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ABSTRACT
Larynx microphones (LMs) make it possible to obtain practically crosstalk-free 
recordings of the human voice by picking up vibrations directly from the throat. This 
can be useful in a multitude of music information retrieval scenarios related to singing, 
e.g., the analysis of individual voices recorded in environments with lots of interfering 
noise. However, LMs have a limited frequency range and barely capture the effects of 
the vocal tract, which makes the recorded signal unsuitable for downstream tasks that 
require high-quality recordings. In this paper, we introduce the task of reconstructing 
a natural sounding, high-quality singing voice recording from an LM signal. With an 
explicit focus on the singing voice, the problem lies at the intersection of speech 
enhancement and singing voice synthesis with the additional requirement of faithful 
reproduction of expressive parameters like intonation. In this context, we make three 
main contributions. First, we publish a dataset with over 4 hours of popular music 
we recorded with four amateur singers accompanied by a guitar, where both LM and 
clean close-up microphone signals are available. Second, we propose a data-driven 
baseline approach for singing voice reconstruction from LM signals using differentiable 
signal processing, inspired by a source-filter model that emulates the missing vocal 
tract effects. Third, we evaluate the baseline with a listening test and further show that 
it can improve the accuracy of lyrics transcription as an exemplary downstream task.
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1. INTRODUCTION

Many tasks in the field of music information retrieval 
(MIR), like automatic music transcription or fundamental 
frequency (F0) analysis, become significantly easier 
when separated, monophonic audio signals of individual 
instruments and voices are available. Similarly, music 
post-production and mixing rely on multi-track recordings 
to selectively apply audio effects and balance levels. The 
singing voice is often particularly challenging in those 
scenarios, due to its large dynamic range and possibility 
for nuanced expression. While in popular music the 
separation into monophonic multi-track signals can 
often be accounted for in the recording process, e.g., 
by consecutively recording individual singers with a 
close-up microphone (CM), this is not always possible or 
desirable. In order to facilitate the natural interaction (in 
terms of timing, expression, intonation, etc.) between 
musicians, voices, and/or room acoustics, it may instead 
be preferable or even necessary to record multiple 
musicians or instruments at the same time and in the 
same space. This way, a choir performing in a church, an 
ethnomusicological field recording of a vocal ensemble, 
or a singer-songwriter accompanying themselves on 
a guitar can become challenging for computational 
analysis and post-production.

Larynx microphones (LMs) provide a practical way to 
obtain almost crosstalk-free signals of the voice by picking 
up vibrations at the throat. By design, such a sensor is 
insensitive to sound waves transmitted through the air 
and therefore to other interfering sound sources in the 
environment. However, the LM signal quality is typically 
degraded by a limited frequency response as well as 
missing effects of the vocal tract, i.e., the contribution 
of the oral and nasal cavity responsible for vowel and 
consonant formation, which are only indirectly picked 
up at the throat. This limits applications of LMs to cases 
where audio quality is not a primary concern, like radio 
communication in noisy environments.

In this paper, we explore the task of singing voice 
reconstruction (SVR), which aims at obtaining high-quality 
recordings of singing voice using impaired signals as the 
input. By using the new term SVR, we want to emphasize 
important differences to related and established tasks 
in the research fields of signal processing and MIR, like 
speech enhancement or singing voice synthesis. In 
particular, the focus on the singing voice requires careful 
treatment and preservation of expressive parameters, 
while at the same time such recordings often include 
many highly correlated interfering sources. With a focus 
on SVR from larynx microphone signals (referred to as 
LM-SVR in the following), we consider a particular SVR 
scenario in this paper: reconstructing a high-quality 
singing voice recording — as it could be recorded with 
a typical CM in ideal conditions — from a monophonic 

LM signal, thus circumventing the problem of crosstalk 
during recording, while faithfully retaining the nuanced 
vocal expression captured in the original signal. Such 
a reconstructed recording could then be used for 
downstream applications like mixing or analyzing it with 
computational systems that require high-quality input, 
as outlined in Figure 1.

Beyond introducing this novel MIR task, we make 
three main contributions in this paper. First, we introduce 
the Larynx Microphone Singer-Songwriter Dataset (LM-
SSD), a collection of twelve pop songs performed by four 
amateur singers accompanied by an acoustic guitar, 
comprising over 4 hours of unique recordings of LM and 
corresponding CM signals. This dataset may facilitate 
research on LM-SVR, but also other tasks like source 
separation or singing voice analysis. Second, we describe 
a baseline LM-SVR system which is inspired by source-
filter models of the vocal tract, using the LM signal as 
a source signal and learning the control parameters of 
a time-variant filter with a neural network. Third, we 
evaluate the baseline LM-SVR system with a listening 
test and show that this approach improves the subjective 
quality of the LM recordings, while also improving 
objective performance in the exemplary downstream 
task of lyrics transcription.

The remainder of this article is structured as follows. In 
Section 2, we consider SVR in the context of related signal 
processing and MIR tasks, Section 3 describes related 
work and use cases for LMs, and Section 4 introduces 
LM-SSD including details of the two LM models used that 
we compare in terms of their signal characteristics and 
handling. Section 5 describes our baseline system for LM-
SVR, complemented by our experiments with a listening 
test and objective evaluation on a lyrics transcription 
task in Section 6.

Figure 1 Conceptual overview of SVR from LM signals. Time-
frequency representations of an exemplary LM signal and the 
corresponding reconstructed signal are depicted in red and 
grey, respectively.
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2. SINGING VOICE RECONSTRUCTION

We define singing voice reconstruction (SVR) as the 
task of obtaining a natural sounding, artifact-free, and 
broadband signal without crosstalk from an impaired 
recording of the singing voice, without changing the 
original expression in the recording. Typical impairments 
include adverse recording conditions or limitations of the 
sensor. With that, SVR is related to several established 
research areas in signal processing and MIR.

Speech enhancement (SE) focuses on the suppression 
of artifacts, noise, and other interfering sources from an 
otherwise high-quality speech signal (Vincent et al. 2018). 
While classical SE methods often rely on additional (e.g., 
spatial, see Benesty et al. 2008) information about the 
recorded signals, state-of-the-art SE systems use data-
driven approaches to encode the impaired signal in a 
typically lower-dimensional latent representation and 
then decode a new, clean speech signal from that (e.g., 
Serrà et al. 2022). Similar methods have been employed 
for singing voice synthesis (SVS), where an interpretable 
latent representation may enable general-purpose 
synthesis models (Choi et al., 2021, 2022). Naturally, such 
systems depend critically on the expressivity of the latent 
representation and the distribution of training examples, 
as the decoder may not learn to generate a signal with 
characteristics that are not observable in the training set. 
This lack of control is particularly problematic for singing 
voice signals (Cho et al., 2021), as important expressive 
parameters like F0 are highly variable within individual 
notes (Dai and Dixon, 2019) and may not be accurately 
reproduced by SE or SVS systems, even when F0 is explicitly 
given in the latent representation (Choi et al., 2022).

Furthermore, in music, desired and interfering sources 
may be highly correlated, for example when multiple 
musicians are singing in unison. This problem is subject 
of the MIR task of musical source separation (MSS, Cano 
et al. 2019). State-of-the-art systems often introduce 
characteristic artifacts and reach signal-to-distortion 
ratios of around 8 dB for vocals on popular music 
recordings (Mitsufuji et al., 2022), so that separately 
recording individual instruments and voices is still 
preferable for many use cases. This recording-time 
separation can be achieved, for example, with LMs. Since 
these produce band-limited sensor signals, LM-SVR is also 
related to blind bandwidth extension (BBWE). BBWE aims 
for the reconstruction of high-frequency content from a 
clean but band-limited audio signal without additional 
side information. Systems often focus on a specific signal 
domain like speech, where successful approaches model 
aspects of speech production (Schmidt and Edler, 2021). 
Apart from subjective quality, BBWE can also improve 
performance of downstream tasks like speech recognition 
(Li et al., 2019). Adapting such an approach to the singing 
voice and larynx microphones is one objective of SVR as 
introduced in this paper.

3. LARYNX MICROPHONES

Larynx microphones (LMs), also called throat 
microphones, are a type of contact microphone. In 
general, contact microphones are designed to record 
vibrations of the surface they are attached to, while 
being insensitive to sound waves transmitted through 
air. For LMs, this is typically achieved using a piezo-
electric sensor placed on the skin of the neck. This way, 
one can obtain well-separated signals of individual 
speakers or singers in all kinds of acoustic conditions. 
The quality of the recorded signal depends on two 
factors: the properties of the sensor itself and the way 
that vibrations are propagated from the source through 
tissue and/or bones to the receiver. Notably, while the 
vocal fold vibrations are predominant at the neck, some 
influences of the vocal tract producing formants and 
consonants are also present as vibrations in neck tissue 
(Otani et al., 2006), so that for example speech recorded 
with an LM can become intelligible. A detailed account 
of the signal characteristics of two particular LM models 
used for our dataset is given in Section 4.1.3. To get a 
subjective impression of the signal qualities, we also refer 
to the online examples accompanying this paper.1

Another sensor type for LMs has been subject of 
research on non-audible murmur (NAM, Nakajima et al. 
2003). Here, the goal is to pick up whispered speech, which 
is achieved with a condenser microphone embedded in 
a soft material that is attached to the skin (Shimizu et 
al., 2009). Similarly, bone conduction microphones are 
contact microphones that are adapted to the specific 
impedance of the skull (Henry and Letowski, 2007). While 
they may provide more flexibility in their positioning 
(McBride et al., 2011), the quality of the recorded signal 
for both NAM and bone conduction microphones is 
generally comparable to that of LMs.

A different technique for picking up the vocal fold 
vibrations is electroglottography (Herbst, 2020), where 
the impedance change between open and closed states 
of the vocal folds is measured. Recordings with this 
method are particularly insensitive to any influences of 
the vocal tract and do not contain enough information 
to reconstruct a speech or singing signal, but can for 
example be used to measure F0 (Askenfelt et al., 1980).

LMs have shown their utility in a number of applications 
in speech and music processing. Graciarena et al. (2003) 
showed that the information from LMs can improve 
speech recognition in noisy environments. Askenfelt 
et al. (1980) used LM signals for F0 estimation, which 
recently received renewed attention in the context of 
pitch and intonation analysis of Western choir recordings 
(Rosenzweig et al., 2020). Scherbaum (2016) showed 
how LM recordings can aid musicological research, e.g. 
to computationally determine the tonal organization 
of traditional Georgian music (Scherbaum et al., 2022; 
Rosenzweig et al., 2022).
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4. LM SINGER-SONGWRITER DATASET

As a main contribution of this paper, we introduce the 
Larynx Microphone Singer-Songwriter Dataset (LM-SSD) 
and make it publicly available. LM-SSD is a collection of 
twelve pop songs that we recorded with four different 
amateur singers accompanied by a guitar, featuring a 
solo singer for nine songs and a duet for three songs. 
In total, the dataset consists of 72 takes with a total 
playback duration of 250 minutes, as detailed in 
Table 1 below. While similar datasets exist for speech 
(e.g., Dekens et al. 2008; Stupakov et al. 2009), this is, 
to our knowledge, the first dataset with singing voice 
recordings using LMs and a synchronous, high-quality, 
and crosstalk-free CM signal.

LM-SSD is designed to provide signals with 
consistent recording quality and conditions, as well as 
instrumentation, while variables like sensor choice, singer, 
song, and crosstalk are varied systematically. Beyond 
research on LM-SVR and related tasks, the dataset can 
for example be used for experiments on analyzing LM 
signals directly (e.g., for F0 estimation), or the evaluation 
of domain adaptation in data-driven systems (see e.g. 
Section 6.2). Additional mix tracks for each song, as well 
as annotated lyrics furthermore enable use cases like 
experiments with source separation (possibly informed 
by LM signals) or lyrics transcription. In the following, we 
will describe the sensors used (Section 4.1), the recording 
process (Section 4.2) and the content of the dataset 
(Section 4.3) in detail.

4.1 LM MODELS USED
In order to analyze differences between sensors, their 
handling, and their utility for singing voice recordings, 
we used two LM models for recording the dataset: the 
commercially available Albrecht AE-38-S2a (LM-A) and 
a self-made microphone based on TE Connectivity CM-
01B piezo-electric vibration sensors (LM-B). A direct 
comparison of their properties can be found in Section 
4.1.3.

4.1.1 LM-A: Albrecht AE-38-S2a
LM-A is a commercially available device built for radio 
communication in the security sector. It has two contact 
microphones at either end of a size-adjustable neck 
brace (see Figure 2, bottom left). With the adjustable 
brace it suits a variety of neck sizes, even though it 
tends to have a looser fit on smaller necks, resulting in 
a higher probability of movement-induced noise. For all 
recordings, we aimed to position the sensors as close to 
the larynx as possible while allowing the musicians to be 
comfortable while singing. The two analog sensor signals 
are electrically summed by a connection in series, but 
the manufacturer provides no details on frequency range 
or other properties of the sensor. We adapt the 3.5mm 

TRS connector of the device to XLR using a Røde VXLR+, 
which also converts 48V phantom power to the required 
supply voltage of 3.8V.

4.1.2 LM-B: CM-01B
LM-B is a self-made larynx microphone using two piezo-
electric vibration sensors (TE Connectivity CM-01B) and 
a 3D-printed neck brace. The sensor is optimized for 
detecting body sounds, whose vibrations are transmitted 
via a small rubber pad on the device. It is marketed with 
a frequency range of 8 to 2200 Hz (∓3 dB). To achieve 
comparability with LM-A, we use two sensors on either 
end of the brace and digitally sum the signals after 
recording. The sensors are attached to the neck brace 
with a screw that is glued onto the backside of the sensor 
and a spring that pushes the sensor lightly towards the 
skin of the neck (see Figure 2, bottom middle). The sensor 
contact point can be adjusted and is further away from 
the larynx than with LM-A, which singers reported to 
be more comfortable. The neck brace is not adjustable 
to different neck sizes, but it can be printed in different 
dimensions, which also makes it possible to specifically 
fit the brace for individual persons.

4.1.3 Signal characterization & comparison
Obtaining objective measurements of the LM voice signal 
characteristics is challenging, as the properties of the 
transmitting medium and the vibration source(s), as 
well as possible losses at the contact point have to be 
taken into account. A direct transfer function between 
source and receiver cannot be measured, because the 
ground truth “source signal” is not available. Instead, we 

Figure 2 Photograph of the recording setup (top) and detailed 
depiction of the LMs used (bottom). LM-A: Albrecht AE-38-
S2a larynx microphone; LM-B: self-made larynx microphone 
with TE Connectivity CM-01B sensor; CM: close-up microphone 
(Neumann U87); GP: guitar pickup (AMG Electronics C-Ducer); 
GL/GR: guitar stereo left/right (AKG C414).
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consider the relative transfer function (RTF) between CM 
and LM as a first indication of the similarity between the 
LM signals and traditional microphone recordings. Using 
an unbiased estimator (see Appendix A.1 for details), we 
calculate RTF estimates for the two LM models using the 
crosstalk-free recordings (cf. Section 4.2) from LM-SSD. 
Results for signals from individual singers (in grey) and 
their average (in black) are presented in Figure 3, where 
an RTF value around 0 dB signifies that CM and LM signals 
tend to have similar energy at a given frequency. The RTF 
for LM-A remains around 0 dB below 700 Hz and drops 
off at higher frequencies by –9 dB per octave on average. 
LM-B boosts low frequencies by up to +20 dB below 20 Hz 
and the RTF continuously drops towards high frequencies 
by around –6 dB per octave. Between 80 to 700 Hz, the 
approximate range of the F0 of male singing voices, 
energy levels of LM-A and LM-B are fairly similar to the 
CM signal. The estimates for different singers are similar 
within ± 5 dB in the relevant frequency range, which is an 
indication that both LM models are fairly robust w.r.t. fit 
and exact positioning.

The RTF does, however, not allow conclusions about 
noise levels and distortion of the LM relative to the 
CM signal. For that, we can additionally measure the 
coherence between the two signals, showing whether 
they are linearly related at a given frequency. When the 
maximum coherence of 1 is achieved, a linear filter exists 
to calculate the corresponding CM signal from an LM 
recording and vice versa. Conversely, minimum coherence 
of 0 is reached when no linear relationship exists, e.g., 
when one or both signals are uncorrelated noise or one 
signal contains non-linear distortions. Figure 4 shows 
coherence estimates (see Appendix A.2 for details of 
the method) for the signals from individual singers (in 
grey) and their average (in black). Between 80 Hz and 3.5 

kHz (the range of F0 and the first few harmonics of the 
recorded voices), the CM and LM signals are somewhat 
linearly related, but the coherence rarely exceeds 0.6, 
hinting at the presence of noise and distortion in the LM 
recordings. The low coherence at low frequencies is due 
to the singing voice not being present on the CM below 
F0, while the LMs, particularly LM-B, might still record 
relevant signal. The mean coherence for LM-B is slightly 
larger towards high frequencies, which can at least 
partially be attributed to a stronger distortion in the LM-A 
signal when singing with higher intensity.2

Finally, we also measure the sensitivity of each 
LM w.r.t. interfering sound transmitted through the 
air. We consecutively record the LM signals while an 
external noise source is playing and while the wearer is 
singing, both reaching the same sound level at a fixed 
measurement position in the room. The level difference 
between these two recordings gives a relative measure 
for the “crosstalk sensitivity”, indicating the dampening 
of surrounding sounds compared to the voice of 
the wearer. We estimate –60 dB for LM-A and –55 dB for 
LM-B.

While the objective properties are similar for both LM 
models, the high-frequency distortion of LM-A at higher 
volumes also subjectively reduces the signal quality. 
Furthermore, singers reported higher comfort wearing 
LM-B, as the contact point of the sensors is less close 
to the throat, while the self-made construction offers 
higher flexibility due to the possibility of customizing 
the neck brace and individually recording left and right 
sensor signals. On the other hand, LM-A requires only 
one recorder channel and is more robust in handling 
(as it is constructed as a single piece without removable 
parts) and fit (due to the adjustable brace), which can be 
an advantage, e.g., for field recordings.

Figure 3 Relative transfer function (RTF) estimates w.r.t. CM for 
LM-A (top) and LM-B (bottom). RTF estimates for individual 
singers are shown in grey (1M: solid, 2M: dashed, 3F: dotted, 
4F: dash-dotted). The black line indicates the mean RTF across 
singers for each LM model.

Figure 4 Coherence estimates w.r.t. CM for LM-A (top) and 
LM-B (bottom). Coherence estimates for individual singers are 
shown in grey (1M: solid, 2M: dashed, 3F: dotted, 4F: dash-
dotted). The black line indicates the mean coherence across 
singers for each LM model.
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4.2 RECORDING SETUP & PROCEDURE
LM-SSD comprises recordings of two male (denoted 
1M and 2M) and two female (3F and 4F) university 
students. All musicians are amateur singers without 
formal music training and only limited stage or 
recording experience and consented in writing to the 
processing and publication of the recordings. Each 
singer selected three pop songs they felt comfortable 
with in terms of vocal range and techniques. While 1M 
and 2M accompanied themselves on the guitar, 3F and 
4F were accompanied by a second musicians, while 3F 
also sang in duet with 1M. Two of the songs have lyrics 
in German language, while the others are in English. 
An overview of the songs in the dataset is given in  
Table 1.

The musicians were recorded in a studio room 
with little reverberation and optimized acoustics for 
pop music recording. As depicted in Figure 2 (top), the 
recording comprises a traditional microphone setup, 
including a close-up vocal microphone (CM; Neumann 
U87, set to cardioid) with a pop filter, a stereo close-up 
microphone pair for the guitar (GL and GR for left and 
right channel, respectively; AKG C414, set to cardioid) 
and a guitar pickup microphone (GP; AMG Electronics 
C-Ducer). In addition, all singers were wearing one of the 
two LM models (see Section 4.1) at a time to record their 
voice. Preliminary experiments showed that the optimal 
positioning of the LM on the neck would be compromised 
if both LMs were worn at the same time, as both record 
the cleanest signals when positioned high on the neck 
and as close as possible to the larynx without becoming 
uncomfortable for the singer. Note that, depending on 
the singer’s distance to the CM, there is a small time-

varying delay between the CM and LM signals,3 which we 
do not compensate for in the dataset.

In total, six takes were recorded for each song, three 
with LM-A (T1–T3) and three with LM-B (T4-T6). Of 
those takes, the first of each group (T1 and T4) was 
played with live guitar accompaniment, i.e. the guitar 
playing in the same room as the singer (singers 1M and 
2M accompanied themselves, whereas 3F and 4F were 
accompanied by a second musician). In takes T2, T3, 
T5, and T6, singers performed the same song again 
but with the guitar pickup signal from takes T1 and T4, 
respectively, played back to them over headphones. 
Thus, only takes T1 and T4 have crosstalk from the 
guitar on CM. The presence of crosstalk is denoted by C1 
in the naming scheme (see Table 2), while takes without 
crosstalk are marked with C0. By including these different 
recording conditions in the dataset, it contains both a 
real-world recording scenario (C1) which can for example 
be used for validation of an LM-SVR system, as well as a 
crosstalk-free reference (C0) which can serve as training 
data. Similarly, the songs SG, OC, and PL are performed by 
two singers at the same time, which provides a scenario 
for computational analysis of unison singing.

4.3 DATASET CONTENT & STRUCTURE
LM-SSD can be accessed and explored in two ways: by 
using our accompanying website1 or by downloading 
the complete dataset.4 The website allows to play back 
and compare all provided signals using a multi-track 
player (Werner et al., 2017) directly in the browser. The 
complete dataset contains 348 audio files in the WAV 
format with single-channel audio at a sampling rate 
of 44.1 kHz. The files follow the naming convention 

ID SONG NAME ORIGINAL ARTIST SINGER  
ID

TAKES 
C1

LM-A 
C0

TAKES  
C1

LM-B 
C0

DURATION 
(MM:SS)

AA All Alone Michael Fast 1M 1 2 1 2 27:03

TS The Scientist Coldplay 1M 1 2 1 2 21:37

YF Your Fires All The Luck In The World 1M 1 2 1 2 24:21

DL Dezemberluft* Heisskalt 2M 1 2 1 2 14:47

BB Books From Boxes Maxïmo Park 2M 1 2 1 2 17:39

NB Narben* Alligatoah 2M 1 2 1 2 11:47

SG Supergirl Reamonn 3F, 1M 1 2 1 2 26:34

OC One Call Away Charlie Puth 3F, 1M 1 2 1 2 19:32

PL Past Life Trevor Daniel & Selena Gomez 3F, 1M 1 2 1 2 17:45

CC Chasing Cars Snow Patrol 4F 1 2 1 2 28:10

BT Breakfast At Tiffany’s Deep Blue Something 4F 1 2 1 2 22:16

LL Little Lion Man Mumford & Sons 4F 1 2 1 2 19:06

Total 12 24 12 24 250:37

Table 1 Overview of the songs and takes in LM-SSD. C1 and C0 represent the number of takes with and without crosstalk, respectively. 
Songs marked with * have German lyrics.
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SSD[UID]_[SongID]_[Type]_[Crosstalk]_

[Singer]_[Take].wav, where each placeholder in 
square bracket is filled with corresponding values as 
summarized in Table 2. Furthermore, lyrics for each song, 
as sung in the recordings, are provided in the dataset 
with filenames [SongID].txt.

In addition to the raw microphone signals, we provide 
two stereo mixes for takes T1 and T4. For the first mix 
setting (MixA), we use no effects and just combine 
CM, GL and GR with appropriate levels and panning. In 
the second mix setting (MixB), we apply additional 
compression, reverb, equalization, and a saturation effect 
to CM, GL and GR, creating a genre-typical mix. While 
mixes use an additional limiter, raw microphone signals 
are normalized to 0 dB true peak. Apart from mixing, all 
takes remain unedited, so that occasional inconsistencies 
or mistakes are preserved in the performances.

5. BASELINE SYSTEM FOR LM-SVR

In this section, we illustrate how our dataset could be 
used for training a data-driven baseline LM-SVR system 
with its LM signals and corresponding high-quality CM 
singing voice recordings. As shown for example by Serrà 
et al. (2022) for the task of SE, or Choi et al. (2022) for SVS, 
large generative models require careful conditioning of 
the decoder to preserve the desired characteristics of an 
encoded example. To avoid this issue for the fundamental 
frequency in particular, we base our approach on the 
direct processing of an LM input signal with a system that 
is inspired by source-filter models for speech and singing 
production. Using differentiable digital signal processing 
(DDSP, Engel et al. 2020), we train a neural network (NN) 
that controls several DSP building blocks to transform the 
LM input into an output as close as possible to our reference 
CM signal. This approach has several advantages. First, 
we can keep the number of trainable weights of the 
NN relatively low so that good results can be achieved 
with a limited amount of training data. For example, in 
our experiments below, we train singer-specific models 
with as little as 20 minutes of training data. Second, the 
musically motivated model architecture is inherently 

interpretable, so that the contributions of individual 
model components can be inspected individually to 
analyze certain reconstructed characteristics, like vowel 
formants or unvoiced consonants. Finally, signals with 
different lengths or a changing frame size can easily be 
accounted for without retraining the model.

5.1 RELATED WORK
The term DDSP was introduced by Engel et al. (2020) 
for the concept of using fixed DSP building blocks in 
NN architectures. These building blocks, while having 
no trainable weights themselves, are ensured to be 
differentiable which allows for training an NN (utilizing 
standard back-propagation) that in turn controls the DSP 
blocks. Engel et al. (2020) use spectral modeling synthesis 
(Serra and Smith III, 1990) for the generation of musical 
instrument sounds using a superposition of sinusoidal 
oscillators and filtered white noise. The NN outputs the 
time-varying frequency and amplitude parameters of the 
oscillators as well as band-wise magnitudes from which 
the noise filter is designed.

With its interpretability and natural way of including 
domain knowledge in the model architecture, DDSP has 
recently been adapted for various audio synthesis task, 
e.g., to generate piano sounds (Renault et al. 2022). 
However, sinusoidal synthesis is not particularly suitable 
for SVS, as it does not sufficiently constrain the output to 
produce consistent phonemes (Alonso and Ertut, 2021). 
A source-filter model can help with singing-specific 
constraints as demonstrated for the task of musical 
source separation by Schulze-Forster et al. (2022), 
where they modeled individual singers in a mixture with 
a synthesis module followed by a time-varying “vocal 
tract” filter. Similarly, Wu et al. (2022) generate time-
domain singing voice signals from a time-frequency 
representation using a DDSP source-filter model, where 
a synthetic sawtooth waveform is filtered and enriched 
with subtractive noise synthesis.

5.2 MODEL ARCHITECTURE
Let xLM and xCM denote the LM input signal and the 
corresponding reference CM signal, respectively. 
Furthermore, let y be the output signal of our model. The 

FIELD DESCRIPTION VALUES

UID Unique numerical identifier for a take across songs 001 – 072

SongID Two-letter abbreviation of the song cf. Table 1

Type Microphone type or mix setting LM-A, LM-B, CM, GP, GL, GR, MixA, 
MixB

Crosstalk Whether guitar crosstalk is present on CM (C1) or not (C0) C1, C0

Singer Singer identifier (with gender) 1M, 2M, 3F, 4F

Take Take number for the given song (T1-T3 use LM-A, T4-T6 use LM-B) T1 – T6

Table 2 Dataset dimensions and naming scheme.
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main idea of our approach is to apply a filter to xLM and add 
noise-like signal components, so that y becomes similar 
to xCM with respect to a metric . Our model consists of 
three main DSP building blocks inspired by a source-filter 
model, similar to Wu et al. (2022). However, instead of 
using a synthetic source, we employ xLM as our source 
signal for the subsequent “vocal tract” filter. Figure 5 
shows an overview of the signal flow and a visualization 
of intermediate signals within the model. The function 
of the main DSP building blocks can be summarized as 
follows:

1. TI FIR Filter: The time-invariant FIR filter equalizes 
xLM to match the overall frequency characteristics of 
y as closely as possible. Subsequently, the signal is 
normalized for further processing.

2. Noise Synth: The task of the noise synthesizer is to 
add noise-like signal components that are missing 
in xLM. The main task of the noise synth is the 
reconstruction of fricatives, i.e., consonant sounds 
like [s] or [f] that are produced with the mouth 
and are therefore more or less missing in an LM 
recording.

3. TV FIR Filter: The time-variant FIR filter resembles 
the vocal tract filter in the source-filter model. Its 
input signal is the superposition of the normalized 
TI FIR filter and noise synthesizer outputs. With 

the time-dependency of the filter, it is possible 
to augment or add missing vocal formants in the 
input signal.

The parameters for these building blocks are provided by 
a control NN consisting of a convolutional neural network 
(CNN) with residual connections (ResNet, He et al. 2016) 
that receives a mel-spectrogram of the complete xLM 
as input. As the actual audio processing is done frame-
wise in the time domain, a subsequent recurrent neural 
network directly outputs the parameters for the DSP 
building blocks at each frame, while accounting for long-
term dependencies between frames. The time-invariant 
FIR filter uses only the last recurrent network output. For 
the TI FIR and the TV FIR filters, the control parameters 
are given as magnitudes in 64 linearly-spaced frequency 
bands, from which a linear-phase FIR filter is designed 
with an interpolation strategy, as proposed by Engel 
et al. (2020). Similarly, the Noise Synth uses randomly 
generated white noise, equalized by a filter whose 
magnitude response is prescribed by only 10 bands. Here, 
the reduced number of bands keeps the Noise Synth from 
producing narrow-band, quasi-harmonic noise sounds, 
which may improve the performance in terms of , but 
can lead to audible artifacts in the output audio. With 
this DSP processing pipeline, the model is guaranteed to 
retain the F0 that is present in xLM.

Figure 5 Architecture of the DDSP-based baseline system. Blue color is used for differentiable DSP building blocks, yellow color for NN 
building blocks with learnable parameters, and white color for fixed pre-processing steps. Control parameter flow is denoted with 
dashed line arrows, while solid lines indicate flow of audio signals. The spectrograms show signal content at the indicated position 
in the signal flow diagram. The shown example uses an excerpt from the LM-B signal of song AA T5 as the input signal xLM and a 
corresponding model trained with the OF scenario (see Section 6).
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5.3 IMPLEMENTATION DETAILS
We process audio with a sampling rate of 16 kHz and 
a frame size of 320 samples (resulting in a frame rate 
of 50 Hz). The input mel-spectrogram to the control NN 
with 64 frequency bands is calculated via an STFT using 
the Hann window of length 2048 samples and hop size 
320 samples, resulting in the same number of frames as 
the time-domain processing. The time-varying control 
parameters of the TV filter and the Noise Synth are also 
updated at this rate. Therefore, this hyper-parameter 
influences the temporal resolution of the synthesis and 
thus the reconstruction quality. In initial experiments, we 
did not observe improvements from increasing the frame 
rate. Using lower rates may reduce training and inference 
times, while producing lower quality output signals. The 
TI, TV and Noise Synth filters are designed using linear 
interpolation of the magnitudes to obtain a linear-phase 
filter of length 320 samples. Filters are applied using FFT 
convolution and overlap-add between successive frames. 
The specific architectures for the CNN and recurrent parts 
are adapted from the original DDSP code base and we 
also use the multi-scale spectral loss function with their 
proposed configuration. During training, we use random 
excerpts from the respective training set (cf. Section 6) 
of four seconds length and train the model for 40,000 
steps. Our metric  between y and xCM is the multi-
scale spectrogram loss, using the same parameters as 
introduced by Engel et al. (2020).

6. EXPERIMENTS

In this section, we evaluate our baseline model with 
regard to its suitability for LM-SVR, using training data 
from LM-SSD. In the experiments, we use only takes 
without guitar crosstalk on the CM microphone (C0 
condition, see Section 4.2) and train separate models for 
LM-A and LM-B inputs, respectively. To illustrate how the 
dataset can be split in different ways, we define three 
training scenarios, corresponding to increasing difficulty 
of the LM-SVR task:

1. Overfitting (OF): The model is trained on all six 
C0 takes of a single singer (from three songs) and 
evaluated on a take that is part of the training set. 
While this is not a realistic use case for the system, 
these results demonstrate an “upper bound” on the 
reconstruction quality that our baseline can achieve.

2. Different Take (DT): Here, the evaluation take is 
excluded from the training set, resulting in five 
training takes for each singer. Since LM-SSD contains 
multiple takes per song, the model has seen a 
different take of the evaluation song during training.

3. Different Song (DS): All takes of the evaluation song 
are excluded from the training set, resulting in four 
training takes. This is the most challenging scenario 

we consider, as the notes and words sung in the 
evaluation recording have not been seen during 
training.

A complete training run is done for each of these 
scenarios as described in Section 5.3. To keep the model 
in our illustrative example small and maintainable, we 
restrict the training scenarios to a separate model for 
each singer and LM type.

6.1 EVALUATION
As an objective measure for the reconstruction quality of 
our baseline model, we use the Fréchet Audio Distance 
(FAD, Kilgour et al. 2019) between the CM signal and the 
reconstruction results. The FAD is based on the distance 
between learned general-purpose embeddings of the 
audio signals and we use the originally proposed VGGish 
(Hershey et al., 2017) embeddings for our evaluation. 
Since this embedding distance is independent of the 
exact waveform shape and has been shown to correlate 
with human perception, it is more suitable for our 
experimental setup than for example the signal-to-
distortion ratio (SDR, Vincent et al. 2006), which requires a 
direct linear relationship between the compared signals. 
Beyond OF, DT, and DS, we include the conditions LM (for 
the unaltered LM signal) and NA (a naive reconstruction 
approach where the LM signal is filtered with the inverse 
of the RTF between the LM and CM microphones) in the 
comparisons. Using LM-A as the input signal, we obtain 
an average FAD of 0.76 for OF, 1.29 for DT, 1.51 for DS, 
9.83 for LM, and 6.17 for NA (with LM-B: 0.77 for OF, 0.90 
for DT, 1.17 for DS, 8.56 for LM, and 9.28 for NA) over a 
test set consisting of the eight songs in Table 3. These 
results indicate that the baseline model generally is able 
to reconstruct some perceptually relevant characteristics 
that are present in the CM signal but not in the LM inputs.

In order to assess the subjective quality of the 
reconstructions, also incorporating perceptual issues like 
lyrics intellegibility, which the FAD does not account for, 
we conducted a listening test comparing the six different 
conditions from above using a multi-stimulus test with 
hidden reference (denoted HR). In an online experiment 
using the WebMUSHRA interface (Schoeffler et al., 2018), 
participants were presented the reference (the original CM 
signals without crosstalk from LM-SSD) and asked to rate 
the other six stimuli (including HR) relative to that with 
respect to the overall perceived quality. All signals were 
played back with 16 kHz sampling rate and presented in 
mono via headphones. Rating was done on a continuous 
scale from 0 – 100, where 100 should be used for a 
signal that is indistinguishable from the reference and 0 
should be used for a signal with subjectively bad quality. 
Participants were encouraged to make use of the whole 
scale in the test instructions. The test comprised 24 trials 
in random order using signals with a length between 6 
and 10 seconds from all four singers and the different LM 
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types. In total, 11 participants completed the test, two 
of which were excluded from our analysis as they did not 
consistently (in more than 85% of trials) rate HR with at 
least 90 points.

The results are presented in Figure 6, where the 
responses are split by singer identity. Generally, the 
training scenarios were rated in order of their difficulty 
level, where OF reached a mean score of 76, DT of 65, 
and DS of 49. This is in line with the occurrence of more 
artifacts like slurred consonants, particularly with the 
DS scenario,5 which, according to comments from some 
participants, impaired text intelligibility in the excerpts. 
All training scenarios reach better mean scores than 
the LM signal (17). The NA condition (mean score of 
14) was not rated higher than the LM signal, possibly 
due to amplified noise. The stimuli with female singers 
(3F and 4F) tend to be rated slightly lower than male 
voice signals (mean score 50 vs. 57 over all stimuli). This 
discrepancy could follow from a lower F0 for males, which 
results in more partials in the sensitive frequency range 
of the LMs. However, these differences do not seem to be 
ameliorated by our baseline model.

6.2 DOWNSTREAM TASK: LYRICS 
TRANSCRIPTION
We consider lyrics transcription as an exemplary 
downstream task where LM-SVR may improve the 
performance of approaches that are optimized for high-
quality singing recordings. In particular, we use Whisper 
(Radford et al., 2022), a state-of-the-art data-driven 
speech transcription system with a publicly available 
model that is pre-trained on a very large dataset. Even 
though it is not explicitly trained for the transcription of 
lyrics (see also Zhuo et al. 2023), it yields good results 
transcribing the singing voice from the CM signals in LM-
SSD with a word error rate (WER) of 3.27% on average. 
For the LM signals, however, it yields a worse WER on 
average (49.05%) and a larger variance between songs, 

possibly because the model relies on features from 
full-band, high-quality speech recordings, which are 
largely lacking in the LM signals for some recordings. 
As retraining such a black box system with LM signals 
is not feasible, we explore how our LM-SVR baseline 
can improve transcription results, where a better 
performance would indicate that our model is able 
to reconstruct relevant characteristics of the singing 
voice signal. Detailed results for a selection of songs 
are presented in Table 3. The OF scenario (4.25% WER 
on average) reaches a similar performance to CM. 
Notably, the results with the DS scenario are sometimes 
inferior to the LM transcription (songs TS, BB, and SG in 
particular). While some errors are due to inconsistent 
spelling in the transcriptions (e.g., “supergirl” vs. “super 
girl”), these results indicate some unnatural distortion 
of formants and consonants in the model output when 
trained with the DS scenario. This may inspire future 
work on LM-SVR which can benefit from our dataset and 
the introduction of objective evaluation tasks like lyrics 
transcription.

7. OUTLOOK & CONCLUSIONS

In this paper, we introduced LM-SVR as a novel MIR task. 
We publish LM-SSD, a dataset with LM and CM recordings 
of pop music with singer-songwriter instrumentation, 
and used these recordings to characterize typical 
LM signals. Furthermore, we evaluated a DDSP baseline 
for LM-SVR and showed that a model trained with LM-
SSD has the potential to improve the subjective quality 
of LM singing voice recordings, as well as their usability 
for the downstream task of lyrics transcription, while 
preserving expressive intonation from the original 
recording.

Figure 6 Listening test results according to stimulus and singer 
ID. LM: Larynx Microphone; NA: Naive Approach (linear filtering); 
OF, DT, DS: Overfitting, Different Take, and Different Song 
training scenarios; HR: Hidden Reference (CM signal).

WER (%)

SONG SINGER CM LM OF DT DS

AA 1M 1.83 72.56 1.83 22.56 20.73

TS 1M 2.82 31.69 2.82 24.65 33.10

DL 2M 2.16 10.81 2.70 5.95 7.03

BB 2M 7.40 11.25 9.65 11.90 21.22

SG 3F 3.70 11.11 5.76 11.11 57.61

OC 3F 3.31 84.30 4.96 12.40 58.68

CC 4F 0.49 92.65 0.49 29.41 91.67

LL 4F 1.98 85.71 1.98 15.87 69.44

Average 3.27 49.05 4.25 15.89 46.13

Table 3 Word error rate (WER) of lyrics transcription with the 
Whisper (Radford et al., 2022) medium model for a selection 
of songs from LM-SSD. Song DL uses the dedicated German 
Whisper model.
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A. LM SIGNAL CHARACTERIZATION

Let CM LM, M Kχ χ ×∈  be the STFT time-frequency 
representations of two simultaneously recorded CM 
and LM signals of equal length, calculated using a Hann 
window with window size N, resulting in K frequency bins, 
and hop size H, resulting in M time frames. Furthermore, 
with ◦ denoting element-wise multiplication, we can 
define

CM CM

LL LM

C

LM

CL

C

CM LM

  | | | |,=
 | | | |,=
 | | | |,
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χ χ
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as the frame-wise power spectrum of the CM signal and 
the LM signal, and the frame-wise cross-power spectrum 
between CM and LM signal, respectively.

A.1 RELATIVE TRANSFER FUNCTION
Without access to the true relative transfer function (RTF) 

CL
KH ∈  an unbiased estimate CL

ˆ KH ∈  between CM and 
LM (Gannot et al., 2001, Eq. 31) can be calculated with
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where {∙}M denotes taking the arithmetic mean over 
the M time frames. For the calculations in Figure 3, 
we use N = 32768 and H = 8192, with the signals at a 
sampling rate of 44.1 kHz. The RTFs are smoothed along 
the frequency axis with a Hann window of size 47 (a 
bandwidth of approx. 63 Hz).

A.2 COHERENCE
The frequency-dependent coherence estimate CL [ˆ 0,1]KC ∈  
is given by

{ }
{ } { }

CM LM
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M
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S S

χ χ°
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where χ  is the element-wise complex conjugate of 
χ (Kates, 1992). For Figure 4, we use the same STFT 
parameters and smoothing as for the RTF. Choosing a 
large N and smoothing along the frequency axis contribute 
to a reduction of bias and variance, respectively, in the 
coherence estimate. Note that the naturally occurring 
time delay between CM and LM signals is small enough 
to have no relevant influence on the estimates.

NOTES
1 https://audiolabs-erlangen.de/resources/MIR/LM-SVR/.

2 cf. for example Song BB on the accompanying website for a 
qualitative comparison of the different distortions in T1 (LM-A) 
and T4 (LM-B).

3 A distance of 0.3m to the CM would result in a delay of around 
1ms due to the additional propagation time through the air.

4 https://audiolabs-erlangen.de/resources/MIR/LM-SVR/lm-ssd.zip.

5 cf. the example stimuli on the accompanying website.
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