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A Unified Perspective on CTC and Soft-DTW Using
Differentiable DTW

Johannes Zeitler

Abstract—Training deep neural networks on unaligned sequence
data is fundamental to tasks such as automatic speech recognition,
lyrics alignment, and music transcription. Strongly aligned anno-
tations, which provide frame-level correspondences between input
and target sequences, are often costly, impractical, or unreliable. In
contrast, weakly aligned annotations, which specify only segment-
level alignment, are more scalable and easier to obtain, but present
challenges for training and supervision. A widely used technique
for handling weakly aligned data is Connectionist Temporal Clas-
sification (CTC). While CTC enables end-to-end training without
explicit alignments, it is difficult to interpret, structurally rigid,
and relies on a special blank symbol to handle label repetitions.
The main contribution of this work is to explore the relationship
between CTC and the less commonly used but conceptually sim-
pler Soft Dynamic Time Warping (SDTW), which offers a more
intuitive and flexible approach to weak alignment. We introduce a
generalization of SDTW that incorporates cell-wise step weights,
variable step sizes, and flexible boundary conditions. We refer to
this extended framework as Differentiable Dynamic Time Warping
(dDTW), which naturally subsumes CTC and SDTW as special
cases and provides a unified perspective on these alignment-based
losses. We systematically compare SDTW, CTC, and related vari-
ants in two controlled and illustrative tasks from music information
retrieval, analyzing prediction accuracy, training stability, align-
ment behavior, and the implications of the blank symbol, in both
single- and multi-label problems.

Index Terms—CTC, dDTW, DTW, differentiable alignment,
music synchronization, SDTW.

1. INTRODUCTION AND RELATED WORK

RAINING deep neural networks (DNNs) on large amounts
T of sequential data is a core strategy in various domains,
including automatic speech recognition (ASR) [1], motion align-
ment [2], and music transcription [3]. Ideally, such tasks rely
on training data comprising precisely aligned input—target pairs
with frame-wise correspondence.
While strongly aligned data are often difficult to obtain,
weakly aligned input—target segments, where only the start and
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Fig. 1. Schematic illustration of alignment-based loss functions. The dDTW
framework generalizes the CTC and SDTW algorithms.

end points of regions are known, can be more readily obtained.
In ASR, weak targets often consist of the corresponding text or
phoneme sequences without explicit timing. In music informa-
tion retrieval (MIR), such weak targets can be derived for a given
music recording from a corresponding score that includes un-
aligned note content. One approach for training DNNs on weakly
aligned pairs of input data and labels is an iterative alignment and
prediction refinement in an expectation-maximization (EM)-like
fashion [4], [5]. Other examples of model architectures and
training paradigms handling weakly aligned data are the atten-
tion mechanism [6], optimal transport [7], and the utilization
of sequential models like RNNs [8] (see Fig. 1 for a schematic
overview of alignment paradigms).

A widely adopted method for end-to-end DNN training with
weak supervision is the CTC loss [9], which provides a dif-
ferentiable mechanism to align prediction and label sequences
during loss computation. Originally introduced for sequence
labeling tasks, CTC has since become a standard loss func-
tion in areas such as image-based sequence recognition [10]
and speech recognition [11]. In MIR, CTC has been success-
fully applied to tasks such as score—audio retrieval [12] and
lyrics alignment [13]. To address multi-label scenarios, the
classical CTC algorithm has been extended to multi-label CTC
(MCTC) [14], and successfully applied to multi-pitch and pitch
class estimation tasks [15], [16]. While CTC is known for its
algorithmic stability and the potential to train large models from
scratch using unaligned data, it also presents several limitations.
Specifically, the formulation can be unintuitive, especially in
the multi-label setting, structurally inflexible, and reliant on a
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special blank symbol. This blank symbol is designed to model
target repetitions and implicitly stabilize the alignment process,
but introduces architectural constraints and often leads to spiky,
blank-dominated predictions during inference [9], [12], [17].
Furthermore, CTC is inherently limited to feature-to-label tasks
with targets from a finite alphabet. Similarly, SDTW [18], [19]
offers a differentiable generalization of classical Dynamic Time
Warping (DTW) [20]. By replacing the hard minimum operator
with a smooth approximation, SDTW remains conceptually
simple and interpretable. Applications of SDTW in MIR in-
clude performance—score synchronization [21] and multi-pitch
estimation (MPE) [22]. Several extensions have been pro-
posed to improve SDTW, including alternative smoothing strate-
gies [23], improvements regarding mathematical properties [24],
training stabilization techniques [25], and customizable step
weights [26]. Unlike CTC, SDTW operates on arbitrary cost
matrices and is applicable to diverse problem settings, including
feature-to-label tasks via one-hot and multi-hot encodings, as
well as feature-to-feature alignment tasks using continuous-
valued feature representations [27], [28].

In this paper, we establish a formal connection between
CTC and SDTW by reformulating the CTC objective to match
a generalized SDTW formulation. To reveal a mathematical
connection between the two losses, we extend SDTW with
three building blocks: parameterizable cell-wise step weights,
individualized step sizes, and flexible boundary conditions (see
Fig. 1). We refer to this generalized alignment algorithm as
dDTW and derive efficient dynamic programming (DP) recur-
sions for both the forward and backward passes. The proposed
framework explicitly relates CTC and SDTW, with both being
special cases of dDTW. It offers a more interpretable alterna-
tive to CTC while removing several of its limitations, most
notably, the need for a special blank symbol. In an illustrative
and controlled experiment—specifically, pitch class estimation
from music recordings—we compare CTC and SDTW within
the common dDTW framework, evaluating prediction accuracy,
training stability, alignment behavior, and discussing the impact
of and alternatives to the blank symbol. Our results show that
a well-parameterized dDTW loss retains the stability of CTC,
eliminates the need for a blank symbol, and achieves even
higher prediction accuracy. These findings offer a basis for
differentiable alignment techniques beyond the classical CTC
loss.

The remainder of this paper is structured as follows. In
Sections II, III, we briefly review the objectives of CTC and
SDTW, respectively, focusing on their global formulations rather
than algorithmic specifics. In Section IV, we present our first
main contribution: a formal transformation between the CTC
and SDTW objectives, along with the modifications to SDTW
required to achieve equivalence. As our second main contribu-
tion, we introduce in Section V the dDTW algorithm, which
incorporates these extensions to SDTW. We detail its building
blocks and provide efficient DP recursions for the loss and
gradient computation. We specify label probabilities and cost
functions in Section VI and experimentally evaluate in Sec-
tion VII performance of CTC, SDTW, and combinations thereof
in the unified dDTW framework. Finally, we summarize our
findings and outline future research directions in Section VIII.

II. CTC REVISITED

In this section, we describe the CTC objective function as
proposed by Graves et al. [9]. Our aim is to gain a conceptual
understanding of CTC, rather than focusing on algorithmic
details. Therefore, we limit the description to the global loss
objective of CTC and refer the reader to the original publica-
tion [9] for implementation details regarding, e.g., the forward
and backward passes using DP. Throughout this paper, we
adopt the following notation: sets are denoted by curly braces,
e.g., {a,b, c}; sequences by parentheses (a,a, b, ¢, a); contin-
uous ranges by [a, ] := {x € Rla < z < §}; discrete integer
ranges by [1:N]:={1,2,..., N}. Vectors are represented by
lowercase letters (e.g., ), and matrices are denoted by uppercase
letters (e.g., X), with coefficients given by X (n, m).

A. Alphabet, Labels, and Predictions

Following the original CTC paper [9], we define an al-
phabet A = {a1,...,a;} of available symbols, and extended
alphabet A" = AU {e} including a special blank symbol e.
Let Y = (y1,...,yn) denote a label sequence with labels
ym € A. The label sequence represents the symbols in their
correct order but does not encode any information about
the duration of individual symbols. For example, in ASR,
a label sequence may correspond to a phoneme sequence,
while in music transcription it may represent a sequence of
note events derived from a musical score. As the CTC re-
quires a special blank symbol, we follow [9] by adding the
blank symbol before and after every element in Y, resulting
in the extended label sequence Y°© = (¢,y1,¢€,...,€,Yn,€)
= (y§,...,Y5) with M®=2M +1 and y, € A'. Further-
more, we define output features, also called prediction se-
quence X = (z1,...,xy) with z,, € Fx, where Fx denotes
an abstract feature space, e.g., symbol probabilities.

B. Label Paths

Our goal is to align the label sequence to the prediction
sequence. Following [9], we establish notation for alignments
in terms of label paths = = (71,...,7y), which model the
alignment as a sequence of label symbols from the extended
alphabet with 7,, € A’. To define a validity condition for a label
path, a projection operator kx : AN — A=Y is defined that
takes a label path 7 of length N and first collapses repeated
symbols and then removes all blank symbols, yielding a label
sequence of length < NN. A valid label path must, by definition,
satisfy kK (7) =Y and can be constructed from the extended
label sequence Y °, with the following rules:

e Start condition: m is either the blank symbol € or the first

label y; in other words, m1 € {y§,y5} .

® End condition: 7y is either the blank symbol € or the last

label yas; in other words, mn € {YSse 1, YSse } -

o Step sizes: m is a (weakly) monotonic unfolding of Y°.

Leaving out blank symbols is allowed if the preceding
and succeeding labels are different. In other words, let 7,
=yy,, then

TTn+41 S {yrenvyfn+1ay7en+2}7

Tnt1 € {Y: Yns1 } >

£ Yp, # Y2
else . )
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Overview of CTC loss computation. (a) Prediction sequence X . (b) Extended alphabet A’. (c) Probabilities of alphabet symbols p(a;|xy,). (d) Label

sequence Y. (e) Extended label sequence Y °. (f) Probabilities of extended labels p(y$, |-, ). (g) Possible label path 7 corresponding to circles in (f).

The set of all valid label paths of length N that collapse to a
label sequence Y is denoted by x5 (V).

C. CTC Objective

Following [9] and assuming conditional independence of
predictions and labels over time, we define the probability of
a label path 7 given a prediction sequence X as

Hp 7Tn|xn 5

where p(m,|2,,) denotes the probability of label ,, given the
feature vector x,,. We will give a concrete example of this
probability in Section VI. The probability of the label sequence
Y is obtained by summing the probabilities of all valid label
paths 7 € ' (V') that project to Y:

2

mer (V)

p(m|X) = 2

p(Y[X) = p(m|X). ©)

While the direct evaluation of (3) has computational complex-
ity O(|rx'(Y)|- N), in practice the CTC loss is computed
efficiently using a dynamic programming (DP) recursion with
complexity O(M® - N) [9].

D. Practical Implementation

In standard CTC implementations, the process starts by com-
puting probabilities for all symbols in the extended alphabet
A’ conditioned on the network predictions X (Fig. 2(a)—(c)).
The label sequence (Fig. 2(d)) is then expanded by inserting
blanks before and after each label (Fig. 2(e)), and rows from the
alphabet probability matrix are arranged accordingly (Fig. 2(f)).
The loss is computed on this re-arranged matrix by accumulating
the probabilities of all valid label paths 7 (Fig. 2(g)). For large al-
phabets (e.g., in multi-pitch estimation), computing probabilities
for all symbols becomes computationally expensive (Fig. 2(c)).
This can be mitigated by restricting the alphabet to only active
labels at each step, reducing complexity, however, at the cost of
additional preprocessing.

Predictions X Labels Y

_ -

(© Local cost c(zn, ym)

M

mt

1

_—
1 o N

Fig.3. Overview of SDTW loss computation. (a) Prediction sequence X. (b)
Label sequence Y. (c¢) Cost matrix C. A possible alignment path is illustrated
with circles.

III. SDTW REVISITED

In this section, we briefly describe the SDTW loss function as
proposed by Cuturi et al. [18] by defining the cost matrix as an
input to the algorithm, specifying alignment paths, and outlining
the global objective of SDTW.

A. Labels, Predictions, and Cost Matrix

The computation of the SDTW loss is based on a cost
matrix C € RV*M (Fig. 3(c)) that is computed from two se-
quences X = (z1,...,2y) (Fig. 3(@) and Y = (y1,...,ym)
(Fig. 3(b)) [18] with z,, € Fx and y,, € Fy (e.g., Fy = A').
The elements of the cost matrix are defined as

C(n, m) = c(xnv ym) ) (€]
where ¢ : Fx x Fy — R is a local cost function, e.g., binary

cross-entropy (BCE). In the next section, we define alignment
paths over the cost matrix.

B. Alignment Paths

While the label path introduced for CTC is defined w.r.t.
the elements in the alphabet A’, we can alternatively define
an equivalent alignment path P = (py, ..., pr) that indexes a
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sequence of cost matrix cells py = (ng,my) € Zforf € [1: L],
where

Z:=[1:N]x|[l:M] ®)

denotes the set of all cells in the cost matrix. Analogously,
the index pairs (n¢, m¢) provide a mapping between the two
feature sequences X and Y, as known from classical DTW [20].
Valid alignment paths follow a set of constraints, in particular
boundary and step size conditions. We specify boundary condi-
tions By and Beyg that define the allowed start and end points
for the alignment path. The boundary conditions are given by
a set of integer pairs, i.e., By, Benda € Z. For any alignment
path P, it must hold that p; € By and py, € Beng such that
the boundary conditions are fulfilled. We define the allowed
step sizes S = {(is,Js)|s € [1 : S]} as a set of integer tuples
with monotonicity constraint i, > 0, js > 0,15 + j, > 1 for all
(is,Js) € S.Forall cells in the alignment path, it must hold that
pe — pe—1 € S. For SDTW, a valid alignment path satisfies the
following constraints [18]:

e Start condition: The first element of the alignment path
aligns the first elements of the prediction and target se-
quences, i.e., By = {(1,1)}.

® FEnd condition: The last element of the alignment path
aligns the last elements of the prediction and target se-
quences, i.e., Bena = {(V, M)}.

e Step sizes: The possible steps
8 ={(1,0),(0. 1), (1,1)}.

Let P denote the set of all valid alignment paths for two
sequences of length NV and M, satisfying boundary and step
size conditions. The cardinality of P is given by the Delannoy
number [20].

are restricted to

C. SDTW Objective

The SDTW objective is to find the alignment path of minimum
total cost over the matrix C, restricted to valid paths P € P. In
its global formulation, the SDTW cost is defined as the soft
minimum of the total costs over all valid alignment paths [18],
[19]:

SDTW(C) = pu Z C(n,m)|P P
(n,m)eP
=—ylog [ Y exp| Y —Cnm)/v] |,
PeP (n,m)eP

(6)
where p is a differentiable approximation of the minimum
function [18], [29]. In particular, we use the softmin function
defined as

w(@Q) = —ylog [ > exp(—q/7)] , (7)
qeQ
for a finite set @) C R, where ~ is a temperature parameter
controlling the smoothness of the approximation. It can be
shown that the SDTW cost can be computed efficiently by a
DP recursion as long as (4 is defined as in (7) [19].

IV. RELATING CTC AND SDTW

In this section, we establish a formal connection between the
objectives of CTC and SDTW. First, in Section IV-A, we refor-
mulate the CTC and SDTW losses to an identical expression.
Next, in Section IV-B, we define necessary requirements on the
SDTW alignment paths to achieve mathematical equivalence.

A. Reformulation of CTC and SDTW

To view CTC and SDTW from a unified perspective, we first
define the CTC loss Lcre(X,Y) as the negative log-likelihood
of the CTC objective, which is the standard formulation in
DNN training practice [9]. Starting from (2), (3), we obtain
Lcre, which we then bring to a log-sum-exp formulation by
introducing redundant exponential and log terms:

Lere(X,Y) = —logp(Y|X)

N
Z H p(mnln)

= —log
TK'EK;VI(Y) n=1
N
=—log| > ][] ewOogp(mnlan))
TK'EK;VI(Y) n=1
N
=—log| Y exp (Zlogp(ﬂnmn)>
merG(Y) n=1

(®)
In anext step, we first define the SDTW cost matrix C € RN *M*
over the prediction sequence X and the extended label sequence
Y*©as
C(na m) = 710gp(y$n|xn) . 9
Last, we replace label paths 7 € ' (V') with suitably designed
alignment paths P € P that index elements in the prediction
sequence X and extended label sequence Y °:

Lere(X,Y) = —log Z exp Z log p (yp,|zn)

PeP (n,m)eP
=—vlogY exp| Y  —C(n,m)/y
PepP (n,m)eP
— SDTW (C) , (10)

where equality holds for v = 1. Note that this reformulation
introduces new requirements for the set of alignment paths P,
as they need to exactly replicate the properties of label paths 7
used in CTC. We give an overview of these requirements in the
following section.

B. Necessary Properties for Equivalence of CTC and SDTW

To ensure mathematical equivalence in (10), all alignment
paths P must fulfill certain properties, as illustrated in Fig. 4.
In particular, the CTC algorithm aligns to the first predicted
element either the first element of the label sequence or the
first blank symbol. This modifies the start boundary condition to
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Fig.4.  Schematic overview of accumulated cost updates in the dDTW forward
pass, parameterized to replicate CTC. For updating the green cell, 1 is computed
over prior steps (blue). Boundary conditions Bgtart, Bend are shown in orange.
All purple cells must be updated before evaluating p; yellow cells depend on
the green cell; gray cells are unreachable under the CTC parameterization.

Byt = {(1,1), (1, 2)}. Likewise, the last element of the predic-
tion sequence is aligned to the last element in the label sequence
or the last blank symbol, resulting in Benq = {(IV, M© — 1),
(N, M©)}. Considering the step sizes, the CTC algorithm is
strictly monotonic over the prediction sequence (step sizes (1,0)
and (1,1)), and permits the skipping of blank symbols (step size
(1,2)) when the adjacent labels are different. This results in a
set of allowed alignment step sizes S = {(1,0), (1,1),(1,2)},
where the (1,2) step is only permitted when skipping the blank
label in the case of non-repeating adjacent labels.

C. Conclusion

While the SDTW formulation from (6) can be evaluated for
arbitrary alignment paths P including the modified boundary
and step size conditions presented in Section IV-B, the ex-
haustive search over all possible alignment paths P is compu-
tationally inefficient. To address this, efficient DP recursions
have been proposed [18], which yield the optimal result of the
global formulation (6) when using the softmin approximation
from (7) [19]. However, the original SDTW formulation from
Cuturi and Blondel [18] enforces fixed start and end boundary
conditions at (1,1) and (N, M), respectively, and restricts step
sizes to the set {(1,0),(0,1), (1,1)}. In contrast, Mensch and
Blondel [19] propose a differentiable DP framework for gen-
eral weighted directed acyclic graphs, encompassing algorithms
such as Viterbi [30], SDTW [18], and attention mechanisms [6].
However, their work does not explicitly detail an efficient DP
algorithm tailored for an SDTW variant with the extended step
sizes and boundary conditions required for exact equivalence to
CTC.

V. DIFFERENTIABLE DYNAMIC TIME WARPING

In the following, we introduce dDTW, an extension of
SDTW [18] that supports flexible boundary conditions, arbitrary
step sizes [19] and step weights (extending [26]), and general
minimum functions [19]. The formulation adopts standard DTW
conventions and employs a mathematically convenient vector—
matrix notation. In this section, we assume label sequences of

length M (or M€ in the case of CTC) and prediction sequences
of length IV, resulting in a cost matrix C € R™V*M  We specify
a partial order < on the set Z of cost matrix cells, indicating
precedence between cells:

(n,m) < (n',m') if n<n',m<m, (n,m)# N, m).

(1)

A. dDTW Building Blocks

Our proposed dDTW algorithm is based on efficient forward
and backward DP recursions, building upon [18]. We define the
dDTW algorithm with four building blocks, namely the bound-
ary conditions, the allowed step sizes, the step weights associated
to the step sizes, and the minimum functions. By choosing these
building blocks accordingly, a variety of alignment algorithms
can be generalized. In the following section, we define these
building blocks to generalize CTC and SDTW. An illustration
of the dDTW building blocks replicating CTC is provided in
Fig. 4.

1) Boundary Conditions: We specify boundary conditions
as a set of cells that define the allowed start and end points for the
alignment path. In the SDTW case, the start boundary condition
contains only the first sequence elements, i.e., By = {(1,1)},
whereas in the CTC parameterization it contains the first blank
symbol and the first label, i.e., Byan = {(1,1),(1,2)}. The
end boundary condition contains in the SDTW case only the
last sequence elements, i.e., Bena = {(IV, M)}, and in the CTC
case the last label of the extended label sequence and the blank
symbol, i.e., Bena = {(IV, M — 1), (N, M)}.

2) Step Sizes: We define the allowed step sizes as a
set of integer tuples. In the case of SDTW, we have
S ={(1,0),(0,1),(1,1)}, and in the case of CTC we have
S ={(1,0),(1,1),(1,2)}. In the CTC scenario it is necessary
to only allow the step (1,2) in certain cells. While it is possible to
define individual step sizes for each cell, we choose a different
approach. We define a common set of step sizes S for all cells
and use cell-dependent step weights, where setting a weight to
infinity “blocks” forbidden steps from certain cells.

3) Step Weights: While individual weights associated with
each step size were proposed in prior work [26], we extend this
idea to cell-dependent step weights for all steps. We denote the
step weights for all cells by a tensor W € RY M5 where
the element W (n, m) € R? is a vector that contains for a cell
(n,m) the weights associated to the step sizes S. For instance,
in the case of CTC, the weight tensor assigns a value of one to all
permitted steps—specifically, (1,0) and (1,1) are always allowed,
while (1,2) is permitted only if the skipped symbol is a blank and
the adjacent symbols differ—and infinity to disallowed steps. In
the parameterization for SDTW, the weight tensor is an all-ones
tensor.

4) Minimum Function: We denote by p a differentiable ap-
proximation of the minimum function. In this work, we exclu-
sively use the softmin function as given in (7), with the gradient
Vi : R® — R calculated as

exp (—qs/7)
> g0 €Xp (—at/7)

V@), = (12)
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Algorithm 1: DP forward pass for dDTW.

Algorithm 2: DP backward pass for dDTW.

1: Inputs:

2: Cost matrix C € RV*M indexed by cells 7

3: Boundary conditions By, Bena C Z

4: Step sizes S = {(is,7s)| s € [1: 5]}

5: Step weights W € RﬁXMXS

6: Minimum function x : RS — R
T:form=1,...,M do

8 forn=1,...,Ndo

9: fors=1,...,5do
10: fs(n,m) _ 00, if(n—is,m—3s) ¢ 7T,

D(n—is,m—js) + W(n,m,s)C(n,m), else,
11: end for
12: f(”am) _ 0, if (na m) ¢ Bstart>
: S+1 =
C(n,m), else.

13:  D(n,m) = p(Fmm)

14:  Save B(n,m) = Vu(f(»™) for backward
15:  end for

16: end for

17: b = {D(n,m)| (n,m) € Bena}

18: dDTW(C) = p(b)

19: Output: dDTW cost dDTW(C) € R

for an ordered set of real numbers Q = {qi,...,qs}. Note
that dDTW can be used with arbitrary differentiable minimum
functions, such as the “sparsemin” function [19], [31]. However,
in this work, we concentrate on the soft minimum function.
Having defined the building blocks of dDTW, the following
sections define how these building blocks can be integrated
within the DP forward and backward recursions.

B. Forward Recursion

The dDTW algorithm takes as input a cost matrix
C € RV*M calculated as described in (4). Following [18], we
approach the task of finding the minimum cost path through the
cost matrix C by iteratively computing a matrix of accumulated
costs D € RV*M with a DP algorithm.

To this end, for every cell (n,m) € Z, we define a vector
of accumulated incoming cost (™) ¢ R9+!, with elements
[1: S] used for the cost of incoming steps (is, js) € S:
pnm) . {oo, if(n—is,m—js) ¢ 7T,
: D(n—is,m—js) + W(n,m,s)C(n,m), else,

(13)

and element S + 1 used for cost from a start boundary condition:
f(”xm) R 0, if (n7 m) ¢ leart,
S+1 T
C(n,m),

else.
Evaluating the minimum function over cost values from incom-
ing steps and potential start cells, we obtain the dDTW forward
recursion as

(14)

D(n,m) = (f@%m)) . (15)

Note that the iteration requires the computation for cells in
increasing order, i.e., cell (n, m) can only be evaluated if all cells

1: Inputs:
2: Backtracking tensor B € RV*M»S

3: Boundary conditions By, Bena C Z

4: End boundary costs b := {b(™»™) € R|(n,m) € Bena}
5: Step weights W € R *M*S

6: Step sizes S = {(is,7s) |s € [1: S]}
T:form = M,....,1do

8 forn=N,....1do

9: fors=1,...,5do
10: 9dDTW(C)  _ {07 if (n+is,m+js) ¢ Z,

: OD(n+is,m+js)

E(n+is,m+js), else.
11: OD(n+is,m+js) _ 0, if(n+i87m+.j5) ¢I>
’ oD(n,m) B(n+is,m+ js,s), else.
12: end for

Au(b)/ob™ if (n,m) € Bena,

130 [Vu(b)]m) =

0, else.
14: E(n,m) = E§=1 aDB(SLI?‘r’I;Y’E“r?JI)’js) ' 8Dgng(i;:2;rj5)
+[Vu(b)] )
15: fors=1,....,.5+1do
W(n,m,s), ifsell:S],
aflm™ .
16: acmm =\ b if s=S+1and (n,m) € By,
0, else .
17: end for

18 Gln,m) = S5 B(n,m,s) - 2
19:  H(n,m) =E(n,m) - G(n,m)

20: end for

21: end for

22: Output: Gradient H € RV*M

(n/,m')with (n’,m’) < (n, m)have been previously computed.
For later use in the backward recursion, we save the gradient of
the minimum function w.r.t. its input in a backtracking tensor
B ¢ RV*M*(S+1) with entries

B(n, m) =V (f(n,m)) e RS+! 7 (16)

where the indices [1 : S] correspond to incoming steps, and
S + 1 corresponds to start boundary conditions. After updating
all cells (n,m) € Z, we collect all accumulated cost values at
cells given by the end boundary conditionina setb := {b("’m)
€ R|(n,m) € Bepa} with elements b(™™) = D(n, m). The
total cost IDTW(C) € R is given by evaluating the minimum
function p over the cost at the end boundary cells specified by b:

dDTW(C) := 11 (b) . (17)

The complete forward algorithm for dDTW is summarized in
Algorithm 1.

C. Backward Recursion

Our goal is to obtain the gradient of the total cost IDTW(C)
with respect to the local cost matrix C, defined as H :=
VcdDTW(C) € RY*M | We interpret the partial derivative
H(n,m) := 0dDTW(C)/0 C(n,m) as the “contribution” of
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cell (n, m) to the total alignment cost. To calculate these contri-
butions iteratively, we “reverse” the forward recursion [18]. This
concept is similar to the backtracking of classical DTW [20].

First, we apply the chain rule to separate the contribution
of cost C(n, m) to the accumulated cost D(n, m) (denoted by
G(n,m)), and the contribution of accumulated cost D(n, m) to
the total cost (denoted by E(n, m)) [18]:

_ 0dDTW (C)
H(n,m) := DCm)

_ 0dDTW (C) 0D(n,m)
~ 0D(n,m) 9C(n,m)

where  we define E(n,m):=0dDTW(D)/0D(n,m)
and G(n,m):=9D(n,m)/0C(n,m). To compute
E,G € RV*M we again iterate over all cells (n,m) € Z.
In the backward recursion, the iteration is executed in reverse
order as compared to the forward recursion, i.e., cell (n, m) can
only be evaluated if all cells (n',m’) with (n,m) < (n/,m’)
have been previously computed. For calculating the matrix E,
we use the chain rule to reformulate:

s
- §dDTW (C)
E(n,m) = SZ:1 OD(n+is,m+js)

OD(n+is,m+ js)
0D(n,m)

+ [Vu(b)) ™™ (19)

with (is, js) € S. The first term in (19) denotes the influence of
a following cell on the total cost and, as in standard SDTW [18],
is given by previously computed entries of the E-matrix:

9dDTW (C) [0, if(n+is,m+js) ¢ 7,
OD(n+is,m+7js) | E(n+is,m+ js),

else.
(20

The second term in (19), also found in standard SDTW [18],
denotes the influence of the current cell on a following cell and
is given by the previously computed backtracking matrix:

OD(n+i,m+js) )0, if(n+is,m+js) ¢ I,
8D(n7m) B(n+7’57m+]535)’

else .
20

The third term in (19) denotes potential contributions coming
from the end boundary conditions:

A pu(b) /0B if (n,m) € Bena,
0, else .

[Va(b)) "™ = {
22)

In other words, (19) describes the influence of a cell’s accu-
mulated cost D(n,m) on the total alignment cost dDTW(C)
by summing up the influence of a cell (n,m) on its children
(n+is,m + js) weighted with the influence of the children
(n 4 is, m + js) on the final cost dADTW(C), and an additional
term [Vu(b)](»™) describing the influence of a path ending
in (n,m) on the overall dDTW cost. This expression can be
thought of as a soft version of the backtracking algorithm from
classical DTW [20]. By again applying the chain rule, we obtain
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Fig. 5. Musical score of the first measures of Beethoven’s piano sonata Op.
14 No. 2, first movement. The main melody (theme) is highlighted in red.
(@p (b) g
2
<G G
o
o
C C
1 5 9 1 5 10 15

Fig. 6.

Label sequence index (m)

Ext. label sequence index (m)

Single-class target representations for the pitch classes corresponding

to the main melody (theme) of the running example in Fig. 5 for the first two
measures. (a) Label sequence Y. (b) Extended label sequence Y °.

G(n,m) as
S+1 (n,m)
0D(n,m) 0f;s
G(n,m) =Y —- 1" . @3
— pfmm  0C(n,m)
where the first term in (23) is given by the backtracking matrix
oD
IDm) g ) 24)
o fs(n,m)

and the second term in (23) is given by either the step weight,
or, in the case (n, m) is in the start boundary conditions, a factor
of one:

B gl W(n,m, s), ?fs €9,
m_ 17 lfS:S+1 and (Tl, m) € Bstartv
) else.

(25
The full backward pass is summarized in Algorithm 2. If we
use unweighted dDTW, where all step weights are one (W is
an all-ones matrix), G also becomes an all-ones matrix and thus
H = E [26]. The matrix E can be interpreted as a “soft align-
ment matrix” [18], with entries E(n, m) describing the proba-
bility of sequence elements z,, and y,,, being aligned under the
dDTW loss. We visualize the soft alignment matrix in Fig. 10
and refer to [18], [25], [26] for further explanations.

VI. LABEL PROBABILITIES AND COST FUNCTIONS

In the previous sections, we analyzed CTC and SDTW from
an alignment perspective, neither specifying how predictions X
and targets Y are represented, nor how the probability p(yS, |2,,)
and local cost function ¢(x,,, Y., ) are defined. We now clarify
these aspects using two concrete examples, one being a single-
label (main-melody pitch class prediction, see Section VII-B)
and the other being a multi-label scenario (polyphonic pitch
class estimation from music recordings, see Section VII-C).
Both tasks, which are well-studied in previous work [12], [16],
[25], [26], serve three purposes: First, they illustrate how to
define suitable label probabilities p(yS,|xy,) for the single- and
multi-label CTC loss. Second, they show how SDTW naturally
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Fig. 7. Excerpt from “Gute Nacht” (Schubert’s “Winterreise”), used as a running example for multi-label classification.
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priate cost functions, without increasing algorithmic complexity. @
Third, they clarify the conceptual and computational differences S@ G o el el el lellel lelhle
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and similarities between CTC and SDTW. 2E E
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A. Single-Label Classification 1 5 8 1 5 10 15
. . L. . Label sequence index (m) Ext. label sequence index (m)
Estimating the activity of the twelve pitch -classes
{C,C4t, D, ..., B} (astypically used in 12-tone equal-tempered Fig. 8. Multi-class target representation for the pitch classes of the running

scale in Western music) of the main melody (i.e., the musical
theme, see Fig. 5) from an audio recording presents a single-label
classification task. The estimated pitch classes can be used
in applications such as theme-based music retrieval [12]. The
extended alphabet A’ contains the twelve pitch class symbols
plus the blank label. We model these twelve targets plus the blank
symbol as vectors with a one-hot encoding, i.e., ¥, € {0, 1}
(see Fig. 6). D € {12,13} is chosen depending on the require-
ment of an additional blank class. For example, in the score
from Fig. 5, we model the first note of the annotated theme
(pitch class “D”) as a one-hot vector y; = [0,0,1,0,...,0].
Similarly, the network outputs vectors x,, € AP, where AP is
the D-dimensional probability simplex, describing the predicted
probabilities for all classes.

1) CTC: For CTC, we set D = 13 to include the blank label
in the feature space. Each predicted vector x,, contains in its
components the probabilities for all labels in the alphabet. Using
vector notation, the label probabilities can be obtained as

P(Ymlen) = (2n, 4rn) 5 (26)
where the dot product (-, -) selects from the prediction vector
z,, the probability for the label given by the one-hot encoding
inyg,.

2) SDTW: For SDTW, we do not require the blank sym-
bol (i.e., D =12) and directly use the weak labels YV =
(y1,...,ynr) as the target sequence. To mirror the CTC label
probability specified in (26) in SDTW, we define the cost func-
tion as the negative log-likelihood for the true class label

C(In, ym) log<xn, ym> 27
and, while disregarding the blank symbol, fulfill the requirement

Xy Ym) log p(yS,|zy) given by (10). To avoid changing
the network architecture, we model rests as all-zero vectors.

B. Multi-Label Classification

We now consider the joint estimation of pitch classes from
recordings containing voice and piano, forming a polyphonic
multi-label problem. As a scenario, we use songs for male
voice and piano from Schubert’s “Winterreise”, contained in

example in Fig. 7 for measures 15 and 16. (a) Label sequence Y. (b) Extended
label sequence Y°.

the multimodal Schubert Winterreise dataset (SWD) [32]. The
musical score (see Fig. 7 for an example) provides symbolic
labels that are weakly aligned to the audio. The multi-class
prediction of the simultaneously occurring pitch classes in an
audio recording can be used, e.g., for subsequent harmony
analysis [33] or as features for music synchronization [34]. We
represent the multi-class labels Y = (y1,...,yn) as twelve-
dimensional multi-hot feature vectors y,,, € {0, 1}'2, encoding
in each of the twelve dimensions the activity of the respective
pitch class. For instance, the first chord in measure 15 contains
the pitch classes {C, E”, G} and is encoded as a multi-hot vector
v =1[1,0,0,1,0,0,0,1,0,0,0,0] (see Fig. 8(a)). Predictions
are represented similarly as z,, € [0,1]P, where each compo-
nent indicates the activation probability of a pitch class (and the
blank label, if required, by choosing D € {12, 13}).

1) Multi-Label CTC: In the original CTC formulation, all
possible labels must be drawn from an alphabet .A. For a multi-
label task with 12 pitch classes, this implies |A| = 2!? = 4096
possible label combinations. Computing probabilities for all
such combinations is infeasible in practice. Therefore, prior
work on the MCTC [14], [16] restricts the alphabet to only
those combinations actually occurring in the label sequence Y.
In our setup, we directly define the conditional probabilities
p(yS,|zy) for the elements of the extended label sequence ¢,
(see Fig. 8(b)), which can be used to compute the CTC loss as
in (10). Two cases must be distinguished based on the index
m: If m is odd, y;, = € (blank symbol), and if m is even,
Ym = Ymy2 (the corresponding multi-hot label from Y'), as de-
fined in Section II-A. Following [14], [16], we define multi-class
probabilities

if misodd (blank),

p(f‘xn),
P(€wn) - p(Ym2|2n), else (not blank),
(28)

(Y| Tn)
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where p(e|z,,) and p(€|z,,) are the probabilities of presence and
absence of the blank symbol, respectively, and p(y,,, /2|2y ) is
the probability of the non-blank multi-hot label y,,, /2 = yy,,. The
encoding of predictions is identical to single-label CTC where
we set D = 13, to extend each prediction by one dimension to
include a probability for blank. Thus, we have z,, € [0,1]!3,
where x,, o corresponds to the blank and x,, ; (with ¢ > 1) to
pitch class activations. For the probabilities of the blank symbol,
we then have:

plelxn) = xn0, P(Exn) =1—2p0. (29)
For a given multi-hot label y,,, € {0, 1}12 and prediction x,,, the
probability of y,, given x,, is modeled as the product over all
pitch classes:
12
i=1
assuming conditional independence of pitch classes.

2) SDTW: For the SDTW training, we directly use the
weak labels Y = (y1,...,yn) encoded as multi-hot vec-
tors ¥, € {0,1}'2 for training. Analogously, the predictions
X = (x1,...,xn) are considered probabilities for the pitch
classes with z,, € [0, 1]'2. We use the BCE as local cost function:

12

BCE(Tn, Ym) = — Z(ym,i log Zn,i+(1 = Ym,i) log(1=2n)),

i=1
(3D
which is a common choice in multi-label classification tasks.

C. Discussion

In both the single- and the multi-label configura-
tions above, we observe equality in the cost values
¢BCE(Zny Ym) = —10g p(ym |2 ), aligning with the requirement
formulated in (10). Although the CTC and SDTW objectives
appear similar in form, they differ conceptually: First, CTC
requires explicit modeling of a blank symbol, which impacts
both the network architecture (adding an output dimension) and
the alignment computation. Second, MCTC increases imple-
mentation complexity by constructing the probabilities of multi-
class labels from component-wise single-class probabilities. In
contrast, SDTW operates directly on two feature sequences
using a local cost function, without the need for a blank label or
probabilistic interpretation. This makes SDTW not only more
intuitive and didactically accessible but also more flexible. The
cost function c can be freely adapted (e.g., beyond BCE) without
violating the underlying alignment assumptions, and SDTW
naturally supports real-valued target sequences beyond binary
multi-hot representations.

VII. EXPERIMENTS

In this section, we examine the core conceptual similarities
and differences between CTC and SDTW. The proposed dDTW
framework offers a unified view of both losses, allowing us to
compare their behavior in acommon language. With suitable pa-
rameter choices (Section VII-A), dDTW spans a continuum from
SDTW to CTC, so we can study not only the two endpoints but
also the effects of individual algorithmic components. Although
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TABLE I
OVERVIEW OF DIFFERENT MCTC AND SDTW CONFIGURATIONS WITHIN THE
DDTW FRAMEWORK. FOR EXPLANATIONS, SEE SECTION VII-A.

has (1,0) (1,1) (1,2) 0,1)

ID € tgt € tgt € tgt € tgt
CTC-A v 1.0 10|10 10| 10 oo -
CTC-B v 1.0 20| 10 20| 10 o -
CTC-C v 1.0 oo ) [e%S) 1.0 o -
SDTW-D X 1.0 - 1.0 - - - -
SDTW-E X 1.0 - 1.0 - - - 1.0
CTC-A-W v 01 10|10 10| 1.0 oo -
CTC-B-W v 0.1 20| 10 20| 1.0 oo -
CTC-C-W v 0.1 ) ) 9] 1.0 o -
SDTW-D-W X 0.1 - 1.0 - - - -
SDTW-E-W X 0.1 - 1.0 — - - 1.0

dDTW enables task-specific tuning of step sizes and weights,
softmin temperature, and even the minimum operator itself, a
comprehensive ablation is beyond our scope. In the following,
we focus on the parameter settings that recover CTC and SDTW
and on representative configurations between them.

We start with a single-label task, main-melody pitch class pre-
diction (Section VII-B), and evaluate frame-level accuracy and
downstream database retrieval given a melody query. We then
analyze sequence decoding and symbol-level evaluation: anal-
ogous to ASR, we decode predictions using greedy and beam
search methods and measure symbol-level edit distances. Next,
we consider multi-class settings (Section VII-C) in a polyphonic
pitch-class estimation problem using both MCTC and SDTW,
illustrating how SDTW extends to multi-label scenarios. Finally,
in Section VII-D we compare the computational cost in practice
of classical SDTW and CTC implementations with our proposed
dDTW framework. Throughout all experiments, we remove all
temporal information from the targets (see Figs. 6 and 8), which
may lead to substantial sequence-length mismatches between
predictions and labels. Although up-/downsampling strategies
can stabilize DTW and SDTW alignments in such cases [22],
[35], we do not adopt them here to preserve comparability with
CTC and reduce computational cost.

Across all experiments, our goal is not to rank CTC against
SDTW, but to use the dDTW continuum as an analytic tool. By
moving through this continuum, we isolate specific components,
most notably the CTC blank symbol, and study their effects on
alignment, learning dynamics, and decoding behavior. For ex-
ample, we will analyze in detail whether the blank is essential for
successful sequence decoding, the separation of repeated sym-
bols, and alignment stabilization, or whether the same effects
can instead be achieved through an appropriately parameterized
SDTW variant. Code to reproduce all experiments is available
at github.com/groupmm/dDTW_CTC.

A. Training Configurations

‘We now discuss the parameterization of various loss functions
within our proposed dDTW framework. Table I provides an
overview of the dDTW parameterizations leading to different
training configurations. In Table I, we distinguish alignment
steps in a cell corresponding to a target y,, (tgt) or the blank
symbol (e). In the following section, we detail how dDTW
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generalizes both CTC and SDTW through appropriate parameter
choices.

1) CTC: Forall CTC configurations, we adopt the parameter-
ization from Section VI. Specifically, we use the extended label
sequence Y as targets, predictions X with z,, € [0,1]” with
D = 13, and the local cost function ¢(x,,, ¥5,) as defined in (26)
and (28). We set dADTW step sizes to S = {(1,0), (1, 1), (1,2)}
and prohibit skipping (step (1,2)) of blank symbols by as-
signing infinite weight to corresponding entries in the weight
matrix. Boundary conditions are set to Byar = {(1,1),(1,2)}
and Bena = {(N, M® — 1), (N, M®)}. We denote the baseline
configuration with uniform step weights as CTC-A. Introducing
a slight penalty for blank transitions by setting the step weights
into and within blank symbols to two yields CTC-B. To obtain
a configuration resembling SDTW, we disable all blank-related
transitions by assigning infinite weights to the respective entries
in the weight matrix, yielding CTC-C. If a transition through the
blank symbol is required to distinguish repeated target symbols,
we assign the weight of the (1,1)-step to that particular transition.
Note that CTC-C retains blank labels in both the network and the
weak targets, although the blank target is never aligned during
loss computation. An illustration of the step sizes used for CTC
parameterizations of dDTW is shown in Fig. 4.

2) SDTW: For all SDTW-based configurations (SDTW),
weak targets are given by the label sequence Y, and predic-
tions X consist of twelve-dimensional vectors z;,, € [0, 1] with
D = 12. As detailed in Section VI, the local cost function
is given by (27) and (31). We first parameterize an SDTW
configuration SDTW-D that is similar to CTC in the sense that
vertical alignment steps are not allowed, by choosing step sizes
S ={(1,0),(1,1)} and boundary conditions By, = {(1,1)}
and Bena = {(N, M)}. To parameterize the standard SDTW
algorithm (SDTW-E) within the dDTW framework, we use step
sizes S = {(1,0), (0,1), (1,1)} with the same boundary condi-
tions as SDTW-D.

3) Ablation Study for Horizontal Step Weight: Prior work on
SDTW has shown that the weight wy, assigned to the horizontal
step (1,0), which encodes the repetition of a target, critically
affects training stability [26]. Specifically, reducing this weight
improves alignment quality. To systematically investigate this,
we run all experiments with either the standard horizontal step
weight of wy, = 1.0 or areduced weight of wy, = 0.1 (suffix -w).

4) Baselines: As a baseline, we use an EM-like approach
inspired by [4], [5], where, in every training step, we do hard
DTW alignment between the weak target sequence (uniformly
stretched to the length of the predictions), and the predicted
sequence. The aligned target sequence is then used as element-
wise targets for training, and the approach is denoted as EM.
Furthermore, we train all networks on strongly aligned reference
annotations (strong).

B. Single-Label Classification: Main Melody Prediction

As a first scenario, we consider a single-label classification
task: predicting the pitch-class sequence of the main melody
(i.e., the musical theme) in audio recordings [12]. We use the

TABLE II
CNN ARCHITECTURE FOR MAIN-MELODY PITCH CLASS PREDICTION
FROM [12]. Z € {0, 1} DENOTES AN OPTIONAL OUTPUT DIMENSION FOR

BLANK.
Layer Kernel size | Output shape | # Parameters
Input (T, 216,6)
Conv2D | 3 x 3 (T,216,64) 3520
Conv2D | 3 x 3 (T,216,32) 18464
Conv2D | 3 x 3 (T, 216, 32) 9248
Conv2D | 3 x 42 (T,216,8) 32264
Conv2D | 1x1 (T,216,1) 9
Pooling (T,12+ Z) Z - 217
Total 72753

+7Z-217

musical theme dataset (MTD) [36], which offers symbolic an-
notations for 2067 themes from 1126 classical pieces (about 5 h
of annotated excerpts and 120 h of full recordings). Following
Zalkow and Miiller [12], we train a small convolutional neural
network (CNN) to produce a chromagram-like representation
that highlights the pitch classes of the main melody (the musical
theme). Each training example pairs an audio segment contain-
ing a musical theme with the corresponding pitch-class sequence
extracted from the score (see Figs. 5 and 6).

The setup is closely related to ASR training, where utterances
are paired with unaligned label sequences; accordingly, [12]
optimizes the network using the CTC loss. However, unlike
ASR, no transcription is decoded but the posterior probabilities
are used directly as mid-level features for matching against
prototype themes. We revisit this task as a compact testbed for
our unified dDTW framework, allowing us to probe the contin-
uum between CTC- and SDTW-like parameterizations and their
effect on learning, both at the frame level (pitch-class accuracy
and downstream retrieval) and at the symbol level (greedy/beam
decoding and normalized edit distance to the reference theme
annotations).

1) Experimental Setup: Throughout all experiments, we fol-
low the training setup of [12] and vary only the loss function
within our dDTW framework. The CNN takes as input a har-
monic constant-Q transform (HCQT) [37] computed from audio
sampled at 22050 Hz with a hop size of 896 samples, correspond-
ing to a frame rate of about 25 Hz. The HCQT spans six octaves
with three bins per semitone (216 pitch bins) and six harmonic
channels (one subharmonic plus five harmonics). Inputs are
HCQT sequences of length T'; for each frame, the network
outputs z,, € [0,1]P, where D € {12,13} indicates whether a
blank symbol is included. The architecture is summarized in
Table IT and consists of 2D convolutional layers with leaky ReLU
activations and a partly trainable pooling stage that reduces
the output to D classes (see [12] for details). We train with
mini-batches of eight using Adam [38] at an initial learning rate
of 0.001; the rate is halved if the validation loss does not improve
for five epochs, and training stops if there is no improvement for
ten epochs, restoring the model with the lowest validation loss.

2) Frame-Level Analysis: We assess monophonic theme pre-
dictions at the frame level using two measures: frame-wise pitch-
class accuracy and retrieval performance based on the learned
features. Frame-wise accuracy is the proportion of frames for
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TABLE IIT
EXPERIMENTAL RESULTS FOR MONOPHONIC PITCH-CLASS ENHANCEMENT
BASED ON MTD [36]. THE TABLE SHOWS RETRIEVAL RESULTS FOR
DIFFERENT LOSS CONFIGURATIONS, REPORTED AS TOP-k RANK AND MRR.
FOR ACCURACY, WE PROVIDE THE MEAN VALUE OVER FIVE RUNS AND THE
BEST INDIVIDUAL RUN; FOR RETRIEVAL, WE USE THE MODEL WITH THE
LOWEST VALIDATION LOSS.

ID Accuracy T Retrieval rank T MRR 71
mean best topl top 10 top 50

CTC-A 0.473 0.574 | 0.870 0.939  0.963 0.895
CTC-B 0.555 0.583 | 0.832 0.923  0.952 0.864
CTC-C 0.588 0.590 | 0.795 0.894  0.941 0.830
SDTW-D 0.657 0.661 | 0.856 0.936  0.957 0.889
SDTW-E 0.648 0.654 | 0.870 0.939  0.960 0.893
CTC-A-W 0.230  0.230 | 0.000 0.000  0.048 0.005
CTC-B-W 0.228 0.230 | 0.000 0.005  0.082 0.007
CTC-C-W 0.311 0.646 | 0.843 0.926 0.963 0.871
SDTW-D-W | 0.650 0.655 | 0.891 0.944  0.957 0.908
SDTW-E-W | 0.643 0.650 | 0.864 0.934  0.963 0.889
EM 0.653 0.657 | 0.888 0.949  0.973 0.907
strong 0.676  0.679 | 0.878 0.947  0.968 0.901

which the most probable pitch class matches the strongly aligned
reference. For retrieval, we process each database recording with
the trained model to obtain an enhanced pitch-class representa-
tion and match it to a symbolic query theme via subsequence
DTW [20]. Rankings follow the minimum subsequence DTW
distance per query—document pair; we report top-k retrieval rates
and mean reciprocal rank (MRR) [12]. Results are summarized
in Table III with example predictions in Fig. 9.

Starting from standard CTC (CTC-A), we gradually relax
constraints toward standard SDTW (SDTW-E). CTC-A yields
low mean accuracy (0.473), dominated by blank activations
(Fig. 9(a)), yet achieves strong retrieval (top-1 = 0.870). Penal-
izing blanks (CTC-B) or forbidding blank alignments (CTC-C)
increases accuracy to 0.555 and 0.588 and removes blank pre-
dictions (Fig. 9(b)), but reduces retrieval, likely due to temporal
blurring. SDTW-based losses substantially improve accuracy
(SDTW-D: 0.657, SDTW-E: 0.648) and produce cleaner theme
representations (Fig. 9(c)), with top-1 retrieval of 0.856 and
0.870, respectively.

Lowering the horizontal step weight to 0.1 (suffix -W) severely
degrades CTC variants and often prevents convergence, while
SDTW variants remain largely stable. Although not best in
accuracy, SDTW-D-W gives the strongest retrieval overall (top-1
= 0.891). The EM baseline performs consistently well in ac-
curacy (0.653) and ranks second in retrieval. Training with
strongly aligned targets (st rong) yields the highest frame-wise
accuracy (0.676), but shows temporal blurring (Fig. 9(e)), which
likely explains slightly weaker retrieval than the best SDTW
models.

3) Symbol-Level Decoding: Next, we apply CTC-style de-
coding to the predicted symbol posteriors. Greedy decoding
selects the most probable symbol (including blank) per frame,
collapses repeats, and removes blanks. Beam search [8] propa-
gates the top-k collapsed sequences over time, sums probabil-
ities of paths that collapse to the same sequence, and returns
the most probable sequence. We evaluate both decoders using
the normalized Levenshtein edit distance [39] between decoded
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and reference sequences, reported as label error rate (LER),
analogous to ASR character error rate.

With horizontal step weight wy, = 1.0, CTC and SDTW vari-
ants yield similar greedy LER; CTC-B is best on average (0.251),
and the best runs are dominated by CTC variants, with CTC-A
achieving the lowest LER (0.212). Lowering wy, degrades CTC
decoding, while SDTW models remain largely stable. Despite
strong frame-level accuracy, EM produces substantially higher
LER, likely because hard alignments introduce local outliers
(Fig. 9(d)) that barely affect frame accuracy but increase edit
distance. The strong model outperforms all SDTW variants
but remains slightly behind the best CTC settings, as only
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TABLE IV
EXPERIMENTAL RESULTS FOR SYMBOL-LEVEL DECODING ON MTD [36]. THE
TABLE SHOWS SYMBOL-LEVEL LER FOR DIFFERENT CONFIGURATIONS OF THE
DDTW Loss. WE REPORT THE MEAN METRICS OVER ALL FIVE TRAINING
RUNS, AS WELL AS THE METRIC FOR THE RESPECTIVE BEST-SCORING
TRAINING RUN.

D LER (greedy) | | LER (beam search) |
mean best mean best
CTC-A 0.282  0.212 | 0.256 0.189
CTC-B 0.251  0.220 | 0.431 0.207
CTC-C 0.271  0.257 | 0.618 0.594
SDTW-D 0.281  0.275 | 0.437 0.428
SDTW-E 0.285  0.266 | 0.415 0.400
CTC-A-W 0.500  0.500 | 1.999 1.997
CTC-B-W 0.476  0.470 | 1.793 1.288
CTC-C-W 0.433  0.276 | 1.893 0.955
SDTW-D-W | 0.282  0.270 | 0.938 0.925
SDTW-E-W | 0.278  0.271 1.013 0.967
EM 0.577  0.550 | 0.691 0.663
strong 0.263  0.256 | 0.752 0.724

CTC with an explicit blank can represent consecutive repeti-
tions (CTC-A, see Fig. 9(a)), whereas SDTW and strong targets
emphasize frame-wise activations rather than onsets (Fig. 9(c),
(e)). Addressing this would require explicit onset modeling [40],
which is beyond our scope.

To allow a fair comparison between CTC- and SDTW-based
models in the single-label setting, we also apply beam-search
decoding, a common post-processing strategy in sequence mod-
eling [8]. As shown in Table IV, the trend is consistent: for
all configurations except CTC-A, beam search increases LER,
sometimes sharply, especially for reduced wy,, where the LER
can approach or exceed 1.0. In contrast, only CTC-2, the setting
for which beam search was introduced [8], benefits from it,
reducing mean LER to 0.256 and achieving the best-case LER
of 0.189. These results suggest that the CTC blank symbol
functions as a robust “time-filler” in uncertain regions, causing
many beam paths to collapse to the same output sequence and
thus stabilizing decoding. In contrast, the absence of such a
mechanism in SDTW leads to spurious symbol insertions and
over-segmentation of the hypothesis space, resulting in unstable
sequence estimates.

C. Multi-Label Classification: Polyphonic Pitch Class
Estimation

For our experiments on multi-label classification, we adopt
a simple and well-established scenario: polyphonic pitch class
estimation using CNN [33]. Unlike larger music transcription
models that require pretraining on strongly aligned data [40], this
setup enables training from scratch using only weakly aligned
data. To ensure comparability with prior work, we use the
SWD dataset [32] and a musically motivated CNN architecture
from [33]. This setup has previously been explored with strongly
aligned targets [33], and with weakly aligned targets using
MCTC [16] or SDTW [25], [26].

1) Experimental Setup: The CNN receives as input a
HCQT [37], computed from audio at a sampling rate of 22050
Hz with a hop size of 512 samples, resulting in a frame rate of
approximately 43 Hz. The HCQT spans six octaves with three
bins per semitone (resulting in 216 pitch bins) and includes six

TABLE V
CNN ARCHITECTURE FOR PITCH CLASS ESTIMATION FROM [16], [33].
Z € {0, 1} DENOTES AN OPTIONAL OUTPUT DIMENSION FOR BLANK.

Layer Kernel size | Output shape # Parameters
Input (T + 74,216, 6)

Layer norm. (T + 74,216, 6) 2592

Conv2D, MP | 15 x 15 (T + 74,216,20) | 27020

Conv2D, MP | 3 x 3 (T + 74,72, 20) 3620

Conv2D 75 x 1 (T,72,10) 15010

Conv2D 1x1 (T,72,1) 11

Conv2D 1 x 61 (T, 12+Z) 624737
Total 48315473 - Z

harmonic channels (one subharmonic and five harmonics). The
input to the network consists of HCQT sequences with 7" = 500
frames and 74 additional context frames, where the segmentation
is derived from strongly aligned reference annotations provided
in the SWD. For each time frame, the network outputs a tensor

€ [0,1]P, where D € {12,13} accounts for the presence
of the blank symbol when required. A brief overview of the
architecture, consisting of convolutional (Conv2D) and max
pooling (MP) layers, is provided in Table V. We refer to [16],
[33] for the design motivation and further details.

The SWD contains approximately 11 h of paired scores and
audio recordings by seven different singers and nine different pi-
anists, resulting in nine distinct versions. We split the SWD into a
training, validation, and test set with five, two, and two versions,
respectively. Training is performed on single-element batches.
Each epoch comprises approximately 4500 training steps, and
we train for 50 epochs. We use the Adam optimizer [38] with
an initial learning rate of 0.001, which is halved if the validation
loss does not improve over 4 epochs. Training stops if there
is no improvement over 12 epochs, and the model parameters
corresponding to the epoch with the lowest validation loss are
restored for testing.

For qualitative illustration, we use a 10 s excerpt from the
song “Gute Nacht” performed by Randall Scarlata, with the cor-
responding score shown in Fig. 7 and strongly aligned reference
targets shown in Fig. 10(f).

2) Analysis: Pitch Class Accuracy: In this section, we
present systematic experiments enabling a detailed comparison
of different CTC and SDTW configurations. Starting from the
standard CTC-A, we progressively modify the parameterization
until reaching the standard SDTW-E. For each configuration,
Fig. 11 reports the minimum, median, and maximum F-measure
over five training runs. For selected, didactically relevant config-
urations, Fig. 10 visualizes the predictions X and soft alignment
matrix E of the model with the lowest validation loss, applied to
the running example from Fig. 7. For the CTC configurations, we
color odd rows of the soft alignment matrix in red (corresponding
to alignment of the blank symbol ¢€), and even rows in black
(corresponding to alignment of target symbols y,,,). We begin by
parameterizing all algorithms with a horizontal (1,0) step weight
of wy, = 1.0, corresponding to the standard configurations in
both CTC and SDTW.

Starting with the original CTC algorithm (CTC-A2), the test
F-measure shown in Fig. 11 is relatively low at 0.81, and shows
high variance across different runs. The predictions in Fig. 10(a)
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reveal a strong bias toward the blank symbol, along with large
temporal fluctuations in the pitch class activations. This is re-
flected in the soft alignment matrix, where the dominance of red
color indicates that the alignment largely focuses on the blank
symbol.

To reduce this blank dependence, we introduce a penalty for
blank alignment by increasing the step weight to 2 for steps
in and to the blank symbol (CTC-B). However, none of the
training runs converged to a stable solution under this setup. We
hypothesize that this occurs because the network relies on the
blank symbol to produce stable alignments (as seen in CTC-A),
but the increased penalty now makes prolonged blank alignment
prohibitively costly, while the blank symbol still remains dom-
inant enough to distract from learning the actual targets.

Next, we impose the largest possible penalty by setting an
infinite weight for steps in and to the blank symbol (CTC-C).
According to Fig. 11, this leads to a notable improvement
in F-measure compared to CTC-A, with low variance across
runs. Because blank alignments are effectively forbidden, only
actual target labels are aligned during training. This setup re-
sembles SDTW in the sense that no blank symbol is aligned,
although the blank dimension remains present in the network
outputs.

We then train with SDTW without vertical step (SDTW-D),
which is identical to CTC-C except that the blank symbol is
completely removed from both the network output and the target
sequence. Test performance in Fig. 11 is very similar but slightly
better on average than CTC-C. This improvement likely stems
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Fig. 11.  Test results for the five training runs of each model configuration.
The bar represents the median F-measure for frame activation over the five
training runs, the whiskers represent the minimum and maximum F-measure of
the training runs.

from the more efficient training due to the absence of the blank
symbol in the output space.

Finally, we include the vertical step and evaluate the stan-
dard SDTW parameterization (SDTW-E). Here, the median test
F-measure is slightly lower than SDTW-D, but the minimum
and maximum over all runs are comparable. The predictions in
Fig. 10(b) show temporally stable but slightly blurred outputs.
The soft alignment matrix reveals some alignment instabilities
compared to the reference alignment in Fig. 10(f), with certain
targets being aligned over extended durations, while others are
assigned to only short intervals. We address this issue next by
lowering the horizontal step weight to enforce more stable target
repetitions.

3) Ablation: Sensitivity W.r.t. Horizontal Step Weight: Prior
work on SDTW shows that lowering the horizontal step weight
wy, stabilizes training and improves alignments [26]. High wy,
causes alignments to concentrate on a few targets that minimize
total cost, while a low wy, allows the alignment to remain on a
target despite imperfect predictions, e.g., during sustained notes.
We thus again repeat the previous experiments by setting the
weight wy, = 0.1 for the horizontal (1,0) step.

For the original CTC (CTC-A-W), Fig. 11(a) shows an im-
provement in median and maximum F-measure versus CTC-A,
though some runs do not converge to a good solution. Predictions
in Fig. 10(c) reveal slightly reduced probabilities for the blank
symbol compared to CTC-A (Fig. 10(a)), but only for short time
intervals. The soft alignment matrix still shows a dominant align-
ment of the blank symbol (red color), although target symbols
(black color) are aligned slightly more compared to CTC-A.

Similarly, lowering wj;, while penalizing the blank symbol
(CTC-B-W) improves median and maximum F-measure consid-
erably (Fig. 11), yet convergence issues remain. This suggests
that combining two stabilization strategies (presence of blank
symbol and low horizontal step weight) can destabilize training.
Predictions in Fig. 10(d) show low probabilities for the blank
symbol, resembling SDTW-E, and the soft alignment matrix does
not show alignment of the blank symbol anymore.

Conversely, excluding the blank symbol entirely (CTC-C-W)
yields almost no F-measure variability across runs, matching
results for SDTW without vertical step (SDTW-D-W).

TABLE VI
OVERVIEW OF RUNTIME (MILLISECONDS) AND PEAK MEMORY CONSUMPTION
(MEGABYTES) FOR THE SDTW, DDTW, AND CTC LOSS FUNCTIONS FOR
DIFFERENT SEQUENCE LENGTHS (N, M)

SDTW dDTW CTC

(N, M) Time | Mem. | Time | Mem. | Time | Mem.
(256, 64) 3.9 73| 8.3 23 | 1.2 1
(256, 128) 6.8 146 8.8 45 0.8 2
(512, 64) 73 | 146 | 7.3 46 | 1.1 3
(512,128) 12.4 293 10.1 91 1.1 3
(1024, 128) 20.4 586 12.1 182 1.4 7
(1024, 512) 61.9 2345 26.6 722 1.4 8
(1024,1024) | 118.5 4689 43.0 1441 1.4 8

Including the vertical step gives standard SDTW with low
horizontal step weight (SDTW-E-W). Although the variance of
the F-measure in Fig. 11 is slightly wider than for SDTW-D-W,
peak performance exceeds that of the models trained with an
EM approach (EM), and nearly matches that of models trained
on strongly aligned references (strong), with an F-measure
of over 0.84. Predictions in Fig. 10(e) show sharp, temporally
stable outputs with minimal fluctuations, and the soft alignment
matrix resembles the reference alignment to a high degree.

D. Runtime and Memory Consumption

We analyze runtime and memory usage of three alignment-
loss implementations: standard SDTW! [41], our dDTW tool-
box,? and the optimized C++ PyTorch CTC loss® [42]. Our
goal is not to describe implementation internals but to estimate
computational costs in typical DNN training. All experiments
were conducted on an Nvidia RTX A5500 GPU.

For SDTW and dDTW, we initialize predictions and labels
as X € [0,1]2*N*P and Y € {0, 1}B*M*D; for CTC, labels
are Yere € [1: D]P*M . We choose a batch size of B = 16 and
D = 12 feature dimensions. Each iteration randomly initializes
inputs, performs a forward—backward pass, and we record mean
runtime and peak memory consumption over 10 warm-up and
20 measured iterations. Both SDTW and dDTW have O(N M)
recursions but can be parallelized along anti-diagonals [41],
[43], yielding O(N + M) parallel time. The strictly monotonic
CTC dynamic program runs in O (V) parallel steps. All methods
parallelize over the batch, though only dDTW and CTC support
variable-length sequences within a batch.

Table VI summarizes results. dADTW uses roughly one third
of the memory of SDTW, benefiting from more efficient mem-
ory management and explicitly defined cost functions without
autograd leakage. For short sequences, both perform similarly
in speed; for longer sequences, dDTW becomes substantially
faster than the baseline SDTW implementation, likely due to
more effective caching (including the backtracking tensor B).
PyTorch’s native CTC is by far the fastest and most memory-
efficient: runtimes stay near one millisecond and memory usage
is about 180x lower than dDTW and 580x lower than SDTW

Uhttps://github.com/Maghoumi/pytorch-softdtw-cuda
Zhttps://github.com/groupmm/dDTW_CTC
3https://github.com/pytorch/pytorch
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for long sequences. While our research-oriented dDTW tool-
box prioritizes modularity and clarity, future work may bring
dDTW efficiency closer to that of the highly optimized CTC
implementation.

E. Summary

Our experiments show that while both CTC and SDTW can
effectively train neural networks, they differ in several theoret-
ical and practical aspects. Importantly, the dDTW loss unifies
both alignment paradigms within a single framework, enabling
fine-grained control of loss parameters and providing a continu-
ous interpolation between the two conceptually different losses.
In the following, we highlight three key differences observed in
our experiments.

1) Network Architecture: CTC requires an explicit output
unit for the blank label. As a result, models pre-trained on
strongly aligned data cannot be directly fine-tuned with CTC,
since their output space does not include a blank. SDTW imposes
no such architectural requirement and can be applied to any
model without modification.

2) Target Length and Runtime: Because CTC inserts a blank
symbol between all labels, the effective target length doubles
compared to SDTW without blanks. Under a naive O(NM)
implementation, this would double runtime. In practice, GPU-
parallel implementations of SDTW [41] and dDTW iterate over
anti-diagonals of the cost matrix. Since N > M in typical
settings, runtime is dominated by N, making the theoretical
runtime of CTC comparable to that of SDTW. However, CTC is
the de facto standard for training with unaligned sequential data,
and highly optimized C++/CUDA implementations exist [42],
which outperform research-oriented SDTW and dDTW imple-
mentations by a wide margin.

3) Detecting Repetitions: In CTC, the blank symbol disam-
biguates consecutive identical labels (symbol-blank—symbol).
While irrelevant for frame-wise pitch-class activity estimation,
this mechanism is essential for onset-sensitive tasks such as
sequence estimation in theme enhancement, instrument onset
detection, and ASR. In SDTW, this functionality has to be explic-
itly replicated by introducing a dedicated onset class, enabling
joint estimation of onsets and frame activations, as demonstrated
in models using the Onset-and-Frames architecture [40], [44].

VIII. CONCLUSION

In this paper, we established a theoretical connection between
the CTC and SDTW alignment paradigms. By identifying neces-
sary extensions for SDTW to exactly replicate CTC in practice,
we introduced a ADTW framework, providing a unified perspec-
tive on differentiable alignment methods. We derived efficient
DP recursions for dDTW and demonstrated parameterizations
that recover standard CTC and SDTW. Leveraging this unified
framework, we systematically analyzed the impact of the blank
symbol, step sizes, and step weights in two controlled exper-
imental scenarios. Our results indicate that a carefully chosen
SDTW parameterization, specifically, with a low horizontal step
weight, renders the blank symbol unnecessary for alignment
stability and improves prediction performance for frame-wise

metrics. However, for symbol-level decoding, especially in the
presence of repeated symbols, the CTC yields predictions with
a lower error rate than SDTW without the blank symbol.

Future work may explore modeling repeated symbols in
dDTW without relying on a blank symbol by, e.g., using onset
models, the usage of dDTW as a subsequence alignment method,
and task-specific choices of the differentiable minimum func-
tion. Additionally, while this work used dDTW only to compare
CTC and SDTW, we plan to investigate the generalization of
other alignment paradigms via dDTW.
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