = ((4,1),(4,2),(5,3),(6,4)), thus π1(P∗) = [4 : 6]
and π2(P∗) = [1 : 4]. Therefore, the best matching subsequences are X(4 : 6) and
Y (1 : 4) .

When using the parameter a = 2, one obtains P∗ =
((1,1),(2,1),(3,1),(4,1),(4,2),(4,3),(5,3),(6,4)), thus π1(P∗) = [1 : 6] and
π2(P∗) = [1 : 4]. Therefore, the best matching subsequences are X(1 : 6) and
Y (1 : 4). Increasing the parameter a makes the entries in S larger. As a result, the
two best matching subsequences generally become longer. In the case that S has
only positive entries, the best matching subsequences are the entire sequences X
and Y (since in this case the accumluated score is optimized). Therefore, when
being interested in capturing local similarities, it is important to find a good balance
between positive and negative values in S. As discussed in Section 7.3.2, only the
cells that may express relevant similarity relations should have a positive score,
whereas all other cells should have a negative score.

Exercise 7.10. Let X = (x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM) be two sequences
over the feature space F . A partial match of length L ∈ N0 between X and Y is
defined to be a sequence P = ((n1,m1), . . . ,(nL,mL)) of cells (n`,m`) ∈ [1 : N]×
[1 : M], ` ∈ [1 : L], which is strictly monotonically increasing:

n1 < n2 < .. . < nL and m1 < m2 < .. . < mL.

Given a similarity measure s : F ×F → R, define the similarity matrix S by
S(n,m) := s(xn,ym) as in (7.31). Then, the total score σ(P) of a partial match P
is specified by

σ(P) :=
L

∑̀
=1

S(n`,m`).
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Describe an algorithm based on dynamic programming as in Table 3.2 to compute
an optimal (i.e., score-maximizing) partial match.

Solution to Exercise 7.10. The following table shows a specification of the algo-
rithm based on dynamic programming for computing an optimal partial match:

Algorithm: PARTIAL MATCHING

Input: Similarity matrix S of size N×M
Output: Accumulated score matrix D

Optimal partial match P∗

Procedure: Initialize an ((N+1)×(M+1)) matrix D by D(0,0)=D(n,0)=D(0,m)= 0 for
n∈ [1 : N] and m∈ [1 : M]. Then compute in a nested loop for n = 1, . . . ,N and m = 1, . . . ,M:

D(n,m) = max{D(n,m−1),D(n−1,m),S(n,m)+D(n−1,m−1)}.
Set n = N, m = M, `= 0. Then repeat the following steps while (n > 0) and (m > 0):

If D(n,m) = D(n,m−1) then m := m−1
else if D(n,m) = D(n−1,m) then n := n−1
else if D(n,m) = S(n,m)+D(n−1,m−1) then ` := `+1, q(`) := (n,m),

and n := n−1, m := m−1

Set L = ` and return P∗ = (qL,qL−1, . . . ,q1) as well as σ(P∗) = D(N,M).

Note that in the nested loop, the score value S(n,m) is only added in the case of
a diagonal step size—as opposed to the DTW algorithm (see Table 3.2), where the
cost value C(n,m) is added in the case of all three step sizes. Furthermore, note that
the optimal partial match yielding the accumulated score D(n,m) does not necessar-
ily end in the cell (n,m)—in contrast with the DTW algorithm, where the optimal
warping path yielding D(n,m) always ends with the cell (n,m).

Exercise 7.11. Show that the definitions of the precision PQ(r) and recall RQ(r) at
rank r ∈ [1 : K] in (7.45) and (7.46) agree with the definitions in (4.47) and (4.48),
respectively. To this end, depending on r, define a suitable set IEst

+ .

Solution to Exercise 7.11. Recall from Section 7.3.3 that the set of items of our
retrieval scenario is I = [1 : K], which represents a collection that consists of K
database documents. Furthermore, the set of relevant or positive items (reference
annotations) is denoted by IRef

+ = IQ (see (7.43)). For a fixed rank r ∈ [1 : K], let

IEst
+ :=

{
ρQ(1),ρQ(2), . . . ,ρQ(r)

}

be the set of the top r items of the ranked list. We consider this set to be the set
of items estimated as positive (see Section 4.5.1). Now, by definition (7.44) of the
relevance function χQ, the sum ∑r

k=1 χQ(k) corresponds to the number of relevant
items among the top r items. Thus, we obtain

|IEst
+ ∩IRef

+ |=
r

∑
k=1

χQ(k).
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From this and using |IEst
+ |= r and |IRef

+ |= |IQ|, we obtain

PQ(r) =
1
r

r

∑
k=1

χQ(k) =
|IEst

+ ∩IRef
+ |

|IEst
+ |

,

RQ(r) =
1
|IQ|

r

∑
k=1

χQ(k) =
|IEst

+ ∩IRef
+ |

|IRef
+ |

,

which shows that (7.45) coincides with (4.47) and (7.46) with (4.48).

Exercise 7.12. Let us consider a database {D1,D2, . . . ,DK} consisting of K = 8
documents. Given a query document Q, assume that we have a similarity measure
that yields the following values γ(Q,Dk) ∈ R for each k ∈ [1 : K]:

k 1 2 3 4 5 6 7 8
γ(Q,Dk) 0.7 2.6 3.6 3.5 3.2 3.7 1.5 3.1

Furthermore, let IQ = {2,3,4,8} be the set of the relevant items (see (7.43)). Cal-
culate the precision PQ(r) and recall RQ(r) at rank r ∈ [1 : K]. Furthermore, draw
the corresponding precision–recall curve (as in Figure 7.21c). Finally, determine the
break-even point, the maximal F-measure Fmax

Q (see (7.47)), as well as the average
precision PQ (see (7.48)).

Solution to Exercise 7.12. The following figure shows the precision PQ(r) and re-
call RQ(r) at rank r ∈ [1 : K] (rounded to two decimal places) as well as the resulting
PR curve:
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1ID Score Rank
1 0.7 8
2 2.6 6
3 3.6 2
4 3.5 3
5 3.2 4
6 3.7 1
7 1.5 7
8 3.1 5

Rank ID Rel. P(r) R(r) F(r)
1 6 - 0 0 0
2 3 + 0.50 0.25 0.33
3 4 + 0.67 0.50 0.57
4 5 - 0.50 0.50 0.50
5 8 + 0.60 0.75 0.67
6 2 + 0.67 1.00 0.80
7 7 - 0.57 1.00 0.73
8 1 - 0.50 1.00 0.67

The break-even point is PQ(4)=RQ(4)= 0.5. Furthermore, the maximal F-measure
is Fmax

Q = 0.8 and the average precision is

PQ =
1
4
(1/2+2/3+3/5+2/3) =

73
120
≈ 0.6083.

Exercise 7.13. Let us consider a PR curve {(PQ(r),RQ(r)) | r∈ [1 : K]} for a ranked
retrieval result over K database documents. Recall that the break-even point of the
PR curve is the positive value where the precision equals the recall. Show that the
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break-even point exists if and only if there is at least one relevant document among
the top |IQ| items of the ranked list. Furthermore, show that in this case PQ(r) =
RQ(r) if and only if r = |IQ|.

Solution to Exercise 7.13. Assume that a break-even point exists. Then, PQ(r) =
RQ(r)> 0 for some r ∈ [1 : K]. Using definitions (7.45) and (7.46), we obtain

1
r

r

∑
k=1

χQ(k) = PQ(r) = RQ(r) =
1
|IQ|

r

∑
k=1

χQ(k)> 0.

In particular, this implies that ∑r
k=1 χQ(k)> 0 (i.e., there is at least one relevant item

among the top r items of the ranked list) as well as r = |IQ| (since ∑r
k=1 χQ(k)> 0).

t Now, assume that there is at least one relevant document among the top |IQ| items
of the ranked list. Then, ∑|IQ|k=1 χQ(k)> 0. Furthermore, using definitions (7.45) and
(7.46), one obtains PQ(r) = RQ(r) > 0 for r = |IQ|, i.e., there exists a break-even
point.

Exercise 7.14. Show that the maximal F-measure of a PR curve is at least as large
as the break-even point (if it exists; see Exercise 7.13). Give an example where the
maximal F-measure and the break-even point do not coincide.

Solution to Exercise 7.14. Assume that the break-even point exists. Then, by
Exercise 7.13, the break-even point assumed for r = |IQ|. From PQ(r) = RQ(r),
it follows that FQ(r) = PQ(r) = RQ(r). Since Fmax

Q ≥ FQ(r), this shows that the
maximal F-measure is at least as large as the break-even point. In Exercise 7.12,
we have already seen an example where the maximal F-measure and the break-
even point do not coincide. As another example, consider the relevance function
χQ : [1 : K]→ {0,1} for a ranked retrieval result for K = 3 defined by χQ(1) = 1,
χQ(2) = 0, and χQ(3) = 1. Then, we obtain

r PQ(r) RQ(r) FQ(r)
1 1 1/2 2/3
2 1/2 1/2 1/2
3 2/3 1 4/5

From this we obtain a break-even point of 0.5 and a maximal F-measure of Fmax
Q =

0.8.

Exercise 7.15. Let us consider a database consisting of K ∈ N documents. Further-
more, let Q be a query document with L := |IQ| ∈ [1 : K] relevant items. Assume
that the relevant items are ranked by a retrieval system at the positions

r1 < r2 < .. . < rL,

where r` ∈ [1 : K] for ` ∈ [1 : L]. (Recall from Section 7.3.3 that, the smaller the
index r`, the higher the rank of the document.) Specify a formula for the average
precision PQ of this ranking (see (7.48)). Furthermore, assuming K = 5 and L = 2,
calculate the average precision for all possible rankings.
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Solution to Exercise 7.15. Recall from (7.44) that the relevance function χQ :
[1 : K]→ {0,1} assumes the value χQ(r) = 1 for some r ∈ [1 : K] if and only if
the document at rank r is relevant. Therefore, in our scenario, χQ(r) = 1 if and
only if r = r` for some ` ∈ [1 : L]. Furthermore, note that one has the precision
PQ(r`) = `/r` at rank r` for ` ∈ [1 : L]. From this and (7.48), the average precision
computes as

PQ =
1
|IQ|

K

∑
r=1

PQ(r)χQ(r) =
1
L

L

∑̀
=1

PQ(r`) =
1
L

L

∑̀
=1

`

r`
.

There are K! different rankings (corresponding to the number of permutations of
[1 : K]) for a set of K documents. However, as with the average precision, the ranking
only depends on the ranking positions

r1 < r2 < .. . < rL

of the relevant documents. In general, there are
(K

L

)
possibilities for such ranking

positions. In the case K = 5 and L = 2, the ranking positions are represented by
pairs (r1,r2) with r1,r2 ∈ [1 : 5] and r1 < r2. Note that there are

(5
2

)
= 10 such pairs.

The average precision for (r1,r2) is given by

PQ =
1
2

(
1
r1

+
2
r2

)
.

This yields the following values:

(r1,r2) (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)
PQ 1.000 0.833 0.750 0.700 0.583 0.500 0.450 0.417 0.367 0.325



Chapter 8
Musically Informed
Audio Decomposition

Exercise 8.1. The arithmetic mean µ(A) of a list A = (a1,a2, . . . ,aL) that consists
of real numbers a` ∈ R, ` ∈ [1 : L] is defined by µ(A) :=

(
∑L
`=1 a`

)
/L. Let A =

(2,3,190,2,3). Compute the mean µ(A) as well as the median µ1/2(A) (see (8.4)).
Explain why the HPS algorithm described in Section 8.1 employs median filtering
and not mean filtering.

Solution to Exercise 8.1. One obtains µ(A) = 40 and µ1/2(A) = 3. The median
is robust to outliers, whereas the mean is heavily influenced by a small number
of extreme values. As illustrated by Figure 8.4, percussive events can be regarded
as outliers across time at for a given frequency parameter. Therefore, to remove the
percussive events, median filtering in the horizontal (time) direction is more suitable
than mean filtering. Similarly, harmonic events can be regarded as outliers across
frequency at a given time frame, again justifying the usage of median filtering.

Exercise 8.2. Let

Y =




1 1 46 2
3 1 50 1

60 68 70 67
2 1 65 1




be a spectrogram. Assuming a suitable zero-padding, compute Ỹh as in (8.6) using
Lh = 3 and Ỹp as in (8.7) using Lp = 3. Furthermore, compute the binary mask
Mh as in (8.8) andMp as in (8.9). Finally, apply the masks to the matrix Y using
pointwise multiplication to derive the two matrices Yh as in (8.12) and Yp as in
(8.13).

Solution to Exercise 8.2. The filtered matrices are as follows:

Ỹh =




1 1 2 2
1 3 1 1

60 68 68 67
1 2 1 1


 and Ỹp =




1 1 46 1
3 1 50 2
3 1 65 1
2 1 65 1


.

From this one obtains the following binary masks:

Mh =




1 1 0 1
0 1 0 0
1 1 1 1
0 1 0 1


 and Mp =




0 0 1 0
1 0 1 1
0 0 0 0
1 0 1 0




81
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Pointwise multiplication yields the following masked spectrograms:

Yh =




1 1 0 2
0 3 0 0

60 68 68 67
0 2 0 1


 and Yp =




0 0 46 0
3 0 50 2
0 0 0 0
2 0 65 0




Exercise 8.3. Let Fs (given in Hz) be the sampling rate of a given signal x. Fur-
thermore, let N ∈ N be the window length and H ∈ N the hop size of a discrete
STFT. The filter lengths Lh,Lp ∈ N of the median filters used in the HPS approach
are specified in terms of frame and frequency indices of the underlying STFT. In
practice, it may be more convenient if a user can specify the filter length Lh in terms
of seconds and Lp in terms of Hertz. Derive a formula that converts a time duration
∆t ∈ R given in seconds to a minimum filter length Lh(∆t) ∈ N given in frame in-
dices covering this duration. Similarly, derive a formula that converts a frequency
range ∆ω ∈ R given in Hertz to a minimum filter length Lp(∆ω) ∈ N given in fre-
quency indices covering this range. Finally, assuming Fs = 22050 Hz, N = 1024,
and H = 256, determine Lh(∆t) for ∆t = 0.5 sec and Lp(∆ω) for ∆ω = 600 Hz.

Solution to Exercise 8.3. There is a frame every H/Fs seconds (see (2.27)). There-
fore, we obtain

Lh(∆t) =

⌈
∆t ·

Fs

H

⌉
.

Furthermore, each frequency parameter corresponds to Fs/N Hertz (see (2.28)).
Therefore, we obtain

Lp(∆ω) =

⌈
∆ω ·

N
Fs

⌉
.

These formulas yield the values Lh(0.5) = 44 and Lp(600) = 28.

Exercise 8.4. Show that one obtains a partition of unity (see (8.22)) when using the
discrete window function w : Z→ R defined by

w(r) :=
{

sin(πr/N)2 if r ∈ [0 : N−1],
0 otherwise

(see (8.23)) and the hop size H = N/2 (assuming that N is even). What happens if
the hop size H = N/4 (assuming that N is divisible by four) is used instead? Give a
proof of your claim.

Solution to Exercise 8.4. As preparation for the proof, let s2
N : Z→R be defined by

s2
N(r) := sin(πr/N)2 and c2

N : Z→ R by c2
N(r) := cos(πr/N)2 for r ∈ Z. These two

functions are periodic with period N (since we are considering the squared versions
of sin and cos) and, by a trigonemtric identity, one obtains

s2
N(r)+ c2

N(r) = 1
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for all r ∈ Z. Note that the window w from (8.23) coincides with s2
N on the interval

[0 : N−1]. It follows that

∑
n∈Z

w(r−nN) = s2
N(r).

Furthermore, from the relation s2
N(r−N/2) = c2

N(r), it follows that

∑
n∈Z

w(r−nN−N/2) = c2
N(r).

After these preparations, we now show that w and its translates define a partition of
unity when using the hop size H = N/2 (see (8.22)). To this end, in the following
computation, we split up the sum over n ∈ Z into a sum over even integers and a
sum over odd integers:

∑
n∈Z

w(r−nH) = ∑
n∈Z

w(r−nN/2)

= ∑
n∈Z

w(r− (2n)N/2)+ ∑
n∈Z

w(r− (2n+1)N/2)

= ∑
n∈Z

w(r−nN)+ ∑
n∈Z

w(r−nN−N/2)

= s2
N(r)+ c2

N(r)

= 1.

As for the hop size H = N/4, we again split up the summation over even n and odd
n. Summation over all even n gives the same result as in the previous case (using
H = N/2 and summing over all n). Therefore, this sum is one. Similarly, summing
over all odd n yields the same function as in the even case, up to a shift of H = N/4.
Again, the sum is one. Therefore, it follows that

∑
n∈Z

w(r−nN/4) = ∑
n∈Z

w(r−nN/2)+ ∑
n∈Z

w(r−nN/2−N/4) = 2

for r ∈ Z.

Exercise 8.5. One problem in harmonic–percussive separation (HPS) is that a sound
may contain noise-like events (e.g., applause, distorted guitar) that are neither of har-
monic nor of percussive nature. In this exercise, we study an extension to HPS by
considering a third residual component which captures the sounds that lie “between”
a clearly harmonic and a clearly percussive component. To this end, we introduce
an additional parameter β ∈ R with β ≥ 1 called the separation factor. General-
izing (8.8) and (8.9), we define the binary masksMh,Mp, andMr for the clearly
harmonic, the clearly percussive, and the residual components by setting
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Mh(n,k) :=

{
1 if Ỹh(n,k)≥ β · Ỹp(n,k),
0 otherwise,

Mp(n,k) :=

{
1 if Ỹp(n,k)> β · Ỹh(n,k),
0 otherwise,

Mr(n,k) := 1−
(
Mh(n,k)+Mp(n,k)

)
.

Using these masks, derive a signal decomposition x = xh+xp+xr. Furthermore, dis-
cuss the role of the parameter β . How do the components change when successively
increasing β?

Solution to Exercise 8.5. As in (8.14) and (8.15), one defines

X h(n,k) :=Mh(n,k) ·X (n,k),
X p(n,k) :=Mh(n,k) ·X (n,k),
X r(n,k) :=Mr(n,k) ·X (n,k).

The following figure shows a typical example for the resulting decomposition of a
given STFT:
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From this, one can derive xh, xp, and xr by applying an inverse STFT (using an
overlap–add technique as described in Section 8.1.2.2). The separation factor β can
be used to adjust the decomposition. The case β = 1 translates to the original HPS
decomposition. By increasing β , less time–frequency bins are assigned for the re-
construction of the components xh and xp, whereas more time–frequency bins are
used for the reconstruction of the residual component xr. Intuitively, the larger the
parameter β , the clearer becomes the harmonic and percussive nature of the com-
ponents xh and xp. For very large β , the residual signal xr tends to contain the entire
signal x. For further details, see
J. DRIEDGER, M. MÜLLER, AND S. DISCH, Extending harmonic–percussive separation of au-
dio signals, in Proceedings of the 15th International Conference on Music Information Retrieval
(ISMIR), Taipei, Taiwan, 2014, pp. 611–616.
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Exercise 8.6. Derive the formula (8.44) for the instantaneous frequency F IF
coef(k,n)

and the formula (8.45) for the bin offset κ(k,n).

Solution to Exercise 8.6. From (8.40), (8.41), and (8.42), we have:

ω = Fcoef(k) =
k ·Fs

N
,

t1 = Tcoef(n−1) =
(n−1) ·H

Fs
and t2 = Tcoef(n) =

n ·H
Fs

,

ϕ1 = ϕ(n−1,k) and ϕ2 = ϕ(n,k).

From this, (8.32), and (8.33), we obtain the following equations:

∆ t = t2− t1 = Tcoef(n)−Tcoef(n−1) =
H
Fs
,

ϕPred = ϕ1 +ω ·∆ t = ϕ(n−1,k)+
k ·Fs

N
· H

Fs
= ϕ(n−1,k)+

k ·H
N

,

ϕErr = Ψ(ϕ2−ϕPred) =Ψ
(

ϕ(n,k)−ϕ(n−1,k)− k ·H
N

)
.

Using (8.34), we obtain:

F IF
coef(k,n) = ω +

ϕErr

∆ t
=

k ·Fs

N
+

ϕErr ·Fs

H
=

(
k+

N
H
·ϕErr

)
· Fs

N
= (k+κ(k,n)) · Fs

N

with

κ(k,n) =
N
H
·Ψ
(

ϕ(n,k)−ϕ(n−1,k)− k ·H
N

)
.

Exercise 8.7. We have seen in Section 8.2.1 that the quality of the estimated instan-
taneous frequency depends on the length ∆ t = t2−t1 =H/Fs. Therefore, it is benefi-
cial to use a small hop size H. On the downside, using a small hop size increases the
computational cost for calculating the discrete STFT. An alternative approach for
obtaining good instantaneous frequency estimates is to keep the original hop size,
but compute the STFT twice—the second time at a lag of just one sample. Discuss
the benefits of this alternative approach over the strategy of simply reducing the hop
size.

Solution to Exercise 8.7. In the alternative approach, one can keep the original
hop size H, but obtain instantaneous frequency corrections based on the smallest
possible hop size (one frame). The computational cost only doubles. In constrast,
reducing the hop size to, e.g., H/4, the computational cost would increase by a
factor of four.

Exercise 8.8. Defining Bin(ω) := b12 · log2 (ω/440)+69.5c for ω ∈R as in (8.47),
show that ω ∈ [Fpitch(p−0.5),Fpitch(p+0.5)) if and only if Bin(ω) = p for p ∈ Z.
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Solution to Exercise 8.8.

ω ∈ [Fpitch(p−0.5),Fpitch(p+0.5))

⇐⇒ 2(p−69.5)/12 ·440≤ ω < 2(p−68.5)/12 ·440

⇐⇒ p−69.5≤ 12 · log2

( ω
440

)
< p−68.5

⇐⇒ p≤ 12 · log2

( ω
440

)
+69.5 < p+1

⇐⇒ p =
⌊

12 · log2

( ω
440

)
+69.5

⌋

⇐⇒ Bin(ω) = p

Exercise 8.9. Let ω be a frequency and h ·ω its hth harmonic for some h ∈ N.
Considering the bin mapping function from (8.49), determine the relation between
Bin(ω) and Bin(h ·ω). This relation explains the formula in (8.55) for the harmonic
summation in the log-frequency domain.

Solution to Exercise 8.9. From (8.49), one obtains the following:

Bin(h ·ω) =

⌊
1200

R
· log2

(
h ·ω
ωref

)
+1.5

⌋

=

⌊
1200

R
· log2 (h)+

1200
R
· log2

(
ω

ωref

)
+1.5

⌋

=

⌊
1200

R
· log2 (h)

⌋
+

⌊
1200

R
· log2

(
ω

ωref

)
+1.5

⌋
+δ

=

⌊
1200

R
· log2 (h)

⌋
+Bin(ω)+δ ,

where δ ∈ {0,1} is introduced to account for possible rounding inaccuracies.

Exercise 8.10. LetY be a magnitude spectrogram with coefficientsY(n,k) for n∈Z
and k ∈ [0 : K]. Furthermore, for a given reference frequency ωref and a resolution
R, let YLF be the log-frequency magnitude spectrogram as defined in (8.51) with
coefficients YLF(n,b) for n ∈ Z and b ∈ [1 : B]. Given a frequency trajectory η :
Z→ [0 : K] for Y , describe how one can derive a corresponding trajectory ηLF :
Z→ [1 : B] for YLF. Which problems may occur in this calculation?

Furthemore, let ηh and ηh
LF be the frequency trajectories of the first H ∈ N har-

monics, h ∈ [1 : H]. Note that η1 = η and η1
LF = ηLF. Describe the mathematical

relations between these trajectories. Thinking of practical computations and real-
world musical sounds, discuss some problems that may introduce inaccuracies in
these relations.

Solution to Exercise 8.10. Let Fcoef(k) be the center frequency for frequency index
k ∈ [0 : K] (see (8.30)). Using the bin index function Bin from (8.49), we obtain ηLF
from η via

ηLF(n) = Bin
(
Fcoef(η(n))

)
.
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One problem in this calculation is that the resulting bin index may lie outside the
range [1 : B], e.g., in the case that Fcoef(η(n)) < ωref for some n ∈ Z. This leaves
ηLF(n) undefined.

For the harmonics, we basically obtain

ηh(n) = η(n) ·h

as long as η(n) · h ≤ K. In the log-frequency domain, we obtain from (8.55) the
relations

ηh
LF(n) = ηLF(n)+

⌊
1200

R
log2(h)

⌋
.

Note that in these relations there may be increased inaccuracies for higher harmonics
due to an accumulation of quantization errors, which result from the frequency grid
introduced by the STFT and the binning. Furthermore, inharmonicities (i.e., devia-
tions of partials from the closest ideal harmonics, see Section 1.3.2), may introduce
further inaccuracies in these relations. For higher harmonics, such inaccuracies may
become quite substantial for instruments such as the piano (see Section 1.3.4).

Exercise 8.11. The goal of this exercise is to develop an efficient algorithm
for computing a frequency trajectory with temporal continuity constraints (see
Section 8.2.3.1). Given a salience representation Z ∈ RN×B

≥0 and a transition likeli-
hood matrix T∈RB×B

≥0 , let σ(η) be the total score for a given trajectory η : [1 : N]→
[1 : B] as defined in (8.60). Specify an algorithm based on dynamic programming
and backtracking (similar to the Viterbi algorithm in Table 5.2) for determining the
score-maximizing trajectory ηDP (see (8.61)).

Solution to Exercise 8.11.

Algorithm: FREQUENCY TRAJECTORY WITH TEMPORAL CONTINUITY CONSTRAINT

Input: Salience representation Z ∈ RN×B
≥0

Transition likelihood matrix T ∈ RB×B
≥0

Output: Score-maximizing trajectory ηDP : [1 : N]→ [1 : B]

Procedure: Initialize the (B×N) matrix D by D(b,1)=Z(1,b) for b∈ [1 : B]. Then compute
in a nested loop for n = 2, . . . ,N and b = 1, . . . ,B:

D(b,n) = maxc∈[1:B]
(
T(c,b) ·D(c,n−1)

)
·Z(n,b)

E(b,n−1) = argmaxc∈[1:B]
(
T(c,b) ·D(c,n−1)

)

Set bN = argmaxc∈[1:B] D( j,N) and compute for decreasing n = N−1, . . . ,1 the maximizing
indices

bn = E(bn+1,n).

The optimal frequency trajectory ηDP is defined by ηDP(n) = bn for n ∈ [1 : N].

Exercise 8.12. Fixing a matrix H ∈ RR×N , let ϕH : RD → R with D := KR be de-
fined by ϕH(W ) := ||V −WH||2 for W ∈ RK×R (see (8.80)). Compute the gradient
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of ϕH (similar to the calculation of the gradient of ϕH in (8.73) to (8.78)). From
this, derive the update rule as specified in (8.81).

Solution to Exercise 8.12. Let Wκρ for κ ∈ [1 : K] and ρ ∈ [1 : R] denote the vari-
ables of the function ϕH . The partial derivatives of ϕH with regard to the variables
Wκρ are computed as follows:

∂ϕH

∂Wκρ
=

∂
(

∑K
k=1 ∑N

n=1
(
Vkn−∑R

r=1 WkrHrn
)2
)

∂Wκρ

=
∂
(

∑N
n=1
(
Vκn−∑R

r=1WκrHrn
)2
)

∂Wκρ

= ∑N
n=12

(
Vκn−∑R

r=1WκrHrn

)
· (−Hρn)

= 2
(

∑R
r=1∑N

n=1WκrHrnHρn−∑N
n=1VκnHρn

)

= 2
(

∑R
r=1Wκr∑N

n=1

(
HrnH>nρ

)
−∑N

n=1VκnH>nρ

)

= 2
(
(WHH>)κρ − (V H>)κρ

)

Starting with an initial guess W (0) ∈RK×R, one obtains the following additive update
rules:

W (`+1)
kr =W (`)

kr − γ(`)kr ·
((

W (`)HH>
)

kr−
(
V H>

)
kr

)

for `= 0,1,2, . . . and some suitable parameters γ(`)kr ≥ 0.

Exercise 8.13. Show that, in the case of a “perfect” factorization V =WH, the ma-
trices W and H are a fixed point of the multiplicative update rules (8.83) and (8.85).

Solution to Exercise 8.13. Let V =WH. Then, using W and H in (8.83), one obtains

Hrn ·
(
W>V

)
rn(

W>WH
)

rn

= Hrn ·
(
W>V

)
rn(

W>V
)

rn

= Hrn

for r ∈ [1 : R] and n ∈ [1 : N]. Similarly, using W and H in (8.85), one obtains

Wkr ·
(
V H>

)
kr(

WHH>
)

kr

=Wkr ·
(
V H>

)
kr(

V H>
)

kr

=Wkr

for k ∈ [1 : K] and r ∈ [1 : R]. This shows that H and W are fixed points of the
multiplicative update rules.

Exercise 8.14. Let V be a (K × N) matrix with nonnegative entries. As in
Figure 8.20a, we consider in this exercise an exact matrix factorization V = WH
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with a nonnegative (K×R) matrix W and a nonnegative (R×N) matrix H. In the
following examples, we have N = 7 and K = 9. Determine for each of the two ma-
trices at least two decompositions V =WH using R = 3:

(b)

1 1 1 1 1

1 2 2 1 1 1

1 1 1 1

1 2 3 4 5 6 7
1

3

5

7

9

Time

Fr
eq

ue
nc

y

1 1 1
1 1 1
1 1 1 1 1
1 1 1
1 1 1
1 1 1 1 1
1 1 1
1 1 1 1 1
1 1 1 1 11

3

5

7

9

Fr
eq

ue
nc

y
(a)

1 2 3 4 5 6 7
Time

Explain why in these examples there are no exact factorizations when using R = 2.

Solution to Exercise 8.14.

1 1 1
1 1 1
1 1 1 1 1
1 1 1
1 1 1
1 1 1 1 1
1 1 1
1 1 1 1 1
1 1 1 1 1

1
1

1
1
1

1
1

1
1

=
1 2 3 4 5 6 7

1 2 3 4 5 6 7
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1
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=
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1 1 1 1
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1 1
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(b)

=
1 2 3 4 5 6 7
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In both examples, the matrix V has a rank of three. Therefore, it is not possible to
factorize these matrices using R = 2.
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